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ABSTRACT. Mathematical models are an important tool in the development of software
technology, including programming languages and algorithms. During the last few years,
a new class of such models has been developed based on the notion of a mathematical
game that is especially well-suited to address the interactions between the components of a
system. This paper gives an introduction to these game-semantical models of programming
languages, concentrating on motivating the basic intuitions and putting them into context.

1. INTRODUCTION

The importance of reliability in software products is by now well-known
(most commonly known example for a source of concern is the “year
2000 bug”). One aim in the design of new programming languages is to
try to minimize the occurrences of mistakes through appropriate design
(classical example is to encourage programmers to program in a struc-
tured way, as achieved through the design of the programming language
Pascal by providing programming constructs such as procedures). More
suitable programming languages enable a more efficient and more secure
development of software.

Providing mathematical models for programming languages is an im-
portant step in this direction. Their purpose is to serve as a basis for
understanding and reasoning about how programs behave. On the one
hand, they can be used for analysis and verification, on the other, there
have been significant examples of the design of new programming lan-
guage principles influenced by the mathematical foundations (for instance
the influence of the lambda-calculus on the development of the functional
language ML).

For a long time (ca. 1950–1980) these models were functional in nature:
execution of a program was thought of as computation of a function (as op-
posed to an interactive process). Using this model allowed the development
of the notions of correctness of a program with respect to its specification.
These models could be classified as operational semantics respectively
denotational semantics. Different structures also relating inputs to outputs
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in a functional or relational way (namely Turing machines) were employed
to model computational complexity.

• Operational semantics employs an evaluation relation ⇓: M ⇓ c means
that the “program” M converges to the canonical form (“value”) c

(“big-step”-semantics).
• In denotational semantics one employs mathematical methods to

use one’s intuition about specific mathematical structures to reason
about programming languages. Programs are interpreted composition-
ally in the structures that traditionally are order-theoretic: A term
op(M1, . . . , Mn) consisting of an operation op and subterms Mi is
interpreted by composing the interpretations of the operation and of
the subterms:

[op(M1, . . . , Mn)] := [op]([M1], . . . , [Mn]).

Both kinds of semantics have been very successful, but also have disad-
vantages: Operational semantics is syntax-dependent and thus too explicit
for a nice mathematical theory. In denotational semantics, the programs
are modeled extensionally (i.e., showing only input/output-dependencies
and no aspects of the actual computation process) which abstracts from
their dynamics. While this has been an adequate approach to the tradi-
tional forms of (functional) computation, the rise of interest in distributed
systems (of which the most commonly known is the internet) in recent
years has called for a model that takes account of the interactions between
components of a system (or equivalently, between a system and its environ-
ment). Moreover, this approach also models appropriately the realization
of functional computation. More speculatively, an intensional model of
computation (i.e., one that reflects some properties of the process of com-
putation) could perhaps also be used to model computation-related aspects
like computational complexity.

These observations beginning in 1992 in Abramsky and Jagadeesan
(1992) (and independently in Hyland and Ong (1992)) led to the con-
struction of very satisfactory game-semantical models for linear logic
(a resource-sensitive logic introduced in Girard (1987); another model
had been given in Blass (1992), but with non-associative composition).
These model were intensional in nature: thus the usual completeness re-
sults, stating that provability of a formula is reflected in the model, were
strengthened to “full completeness” results where each proof is itself re-
presented. Another games model for linear logic was given in Lamport
(1994), while the ones in Lafont and Streicher (1991) or Mey (1994) (the
latter for predicate logic without contractions) are not intensional.
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Subsequently, this led in 1993 to the development of intensional game-
theoretical models in the semantics of programming languages indepen-
dently by Abramsky et al. (1994); Hyland and Ong (2000) and Nickau
1996). These models proved to be very useful and provided e.g., a solution
for the probably best-known open problem in the semantics of program-
ming languages, the “Full Abstractness Problem” for the programming
language PCF (Plotkin 1977), by giving the first syntax-independent fully
abstract model. PCF is a higher-order functional programming language
that essentially is a fragment of any programming language with higher-
order procedures (for instance any expressive enough object-oriented
programming language).

Precursors to these game-theoretical models can be seen in Joyal
(1977), where for the first time a category of games is defined, and in
the work of Kleene on recursive functionals, and of Berry and Curien on
sequential algorithms in Berry and Curien (1982).

In another line of research, game-semantical methods have so far had
a number of other applications, including in Abramsky and Jagadeesan
(1994) an alternative realization of the “Geometry of interaction” program
(initiated in Girard (1989) and developed in a series of papers).

In this paper we would like to give an accessible introduction to the
games model of PCF while concentrating on motivating the basic intuitions
and putting them into context.

2. GAMES – INFORMAL DEVELOPMENT

Game theory was founded in the beginning of the century with works by
Zermelo, Borel and von Neumann on parlour games. In the 1950’s John
Nash made his famous contributions to non-cooperative game theory and
to bargaining theory that he later received the Nobel Prize of economics
for (together with J. C. Harsanyi and R. Selten).

The use of game-theoretical methods in logic (with the best-known
example the Ehrenfeucht-Fraissé games used in (finite) model theory) also
originated at the beginning of this century and is still a strong field of
research. Similarly game-theoretical methods have been used in models
of concurrency/reactive systems (for an introduction into the latter field
(cf. Merz 2002), the modeling of interactive protocols, natural language
semantics (Hintikka games (Hintikka and Sandu 1997)) etc.
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2.1. Lorenzen Games

The use of game theory in the semantics of programming languages is
based upon work done by P. Lorenzen in the 1950’s on “dialogue games”
(Lorenzen 1960 (for a survey, cf. Felscher 1986), however we will here
consider a slight variation of the games considered there in order to make
the connection to Game Semantics in the following subsection more expli-
cit). There a sentence of the propositional calculus (these are the formulae
inductively constructed from atomic propositions p using the connectives
∨, ∧, ⇒, ¬) is interpreted via a two-player game between the “Proponent”
trying to prove an assertion and the “Opponent” trying to disprove it. This
is done recursively on the structure of the given formula. It can be done
both for intuitionistic (in this logic essentially the law of the excluded third
is not required to hold) and classical logic and we will start by giving the
rules for the treatment of the former.

To formulate this more formally, we first need to be a little more precise:
The players are called “1” and “2”, and at each point in the game, each of
them can either attack or defend the (sub-)formula under consideration at
that point.

Thus the possible moves are: A player (1 or 2) can

• assert a formula (e.g., A ∨ B) or
• attack a (previously asserted) formula (in the notation employed below

this will be denoted by a “?” under the attacked formula).

A play of a game then is a sequence of moves made in turns by the two
players 1 and 2 according to the following rules.

• 1 starts by asserting a formula and then it is 2’s turn to move as the
“attacker”.

• If the player whose turn it is to move is currently in the attacker role he
can attack the formula φ asserted by the other player in the preceding
move in the following way:

− If the currently attacked formula is of the form A ∧ B he can attack
one of the subformulas A or B (and moreover, he can later attack
the other not yet attacked subformula).

− If the currently attacked formula is of the form A ∨ B, A ⇒ B or
¬A then he can simply attack the whole formula.

• If in the preceding move one of the players attacked the formula φ,
the other one can now make the following moves (in “defense” of φ)
depending on the structure of φ:
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atomic If φ is an atomic formula, this depends on which player cur-
rently is to move: 2 can assert φ, but 1 can only assert φ if 2 has
previously asserted it.

A ∧ B He can simply assert the whole formula A ∧ B.

φ = A ∨ B He can either assert A or B (under the proviso of the pre-
vious case if the chosen formula is atomic). (Note that however in
this intuitionistic case he does not later have the option to also assert
the other disjunct !)

A ⇒ B He can attack A. Instead (or also additionally, at a later point
of the game) he can assert B (under the above proviso).

¬A He can attack A.

• If in each of the subplays the player in turn cannot move then the play
stops. If there is an attack that could not be answered, this can only be
an attack by 2, since 2 can assert atomic formulae ad libitum, and then
2 is the winner, and otherwise 1 is.

Note that the asymmetry of the rules wrt. atomic propositions comes
from the fact that in order to show that a formula is valid (semantically),
one has to show that it evaluates to true for any possible valuation of the
atomic propositions involved.

These rules are pictured schematically in the following table:

1 A ∨ B 1 A ∧ B

2 ? 2 attack A or B

1 choose A or B 1 defend chosen formula
2 attack chosen formula

1 A ⇒ B 1 ¬A

2 ? 2 ?
1 attack A 1 attack A

or defend B

A player has won a single play of the game corresponding to a formula
if he made the last move that is allowed according to the above rules (i.e.,
which is “legal”). A strategy for a player p (say 1) is a function that assigns
to every sequence of legal moves ending with a move of the other player
(2) a move of his own (i.e., of 1). Thus one can obtain a play of a game
by playing a strategy for 1 off against a strategy for 2. A strategy is said
to be a winning strategy if this is done in such a way that p wins every
possible play of the game. It then follows that winning strategies for 1
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asserting a formula φ correspond exactly to proofs of φ in intuitionistic
logic (in short we have the slogans “propositions-as-assertion-moves” and
“proofs-as-winning-strategies”).

For illustration we present proofs via games for two formulae (here and
in the following we present games by showing a typical run instead of all
possible runs to increase readability):

Modus Ponens:

1 ((A ⇒ B) ∧ A) ⇒ B

2 ?

1 ?

2 ?

1 ?

2 A

1 A

2 B

1 B

Identity:

1 A ⇒ A

2 ?

1 ?

2 A

1 A

Let us go through the game for the first formula in detail: Here 1 starts
by asserting the formula φ = ((A ⇒ B) ∧ A) ⇒ B. By the rules given
above and the structure of φ the only move 2 can then do is to attack the
whole formula. 1 can then defend φ by either attacking the premiss (A ⇒
B) ∧ A (and possibly asserting the conclusion B later), or by asserting B

immediately. According to the strategy represented by the above diagram
she chooses the first option, which means that she must actually attack one
of the conjuncts A ⇒ B and A, and so she attacks the first (only to attack
the second later – in fact she would also succeed by doing it the other way
around). Now 2 can either attack the premiss A, or simply assert B (note
that the latter option would not exist for 1 by the above rules). In the latter
case 1 would immediately have the winning move to assert the conclusion
B of φ (which is then possible because 2 has asserted it first). Thus in this
play 2 chooses instead to attack A. Now 1 makes use of her still existing
option to attack the other conjunct A (that she has not attacked before) of
the conjunction (A ⇒ B) ∧ A that has previously been under her attack.
2 can only defend A by simply asserting it. But then also 1 is allowed to
defend A as the premiss of A ⇒ B by asserting it. The only option left
to 2 is to finish off her defense of A ⇒ B by asserting B. But then again
1 may assert B as the conclusion of φ. Since there is no move left for 2, 1
wins this play, and in fact from the explanations given above it is clear that
1 has a winning strategy for this game. Thus we have given a proof of φ in
intuitionistic logic.
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We obtain a representation of proofs of classical logic if the above rules
are weakened so that not only both conjuncts of a conjunction can sub-
sequently be attacked, but also both disjuncts of a disjunction subsequently
be defended:

1 A ∨ ¬ A

2 ?

1 ¬ A

2 ?

1 ?

2 A

1 A

2.2. Game Semantics

To lead over from Lorenzen Games to games in the semantics of program-
ming languages we can make use of the Curry-Howard-Isomorphism. The
idea is to view “propositions as types” and proofs for a proposition A as
terms of type A in the λ-calculus (thus a proposition is interpreted as valid
iff the corresponding type is inhabited). Recalling the above slogans this
gives us “assertions-as-types” and “winning-strategies-as-terms” (note that
for P ’s strategies to be winning means that the corresponding term denotes
a total function). So for example the natural number 3 ∈ N is represented
by the following strategy:

1 N
2 q

1 3

Here we change our notation slightly to indicate the change of per-
spective: Firstly, instead of ? we write q. This is now interpreted as a
request by the environment for an element of N. The difference to the
preceding situation is that here our types are usually inhabited (while there
the propositions were not always valid) and so the attention is turned from
provability (the existence of some proof) to a specific proof. This we in-
dicate by naming the proof (i.e., the element representing it – 3 in the
above example) instead of simply asserting the proposition. Because of
the fundamental difference in the interpretation in this setting of the first
move (which asserts the type of the game) from the others we will not
consider it as a move here, such that the game starts with a question by 2
(this player is here renamed to E for “environment”, while 1 becomes S

for “system”).
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The interpretation of a question and its corresponding answer is then
the delivery of the requested data by the system to the environment. This
has the consequence that a player can repeatedly “attack” the same →-
connective (which was not possible in Lorenzen Games) in order to get
different inputs (see the examples below).

Here “system” and “environment” can take several interpretations: for
instance, a computer system and its user, a computer and the other com-
puters of its network, or in the program text a term and its context. The
explicit distinction between system and environment from the beginning
is an important difference to most other process models. (In CSP, for
example, one does have two different operators for internal and external
choice. On the other hand, Hoare takes the view that: “In choosing an
alphabet, there is no need to make a distinction between events which
are initiated by the object (perhaps choc) and those which are initiated
by some agent outside the object (for example, coin). The avoidance of the
concept of causality leads to considerable simplification in the theory and
its application” (Hoare 1985, 24).)

Note also that a value (that in standard denotational semantics is
atomic) is here represented by an interactive process (“splitting the atom
of computation”).

Under the Curry-Howard-Isomorphism, ⇒, ∧, ∨, true, false corres-
pond to the function space →, the cartesian product ×, the disjoint sum
+, the singleton 1 and the empty set ∅ respectively (and so we will adopt
the latter notation).

The above example Identity here instantiates to the identity function of
type A → A (represented by the “copycat-strategy”):

A → A

E q

S q

E a

S a

(Note that for clarity we write the request under the corresponding type,
and not under the connective → as in Lorenzen Games.) Similary, Modus
Ponens corresponds to function application.
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To give a few more examples:

Addition:
N → (N → N)

E q

S q

E n

S q

E m

S n + m

λf : N → N.if f (0) = 0 then 1 else 0
(N → N) → N

E q

S q

E q

S 0

E n=0
n>0 or

S 1
0 or

The first example is a particular run of the strategy that, after being
requested an output by the environment, itself requests the two input ar-
guments, and then returns their sum. Note that the same function could be
modelled by a different strategy, namely by the one that takes the argu-
ments in the reverse order. This illustrates the intensionality of this model,
and it in fact models the situation correctly also if one takes into account
features of actual computation like store and control (see below).

The second one is an example for a higher-order function: it pictures a
strategy for the function

g := (λf : N → N.if f(0) = 0 then 1 else 0) : (N → N) → N

that takes a function f : N → N and returns 1 if the function has value
0 at input 0, otherwise 0. Note that g receives its input not “all at once”
(as a first-order function would receive its input, e.g., a natural number),
but in a “demand-driven” fashion. This is in accordance with the general
way of representation by (finitary) interaction and is necessary to satis-
factorily model programming languages, since on a computer one cannot
deal directly with infinite objects (like functions with infinite domain), but
only indirectly through a finite representation by a term or (as here) finite
(but arbitrary) portions of it. Thus after being requested an output from the
environment, g requests a value from its input f . In this run of the strategy,
f in turn demands from g a value (its argument) and receives 0, whereupon
it delivers its value at 0. If this value equals 0, g returns 1, otherwise 0 to
the initial request (for simplification these two cases are depicted in the
same diagram, so in fact the diagram represents to possible runs: the first
one is obtained by substituting the first instances n = 0 and 1 in the last
two lines, and the second one by using the second cases n > 0 and 0.

Note that one can also model non-strict functions (a function is non-
strict if it delivers a defined output even for an undefined input, in



140 JAN JÜRJENS

the domain-theoretic sense): The following function delivers 3 without
looking at its input:

N → N
E q

S 3

By the above remarks about inputs to higher-order functions, one often
requires several interactions between the function and its argument, as in
the following example of the function λf.f (0) + f (1) : (N → N) → N
that takes a function f : N → N as input and outputs the value f (0) +
f (1) ∈ N (note that here we deviate from Lorenzen Games by allowing
the same connective to be “attacked” twice, as indicated above):

(N → N) → N

E q

S q

E q

S 0

E n

S q

E q

S 1

E m

S n + m

These interactions can also be nested in each other, as in the following
example of the function λf.f (f (3)) : (N → N) → N that takes a function
f : N → N as input and produces the value f (f (3)) ∈ N (where we
introduce pointers to indicate which question provided data refer to; this
concept is defined more precisely in the next section):



GAMES IN THE SEMANTICS OF PROGRAMMING LANGUAGES 141

(N → N) → N

E q

S q

��������

E q

��������

S q

��������

E q

��������

S 3
��

E n

��

S n

��

E m

��

S m

��

Whereas in the example above one would not really need the pointers
by instead making the convention that each delivered data refers to the
“pending” question (this is the “well-bracketing” condition defined be-
low), there are more complicated examples where this is not possible: For
example, λf.f (λx.f (λy.y)) and λf.f (λx.f (λy.x)) would be identified
without the use of pointers.

In modelling systems it is conceptually nice (and for more complicated
systems even required in order to make modelling feasible) to model the
different components and then obtain a model of the whole by putting
together the models of the parts. In order to do this one needs to be able
to compose the strategy representing one component (which in the above
system/environment-distinction takes on the role of the “system”) with
the strategy representing the joint behaviour of the other components (the
“environment” of the former component).

To visualize composition of (i.e., interaction between) strategies, con-
sider the following example of the composition of λn.(n, 3) : N → N × N
(that maps a value n to (n, 3)) followed by the (uncurryed) addition
+ : N × N → N:
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N → N × N → N
q Er

El q Sr

Sl q

El n

Sl n Er

El q Sr

Sl 3 Er

n + 3 Sr

The interaction takes place in the following way: The play starts in the
right game with the question from Er in N. According to the strategy for
+ this prompts a question from Sr in the left factor of N × N. Now any
question by Sr in the domain of the strategy on the right (and thus in the
codomain of the strategy on the left) is in the game on the left interpreted as
a move by El. This corresponds very nicely to the intuitive fact that every
component of a whole is part of the environment for any other component.
Now according to the strategy for λn.(n, 3), since El asks for the left factor
of N × N, this results in a demand of input in N by Sl, and the response n

by El is copied to the left factor of N × N. There it is interpreted as a move
by Er and the game continues similarly. In the end, the strategy resulting
from the composition is obtained by “hiding” the moves that are not any
longer in interaction with the overall environment (the ones in brackets in
the middle). As expected, the corresponding function is λn.n + 3.

NOTE 1.

• Note that as with composition of functions one can only compose
strategies with matching types: to form σ ; τ , we must have σ of the
type A → B and τ of the type B → C for suitable A, B, C.

• In the setting of Lorenzen Games, composition of strategies gives us a
natural proof for the transitivity of ⇒.

• Obviously there is a close relationship of the composition of strategies
to the “parallel composition + hiding” in the process algebra CSP
(because of the way our strategies are typed it is here possible to put
these two constructions together without losing associativity; with the
same idea one can also construct typed processes (cf., e.g., Abramsky
(1996); Jürjens (1999b)).
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• In addition to associativity we also have (partial) neutral elements wrt.
composition (given by the identity strategies as presented above), so
in fact we can form a category (see below).

As a special case of composition we get the application of strategies
to their input: Define I to be the empty game with no moves (and one
strategy, namely the one that does nothing). Then we can represent, e.g.,
the element (3, 5) ∈ N × N by the strategy

I → N × N
q

3
q

5

and so 3 + 5 becomes in fact 8:

I → N × N → N
q Er

El q Sr

Sl 3 Er

El q Sr

Sl 5 Er

8 Sr

With game semantics one can also model the key ingredients of im-
perative languages, namely commands and store, and furthermore one can
define control operators that allow early escape from function evaluation.
One of the nicest features of game semantics is that the abilities to use store
resp. control correspond exactly to different kinds of internal properties of
the strategies involved (this will be made more precise below).

3. DEFINITIONS

To put the above intuitive examples on a more solid foundation, we
will now provide the underlying definitions. They appeared in McCusker
(1998) and are essentially an adaption of Hyland and Ong (2000), taking
account of ideas in Abramsky et al. (2000).
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3.1. Games and Strategies

DEFINITION 1. An arena is a structure A = (MA, λA, �A) consisting of

• a set of moves MA,
• the labelling function λA : MA → {S, E}×{Q, A} (call moves labelled

(S, l) resp. (E, l) (for l ∈ {Q, A}) “S-moves” resp. “E-moves” and
moves labelled (l, Q) resp. (l, A) (for l ∈ {E, S}) “questions” resp.
“answers”) and

• the enabling relation �A⊆ (MA + {ι}) × MA (with ι /∈ MA; say m

enables n if m � n — the idea is that during a play moves can be
made only when they are enabled by earlier moves.). Call a move that
is enabled by ι “initial”.

under the following conditions:

• Initial moves are E-questions, and they are not enabled by any other
moves besides ι.

• Answers can only be enabled by questions.
• Enabling alternates between E-moves and S-moves (i.e., an E-move

can only enable a S-move and vc. vs. ).

DEFINITION 2.

• A justified sequence is a sequence s of moves together with each a
justification pointer from every non-initial move m to a move n earlier
in s such that n � m. We say that (this occurrence of) the move n

justifies m and write this as n · t · m
��

(where · denotes concatenation, and supposing that t is the sub-
sequence of moves between n and m).Note that justified sequences
always start with E-questions.

• For a justified sequence s, we define the system view s and the
environment view s of s by induction on the length of s:

ε = ε.

s · m = s · m, if m is a S-move.

s · m = m, if m is initial.

s · m · t · n
�� = s · m · n

��
, if n is an E-move.

ε = ε.

s · m = s · m, if m is an E-move.

s · m · t · n
�� = s · m · n

��
, if n is an E-move.
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• A justified sequence s is a legal position if

− players alternate (if s = s1 · m · n · s2 and m is an E-move, then n is
a S-move and vc. vs. ) and

− for any prefix t · m of s: if m is a S-move, then its justifier is in t

and if m is a non-initial E-move then its justifier is in t .

Write LA for the set of legal positions of A.

DEFINITION 3.

• Let m be a move in a legal position s. We say that m is hereditarily
justified by an occurrence of a move n in s if there is a subsequence of
s starting with n and ending in m such that every move is justified by
the preceding move in it. For a set of (occurrences of) initial moves we
write s�I for the subsequence of s consisting of the moves hereditarily
justified by a move of I .

• A game is a structure A = (MA, λA, �A, PA) where

− (MA, λA, �A) is an arena and
− PA is a non-empty, prefix-closed subset of LA called the valid pos-

itions such that for s ∈ PA and I a set of initial moves of s we have
s�I ∈ PA.

• A (deterministic) strategy σ for a game A is a non-empty set of even-
length positions from PA satisfying

− s · a · b ∈ σ ⇒ s ∈ σ and
− s · a · b, s · a · c ∈ σ ⇒ b = c and b and c have the same justifier

(determinacy condition).

3.2. Composition of Strategies

Now we would like to model compositionality. It is convenient to do this
in the framework of category theory, because that way we can make use of
already existing results on models of PCF (or linear logic).

A category consists of objects and morphisms. The objects of our cat-
egory will be the games. To define the notion of morphism we first need to
consider a construction on games:

DEFINITION 4. Given games A and B, the game A � B is defined as
follows (A � B, as opposed to A → B, is the usual notation for the
morphisms sets in models of linear logic):

MA�B = MA + MB
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λA�B = [λ̄A, λB]
ι �A�B m ⇔ ι �B m

m �A�B n ⇔ m �A n ∨ m �B n ∨ [ι �B m ∧ ι �A n] for m �= ι

PA�B = {s ∈ LA�B : s |A∈ PA ∧ s |B∈ PB}.
(where λ̄A means λA with the S/E-labels inverted and s|A is the sub-
sequence of s consisting of moves from MA).

Now a morphism from a game A to a game B is a strategy on A � B.
After some auxiliary definitions we will give the definition of composition
of strategies:

• For a sequence u of moves from games A, B, C with justification
pointers define u |B,C to be the subsequence of u consisting of
moves from B and C (removing pointers that point to moves from
A). Similarly define u|A,B . u is an interaction sequence of A, B, C if
u |A,B∈ PA�B and u |B,C∈ PB�C . Write the set of all such sequences
as int(A, B, C).

• Suppose u ∈ int(A, B, C). By definition of �, a pointer from an A-
move a can only point to a B-move b if b is initial and its pointer
points to an initial C-move c. Define u |A,C to be the subsequence of
u consisting of the moves of A and C where in the mentioned case the
pointer from a is changed to point to c.

• Given strategies σ : A � B, τ : B � C, define

σ‖τ := {u ∈ int(A, B, C) : u |A,B∈ σ ∧ u |B,C∈ τ }
and finally the composition of σ followed by τ to be

σ ; τ := {u |A,C: u ∈ σ‖τ }.

PROPOSITION 1. We obtain a category G whose objects are games and
where the morphisms from A to B are strategies σ : A � B with
composition as defined above and identities the copycat-strategies.

3.3. Restrictions on Strategies

In this section we will define certain restrictions on the sets of strategies
that are needed for the game-semantical characterization of programming
disciplines mentioned earlier.

DEFINITION 6. By determinacy of strategies we know that for s · a · b, t ·
a ∈ LA (where s · a · b has even length) with s · a = t · a, there is a
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unique (by determinacy) extension match(s · a · b, t · a) of t · a by b (with
a justification pointer for b) such that s · a · b = match(s · a · b, t · a). A
strategy σ on A is called innocent iff in each such situation it satisfies

s · a · b ∈ σ ∧ t ∈ σ ∧ t · a ∈ PA ∧ t · a = s · a

⇒ match(s · a · b, t · a) ∈ σ,

i.e., a move by S depends only on the S-view.

For an example for a non-innocent strategy consider the following
function (strictly speaking, the following examples are strategies in the
category C to be derived from G in the next subsection):

F := λf : N → (N → N).

new x := 0 in f (if x = 0 then (x := 1; 0) else 1)

(if x = 0 then (x := 1; 0) else 1)

Then we have

Ff =
{

f 0 1, if f asks for its first argument first
f 1 0, if f asks for its second argument first

The strategy for this function has the following two runs:

(N 		 N 		 N) 		 N (N 		 N 		 N) 		 N

E q E q

S q



�����
S q



�����

E q

������������� E q



�����

S 0

��
S 0

��

E q

�����������
E q



S 1

��
S 1

��

E n

��

E m

��

S n

��

S m

��

This violates innocence: Since

q1 · q2
�� · q3

�� = q1 · q2
�� · q3

�� = q1 · q2
�� · q4 · 0

�� · q3�� ,

P must do the same in both runs.
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DEFINITION 7. A strategy σ is well-bracketed iff for each s · a · b ∈ σ

with b an answer, the justification pointers on s · a · b have the form

. . . q · q1 . . . a1
��

. . . qn . . . an·��
b��

(with an = a and where ai are answers), i.e., S can answer only the most
recent unanswered question in S’s view.

A counter-example for the well-bracketing condition is provided by the
control operator catch: (N → (N → N)) → N which is defined by

catch(f ) =



0, if f calls its first argument first,
1, if f calls its second argument first,
n + 2, if f returns n immediately.

The following is a possible run for the corresponding strategy, where
clearly the bracketing condition is violated:

(N 		 N 		 N) 		 N

E q

S q



����

E q

������������

S 0

��

PROPOSITION 2. We obtain categories Gi , Gb resp. Gib that are sub-
categories of G with the same objects and morphisms the innocent,
well-bracketed resp. innocent and well-bracketed strategies.

3.4. Cartesian Closedness

Models of the lambda-calculus (and so in particular of PCF) are often given
in the framework of Cartesian closed categories (ccc’s).

Note that all four defined categories are autonomous, i.e., symmetric
monoidal closed (and this structure is respected by the subcategory inclu-
sions), via the following tensor product (and the unit I = (∅, ∅, ∅, {ε})):
DEFINITION 8. Given games A and B, the game A ⊗ B is defined as
follows:

MA⊗B = MA + MB

λA⊗B = [λA, λB]
ι �A⊗B m ⇔ ι �A m ∨ ι �B m

m �A⊗B n ⇔ m �A n ∨ m �B n

PA⊗B = {s ∈ LA⊗B : s |A∈ PA ∧ s |B∈ PB}.
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(where λ̄A means λA with the S/E-labels inverted and s|A is the sub-
sequence of s consisting of moves from MA).

We will make use of the autonomous structure in order to obtain
cartesian closed categories out of the categories defined above using the
Girard translation of intuitionistic logic into linear logic. First we will
define the categorical product.

DEFINITION 9. Given games A and B, the game A × B is defined as
follows:

MA×B = MA + MB

λA×B = [λA, λB]
ι �A×B m ⇔ ι �A m ∨ ι �B m

m �A×B n ⇔ m �A n ∨ m �B n

PA×B = {s ∈ LA×B : s |A∈ PA ∧ s |B= ε}
∪{s ∈ LA×B : s |B∈ PB ∧ s |A= ε}.

The projections are the obvious copycat strategies.

It is straightforward to generalize the definition from the binary to the
set-indexed case and to show that this actually gives a categorical product.

To define the morphisms in the ccc’s to be constructed we need the
exponential of a game:

DEFINITION 10. Given a game A, the game !A is defined as follows:

M!A = MA

λ!A = λA

�!A = �A

P!A = {s ∈ L!A | for each initial move m, s�m ∈ PA}.

Intuitively, !A stands for arbitrarily many copies of A. The use of this
operator is necessitated by the fact that the λ-calculus, as opposed to linear
logic, is not resource-sensitive.

To define composition of morphisms σ : A → B in C (which will be
strategies !A � B in G) with τ : B → C we will then need for each
strategy σ :!A � B a “lifting” σ † :!A �!B. This, however, can only be
defined for a restricted class of games:
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DEFINITION 11. A game A is well-opened iff for all sm ∈ PA with m

initial, s = ε.
For σ :!A � B with well-opened games A, B define σ † :!A �!B by

σ † = {s ∈ L!A�!B | for all initial m, s�m ∈ σ }.

One can show that for well-opened games this construction does not
only preserve the property of being a strategy, but also that of being
innocent and well-bracketed.

Now we can construct a ccc from each of the categories defined above
using the Girard translation:

DEFINITION 12. The category C has as objects well-opened games and
as morphisms σ : A → B strategies for !A � B. The composition
σ ; τ : A → C of morphisms σ : A → B and τ : B → C is defined
to be σ †; τ . The subcategories Ci , Cb and Cib are defined by imposing
restrictions analogously to the definitions above.

One can show that each of these four categories is cartesian closed and
that this additional structure is respected by the inclusions. As usual in
ccc’s let us write (A ⇒ B) := (!A � B), )(f ) : A → (B ⇒ C) for
the morphism obtained by currying f : A × B → C, and ev : (A ⇒
B) × A → B for the morphism obtained by uncurrying the identity on
A ⇒ B.

In fact there are conceptually very appealing factorization theorems
that show that each strategy can be factored into an innocent (resp.
well-bracketed) and a non-innocent (resp. non-well-bracketed) part.

4. FULLY ABSTRACT MODELS FOR PROGRAMMING LANGUAGES

In the following we will present the basic results about game-semantical
models for programming languages. We start by defining the language in
question.

4.1. The Language PCF

The programming language PCF is a call-by-name functional language
with a base type of expressions denoting natural numbers and constants
for arithmetic and recursion. Its syntax is that of an applied simply-typed
λ-calculus (for a definition of λ-calculus cf. Matthes (2002)) with types
given by the following grammar:

A ::= exp | A1 → A2.
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Terms are defined as follows:

M ::= x | λx : A.M | M1M2

| n | succM | predM

| condM1M2M3 | YAM

(where x is a variable and n a natural number).
Typing judgements are made using the following rules:

Variables:
x1 : A1, . . . , xn : An � xi : Ai

i ∈ {1, . . . , n}

Functions:
*, x : A � M : B

* � λx : A.M : A → B
,

* � M : A → B, * � N : A

* � MN : B

Arithmetic:
* � n : exp

,
* � M : exp

* � succM : exp
,

* � M : exp

* � predM : exp

Conditional and recursion:
* � Mexp, * � N1 : exp, * � N2exp

* � condMN1M2 : exp
,

* � M : A → A

* � YAM : A

The “big-step” operational semantics of PCF is given by a relation M ⇓
V (“M evaluates to V ”) where M is a closed term (a term with no variables,
i.e., so that � M : A can be derived) and V is a canonical form defined by
the following grammar:

V ::= n | λx.M

This determines a partial function from closed term of type exp to
natural numbers in the following way (where M[N/x] is the capture-free
substitution of the term N for the variable x in the term M):
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Canonical forms:
V ⇓ V

Functions:
M ⇓ λx.M ′, M ′[N/x] ⇓ V

MN ⇓ V

Arithmetic:
M ⇓ n

succM ⇓ n + 1
,

M ⇓ n + 1

predM ⇓ n
,

M ⇓ 0

predM ⇓ 0

Conditional:
M ⇓ 0, N1 ⇓ V

condMN1N2 ⇓ V
,

M ⇓ n + 1, N2 ⇓ V

condMN1N2 ⇓ V

Recursion:
M(YM) ⇓ V

YM ⇓ V

.

4.2. Game-semantical Characterization of Programming Disciplines

We will first give the usual interpretation of the simply-typed λ-calculus
in a Cartesian closed category. For * = x1 : A1, . . . , xn : An let us write
�*� := �A1� × . . . × �An�.

Each type A is modelled by an object �A�: Starting with the definition
of �exp� (see below), higher types are defined by �A → B� = �A� ⇒ �B�.

A term * � M : A is modelled as a morphism �* � M : A� : �*� →
�A�:

Variables are interpreted by projections:

�* � xi : Ai� = πi : �*� → �Ai�.

Abstraction is modelled by currying:

�* � λx : A.M : A → B�

= )(�*, x : A � M : B�) : �*� → �A� ⇒ �B�.

Application is interpreted via the evaluation map ev : (A ⇒ B)×A → B:

�* � MN : B� = (�* � M : A → B�, �* � N : A�); ev.
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Thus to obtain a model for PCF in any of the four ccc’s defined above
we are left to interpret the type exp and the term constants n, succM,
predM, condMN1N2 and YAM:

�exp� is the flat game N of natural numbers:

MN = {q} ∪ {n | n ∈ ω}
λN(q) = OQ

λN(n) = PA (for each n)

ι �N q

q �N n (for each n)

PN = {ε, q} ∪ {qn | n ∈ ω}
The strategies for N are ⊥ = {ε} and �n� = {ε, qn} for each n.

The constant succ is interpreted as

�* � succM : exp� = (�* � M�; s) : �*� → �exp�.

using the morphism s : �exp� represented by the following strategy:
!N � N

q

q

����������

n

��

n + 1

��

The operation pred is defined similarly. The conditional is then defined
as

�* � condMN1N2� = (�* � M�, �* � N1�, �* � N2�); c

using the morphism c : N × N × N → N represented (via the canonical
isomorphism !(N×N×N) =!N⊗!N⊗!N) by the strategy whose two typical
plays are depicted below:

!N ⊗ !N ⊗ !N � N
q

q

0
q

n

n

!N ⊗ !N ⊗ !N � N
q

q

m �= 0
q

n

n
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Finally recursion is interpreted in the usual way making use of the fact
that the ccc’s defined above are cpo-enriched.

One can then show that the categories Cib, Cb and Ci (or more pre-
cisely, their quotient by an intrinsic preorder on the hom-sets) via the
above interpretations give fully abstract models for the languages PCF,
(a simplified version of) Idealized Algol and (a minor variant of) SPCF
resp. . Here Idealized Algol is viewed as an extension of PCF with the
constructs of a basic imperative language and block-allocated variables.
More precisely, we add the two base types com (for commands which
alter the state and which can be composed sequentially) and var (for vari-
ables which store natural numbers, that are allocated using an operator
new x in M and that can be written to and read from). SPCF is an ex-
tension of PCF by control operators. More precisely, this variant of it is
obtained by adding to PCF a family of control operators catchk. Intuitively,
catchk x1, . . . , xk in M terminates immediately when the term M tries to
evaluate the variable xi and returns i − 1. If M delivers n without using
any of the xi , catchk x1, . . . , xk in M returns n + k.

Thus one obtains the following semantic characterization of program-
ming disciplines (Abramsky and McCusker 1997, 1999b; Laird 1997;
Abramsky et al. 1998) (the last case functional + store + control has not
been published yet):

Constraints Language

D+I+B purely functional
D+I functional + control
D+B functional + store
D functional + store + control

Here D stands for the subcategory of C with the same objects and
the morphisms restrained by the determinacy condition (resp. I by the
innocence and B the well-bracketing condition).

5. FURTHER WORK

By further work the above results have been considerably extended and in-
clude recursive types (McCusker 1998) and call-by-value (Abramsky and
McCusker 1999b; Honda and Yoshida 1997). Thus at least in principle the
main features of languages like Scheme or Core ML (except for the ability
to test references for equality) have been taken care of. Also there has been
research towards nondeterminism (Harmer and McCusker 1999).
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Very recently there has been developed a new concurrent form of game
semantics resolving problems posed by the sequentiality of the traditional
ones and giving a full completeness result for multiplicative-additive linear
logic (Abramsky and Melliès 1999; Abramsky 1999b). Also, game se-
mantics has been employed to develop a notion of “Process Realizability”
(Abramsky 1999b).

Applications of game semantics to reasoning about security issues can
be found in Malacaria and Hankin (1999). Some of the work currently
in progress addresses subtyping, and in another line of research, game-
semantical ideas are being employed in specification and refinement in a
way that takes account of program dynamics and the system/environment
distinction (Abramsky 1999a, Jürjens 1999a).

Further work will address semantics for object-oriented languages
(Java) and logical principles for structuring protocols.

6. CONCLUSION

Since this paper was intended to be an elementary introduction to game
semantics and just to convey the basic intuitions, many details had to be left
out. For these the reader is referred to Abramsky (1997a) and Abramsky
and McCusker (1999a).
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