
Advanced Programming Seminar 5

Mart Lubbers

November 13, 2018

Assignment 5 recap

Assignment 5 recap
Simple tasks

enterStudent :: Task Student

enterStudent = enterInformation "Enter a student" []

enterStudentList :: Task [Student]

enterStudentList = enterInformation "Enter a student" []

updateStudent :: Student � Task Student

updateStudent s = updateInformation "Update a student" [] s

favouriteStudent :: [Student] � Task Student

favouriteStudent sl = enterChoice "Pick a student" [] sl

Intermezzo: Record Selection

I The compiler has to know the type of the record.

I Moreover, it needs to know the record a field selector belongs
to.

I However, the function type is NOT used to determine this.

:: T1 = {field :: Bool}

:: T2 = {field :: Bool}

neg :: T1 � T1

neg t = {field = not t.field}

Error [...]: could not determine the type of this

record

Intermezzo: Record Selection

I The compiler has to know the type of the record.

I Moreover, it needs to know the record a field selector belongs
to.

I However, the function type is NOT used to determine this.

:: T1 = {field :: Bool}

:: T2 = {field :: Bool}

neg :: T1 � T1

neg t = {field = not t.field}

Error [...]: could not determine the type of this

record

Intermezzo: Record Selection

I The compiler has to know the type of the record.

I Moreover, it needs to know the record a field selector belongs
to.

I However, the function type is NOT used to determine this.

:: T1 = {field :: Bool}

:: T2 = {field :: Bool}

neg :: T1 � T1

neg t = {field = not t.field}

Error [...]: could not determine the type of this

record

Intermezzo: Record Selection

I The compiler has to know the type of the record.

I Moreover, it needs to know the record a field selector belongs
to.

I However, the function type is NOT used to determine this.

:: T1 = {field :: Bool}

:: T2 = {field :: Bool}

neg :: T1 � T1

neg t = {field = not t.field}

Error [...]: could not determine the type of this

record

Intermezzo: Record Selection

I The compiler has to know the type of the record.

I Moreover, it needs to know the record a field selector belongs
to.

I However, the function type is NOT used to determine this.

:: T1 = {field :: Bool}

:: T2 = {field :: Bool}

neg :: T1 � T1

neg t = {field = not t.field}

Error [...]: could not determine the type of this

record

Intermezzo: Record Selection

Let’s explicitly tell the compiler the type of the record:

:: T1 = {field :: Bool}

:: T2 = {field :: Bool}

neg :: T1 � T1

neg t = {T1 | field = not t.field}

Error [...]: field ambiguous selector specified

Works also in a pattern match:

neg {T1|field} = {T1 | field = not field}

Intermezzo: Record Selection

Let’s explicitly tell the compiler the type of the record:

:: T1 = {field :: Bool}

:: T2 = {field :: Bool}

neg :: T1 � T1

neg t = {T1 | field = not t.field}

Error [...]: field ambiguous selector specified

Works also in a pattern match:

neg {T1|field} = {T1 | field = not field}

Intermezzo: Record Selection

Let’s explicitly tell the compiler the type of the record:

:: T1 = {field :: Bool}

:: T2 = {field :: Bool}

neg :: T1 � T1

neg t = {T1 | field = not t.field}

Error [...]: field ambiguous selector specified

Works also in a pattern match:

neg {T1|field} = {T1 | field = not field}

Intermezzo: Record Selection

Let’s explicitly tell the compiler the type of the record AND the
record the field belongs to:

:: T1 = {field :: Bool}

:: T2 = {field :: Bool}

neg :: T1 � T1

neg t = {T1 | field = not t.T1.field}

WIN

Intermezzo: Record Selection

Let’s explicitly tell the compiler the type of the record AND the
record the field belongs to:

:: T1 = {field :: Bool}

:: T2 = {field :: Bool}

neg :: T1 � T1

neg t = {T1 | field = not t.T1.field}

WIN

Assignment 5 recap
Modifying the editors

selectStudentOnlyName :: [Student] � Task Student

selectStudentOnlyName sl = enterChoice "Pick a student"

[ChooseFromDropdown λs�s.Student.name] sl

selectStudentFormat :: [Student] � Task Student

selectStudentFormat sl = enterChoice "Pick a student"

[ChooseFromDropdown gToString{|*|}] sl

selectPartner :: [Student] � Task [Student]

selectPartner sl = enterMultipleChoice "Pick a partner"

[ChooseFromCheckGroup

λs�s.Student.name + "(" + gToString{|*|} s.Student.bama + ")"] sl

Assignment 5 recap
Modifying the editors

selectStudentOnlyName :: [Student] � Task Student

selectStudentOnlyName sl = enterChoice "Pick a student"

[ChooseFromDropdown λs�s.Student.name] sl

selectStudentFormat :: [Student] � Task Student

selectStudentFormat sl = enterChoice "Pick a student"

[ChooseFromDropdown gToString{|*|}] sl

selectPartner :: [Student] � Task [Student]

selectPartner sl = enterMultipleChoice "Pick a partner"

[ChooseFromCheckGroup

λs�s.Student.name + "(" + gToString{|*|} s.Student.bama + ")"] sl

Assignment 5 recap
Modifying the editors

There are many ways of modifying the editors. To find them all,
see iTasks/WF/Tasks/Interaction.dcl1

1Or browse it live at
https://cloogle.org/src/#iTasks/iTasks/WF/Tasks/Interaction

https://cloogle.org/src/#iTasks/iTasks/WF/Tasks/Interaction

Assignment 5 recap
Modifying the editors

There are many ways of modifying the editors. To find them all,
see iTasks/WF/Tasks/Interaction.dcl1

1Or browse it live at
https://cloogle.org/src/#iTasks/iTasks/WF/Tasks/Interaction

https://cloogle.org/src/#iTasks/iTasks/WF/Tasks/Interaction

Generic printing

generic gToString a :: a � String

Some people were smart. . .

generic gToString a :: a � String

gToString{|BaMa|} Bachelor = "Bachelor"

gToString{|BaMa|} Master = "Master"

gToString{|Student|} ...

But a real implementation is almost trivial:

gToString{|Int|} i = toString i

gToString{|String|} s = s

gToString{|UNIT|} _ = ""

gToString{|RECORD|} fx (RECORD x) = "{" + fx x + "}"

gToString{|FIELD of {gfd_name}|} fx (FIELD x) = gfd_name + "=" + fx x + " "

gToString{|PAIR|} fx fy (PAIR x y) = fx x + fy y

gToString{|EITHER|} fx fy (LEFT x) = fx x

gToString{|EITHER|} fx fy (RIGHT y) = fy y

gToString{|CONS of {gcd_name}|} fx (CONS x) = gcd_name + fx x

gToString{|OBJECT|} fx (OBJECT x) = fx x

Generic printing

generic gToString a :: a � String

Some people were smart. . .

generic gToString a :: a � String

gToString{|BaMa|} Bachelor = "Bachelor"

gToString{|BaMa|} Master = "Master"

gToString{|Student|} ...

But a real implementation is almost trivial:

gToString{|Int|} i = toString i

gToString{|String|} s = s

gToString{|UNIT|} _ = ""

gToString{|RECORD|} fx (RECORD x) = "{" + fx x + "}"

gToString{|FIELD of {gfd_name}|} fx (FIELD x) = gfd_name + "=" + fx x + " "

gToString{|PAIR|} fx fy (PAIR x y) = fx x + fy y

gToString{|EITHER|} fx fy (LEFT x) = fx x

gToString{|EITHER|} fx fy (RIGHT y) = fy y

gToString{|CONS of {gcd_name}|} fx (CONS x) = gcd_name + fx x

gToString{|OBJECT|} fx (OBJECT x) = fx x

Generic printing

generic gToString a :: a � String

Some people were smart. . .

generic gToString a :: a � String

gToString{|BaMa|} Bachelor = "Bachelor"

gToString{|BaMa|} Master = "Master"

gToString{|Student|} ...

But a real implementation is almost trivial:

gToString{|Int|} i = toString i

gToString{|String|} s = s

gToString{|UNIT|} _ = ""

gToString{|RECORD|} fx (RECORD x) = "{" + fx x + "}"

gToString{|FIELD of {gfd_name}|} fx (FIELD x) = gfd_name + "=" + fx x + " "

gToString{|PAIR|} fx fy (PAIR x y) = fx x + fy y

gToString{|EITHER|} fx fy (LEFT x) = fx x

gToString{|EITHER|} fx fy (RIGHT y) = fy y

gToString{|CONS of {gcd_name}|} fx (CONS x) = gcd_name + fx x

gToString{|OBJECT|} fx (OBJECT x) = fx x

Generic printing

generic gToString a :: a � String

Some people were smart. . .

generic gToString a :: a � String

gToString{|BaMa|} Bachelor = "Bachelor"

gToString{|BaMa|} Master = "Master"

gToString{|Student|} ...

But a real implementation is almost trivial:

gToString{|Int|} i = toString i

gToString{|String|} s = s

gToString{|UNIT|} _ = ""

gToString{|RECORD|} fx (RECORD x) = "{" + fx x + "}"

gToString{|FIELD of {gfd_name}|} fx (FIELD x) = gfd_name + "=" + fx x + " "

gToString{|PAIR|} fx fy (PAIR x y) = fx x + fy y

gToString{|EITHER|} fx fy (LEFT x) = fx x

gToString{|EITHER|} fx fy (RIGHT y) = fy y

gToString{|CONS of {gcd_name}|} fx (CONS x) = gcd_name + fx x

gToString{|OBJECT|} fx (OBJECT x) = fx x

Assignment 5 recap
Update a single field using parallel combinators

This is a sneak preview for the next assignment:

changeName :: Student � Task Student

changeName s

= viewInformation "Student to change" [] s

||- updateInformation "New name" [updater] s

where

updater = UpdateAs (λs�s.Student.name) (λs n�{Student | s & name=n})

Assignment 5 recap
Update a single field using parallel combinators

This is a sneak preview for the next assignment:

changeName :: Student � Task Student

changeName s

= viewInformation "Student to change" [] s

||- updateInformation "New name" [updater] s

where

updater = UpdateAs (λs�s.Student.name) (λs n�{Student | s & name=n})

Assignment 5 recap
Update a single field using editor combinators

changeNameEdcomb :: Student � Task Student

changeNameEdcomb s

= updateInformation "New name" [UpdateUsing id (λ_ v�v) nameEditor] s

where

nameEditor :: Editor Student

nameEditor = bijectEditorValue

(λ{name=n,snum=s,bama=b,year=y}�(n, s, b, y))

(λ(n,s,b,y)�{name=n,snum=s,bama=b,year=y})

(container4

(gEditor{|*|}�@labelAttr "name")

(withChangedEditMode toView gEditor{|*|}�@labelAttr "snum")

(withChangedEditMode toView gEditor{|*|}�@labelAttr "bama")

(withChangedEditMode toView gEditor{|*|}�@labelAttr "year")

)

toView (Update a) = View a

toView v = v

bijectEditorValue :: !(a � b) !(b � a) !(Editor b) � Editor a

Assignment 5 recap
Update a single field using editor combinators

You can totally customize your editors using these functions.

Assignment 5 recap
Update a single field using editor combinators

You can totally customize your editors using these functions.

Assignment 5: iTasks Combinators
The types reveal the semantics:

Parallel combinators

(-&&-) infixr 4 :: (Task a) (Task b) � Task (a,b) | iTask a & iTask b

(-||-) infixr 3 :: (Task a) (Task a) � Task a | iTask a

(||-) infixr 3 :: (Task a) (Task b) � Task b | iTask a & iTask b

(-||) infixl 3 :: (Task a) (Task b) � Task a | iTask a & iTask b

anyTask :: [Task a] � Task a | iTask a

allTasks :: [Task a] � Task [a] | iTask a

Sequential combinators

(�∼) infixl 1 :: (Task a) (a � Task b) � Task b | iTask a & iTask b

(�−) infixl 1 :: (Task a) (a � Task b) � Task b | iTask a & iTask b

(�=) infixl 1 :: (Task a) (a � Task b) � Task b | iTask a & iTask b

(�|) infixl 1 :: (Task a) (Task b) � Task b | iTask a & iTask b

sequence :: [Task a] � Task [a] | iTask a

forever :: (Task a) � Task a | iTask a

They are all derived from the step.

Assignment 5: iTasks Combinators
The types reveal the semantics:

Parallel combinators

(-&&-) infixr 4 :: (Task a) (Task b) � Task (a,b) | iTask a & iTask b

(-||-) infixr 3 :: (Task a) (Task a) � Task a | iTask a

(||-) infixr 3 :: (Task a) (Task b) � Task b | iTask a & iTask b

(-||) infixl 3 :: (Task a) (Task b) � Task a | iTask a & iTask b

anyTask :: [Task a] � Task a | iTask a

allTasks :: [Task a] � Task [a] | iTask a

Sequential combinators

(�∼) infixl 1 :: (Task a) (a � Task b) � Task b | iTask a & iTask b

(�−) infixl 1 :: (Task a) (a � Task b) � Task b | iTask a & iTask b

(�=) infixl 1 :: (Task a) (a � Task b) � Task b | iTask a & iTask b

(�|) infixl 1 :: (Task a) (Task b) � Task b | iTask a & iTask b

sequence :: [Task a] � Task [a] | iTask a

forever :: (Task a) � Task a | iTask a

They are all derived from the step.

Assignment 5: iTasks Combinators
Step combinator

(�∗) infixl 1 :: (Task a) [TaskCont a (Task b)] � Task b | iTask a & iTask

b

:: TaskCont a b

= OnValue ((TaskValue a) � Maybe b)

| OnAction Action ((TaskValue a) � Maybe b)

|∃e: OnException (e � b) & iTask e

| OnAllExceptions (String � b)

:: Action = Action String

Intermezzo: Task values

NoValue Unstable Stable

Assignment 5: iTasks Combinators
Step helpers

always :: b (TaskValue a) � Maybe b

never :: b (TaskValue a) � Maybe b

hasValue :: (a � b) (TaskValue a) � Maybe b

ifStable :: (a � b) (TaskValue a) � Maybe b

ifUnstable :: (a � b) (TaskValue a) � Maybe b

ifValue :: (a � Bool) (a � b) (TaskValue a) � Maybe b

ifCond :: Bool b (TaskValue a) � Maybe b

withoutValue :: (Maybe b) (TaskValue a) � Maybe b

withValue :: (a � Maybe b) (TaskValue a) � Maybe b

withStable :: (a � Maybe b) (TaskValue a) � Maybe b

withUnstable :: (a � Maybe b) (TaskValue a) � Maybe b

Assignment 5: iTasks Combinators
Derivations

(�=) lhs rhs = lhs�∗
[OnValue (ifStable rhs)

, OnAction (Action "Continue") (hasValue rhs)

]

(�−) lhs rhs = lhs�∗ [OnValue (ifStable rhs)]

(�∼) lhs rhs = lhs�∗ [OnValue (hasValue rhs)]

(�|) lhs rhs = lhs�=λ_�rhs

sequence [] = return []

sequence [t:ts] = t�=λtv�sequence tv�=λtvs�return [tv:tvs]

Assignment 5: iTasks Combinators
Examples of step

palindrome :: Task (Maybe String)

palindrome

= enterInformation "Enter a palindrome" []

�∗
[OnAction (Action "Ok")

(ifValue isPalindrome (return o Just))

,OnAction (Action "Cancel")

(always (return Nothing))

]

demo

Assignment 5: iTasks Combinators
Examples of step

palindrome :: Task (Maybe String)

palindrome

= enterInformation "Enter a palindrome" []

�∗
[OnAction (Action "Ok")

(ifValue isPalindrome (return o Just))

,OnAction (Action "Cancel")

(always (return Nothing))

]

demo

Assignment 5: iTasks Combinators
Transforming the task value

(@) infixl 1 :: (Task a) (a � b) � Task b

(@?) infixl 1 :: (Task a) ((TaskValue a) � TaskValue b) � Task b

(@!) infixl 1 :: (Task a) b � Task b

Assignment 5: iTasks Combinators
Shared Data Sources

I Atomic read write and update operations

I Communication between tasks

I Some shares are persistent between executions

:: SDS p r w = ...

:: Shared a :== SDS () a a

:: ReadWriteShared r w :== SDS () r w

get :: (ReadWriteShared a w) � Task a | iTask a

set :: a (ReadWriteShared r a) � Task a | iTask a & TC r

upd :: (r � w) (ReadWriteShared r w) � Task w | iTask r & iTask w

watch :: (ReadWriteShared r w) � Task r | iTask r

Assignment 5: iTasks Combinators
Shared Data Sources

I Atomic read write and update operations

I Communication between tasks

I Some shares are persistent between executions

:: SDS p r w = ...

:: Shared a :== SDS () a a

:: ReadWriteShared r w :== SDS () r w

get :: (ReadWriteShared a w) � Task a | iTask a

set :: a (ReadWriteShared r a) � Task a | iTask a & TC r

upd :: (r � w) (ReadWriteShared r w) � Task w | iTask r & iTask w

watch :: (ReadWriteShared r w) � Task r | iTask r

Assignment 5: iTasks Combinators
Create Shares

Named shares

sharedStore :: String a � Shared a | iTask a

Anonymous shares

withShared :: !b !((Shared b) � Task a) � Task a | iTask a & iTask b

editList :: Task [Int]

editList = withShared [] λshare�
viewSharedInformation "Share" [] share

-||- forever (enterInformation "New Item" []�=λel�upd (λl�[el:l])

share))

Good Luck
Demo?

