Advanced Programming (100032) 2018
Generics by overloading

Assignment 2

Goals of this exercise

In this exercise you program the transformation from datatypes to their generic repre-
sentation and back to implement serialization in a generic way. This gives you a proper
understanding of the generic mechanism.

1 Review Questions

Answer the following questions before implementing classes and instances in section 2.
You can include the answers as a comment in your .icl file.

1. The definition of==for UNIT in the slides is
instance==UNIT where &= UNIT UNIT = TRUE

This looks odd, there is a pattern match, but no alternative. Is it better to write

instance ==UNIT where
=) UNIT UNIT = TRUE
E5 x y =FALSE
or can we write

instance==UNIT where &5 x y = TRUE

2. The definition for (==) for CONS is
instance== (CONS a) | ==a where &5 (CONS _ x) (CONS _ y) =x==y

shouldn’t we check the equality of constructor names as in

instance== (CONS a) | ==a where &= (CONS a x) (CONS b y) = a==b & x==y

3. Given
:: Bin a=Leaf | Bin (Bin a) a (Bin a)
:: BinG a:==EITHER (CONS UNIT) (CONS (PAIR (Bin a) (PAIR a (Bin a))))
:: ListG a:==EITHER (CONS UNIT) (CONS (PAIR a [a]))

What are the generic representations of the values [] and leaf?

Does this imply that Leaf == [] yields True if we define it in the generic way?

2 Generic serialization

In exercise 1 we defined serialization of objects by a class

class serialize a where
write :: a [String] — [String]
read :: [String] — Maybe (a,[String])

In this assignment we reimplement this class using the generic representation of data types:

1o UNIT = UNIT

:: EITHER a b =LEFT a | RIGHT b
:: PAIR ab=PAIRab

:: CONS a =CONS String a

The types to be serialized are the native lists of Clean, and binary trees Bin. The generic
representations ListG, and BinG are listed above. Define the transformation functions

fromList :: [a] — ListG a
tolList :: (ListG a) — [a]
fromBin :: (Bin a) — BinG a
toBin :: (BinG a) — Bin a

similar to transformations defined in the lecture slides.

2.1 With generic information

Define instances of serialize for [a] and Bin a based on their generic representation. In-
clude all generic information in the serialized versions of data types, the serialized version
contains strings like "UNIT" and "LEFT".

2.2 Without generic information

For humans it is nicer to omit the generic information. Only the basic types and the
constructor names from the data types (like Leaf, Bin, Nil, and Cons) are included. For
the write part this very simple. In the read it is at some places a little more advanced,
especially in the instance for EITHER you need to backtrack. Be sure to include enough
parenthesis whenever necessary.

Optional: Prettier serialization

Most likely your serialization of single constructor values like Leaf contains parenthesis, e.g.
["(","Leaf",")"] of the value Leaf. Beautify the serialization by omitting these parenthesis
for constructors without arguments, e.g. ["Leaf"].

3 Reflection

When you implement everything correctly this will work fine for the listed types and all
tests should pass. Can you come up with an example that breaks this system?
Although it is allowed to solve this problem, this is certainly not required.

Deadline

The deadline for this exercise is September 24 2018, 10:30h (just before the next lecture).

