
1 

More SQL 

Extended Relational Algebra 

Outerjoins, Grouping/Aggregation 



2 

The Extended Algebra 

δ = eliminate duplicates from bags. 

τ = sort tuples. 

γ = grouping and aggregation. 

Outerjoin : avoids “dangling tuples” = tuples 
that do not join with anything. 



3 

Duplicate Elimination 

R1 := δ(R2). 

R1 consists of one copy of each tuple 
that appears in R2 one or more times. 



4 

Example: Duplicate Elimination 

R =  ( A B ) 
 1 2 
 3 4 
 1 2 

δ(R) = A B 

  1 2 
  3 4 



5 

Sorting 

R1 := τL (R2). 

 L  is a list of some of the attributes of R2. 

R1 is the list of tuples of R2 sorted first on 
the value of the first attribute on L, then on 
the second attribute of L, and so on. 

 Break ties arbitrarily. 

τ is the only operator whose result is neither 

a set nor a bag. 



6 

Example: Sorting 

R =  ( A B ) 
 1 2 
 3 4 
 5 2 

τB (R) = [(5,2), (1,2), (3,4)] 



7 

Aggregation Operators 

Aggregation operators are not 
operators of relational algebra. 

Rather, they apply to entire columns of 
a table and produce a single result. 

The most important examples: SUM, 
AVG, COUNT, MIN, and MAX. 



8 

Example: Aggregation 

R =  ( A B ) 
 1 3 
 3 4 
 3 2 

SUM(A) = 7 
COUNT(A) = 3 
MAX(B) = 4 
AVG(B) = 3 



9 

Grouping Operator 

 R1 := γL (R2).  L  is a list of elements 

that are either: 

1. Individual (grouping ) attributes. 

2. AGG(A ), where AGG is one of the 
aggregation operators and A  is an 
attribute. 

• An arrow and a new attribute name renames 
the component. 



10 

Applying γL(R) 

 Group R according to all the grouping 
attributes on list L. 

 That is: form one group for each distinct list 
of values for those attributes in R. 

 Within each group, compute AGG(A ) for 
each aggregation on list L. 

 Result has one tuple for each group: 

1. The grouping attributes and 

2.  Their group’s aggregations.  



11 

Example: Grouping/Aggregation 

R =  ( A B C ) 
 1 2 3 
 4 5 6 
 1 2 5 
 

γA,B,AVG(C)->X (R) = ?? 

First, group R by A and B : 
 A B C 
 1 2 3 
 1 2 5 
 4 5 6 

Then, average C  
within groups: 
 
A B X 
1 2 4 
4 5 6 



12 

Outerjoin 

Suppose we join R ⋈C S. 

A tuple of R  that has no tuple of S  with 
which it joins is said to be dangling. 

 Similarly for a tuple of S. 

Outerjoin preserves dangling tuples by 
padding them NULL. 



13 

Example: Outerjoin 

R =  ( A B )  S =  ( B C ) 
 1 2   2 3 
 4 5   6 7 
 
(1,2) joins with (2,3), but the other two tuples 
are dangling. 

R OUTER JOIN S = A B C 
   1 2 3 
   4 5 NULL 
   NULL 6 7 



14 

Now --- Back to SQL 

Each Operation Has a SQL 
Equivalent 



15 

Outerjoins 

 R OUTER JOIN S is the core of an 
outerjoin expression.  It is modified by: 

1. Optional NATURAL in front of OUTER. 

2. Optional ON <condition> after JOIN. 

3. Optional LEFT, RIGHT, or FULL before 
OUTER. 
 LEFT = pad dangling tuples of R only. 

 RIGHT = pad dangling tuples of S only. 

 FULL = pad both; this choice is the default. 

Only one 
of these 



16 

Aggregations 

SUM, AVG, COUNT, MIN, and MAX can 
be applied to a column in a SELECT 
clause to produce that aggregation on 
the column. 

Also, COUNT(*) counts the number of 
tuples. 



17 

Example: Aggregation 

From Sells(bar, beer, price), find the 
average price of Bud: 

  SELECT AVG(price) 

  FROM Sells 

  WHERE beer = ’Bud’; 



18 

Eliminating Duplicates in an 
Aggregation 

Use DISTINCT inside an aggregation. 

Example: find the number of different 
prices charged for Bud: 

  SELECT COUNT(DISTINCT price) 

  FROM Sells 

  WHERE beer = ’Bud’; 



19 

NULL’s Ignored in Aggregation 

NULL never contributes to a sum, 
average, or count, and can never be the 
minimum or maximum of a column. 

But if there are no non-NULL values in 
a column, then the result of the 
aggregation is NULL. 

 Exception: COUNT of an empty set is 0. 



20 

Example: Effect of NULL’s 

SELECT count(*) 

FROM Sells 

WHERE beer = ’Bud’; 

 

SELECT count(price) 

FROM Sells 

WHERE beer = ’Bud’; 

The number of bars 
that sell Bud. 

The number of bars 
that sell Bud at a 
known price. 



21 

Grouping 

We may follow a SELECT-FROM-WHERE 
expression by GROUP BY and a list of 
attributes. 

The relation that results from the 
SELECT-FROM-WHERE is grouped 
according to the values of all those 
attributes, and any aggregation is 
applied only within each group. 



22 

Example: Grouping 

From Sells(bar, beer, price), find the 
average price for each beer: 

  SELECT beer, AVG(price) 

  FROM Sells 

  GROUP BY beer; 

beer AVG(price) 
Bud 2.33 
… … 



23 

Example: Grouping 

From Sells(bar, beer, price) and 
Frequents(drinker, bar), find for each drinker 
the average price of Bud at the bars they 
frequent: 

  SELECT drinker, AVG(price) 

  FROM Frequents, Sells 

  WHERE beer = ’Bud’ AND 

   Frequents.bar = Sells.bar 

  GROUP BY drinker; 

Compute all 
drinker-bar- 
price triples 
for Bud. 

Then group 
them by 
drinker. 



24 

Restriction on SELECT Lists 
With Aggregation 

 If any aggregation is used, then each 
element of the SELECT list must be 
either: 

1. Aggregated, or 

2. An attribute on the GROUP BY list. 



25 

Illegal Query Example 

You might think you could find the bar 
that sells Bud the cheapest by: 

  SELECT bar, MIN(price) 
  FROM Sells 
  WHERE beer = ’Bud’; 

But this query is illegal in SQL. 



26 

HAVING Clauses 

HAVING <condition> may follow a 
GROUP BY clause. 

If so, the condition applies to each 
group, and groups not satisfying the 
condition are eliminated. 

 



27 

Example: HAVING 

From Sells(bar, beer, price) and 
Beers(name, manf), find the average 
price of those beers that are either 
served in at least three bars or are 
manufactured by Pete’s. 



28 

Solution 

SELECT beer, AVG(price) 

FROM Sells 

GROUP BY beer 

HAVING COUNT(bar) >= 3 OR 

 beer IN (SELECT name 

      FROM Beers 

      WHERE manf = ’Pete’’s’); 

Beers manu- 
factured by 
Pete’s. 

Beer groups with at least 
3 non-NULL bars and also 
beer groups where the 
manufacturer is Pete’s. 



29 

Requirements on HAVING 
Conditions 

 Anything goes in a subquery. 

 Outside subqueries, they may refer to 
attributes only if they are either: 

1. A grouping attribute, or 

2. Aggregated 

 (same condition as for SELECT clauses 
with aggregation). 


