Advanced Programming Seminar 5

Mart Lubbers

November 13, 2018

Assignment 5 recap

Assignment 5 recap
Simple tasks

enterStudent :: Task Student
enterStudent = enterInformation "Enter a student" []

enterStudentList :: Task [Student]
enterStudentList = enterInformation "Enter a student" []

updateStudent :: Student — Task Student
updateStudent s = updateInformation "Update a student" [] s

favouriteStudent :: [Student] — Task Student
favouriteStudent sl = enterChoice "Pick a student" [] sl

Intermezzo: Record Selection

» The compiler has to know the type of the record.

 T1 = {field : Bool}
. T2 = {field :: Bool}

neg = Tl - T1
neg t = {field = not t.field}

Intermezzo: Record Selection

» The compiler has to know the type of the record.
» Moreover, it needs to know the record a field selector belongs

to.

 T1 = {field : Bool}
. T2 = {field :: Bool}

neg = Tl - T1
neg t = {field = not t.field}

Intermezzo: Record Selection

» The compiler has to know the type of the record.

» Moreover, it needs to know the record a field selector belongs
to.

» However, the function type is NOT used to determine this.
2 T1 = {field :: Bool}
:: T2 = {field :: Bool}

neg = Tl - T1
neg t = {field = not t.field}

Intermezzo: Record Selection

» The compiler has to know the type of the record.

» Moreover, it needs to know the record a field selector belongs
to.

» However, the function type is NOT used to determine this.
2 T1 = {field :: Bool}
:: T2 = {field :: Bool}

neg = Tl - T1
neg t = {field = not t.field}

Intermezzo: Record Selection

» The compiler has to know the type of the record.

» Moreover, it needs to know the record a field selector belongs
to

» However, the function type is NOT used to determine this.

 T1 = {field : Bool}
. T2 = {field :: Bool}

neg = Tl - T1

neg t = {field = not t.field}

Error [...]: could not determine the type of this
record

Intermezzo: Record Selection

Let's explicitly tell the compiler the type of the record:
0 T1 = {field :: Bool}
. T2 = {field :: Bool}

neg = T1 - T1
neg t = {T1 | field = not t.field}

Intermezzo: Record Selection

Let's explicitly tell the compiler the type of the record:

 T1 = {field :: Bool}
. T2 = {field :: Bool}

neg = T1 - T1
neg t = {T1 | field = not t.field}

Error [...]: field ambiguous selector specified

Intermezzo: Record Selection

Let's explicitly tell the compiler the type of the record:
0 T1 = {field :: Bool}
. T2 = {field :: Bool}

neg = T1 - T1
neg t = {T1 | field = not t.field}

Error [...]: field ambiguous selector specified
Works also in a pattern match:

neg {T1|field} = {T1 | field = not field}

Intermezzo: Record Selection

Let’s explicitly tell the compiler the type of the record AND the
record the field belongs to:

. T1 = {field : Bool}
. T2 = {field :: Bool}

neg = Tl - T1
neg t = {T1 | field = not t.T1.field}

Intermezzo: Record Selection

Let’s explicitly tell the compiler the type of the record AND the
record the field belongs to:

. T1 = {field : Bool}
. T2 = {field :: Bool}

neg = Tl - T1
neg t = {T1 | field = not t.T1.field}

WIN

Assignment 5 recap
Modifying the editors

selectStudentOnlyName :: [Student] — Task Student
selectStudentOnlyName s1 = enterChoice "Pick a student"
[ChooseFromDropdown As—s.Student.name] sl

selectStudentFormat :: [Student] — Task Student
selectStudentFormat sl = enterChoice "Pick a student"
[ChooseFromDropdown gToString{|*|}] sl

selectPartner :: [Student] — Task [Student]
selectPartner sl = enterMultipleChoice "Pick a partner"
[ChooseFromCheckGroup
As—s.Student.name + "(" + gToString{|*|} s.Student.bama + ")"] sl

Assignment 5 recap
Modifying the editors

selectStudentOnlyName :: [Student] — Task Student
selectStudentOnlyName s1 = enterChoice "Pick a student"
[ChooseFromDropdown As—s.Student.name] sl

selectStudentFormat :: [Student] — Task Student
selectStudentFormat sl = enterChoice "Pick a student"
[ChooseFromDropdown gToString{|*|}] sl

selectPartner :: [Student] — Task [Student]
selectPartner sl = enterMultipleChoice "Pick a partner"
[ChooseFromCheckGroup
As—s.Student.name + "(" + gToString{|*|} s.Student.bama + ")"] sl

Assignment 5 recap
Modifying the editors

There are many ways of modifying the editors. To find them all,
see iTasks/WF/Tasks/Interaction.dcl!

Or browse it live at
https://cloogle.org/src/#iTasks/iTasks/WF/Tasks/Interaction

https://cloogle.org/src/#iTasks/iTasks/WF/Tasks/Interaction

Assignment 5 recap
Modifying the editors

There are many ways of modifying the editors. To find them all,
see 1Tasks/WF/Tasks/Interact1on dcl1

: ViewOption a

: EnterOption a = :
| E.v: EnterUsing (v ->

: UpdateOption a b = E.v: UpdateAs (a -
| E.v: UpdateUsing (a -

(Editor v

| E.v: UpdateSharedAs (a -> v) (a v ->b) (vv ->v) &iTask v
1 SelectOption ¢ s = SelectInDropdown | > [ChoiceText]

| selectInCheckGroup (c -> [ChoiceText]

| SelectInList (> [ChoiceTex

| selectInGrid (c -> ChoiceGrid

| SelectInTree (> [ChoiceNode]) (c [Int] ->

: Choiceoption o . ChooseFrombropdown (o
: ChooseFromCheckGroup
ChooseFromList (o ->

: ChooseFromGrid (o ->

10Or browse it live at
https://cloogle.org/src/#iTasks/iTasks/WF/Tasks/Interaction

https://cloogle.org/src/#iTasks/iTasks/WF/Tasks/Interaction

Generic printing
generic gloString a :: a — String

Some people were smart. ..

Generic printing
generic gloString a :: a — String

Some people were smart. ..

generic gloString a :: a — String
gToString{|BaMa|} Bachelor = "Bachelor"
gToString{|BaMa|} Master = "Master"
gToString{|Student |} ...

Generic printing
generic gloString a :: a — String

Some people were smart. ..

generic gloString a :: a — String
gToString{|BaMa|} Bachelor = "Bachelor"
gToString{|BaMa|} Master = "Master"
gToString{|Student |} ...

But a real implementation is almost trivial:

Generic printing
generic gloString a :: a — String

Some people were smart. ..

generic gloString a :: a — String
gToString{|BaMa|} Bachelor = "Bachelor"
gToString{|BaMa|} Master = "Master"
gToString{|Student |} ...

But a real implementation is almost trivial:

gloString{|Int|} i = toString i

gToString{|String|} s = s

gToString{|UNIT|} _ = ""

gToString{|RECORD|} fx (RECORD x) = "{" + fx x + "}"

gToString{|FIELD of {gfd_name}|} fx (FIELD x) = gfd_name + "=" + fx x + " "
gToString{|PAIR|} fx fy (PAIR x y) =fx x + fy y

gToString{|EITHER|} fx fy (LEFT x) = fx x

gToString{ |EITHER|} fx fy (RIGHT y) = fy y

gToString{|CONS of {gcd_name}|} fx (CONS x) = gcd_name + fx x
gToString{|0BJECT |} fx (OBJECT x) = fx x

Assignment 5 recap

Update a single field using parallel combinators

This is a sneak preview for the next assignment:

Assignment 5 recap

Update a single field using parallel combinators

This is a sneak preview for the next assignment:

changeName :: Student — Task Student
changeName s
= viewInformation "Student to change" [] s
|FF updateInformation "New name" [updater] s

where
updater = UpdateAs (A\s—s.Student.name) (\s n—{Student | s & name=n})

Assignment 5 recap

Update a single field using editor combinators

changeNameEdcomb :: Student — Task Student
changeNameEdcomb s
= updateInformation "New name" [UpdateUsing id (_ v—v) nameEditor] s
where
nameEditor :: Editor Student
nameEditor = bijectEditorValue
(A {name=n, snum=s,bama=b,year=y}— (n, s, b, y))
A (n,s,b,y) —»{name=n, snum=s,bama=b,year=y})
(container4
(gEditor{|*|}<@labelAttr "name")
(withChangedEditMode toView gEditor{|*|}<@labelAttr "snum")
(withChangedEditMode toView gEditor{|*|}<@labelAttr "bama")
(withChangedFditMode toView gEditor{|*|}<@labelAttr "year")

toView (Update a) = View a
toView v = v

bijectEditorValue :: !(a — b) !(b — a) !(Editor b) — Editor a

Assignment 5 recap

Update a single field using editor combinators

You can totally customize your editors using these functions.

Assignment 5 recap

Update a single field using editor combinators

You can totally customize your editors using these functions.

New name

MName*: X
Alice

Snum: 1000

Bama: Master

Year: 1

Assignment 5: iTasks Combinators

The types reveal the semantics:

Parallel combinators

(84~ infixr 4 :: (Task a) (Task b)
HP infixr 3 : (Task a) (Task a)
(Jb) infixr 3 : (Task a) (Task b)
(4]) infixl 3 : (Task a) (Task b)

N
N
=
N

Task (a,b) |

Task a
Task b
Task a

anyTask : [Task a] — Task a | iTask a
allTasks :: [Task a] — Task [a] | iTask a

iTask a & iTask b
iTask a

iTask a & iTask b
iTask a & iTask b

Assignment 5: iTasks Combinators

The types reveal the semantics:

Parallel combinators

(&&~) infixr 4 :: (Task a) (Task b) — Task (a,b) |
HP infixr 3 : (Task a) (Task a) — Task a

(JF) infixr 3 :: (Task a) (Task b) — Task b

(4] infixl 3 : (Task a) (Task b) — Task a
anyTask : [Task a] — Task a | iTask a

allTasks :: [Task a] — Task [a] | iTask a

Sequential combinators

&) infixl 1 :
S infixl 1 =
=) infixl 1
) infixl 1 :

iTask a & iTask b
iTask a

iTask a & iTask b
iTask a & iTask b

(Task a) (a — Task b) — Task b | iTask a & iTask b
(Task a) (a — Task b) — Task b | iTask a & iTask b
(Task a) (a — Task b) — Task b | iTask a & iTask b
(Task a) (Task b) — Task b | iTask a & iTask b

Assignment 5: iTasks Combinators

Step combinator

) infixl 1 : (Task a) [TaskCont a (Task b)] — Task b | iTask a & iTask
b
:: TaskCont a b
= OnValue ((TaskValue a) — Maybe b)
| OnAction Action ((TaskValue a) — Maybe b)
| Je: OnException (e — b) & iTask e
| OnAllExceptions (String — b)
> Action = Action String

Intermezzo: Task values

Assignment 5: iTasks Combinators
Step helpers

always b (TaskValue a) — Maybe b
never) (TaskValue a) — Maybe b
hasValue t(a— b (TaskValue a) — Maybe b
ifStable t(a— b (TaskValue a) — Maybe b
ifUnstable = (a — b) (TaskValue a) — Maybe b
ifValue > (@ — Bool) (a — b) (TaskValue a) — Maybe b
ifCond :: Bool b (TaskValue a) — Maybe b
withoutValue :: (Maybe b) (TaskValue a) — Maybe b

withValue 2 (@ —» Maybe b) (TaskValue a) Maybe b

N
withStable : (a — Maybe b) (TaskValue a) — Maybe b
withUnstable :: (a — Maybe b) (TaskValue a) — Maybe b

Assignment 5: iTasks Combinators

Derivations

() 1hs rhs = lhs 3¢
[OnValue (ifStable rhs)
, OnAction (Action "Continue") (hasValue rhs)
1
- 1hs rhs = 1hs ¥ [OnValue (ifStable rhs)]
() 1hs rhs = 1hs ¥ [OnValue (hasValue rhs)]
C>) 1hs rhs = lhs>=)_—rhs

sequence [] = return []
sequence [t:ts] = t >=Atv—sequence tv >=Atvs—return [tv:tvs]

Assignment 5: iTasks Combinators

Examples of step

palindrome :: Task (Maybe String)
palindrome
= enterInformation "Enter a palindrome" []
>
[OnAction (Action "Ok")
(ifValue isPalindrome (return o Just))
,OnAction (Action "Cancel")
(always (return Nothing))
]

Assignment 5: iTasks Combinators

Examples of step

palindrome :: Task (Maybe String)
palindrome
= enterInformation "Enter a palindrome" []
>
[OnAction (Action "Ok")
(ifValue isPalindrome (return o Just))
,OnAction (Action "Cancel")
(always (return Nothing))
]

demo

Assignment 5: iTasks Combinators

Transforming the task value

(@ infixl 1 : (Taska) (a - b) — Task b
(@7) infixl 1 :: (Task a) ((TaskValue a) — TaskValue b) — Task b
(@) infixl 1 :: (Task a) b — Task b

Assignment 5: iTasks Combinators

Shared Data Sources

» Atomic read write and update operations
» Communication between tasks

» Some shares are persistent between executions

Assignment 5: iTasks Combinators

Shared Data Sources

» Atomic read write and update operations
» Communication between tasks

» Some shares are persistent between executions

tSDSprw=...
:: Shared a :==8DS () a a
:: ReadWriteShared r w :==38DS () r w

get = (ReadWriteShared a w) — Task a | iTask a

set o a (ReadWriteShared r a) — Task a | iTask a & TC r
upd = (r —» w) (ReadWriteShared r w) — Task w | iTask r & iTask w
watch (ReadWriteShared r w) — Task r | iTask r

Assignment 5: iTasks Combinators

Create Shares

Named shares

sharedStore :: String a — Shared a | iTask a

Anonymous shares

withShared :: !'b !((Shared b) — Task a) — Task a | iTask a & iTask b

editList : Task [Int]
editList = withShared [] Ashare—
viewSharedInformation "Share" [] share
- forever (enterInformation "New Item" [] >=MAel—upd (\1—[el:1])
share))

Good Luck

Demo?

