
Notes on the simply typed lambda

calculus

Peter Aczel

Manchester University

June 16, 1998

Contents

1 Deduction 1-1

1.1 Inference Systems . 1-1

1.1.1 The De�nition . 1-1

1.1.2 Adding extra axioms . 1-2

1.1.3 Semantics for Inference Systems 1-2

1.1.4 Formal Systems . 1-3

1.1.5 Rules of Inference . 1-3

1.2 Intuitionistic Implication . 1-4

1.2.1 A Hilbert-style formal system, H 1-4

1.2.2 Natural Deduction . 1-5

1.2.3 Sequent Formulation, ND, of Natural Deduction 1-7

1.2.4 Normal ND tree-proofs . 1-7

1.2.5 Sequent Calculus SC . 1-8

1.3 Intuitionistic Propositional Logic . 1-9

1.3.1 The Hilbert style formulation 1-9

1.3.2 The Natural Deduction formulation 1-9

1.3.3 The sequent formulation of Natural Deduction 1-10

1.3.4 Sequent Calculus Formulation 2-1

2 Untyped Lambda Calculus 2-1

2.1 Preliminaries . 2-1

2.1.1 The notion of a function . 2-1

2.1.2 Examples of functions . 2-2

2.1.3 Functions as sets . 2-2

2.1.4 Multi-argument functions . 2-2

2.1.5 Currying . 2-3

2.1.6 The problem of variable clashes 2-3

2.2 An Untyped Universe . 2-3

2.2.1 Some combinators in U . 2-4

2.2.2 Some laws of LC . 2-4

2.2.3 Problems with \U = U

U

" . 2-5

2.2.4 A more general universe . 2-5

2.3 Syntax of LC . 2-5

2.3.1 Terms . 2-5

2.3.2 Construction Trees . 2-6

2.3.3 The de Bruijn terms . 2-7

0-1

Notes on the Simply Typed Lambda Calculus Peter Aczel

2.3.4 Substitution . 2-8

2.4 Deduction . 2-8

2.5 Combinatory Logic . 2-9

2.5.1 CL and its translation into (w��) 2-10

2.5.2 A translation of (w��) into CL 2-10

2.5.3 The converse of Proposition 6 2-10

2.5.4 The equivalence between CL+ (ext) and (���) 2-11

2.5.5 The equivalence between CL+ (wext) and (��) 2-11

2.5.6 Summary . 2-12

2.6 The Church-Rosser Theorem . 2-12

2.6.1 The reduction relation . 2-12

2.6.2 Proof of the Theorem for (��) 2-13

2.7 Normalisation . 3-1

3 Simply Typed Lambda Calculus 3-2

3.1 The Simple Type Theory STT . 3-2

3.2 The variant STT

0

. 3-3

3.2.1 Standard Set Theoretical Models of STT

0

. 3-4

3.3 Standard Term Models of STT . 3-4

3.4 The `Normal Relation' method for STT 3-6

3.5 Girard's method . 3-8

3.6 Another method for strong normalisation 3-8

Marktoberdorf 1997 Summer School Proceedings 0-2

Notes on the Simply Typed Lambda Calculus Peter Aczel

Introduction

The simply typed lambda calculus, of these notes, has types built up from atomic

types using the function type operation that forms a new type A ! B from types

A,B. The calculus can be viewed as a re�ned version of the purely implicational

fragment of intuitionistic logic. The re�nement consists in using terms of the un-

typed lambda calculus to represent formal derivations of the logic.

These notes consist of three sections, the last one being on the simply typed

lambda calculus. In that section I focus mainly on the Curry style version for func-

tion types, I call STT , that consists of rules for typing terms of the untyped lambda

calculus. The middle section is on the untyped lambda calculus itself while the �rst

section is mainly on the three standard styles of inference system for intuitionistic

implicational logic; the Hilbert style, the Natural deduction style and the Sequent

calculus style.

The notes have been based on earlier notes for part of an M.Sc. course on type

theory that I gave at Manchester University in the spring of 1997. Those notes were

made available as `working material' for the lectures on constructive type theory

that I gave at the Summer school. The lectures aimed to give a presentation of the

ideas of Martin-L�of's type theory using his `meaning explanations' to justify the

rules of inference. For this topic I suggest the references [6, 7, 8], where further

references may be found. After the Summer School I became dissatis�ed with the

approach that I had taken, but did not have enough time to work out an approach

that I was satis�ed with. With the agreement of the editors I have prepared these

notes for the proceedings.

The main purpose of the notes is to act as a tutorial introduction to the three

topics it treats and their relationships with each other. The novice reader is advised

to read the notes in conjunction with the use of a more thorough text such as [10]

or [3], which have more detailed discussions and reference lists than are available

here.

Almost all the material and its organisation is fairly standard, so that the expert

will �nd little that is new here. But here are some distinctive features of my

presentation.

1. In 1.1 I introduce a precise notion of inference system which is then used

throughout the notes.

2. The untyped lambda calculus is motivated set theoretically by postulating an

in�nite set U that is equal to the set U

U

of all unary functions on U . Of

course this is impossible in classical axiomatic set theory. But I believe that it

is consistent with an intuitionistic set theory in which non-well-founded sets

are allowed, so that reasoning with such a set is not so unreasonable, at least

for motivational purposes.

3. I use the method of proof introduced in [9] to prove the Church-Rosser theo-

rem.

4. I set up a general framework for giving normalisation and strong normalisation

proofs. This seems to me to be worthwhile, as there are now many proofs

explicit or implicit in the literature. As there are now many type theories for

which normalisation proofs can be found, and no doubt more to come, I think

that e�orts to systematise normalisation proofs for the simplest type theory

will be useful.

Marktoberdorf 1997 Summer School Proceedings 0-3

Notes on the Simply Typed Lambda Calculus Peter Aczel

1 Deduction

1.1 Inference Systems

1.1.1 The De�nition

An inference system consists of

� a set of statements, S; S

0

; : : :

� a set of steps

S

1

� � �S

n

S

with n � 0 premisses S

1

; : : : ; S

n

and conclusion S, these being statements.

When n = 0 then S is an axiom.

Given an inference system a tree-proof is an upward growing �nite tree, labelled

with statements, such that at each node, labelled with a statement S there is a step

with conclusion S whose premisses label the children of the node. A tree-proof is a

tree-proof of S if the statement S labels the root of the tree. If S has a tree-proof

in an inference system � then S is a theorem of �, written � ` S, or just ` S

when � is understood from the context.

Marktoberdorf 1997 Summer School Proceedings 1-1

Notes on the Simply Typed Lambda Calculus Peter Aczel

Exercises 1.1

1. Show that the theorems of an inference system form the smallest set X of

statements such that, for each step, if the premisses are in X then so is the

conclusion.

2. Show that the set of tree-proofs of an inference system form the smallest set

Y of �nite trees labelled with statements such that for each step

S

1

� � �S

n

S

if �

1

; : : : ; �

n

are trees in Y whose roots are labelled with S

1

; : : : ; S

n

respectively

then � is a tree in Y , where � is the �nite tree whose root is labelled with S

that has the trees �

1

; : : : ; �

n

as immediate subtrees.

3. [Linear Proofs]

Given an inference system a linear proof of a statement S is a �nite

sequence S

1

; : : : ; S

m

of statements, with S

m

= S, such that for i = 1; : : : ;m

there is a step

S

i

1

� � �S

i

n

S

i

with 1 � i

1

; : : : ; i

n

< i.

Show that a statement is a theorem of the inference system i� it has a linear

proof.

1.1.2 Adding extra axioms

If S

1

; : : : ; S

n

are statements of an inference system � then we write �; S

1

; : : : ; S

n

for the inference system obtained from � by adding new axioms S

1

; : : : S

n

; i.e. there

are new steps

S

1

: : :

S

n

:

If � is understood then we just write

S

1

; : : : ; S

n

` S

for �; S

1

; : : : ; S

n

` S.

1.1.3 Semantics for Inference Systems

Often an inference system will have a semantics. For our purposes we will take

a semantics for an inference system to be a collection of interpretations, I , each

specifying the correct (or true) statements of the interpretation. We write I j= S

if S is a correct statement of I . An interpretation is sound if, for every step, if

the premisses are correct then so is the conclusion. A semantics is sound if every

interpretation is sound.

Given a semantics for an inference system, we write

S

1

; : : : S

n

j= S

if for every interpretation in which S

1

; : : : ; S

n

are correct the statement S is also

correct. The semantics is complete if

S

1

; : : : S

n

j= S implies S

1

; : : : S

n

` S

Marktoberdorf 1997 Summer School Proceedings 1-2

Notes on the Simply Typed Lambda Calculus Peter Aczel

and is weakly complete if

j= S implies ` S:

Note that we can formulate a notion of strong completeness by de�ning `X ` S'

and `X j= S', where X is a possibly in�nite set of statements.

Exercise 1.2 Show that if a semantics is sound then

S

1

; : : : S

n

` S implies S

1

; : : : S

n

j= S:

1.1.4 Formal Systems

A formal system is an inference system for which there is a data type T such that

the following holds.

� Every statement can be represented by a value in T .

� There is an algorithm to determine whether or not a value in T represents a

statement.

� There is an algorithm to determine whether or not a pair of values of T

represent the same statement.

� there is an algorithm to determine whether or not a con�guration

v

1

� � � v

n

v

of values in T represents a step of the inference system.

Note the following facts

� Given a formal system there is an algorithm to determine whether or not a

�nite tree of values of the data type represents a proof-tree or not.

� If � is a formal system then so is �; S

1

; : : : ; S

n

.

1.1.5 Rules of Inference

Usually the steps of an inference sytem are given by rules, each rule determining a

set of steps called the instances of the rule. Often each rule is given schematically

as a scheme; i.e. a con�guration

�

1

� � � �

n

�

of expressions involvingmetavariables that can be substituted for. The instances

of the rule are then obtained by suitably substituting for the metavariables. What

is meant by a suitable substitution has to be speci�ed by an implicit or explicit side

condition of the scheme. An axiom scheme is a special case of a schematically

given rule in which all instances are steps having no premisses, so that the conclusion

of each instance is an axiom.

Often a formal system is given by �nitely many schematic rules, each having a

syntactically speci�ed matching algorithm for deciding whether or not a con�gura-

tion of data values is an instance of the rule; i.e. can be obtained from the scheme

by a suitable substitution for the metavariables.

Marktoberdorf 1997 Summer School Proceedings 1-3

Notes on the Simply Typed Lambda Calculus Peter Aczel

1.2 Intuitionistic Implication

We assume given a set of atomic formulae A

0

; :::. The formulae are generated

from the atomic formulae using the rule

A

1

A

2

(A

1

! A

2

)

i.e. the rule that if A

1

; A

2

are formulae then so is (A

1

! A

2

).

Abbreviation Conventions

1. Leave out outermost parentheses.

2. Associate to the right.

so, for example

A

1

! A

2

! A

3

! A

4

abbreviates

(A

1

! (A

2

! (A

3

! A

4

))):

1.2.1 A Hilbert-style formal system, H

We describe a formal system, H , whose statements are the formulae de�ned above.

There are two axiom schemes (K), (S) and the rule of inference (MP) of Modus

Ponens

Axiom Schemes

(K) A! B ! A.

(S) (A! B ! C)! (A! B)! A! C.

(MP)

A! B A

B

.

Each axiom scheme represents in�nitely many instances; e.g. for each pair of for-

mulae A;B the formula A! B ! A is an instance of (Ax1).

A tree-proof of A! A: Let A be any formula and let B be A! A.

(S)

(A! B ! A)! (A! B)! B

(K)

A! B ! A

(A! B)! B

(MP)

(K)

A! B

B

(MP)

Note the conventions that we use to make the tree-proof more readable. Each leaf

is given the name of the axiom scheme it is an instance of and each application of

(MP) has been named.

Marktoberdorf 1997 Summer School Proceedings 1-4

Notes on the Simply Typed Lambda Calculus Peter Aczel

A linear proof of A ! A: Again let A be any formula and let B be A ! A.

Here is a linear proof consisting of �ve numbered formulae.

1: (A! B ! A)! (A! B)! B (S)

2: A! B ! A (K)

3: (A! B)! B MP (1; 2)

4: A! B (K)

5: B MP (3; 4)

Note some obvious conventions used on the right hand side of each line to justify

that line. Note also that both the tree-proof and the linear proof are schematic -

they apply uniformly to any formula A.

Exercise 1.3 (Deduction Theorem) Show that if A

1

; : : : A

n

; A ` B then A

1

; : : : ; A

n

`

A ! B. [This is a standard result whose proof method can be found in many text-

books on logic.]

1.2.2 Natural Deduction

The natural way to prove an implication A! B is to assume A and try to deduce

B, making use of the assumption A, when needed. Once B has been successfully

deduced from A then we can infer A ! B. Notice that although A was assumed,

when trying to deduce B the assumption of A is dropped once the inference step

has been made to get A! B. This kind of inference step involves the discharge of

the assumption A. This is a new idea, that is not part of the apparatus of inference

systems we have been using so far. Nevertheless there is a convenient way to modify

the notion of a tree-proof so as to allow for the discharge of assumptions.

In an inference system � a tree-proof from assumptions S

1

; : : : ; S

n

is simply a

tree-proof in the inference system �; S

1

; : : : ; S

n

so that, at the leaves of the tree any

of the assumptions S

1

; : : : ; S

n

may appear as well as any axioms of �. In natural

deduction tree-proofs we allow the possibility of discharging an assumption at an

inference step. We will do this by labelling the occurrences of the assumption being

discharged and at the same time labelling the inference step where the discharge

happens with the same label. Of course the same label should not be used for

di�erent examples of assumption discharge in the same tree.

We can now describe the two rules for constructing ND tree-proofs for Intu-

itionistic Implication.

The Introduction Rule for Implication, abbreviated (! I), states that given

an ND tree-proof � of a formula B we can form an ND tree-proof of A! B having

A ! B at the root and having the tree � as its only immediate subtree. But any

undischarged occurrences of A as an assumption in � can become discharged in the

new tree.

The Elimination Rule for Implication, abbreviated (! E), is simply the

familiar modus ponens rule that we have called (MP). These rules are written

schematically as follows.

(! I)

[A]

B

A! B

(! E)

A! B A

B

Note that in (! I) the assumption A has been placed in square brackets above B

to indicate that it may be assumed in the proof of B, but then discharged at the

inference step.

Marktoberdorf 1997 Summer School Proceedings 1-5

Notes on the Simply Typed Lambda Calculus Peter Aczel

Examples of ND tree-proofs We give ND tree-proofs of the axioms of our

Hilbert-style formal system for Intuitionistic Implication.

(K)

1

A

B ! A

(! I)

A! B ! A

(! I)[1]

(S)

1

A! B ! C

3

A

B ! C

(! E)

2

A! B

3

A

B

(! E)

C

A! C

(! I)[3]

(A! B)! A! C

(! I)[2]

(A! B ! C)! (A! B)! A! C

(! I)[1]

(! E)

Note the convention for labelling a discharged assumption with a natural number

that also labels the step where the assumption gets discharged.

Examples of ND linear proofs Here are two linear ND proofs, where we have

used some obvious conventions to indicate where an assumption is made and where

it gets discharged.

(K)

1: A (ass)

2: B (ass)

3: B ! A (! I)[2](1)

4: A! B ! A (! I)[1](3)

(S)

1: A! B ! C (ass)

2: A! B (ass)

3: A (ass)

4: B ! C (! E)(1; 3)

5: B (! E)(2; 3)

6: C (! E)(4; 5)

7: A! C (! I)[3](6)

8: (A! B)! A! C (! I)[2](7)

9: (A! B ! C)! (A! B)! A! C (! I)[1](8)

Proofs of A! A

1

A

A! A

(! I)[1]

1: A (ass)

2: A! A (! I)1

Marktoberdorf 1997 Summer School Proceedings 1-6

Notes on the Simply Typed Lambda Calculus Peter Aczel

1.2.3 Sequent Formulation, ND, of Natural Deduction

In this formulation of natural deduction the use of a special kind of tree-proof

is replaced by the use of sequents as the statements of a formal system having

standard Hilbert-style rules of inference. A sequent has the form

� `

I

A

where � is a �nite sequence A

1

; : : : ; A

n

of formulae and A is a formula.

Note: In the literature other symbols are often used, instead of `

I

; e.g. ``' or

`)'. But these symbols are often also used in other ways, leading to ambiguity.

The formal system is speci�ed by the axiom scheme (ass) and the two rules of

inference (! I) and (! E).

(ass) � `

I

A (A in �)

(! I)

�; A `

I

B

� `

I

A! B

(! E)

� `

I

A! B � `

I

A

� `

I

B

Write � `

I

ND

A if � `

I

A is a theorem of this formal system; i.e. ifND ` � `

I

A.

Theorem 1.4 � `

I

ND

A i� there is an ND tree-proof of A, whose undischarged

assumptions are all in �.

Write � `

H

A if � ` A in the Hilbert style inference system for Implication with

the axiom schemes (K), (S) and the rule (MP).

Theorem 1.5 � `

I

ND

A i� � `

H

A.

The result in the following exercise expresses that the structural rules of weakening,

contraction and permutation are all admissible rules of ND.

Exercise 1.6 Show that if every formula in � also occurs in �

0

then

� `

I

ND

A implies �

0

`

I

ND

A:

1.2.4 Normal ND tree-proofs

A redex in an ND tree-proof is an occurrence of an instance of the rule (! E)

whose left hand premiss is the conclusion of an instance of the rule (! I); i.e. a

part of the tree of the form

[A]

.

.

.

B

A! B

(! I)

.

.

.

A

B

.

.

.

(! E)

An ND tree-proof is normal if it contains no redex. Note that a redex is a detour

and it is natural to consider `simplifying' a redex by replacing it by its contractum,

Marktoberdorf 1997 Summer School Proceedings 1-7

Notes on the Simply Typed Lambda Calculus Peter Aczel

which is the ND tree-proof obtained from the ND tree-proof of B, appearing in the

redex, by replacing all the occurrences of A, as an assumption that gets discharged

in the �rst premiss of the redex, by the ND tree-proof of A occuring in the second

premiss of the redex. The result may be pictured

.

.

.

A

.

.

.

B

Theorem 1.7 If � `

ND

A then there is a normal ND tree-proof of A whose undis-

charged assumptions are all in �.

Proof Idea: Given an ND tree-proof, if it is not already normal then choose a

redex and replace it by its contractum. Do this repeatedly, until no more redexes

remain. It is not obvious that this procedure eventually terminates successfully.

Nevertheless it turns out that however the redexes to be contracted are chosen the

procedure will indeed terminate. This is the strong normalisation property

for Natural Deduction. In fact it turns out to be easier to show that a particular

systematic strategy for choosing redexes leads to termination. This is the (weak)

normalisation property. We will return to complete this proof later, when we

discuss the simply typed lambda calculus.

1.2.5 Sequent Calculus SC

This formal system uses the same sequents as statements that are used in ND, but

has slightly di�erent rules. First of all there is the structural rule

� `

I

A

�

0

`

I

A

with the side condition that the same formulae appear in � as are in �

0

. The e�ect

of having this rule is that the order that assumptions appear in the sequence � is

irrelevent, as is the number of times the same formula appears in the sequence; i.e.

� can be treated as a set of assumptions. The remaining rules are

(ass) � `

I

A (A in �)

(! R)

�; A `

I

B

� `

I

A! B

(! L)

� `

I

A �; B `

I

C

�; A! B `

I

C

(cut)

�; A `

I

C � `

I

A

� `

I

C

We write � `

I

SC

A if SC ` � `

I

A.

Theorem 1.8 � `

I

SC

A i� � `

I

ND

A.

Let SC

�

be SC with the cut rule left out.

Theorem 1.9 If � `

I

SC

A then � `

I

SC

�
A.

Marktoberdorf 1997 Summer School Proceedings 1-8

Notes on the Simply Typed Lambda Calculus Peter Aczel

This is the Cut Elimination Theorem for this sequent calculus. It is also called

Gentzen'sHauptsatz. Gentzen gave an algorithm for systematically removing cuts

from a tree-proof in SC. By theorems 1.5 and 1.7 it su�ces to show that if there

is a normal ND tree-proof of A whose undischarged assumptions are all in � then

� `

I

SC

�
A. This is not hard to do by induction on the size of the normal ND

tree-proof.

Note that Natural Deduction and the Sequent Calculus are closely related ap-

proaches to deduction in which normalisation of ND tree-proofs corresponds to

cut-elimination. We will prefer to focus on the natural deduction approach.

Exercise 1.10 Prove theorems 1.4,1.5,1.8 and 1.9 using theorem 1.7 in the proof

of theorem 1.9.

1.3 Intuitionistic Propositional Logic

In this section we extend the purely implicational logic of the previous section

by adding the other logical constants of intuitionistic propositional logic; i.e. we

add the two binary connectives ^ and _ for conjunction and disjunction and the

special constant ? for absurdity. The other propositional constants $ and : of bi-

implication and negation can be de�ned in the standard way. So every non-atomic

formula has one of the forms

(A

1

! A

2

); (A

1

^ A

2

); (A

1

_ A

2

); ?

and we use the de�nitions

(A

1

$ A

2

) = (A

1

! A

2

) ^ (A

2

! A

1

)

and

:A = (A!?):

1.3.1 The Hilbert style formulation

We keep the axiom schemes and rule of inference we had for implication and add

the axiom schemes

(Ax3) A

1

! A

2

! (A

1

^ A

2

)

(Ax4) (A

1

^ A

2

)! A

1

(Ax5) (A

1

^ A

2

)! A

2

(Ax6) A

1

! (A

1

_A

2

)

(Ax7) A

2

! (A

1

_A

2

)

(Ax8) (A

1

! C)! (A

2

! C)! (A

1

_ A

2

)! C

(Ax9) ?! A

1.3.2 The Natural Deduction formulation

We �rst give the schemes for the new forms of ND tree-proofs.

(^I)

A

1

A

2

A

1

^ A

2

(^E1)

A

1

^A

2

A

1

(^E2)

A

1

^A

2

A

2

(_I1)

A

1

A

1

_ A

2

(_I2)

A

2

A

1

_ A

2

(_E)

A

1

_ A

2

[A

1

]

C

[A

2

]

C

C

(? E)

?

C

Marktoberdorf 1997 Summer School Proceedings 1-9

Notes on the Simply Typed Lambda Calculus Peter Aczel

Note that (_E) involves the discharge of assumption occurrences in the ND tree-

proofs of the second and third premisses.

The notion of a normal ND tree-proof extends to the full intuitionistic propo-

sitional logic after we add the new forms of redex for ^ and _:

.

.

.

A

1

.

.

.

A

2

A

1

^ A

2

A

i

.

.

.

.

.

.

A

i

A

1

_ A

2

[A

1

]

.

.

.

C

[A

2

]

.

.

.

C

C

.

.

.

where i = 1; 2. Their contracta are

.

.

.

A

i

.

.

.

and

.

.

.

A

i

.

.

.

C

.

.

.

respectively. With these de�nitions theorem 3 of section 2 and its methods of proof

carry over to full intuitionistic propositional logic.

1.3.3 The sequent formulation of Natural Deduction

We give the new rules of inference in the sequent formulation.

(^I)

� `

I

A

1

� `

I

A

2

� `

I

A

1

^ A

2

(^E1)

� `

I

A

1

^ A

2

� `

I

A

1

(^E2)

� `

I

A

1

^ A

2

� `

I

A

2

(_I1)

� `

I

A

1

� `

I

A

1

_ A

2

(_I2)

� `

I

A

2

� `

I

A

1

_A

2

(_E)

� `

I

A

1

_ A

2

�; A

1

`

I

C �; A

2

`

I

C

� `

I

C

(? E)

� `

I

?

� `

I

C

Marktoberdorf 1997 Summer School Proceedings 1-10

Notes on the Simply Typed Lambda Calculus Peter Aczel

1.3.4 Sequent Calculus Formulation

(^R)

� `

I

A

1

� `

I

A

2

� `

I

A

1

^ A

2

(^L1)

�; A

1

`

I

C

�; (A

1

^ A

2

) `

I

C

(^L2)

�; A

2

`

I

C

�; (A

1

^ A

2

) `

I

C

(_R1)

� `

I

A

1

� `

I

A

1

_ A

2

(_R2)

� `

I

A

2

� `

I

A

1

_ A

2

(_L)

�; A

1

`

I

C �; A

2

`

I

C

�; (A

1

_ A

2

) `

I

C

(? L) �;? `

I

C

Exercise 1.11 Extend your proofs of theorems 1.4,1.5,1.8 and 1.9 of section 2 to

the full intuitionistic propositional logic.

2 Untyped Lambda Calculus

2.1 Preliminaries

2.1.1 The notion of a function

Let A;B be sets. As usual we write f : A ! B if f is a function from A to B.

So we have the rule of function application:

f : A! B a 2 A

f(a) 2 B

Functions are treated extensionally so that functions f; g : A ! B are equal if

they have the same value on every argument; i.e. if f; g : A! B then

f = g () (8x 2 A) f(x) = g(x):

A function f : A! B can be de�ned by a de�nition of the form

f(x) = � � �x � � � for x 2 A:

where `� � �x � � �' is an expression involving the variable x that denotes a value in the

set B whenever x is assigned a value in the set A. It is convenient to write

(�x 2 A) � � �x � � �

for the unique function f : A ! B with the above de�ning equation. So we have

the rule of function abstraction:

[x 2 A]

� � �x � � � 2 B

(�x 2 A) � � �x � � � : A! B

Marktoberdorf 1997 Summer School Proceedings 2-1

Notes on the Simply Typed Lambda Calculus Peter Aczel

2.1.2 Examples of functions

Let A;B;C be sets.

Identity Let I

A

= (�x 2 A)x. Then I

A

: A! A is the unique function de�ned by

I

A

(x) = x for x 2 A:

Constant Let K

A;b

= (�x 2 A)b, where b 2 B. Then K

A;b

: A! B is the unique

function de�ned by

K

A;b

(x) = b for x 2 A:

Composition Let (g � f) = (�x 2 A)(g(f(x))) where f : A ! B and g : B ! C.

Then (g � f) : A! C is the unique function de�ned by

(g � f)(x) = g(f(x)) for x 2 A:

2.1.3 Functions as sets

Let A;B be sets. The cartesian product A � B is the set of all ordered pairs

(a; b) with a 2 A and b 2 B. So we have the rule

a 2 A b 2 B

(a; b) 2 A�B

If f : A ! B then its graph is the set G of all pairs (a; f(a)) with a 2 A. The set

G is a subset of A� B such that

(8x 2 A)(9!y 2 B) (x; y) 2 G:

Conversely for any subset G of A � B that satis�es the above condition we can

de�ne a function f : A! B with the de�ning equation

f(x) = the unique y 2 B such that (x; y) 2 G:

In axiomatic set theory functions are identi�ed with their graphs.

2.1.4 Multi-argument functions

Let A

1

; : : : ; A

n

; B be sets. The cartesian product A

1

� � � � � A

n

is the set of all

ordered n-tuples (a

1

; : : : ; a

n

) with a

1

2 A

1

; : : : ; a

n

2 A

n

. If f : A

1

� � � � � A

n

! B

then we have the rule

a

1

2 A

1

� � � a

n

2 A

n

f(a

1

; : : : ; a

n

) 2 B

If � � � is an expression for a value in B when variables x

1

; : : : ; x

n

that may occur in

� � � are assigned values in A

1

; : : : ; A

n

respectively then

(�(x

1

; : : : ; x

n

) 2 A

1

� � � � �A

n

) � � �

is the unique function f : A

1

� � � � �A

n

! B with the de�ning equation

f(x

1

; : : : ; x

n

) = � � � :

Marktoberdorf 1997 Summer School Proceedings 2-2

Notes on the Simply Typed Lambda Calculus Peter Aczel

2.1.5 Currying

Let A;B;C be sets. We write C

B

for the set of all the functions B ! C. If

f : A� B ! C then g : A! C

B

where

g = (�x 2 A)(�y 2 B)f(x; y):

We call g the curried version of f . This term is named after the American logician

Haskell B Curry, who was the main developer of Combinatory Logic. His name has

also been used for the functional programming language Haskell. The function f

can be recaptured from g by a process called uncurrying:

f = (�(x; y) 2 A�B)g(x)(y)

2.1.6 The problem of variable clashes

Let A be a set and let f : A�A! A. The curried version g : A! A

A

has de�ning

equation

(1) g(x) = (�y 2 A)f(x; y) for x 2 A:

We could use `z' instead of `y':-

(2) g(x) = (�z 2 A)f(x; z) for x 2 A:

But we cannot use `x' instead of `y':-

(3) g

0

(x) = (�x 2 A)f(x; x) for x 2 A:

The function g

0

de�ned in (3) is generally quite di�erent to the function g de�ned

in (1) or in (2). In (3) the variable `x' occurs free on the left hand side while it

only occurs bound in the lambda expression on the right hand side so that g

0

is a

constant function.

If h : A! A let k : A! A be given by

k(y) = g(h(y)) for y 2 A:

Using (1) to expand the right hand side we get:-

k(y) = (�y 2 A)f(h(y); y) for y 2 A;

which is wrong! Instead we can use (2) to get

k(y) = (�z 2 A)f(h(y); z) for y 2 A:

Moral: Before making a textual substitution you must �rst suitably relabel

bound variables so as to avoid variable clashes. This same problem of variable

clashes is a familiar feature of quanti�ers in the predicate calculus.

2.2 An Untyped Universe

The (untyped) Lambda Calculus (LC) is a calculus of `functions' where it `makes

sense' to `apply' anything to anything. To motivate LC we postulate a non-trivial

set U (so U should have more than one element) such that U = U

U

. This will be

our universe of functions. For a; b 2 U we write a � b or usually just ab for the result

of applying the function a : U ! U to b 2 U . We use the following abbreviations:-

ab

1

b

2

� � � b

n

for � � � ((ab

1

)b

2

) � � � b

n

�x: � � � for (�x 2 U) � � �

�x

1

� � �x

n

: � � � for �x

1

: � � ��x

n

: � � �

Marktoberdorf 1997 Summer School Proceedings 2-3

Notes on the Simply Typed Lambda Calculus Peter Aczel

Note that if f : U

n

! U and a = �x

1

� � �x

n

:f(x

1

; : : : ; x

n

) then a 2 U and, for

x

1

; : : : ; x

n

2 U

f(x

1

; : : : ; x

n

) = ax

1

� � �x

n

:

So f = (�(x

1

; : : : ; x

n

) 2 U

n

)ax

1

� � �x

n

. We call a the curried version of f .

2.2.1 Some combinators in U

I = �x:x; Ia = a

K = �xy:x; Kab = a

B = �xyz:x(yz); Babc = a(bc)

C = �xyz:xzy; Cabc = acb

S = �xyz:xz(yz); Sabc = ac(bc)

The above �-expressions are examples of combinators. Following their de�nitions

are their de�ning equations, where a; b; c are arbitrary elements of U . There can

be equations connecting the combinators. For example we have the following two

results.

Proposition 2.1 I = SKK.

Proof: Observe that for any x 2 U

SKKx = Kx(Kx) = x:

But I is the unique element of U such that Ix = x for all x 2 U . It follows that

SKK = I .

Proposition 2.2 C = S(BBS)(KK).

Proof: Observe that for any x; y; z 2 U

S(BBS)(KK)xyz = BBSx(KKx)yz

= B(Sx)(KKx)yz

= B(Sx)Kyz

= Sx(Ky)z

= xz(Kyz)

= xzy

= xyz:

So we get the result.

Combinatory Logic (CL) is concerned with the combinators such as I;K;B;C; S

and equations involving them.

2.2.2 Some laws of LC

(�) (�x: � � � x � � �)a = � � �a � � �

(�) �x:(ax) = a

(ext)

[x 2 A]

ax = bx

a = b

Exercise 2.3 Let V = CB(SII). Given a 2 U let d = V a and let c = dd. Show

that c = ac. Show that c = Y a.

We call c a �xed point of a and we call Y a �xed point combinator.

Marktoberdorf 1997 Summer School Proceedings 2-4

Notes on the Simply Typed Lambda Calculus Peter Aczel

2.2.3 Problems with \U = U

U

"

In the standard axiomatic set theory ZFC it is inconsistent to have a non-trivial

set U such that U = U

U

. But it is probably relatively consistent in the variant of

ZFC that uses intuitionistic logic instead of clasical logic and drops the Foundation

Axiom. We give two proofs of the inconsistency.

First Contradiction in ZFC Suppose that a 2 U � U

U

and let b = a(a). Then

(a; b) 2 a. So, as (a; b) = ffag; fa; bgg,

a 2 fag 2 (a; b) 2 a

contradicting the Foundation Axiom.

Second Contradiction in ZFC This proof uses cardinal numbers. Let n > 1

be the cardinality of U . If U = U

U

then n = n

n

. But by Cantor's theorem 2

n

> n

so that n

n

� 2

n

> n, contradicting n = n

n

.

Note that the reasoning in the �rst proof is constructive. But a closer exami-

nation of the cardinality argument in the second proof will show that the second

proof is not constructive.

2.2.4 A more general universe

This time we assume that U is a non-trivial set with functions F : U ! U

U

and

G : U

U

! U such that F �G is the identity function on U

U

. We can de�ne

ab = F (a)(b) for a; b 2 U

�x:f(x) = G(f) for f 2 U

U

We still have

(�) (�x:f(x))a = f(a):

But only have weak versions of (�) and (ext). Let

U

0

= fG(f) j f 2 U

U

g:

Then we have

(w�) If a 2 U

0

then a = �x:(ax).

(wext) If a; b 2 U

0

and ax = bx for all x 2 U then a = b.

When U

0

= U then we do get (�) and (ext) and F is a bijection F : U

�

=

U

U

, with

inverse G.

2.3 Syntax of LC

2.3.1 Terms

We assume given a set const of constants and an in�nite set var of variables. The

terms of LC are built up from the constants and variables using application and

lambda abstraction. So the terms M are given by the BNF style grammar

M ::= x j c j (MM) j (�x:M)

where c is used for constants and x for variables. Alternatively the set of terms is

inductiveley de�ned using the following rules.

1. Every constant is a term and every variable is a term.

2. If M

1

;M

2

are terms then so is (M

1

M

2

).

3. If x is a variable and M is a term then (�x:M) is a term.

Marktoberdorf 1997 Summer School Proceedings 2-5

Notes on the Simply Typed Lambda Calculus Peter Aczel

Notational Conventions

� Leave o� outermost parentheses from terms.

� MM

1

M

2

� � �M

n

abbreviates ((� � � ((MM

1

)M

2

) � � �)M

n

)

� �x

1

� � �x

n

:M abbreviates (�x

1

:(� � � :(�x

n

:M) � � �)).

Example: �xy:(ax(bxy)) abbreviates

(�x:(�y:((ax)((bx)y))):

2.3.2 Construction Trees

Each term is constructed in a unique way using the rules and so has an associated

construction tree. For example the term (�x:(�y:((ax)((bx)y))) has the tree

r �x

j

� �y

j

�

�

a� �x

�

�

b � �x

�y

Note thatr indicates ex-

plicitly the root of the

downward growing tree.

Each leaf is labelled with

a variable or constant.

A variable leaf �y is bound if there is a �-node ��y in the path from the leaf to

the root of the tree. Otherwise the leaf is free. If a leaf �y is bound then the �rst

�-node ��y, in the path from the leaf to the root, is called the binder of the leaf.

The only formal purpose of bound variables is to specify the binders of bound

leaf nodes. So, instead of using construction trees with bound variables we may use

construction graphs with a pointer up from each bound leaf nodes to their binder.

The occurrences of the bound variables can then be removed. So, for example, the

previous tree has the following graph.

r �

j

� �

j

�

�

a� �

�

�

b � �

�

This is the construction

graph of

(�x:(�y:((ax)((bx)y))).

As another example here is the construction graph of �y:(xy(�y:y)).

Marktoberdorf 1997 Summer School Proceedings 2-6

Notes on the Simply Typed Lambda Calculus Peter Aczel

r �

j

�

� � �

x � � �

The two terms �z:(xz(�x:x)) and

�v:(xv(�x:x)) have the same construc-

tion graph.

Such terms are said to be �-convertible. Here is yet another example of a con-

struction graph and a pair of �-convertible terms for it.

r �

j

�

� � �

� z � �

� �

1. �x:(xz(�y:(xy)))

2. �w:(wz(�x:(wx)))

The term 2 can be obtained from the term 1 by simultaneously relabelling x as w

and y as x. Next we give three alternative notations for the graph.

Bourbaki �(2z(�(22)))

de Bruijn �(1z(�(21)))

dual de Bruijn �(1z(�(12)))

The de Bruijn index of a bound leaf in a construction tree is the number of �-

nodes occuring in the path from the leaf up to and including the binder of the leaf

node. The dual de Bruijn index is instead the number of �-nodes in the path

from and including the binder up to the root.

The (dual) de Bruijn term associated with a term is obtained by replacing

each variable occuring at a bound leaf by the (dual) de Bruijn index of the leaf and

then erasing the variable from each binder.

2.3.3 The de Bruijn terms

We �rst de�ne the de Bruijn pre-terms using the BNF -style grammar equation

M ::= c j x j (MM) j (�M) j 1 j 2 j 3 j � � � :

For each variable x and each pre-termM let (�x:M) be the pre-term obtained from

(�M) by simultaneously making the replacements

x! 1

1! 2

2! 3

.

.

.

Marktoberdorf 1997 Summer School Proceedings 2-7

Notes on the Simply Typed Lambda Calculus Peter Aczel

Example: If M is �(1z(�(12))) then �z:M is �(�(21(�(23)))).

Note that we are here preferring to take the dual de Bruijn approach. The set

of de Bruijn terms is now de�ned to be the set of pre-terms inductively de�ned

using the same rules as we used earlier to de�ne the terms of LC, except now the

lambda abstraction rule has to be understood in the sense we have just explained.

So now there is no such thing as a bound variable in a de Bruijn term, only perhaps

in our notation to refer to it. Instead the numerical indices are used.

From now on we will use the de Bruijn terms. For each pre-term M let var(M)

be the set of variables that occur in M . Also let Mfy=xg be the result of replacing

all occurrences of x in M by y.

Proposition 2.4 �x:M = �y:(Mfy=xg) if y 62 var(M).

Proposition 2.5 If (�N) is a (de Bruijn) term and x 62 var(N) then there is a

unique term M such that (�N) = (�x:M):

2.3.4 Substitution

Given a variable y and a term N the function M 7! M [N=y] from terms to terms

is the unique function ()

0

such that

8

>

>

>

>

<

>

>

>

>

:

c

0

= c

y

0

= N

x

0

= x if x 6= y

(M

1

M

2

)

0

=M

0

1

M

0

2

(�x:M)

0

= (�x:M

0

) if x 62 var(N) [fyg

Proposition 2.6 The function M 7!M [N=y] is well de�ned.

Note that this is not literal substitution as indices in N get shifted up 1 for each �

above it in the construction tree of N .

Lemma 2.7 (The Substitution Lemma)

M [N=x][L=y] =M [L=y][N [L=y]=x]

if x 6= y and x 62 var(L).

Proof: By induction on the structure of M .

2.4 Deduction

The ��-calculus is the formal system, whose statements are equations between

terms, having the following axiom schemes and rules of inference.

(1) M =M

(2)

M = N

N =M

(3)

M = N N = L

M = L

(4)

M

1

= N

2

M

2

= N

2

M

1

M

2

= N

1

N

2

(�)

M = N

�x:M = �x:N

Marktoberdorf 1997 Summer School Proceedings 2-8

Notes on the Simply Typed Lambda Calculus Peter Aczel

(�) (�x:M)N =M [N=x]

The w��-calculus is just like the ��-calculus except that the rule (�) is left out.

The ���-calculus is obtained from the ��-calculus by adding the axiom scheme

(�) �x:(Mx) =M , provided that x 62 var(M).

We will also consider the following rule.

(ext)

Mx = Nx

M = N

, provided that x 62 var(M) [var(N).

There are weak versions (w�) and (wext) of (�) and (ext), where it is required that

M;N have �-form; i.e. are terms of the form �x:L.

The Consistency Problem: Show that there are termsM;N such thatM = N

is not a theorem of (���). See section 2.6.

Exercises 2.8

1. Show that (���) � (w��) + (ext); i.e. both sides have the same theorems.

2. Show that

(a) (��) ` (w�),

(b) (��) � (w��) + (wext).

3. If Y = �z:((�x:z(xx))(�x:z(xx))) show that for any term M

(w��) `M(YM) = YM:

4. If S;K; I are the terms given in section 2 show that

(��) ` I = SKK:

Can you show that

(w��) ` I = SKK?

2.5 Combinatory Logic

Very roughly, combinatory logic is an approach to the ideas of the lambda calculus

that avoids lambda abstraction and bound variables. This means that substitu-

tion can be understood literally. The syntax of combinatory logic is given by the

grammar

M ::= c j K j S j x j (MM)

So, instead of lambda abstraction there are the special symbols K;S. It turns out

that in the formal system CL for combinatory logic, de�ned below, we can de�ne

a simulation of lambda abstraction so that (w��) can be translated into CL. The

main axioms for CL are the de�ning equations for K and S. There is an easy

translation of CL into (w��), so that these two formal systems are closely related.

But the two translations are not exactly inverses of each other. Really (w��) is

a conservative extension of a subsystem that is equivalent to CL. The rule

(ext) also makes sense for combinatory logic and we can show that CL + (ext) is

equivalent to (���). Also we can de�ne a combinatory logic weakening (wext) of

(ext) and show that CL+ (wext) is equivalent to (��).

Marktoberdorf 1997 Summer School Proceedings 2-9

Notes on the Simply Typed Lambda Calculus Peter Aczel

2.5.1 CL and its translation into (w��)

The formal system CL consists of the axiom scheme and rules (1)-(4) from sec-

tion 4, for equations between terms of combinatory logic, together with the axiom

schemes

(K) KMN =M

(S) SMNL =ML(NL)

whereM;N;L are arbitrary combinatory logic terms. Below we will call such terms

CL-terms in contrast to the terms of the lambda calculus which we will call LC-

terms.

The translationM 7!M

LC

from CL-terms to LC terms is de�ned by structural

recursion using the equations

8

>

>

>

>

<

>

>

>

>

:

c

LC

= c

K

LC

= �xy:x

S

LC

= �xyz:xz(yz)

x

LC

= x

(MN)

LC

=M

LC

N

LC

It is straightforward to prove the following result.

Proposition 2.9 CL `M = N =) (w��) `M

LC

= N

LC

.

2.5.2 A translation of (w��) into CL

In order to give such a translation we need to simulate lambda abstraction in CL.

For each variable x we de�ne the operationM 7! �

�

x:M on CL-terms by structural

recursion using the following equations.

8

<

:

�

�

x:x = I (where I is SKK)

�

�

x:M = KM (x 62 var(M))

�

�

x:(MN) = S(�

�

x:M)(�

�

x:N) (x 2 var(MN))

Lemma 2.10 For all CL-terms M;N

CL ` (�

�

x:M)N =M [N=x]:

The translation M 7! M

CL

of LC-terms into CL-terms is by structural recursion

using the equations

8

>

>

<

>

>

:

c

CL

= c

x

CL

= x

(MN)

CL

=M

CL

N

CL

(�x:M)

CL

= �

�

x:M

CL

Proposition 2.11 (w��) `M = N =) CL `M

CL

= N

CL

.

2.5.3 The converse of Proposition 6

We have seen translations both ways between CL and (w��). When extensionality

is added to both formal systems then the translations carry over and are inverses of

each other in a suitable sense, showing that CL+(ext) is equivalent to (w��)+(ext);

i.e. (���). But the translations between CL and (w��) are not quite inverses. By

using a variant of �

�

we now show that `=)' in proposition 6 can be strengthened

to `()'. In the variant de�nition of �

�

we use the equation

�

�

x:(Mx) =M (x 62 var(M))

and only use the third equation in the previous de�nition of �

�

when the above

equation does not apply.

Marktoberdorf 1997 Summer School Proceedings 2-10

Notes on the Simply Typed Lambda Calculus Peter Aczel

Exercise 2.12 Show, using this variant de�nition of �

�

when de�ning M 7!M

CL

,

that

�

(K

LC

)

CL

= K

(S

LC

)

CL

= S

and hence that

(M

LC

)

CL

=M

for all CL-terms M . Note that these are syntactic identities and not equalities

proved in CL.

Proposition 2.13

CL `M = N () (w��) `M

LC

= N

LC

for all CL-terms M;N .

Proof: Note that Proposition 2.11 still holds when using the variant de�nition

of �

�

. So if (w��) ` M

LC

= N

LC

then CL ` (M

LC

)

CL

= (N

LC

)

CL

. So, by the

exercise, CL `M = N .

Exercise 2.14 Show that (w��) can be replaced by (w��)+(�) in Proposition 2.11

and hence also in Proposition 2.13.

2.5.4 The equivalence between CL+ (ext) and (���)

Proposition 2.15

1. CL+ (ext) `M = N =) (���) `M

LC

= N

LC

.

2. (���) `M = N =) CL+ (ext) `M

CL

= N

CL

.

3. CL+ (ext) `M = (M

LC

)

CL

for any CL-term M .

4. (���) `M = (M

CL

)

LC

for any LC-term M .

5. `=)' in 1,2 can be replaced by `()'.

2.5.5 The equivalence between CL+ (wext) and (��)

In combinatory logic the rule (wext) is the weakening of the rule (ext) which requires

that M;N are functional in the sense of the following de�nition.

De�nition 2.16 A CL-term is functional if it has one of the forms

K;KM;S; SM;SMN:

Observe that, when using the original de�nition of �

�

, a CL-term �

�

x:M is always

functional so that M

CL

is a functional term for any LC-term M that is in �-form.

But note that this observation does not work with the variant de�nition of �

�

!

Exercise 2.17 Show that for each functional CL-term M there is a LC-term N

in �-form such that

(��) `M

CL

= N:

Proposition 2.18 The results of Proposition 2.15 hold when (ext) is replaced by

(wext) and (���) is replaced by (��).

Marktoberdorf 1997 Summer School Proceedings 2-11

Notes on the Simply Typed Lambda Calculus Peter Aczel

2.5.6 Summary

The main relationships between combinatory logics and lambda calculi are sum-

marised in the following diagram.

CL � CL+ (wext) � CL+ (ext)

+" m m

w�� � �� � ���

2.6 The Church-Rosser Theorem

The aim of this section is to prove the Church-Rosser theorem for the lambda

calculus (��). With some more work it can also be proved for the calculus (���).

This result, for each calculus, has the immediate consequence that the calculus

is consistent. Here, by the consistency of an equational calculus we mean the

property that not all equations can be proved, or equivalently, that for distinct

variables x; y the equation (x = y) cannot be proved.

2.6.1 The reduction relation

A redex for (��) is a term of the form

(�x:M)N

and its contractum is the term M [N=x]. These are the �-redexes. For (���)

there are also the �-redexes; i.e. terms of the form

�x:(Mx)

where x 62 var(M), having contractum M . If M is a redex then we write M

^

for

its contractum.

Exercise 2.19 Show that N contr N

0

if and only if it can be proved using the

following rules.

1. M contr M

^

for each redex M .

2. If M contr M

0

then

� �x:M contr �x:M

0

,

� (ML) contr (M

0

L) and (LM) contr (LM

0

) for each term L.

The following lemma will be useful.

Lemma 2.20 Let L be a term and let z be a variable. If M is a redex then so is

M [L=z] and M

^

[L=z] = (M [L=z])

^

.

Proof: Let M be the redex ((�x:N)M

0

). By Proposition 2.4 we may assume that

the variables x; z are distinct so that

M [L=z] = ((�x:(N [L=z]))(M

0

[L=z]))

and M [L=z] is a redex. So, by the Substitution Lemma 2.7

M

^

[L=z] = N [M

0

=x][L=z]

= N [L=z][M

0

[L=z]=x]

= (((�x:(N [L=z]))(M

0

[L=z])))

^

=M [L=z]

^

Marktoberdorf 1997 Summer School Proceedings 2-12

Notes on the Simply Typed Lambda Calculus Peter Aczel

For either calculus, given terms M;N we write that M contracts to M

0

, ab-

breviated

M contr M

0

;

if M

0

can be obtained from M by replacing an occurrence of a redex in M by its

contractum. Also we write that M reduces to M

0

, abbreviated

M red M

0

if M

0

can be obtained from M by a sequence of zero, one or more contractions

M contr � � � contr M

0

:

So the reduction relation red on terms is the re
exive, transitive closure of the

contraction relation contr. We can now state the theorem.

Theorem 2.21 (Church-Rosser) For both (��) and (���), if both M red N and

M red K then there is a term L such that both N red L and K red L.

Note: Call a relation R on a set A con
uent on A if

xRy; z =) 9w2A (y; zRw);

where xRy; z abbreviates (xRy^xRz) and y; zRw abbreviates (yRw^zRw). Then

the above Church-Rosser Theorem states that the reduction relation is con
uent

for both calculi.

Exercise 2.22 Given a relation R on a set A let �

R

be the relation on A given by

y �

R

z () 9w2A (y; zRw):

Show that R is con
uent i� �

R

is an equivalence relation. Use the Church-Rosser

Theorem to show that for both calculi

M �

red

N () `M = N:

Hence show that each calculus is consistent.

2.6.2 Proof of the Theorem for (��)

We will de�ne a relation � on terms and show that:-

I If M contr M

0

then M �M

0

.

II If M �M

0

then M red M

0

.

III � is con
uent.

We can deduce the theorem from these three properties in the following way. Let

M red N;K. This means that there are sequences of zero, one or more contractions

M contr � � � contr N and M contr � � � contr K

so that, by I,

M � � � ��N and M � � � ��K:

By repeated use of III we can �ll in the following rectangle by working from the top

left hand corner to the bottom right hand corner.

M � � � � � N

5 � � � 5

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

5 � � � 5

K � � � � � L

Marktoberdorf 1997 Summer School Proceedings 2-13

Notes on the Simply Typed Lambda Calculus Peter Aczel

In this way we eventually get a term L such that

N � � � �� L and K � � � �� L:

By II and the transitivity of red we get that N;K red L.

It remains to de�ne the relation � and prove I,II,III.

De�nition 2.23 We de�ne `M �M

0

' by recursion on the structure of M . There

are three cases, depending on the form of M .

x � M

0

() [x =M

0

]

�x:N � M

0

() (9N

0

)[N �N

0

and �x:N

0

=M

0

]

(M

1

M

2

) � M

0

() (9M

0

1

)(9M

0

2

)[M

1

�M

0

1

&M

2

�M

0

2

&(M

0

= (M

0

1

M

0

2

)) or

M and (M

0

1

M

0

2

) are redexes and M

0

= (M

0

1

M

0

2

)

^

]

It is immediate from this de�nition that we have the following lemma.

Lemma 2.24

1. x� x.

2. If N �N

0

then �x:N � �x:N

0

.

3. If M

1

�M

0

1

and M

2

�M

0

2

then (M

1

M

2

)� (M

0

1

M

0

2

) and if (M

1

M

2

) is a redex

then so is (M

0

1

M

0

2

) and (M

1

M

2

)� (M

0

1

M

0

2

)

^

.

Exercises 2.25

1. Show that, for any term M , M�M and if M is a redex then M�M

^

. Hence

prove I, using the previous lemma.

2. Prove II by induction on the structure of M .

In the proof of III we will need the following result.

Lemma 2.26 If M �M

0

and L� L

0

then M [L=z]�M

0

[L

0

=z].

Proof: Let M �M

0

and L� L

0

.

M = z: Then M

0

= z so that

M [L=z] = L� L

0

=M

0

[L

0

=z]:

M = y with y 6= z: Then M [L=z] = y and M

0

= y so that M

0

[L

0

=z] = y.

M [L=z] = y � y =M

0

[L

0

=z]:

M = �x:N : By Proposition 2.4 we may assume that M [L=z] = �x:(N [L=z]). As

M � M

0

, M

0

= �x:N

0

for some N

0

such that N � N

0

. By the induction

hypothesis N [L=z]�N

0

[L

0

=z] so that

M [L=z] = �x:(N [L=z])� �x:(N

0

[L

0

=z]) =M

0

[L

0

=z]:

M = (M

1

M

2

): As M �M

0

there areM

0

1

, M

0

2

such that M

1

�M

0

1

and M

2

�M

0

2

and

either (i) or (ii) below.

(i) M

0

= (M

0

1

M

0

2

).

Marktoberdorf 1997 Summer School Proceedings 2-14

Notes on the Simply Typed Lambda Calculus Peter Aczel

(ii) Both M and (M

0

1

M

0

2

) are redexes and M

0

= (M

0

1

M

0

2

)

^

.

By the induction hypothesis

(�) M

1

[L=z]�M

0

1

[L

0

=z] and M

2

[L=z]�M

0

2

[L

0

=z]

If (i) then

M [L=z] = ((M

1

[L=z])(M

2

[L=z]))

�((M

0

1

[L

0

=z])(M

0

2

[L

0

=z]))

=M

0

[L

0

=z]

If (ii) then

M [L=z] = ((M

1

[L=z])(M

2

[L=z]))

�((M

0

1

[L

0

=z])(M

0

2

[L

0

=z]))

^

= (M

0

1

M

0

2

)[L

0

=z]

^

= (M

0

1

M

0

2

)

^

[L

0

=z] by Lemma 2.20

=M

0

[L

0

=z]

�

Corollary 2.27 If (M

1

M

2

) is a redex and M

1

�M

0

1

, M

1

�M

0

2

then (M

0

1

M

0

2

) is a

redex and (M

1

M

2

)

^

� (M

0

1

M

0

2

)

^

.

Proof of III We must show that � is con
uent. This is a consequence of the

lemma below that uses the following de�nition. For ifM�N;K then, by the lemma,

N;K �M

�

and we are done.

De�nition 2.28 We de�ne M

�

, for each term M , by recursion on the structure of

M . There are three cases.

x

�

= x

(�x:N)

�

= �x:N

�

(M

1

M

2

)

�

=

�

(M

�

1

M

�

2

) if (M

1

M

2

) is not a redex

(M

�

1

M

�

2

)

^

if (M

1

M

2

) is a redex

Note that in the last equation if (M

1

M

2

) is a redex then so is (M

�

1

M

�

2

).

Lemma 2.29 If M �M

0

then M

0

�M

�

.

Proof: By induction on the structure of M . Let M �M

0

. There are three cases.

M = x: Then M

0

= x� x =M

�

.

M = �x:N : ThenM

0

= �x:N

0

for some N

0

such that N�N

0

and, by the induction

hypothesis, N

0

�N

�

so that

M

0

= �x:N

0

� �x:N

�

=M

�

:

M = (M

1

M

2

): Then there are M

0

1

, M

0

2

, with M

1

�M

0

1

and M

2

�M

0

2

, such that

either (i) or (ii) below.

(i) M

0

= (M

0

1

M

0

2

).

(ii) Both M and (M

0

1

M

0

2

) are redexes and M

0

= (M

0

1

M

0

2

)

^

.

Marktoberdorf 1997 Summer School Proceedings 2-15

Notes on the Simply Typed Lambda Calculus Peter Aczel

By the induction hypothesisM

0

1

�M

�

1

andM

0

2

�M

�

2

. If M is not a redex then

M

0

= (M

0

1

M

0

2

)� (M

�

1

M

�

2

) =M

�

:

It remains to consider the case when M is a redex. Then (M

�

1

M

�

2

) is also

a redex and M

�

= (M

�

1

M

�

2

)

^

so that (M

0

1

M

0

2

) �M

�

. Also, as (M

0

1

M

0

2

) is a

redex, (M

0

1

M

0

2

)

^

�M

�

. If (i) above then M

0

= (M

0

1

M

0

2

) and if (ii) above then

M

0

= (M

0

1

M

0

2

)

^

. In either case M

0

�M

�

.

�

2.7 Normalisation

The de�nitions in this section apply to each of the calculi (��) and (���). A term

is normal if no subterm is a redex. If M red M

0

and M

0

is normal then we call M

0

a normal form of M . A term M is (weakly) normalisable if M has a normal

form and is strongly normalisable if every contraction path

M contr M

0

contr M

00

� � �

is �nite.

Some Examples: Trivially all normal terms are normalisable and strongly nor-

malisable. Examples of normal terms are

I = �x:x; K = �xy:x; S = �xyz:xz(yz);

0

= �x:(xx):

Note that
 =

0

0

is not normal. In fact
 contr
 so that
 is not normalisable

or strongly normalisable. Note that if K

0

= KK
 then K

0

is not normal, but

is normalisable as K

0

contr K. In contrast, as K

0

contrK

0

, the term K

0

is not

strongly normalisable.

Exercises 2.30

1. Show that a term is normal in the (��) calculus i� it has the form

�x

1

� � �x

n

:aN

1

� � �N

k

where n; k � 0, x

1

; : : : ; x

n

are variables, a is a constant or variable and

N

1

; : : : ; N

k

are normal terms. What happens in the (���) calculus?

2. Show that every normalisable term has a unique normal form.

3. Show that every strongly normalisable term is normalisable.

4. Show that if M is strongly normalisable then the set of its contraction paths

M contr M

0

contr M

00

� � �

is �nite. [Hint: Use K�onig's Lemma]

5. Show that, for each of the two calculi, it is decidable whether or not an equation

(M = N) between normalisable terms M;N , is provable.

Marktoberdorf 1997 Summer School Proceedings 3-1

Notes on the Simply Typed Lambda Calculus Peter Aczel

3 Simply Typed Lambda Calculus

3.1 The Simple Type Theory STT

We assume given a set of atomic types and generate the types from the atomic

types using the rule

If A

1

; A

2

are types then so is (A

1

! A

2

)

The typing judgments have the form M : A where M is a term of the untyped

lambda calculus and A is a type. In particular a variable declaration is a typing

judgment of the form x : A where x is a variable. A sequence

x

1

: A

1

; : : : ; x

n

: A

n

of zero, one or more variable declarations, for a non-repeating list x

1

; : : : ; x

n

of

variables, is called a context.

The type theory STT is a formal system whose statements have the form

� `

I

M : A

where � is a context and M : A is a typing judgment. The axioms and rules of

STT are given by the following schemes.

(ass) � `

I

x : A (x : A in �)

(appl)

� `

I

M : (B ! C) � `

I

N : B

� `

I

(MN) : C

(abstr)

�; y : B `

I

M : C

� `

I

�y:M : (B ! C)

Marktoberdorf 1997 Summer School Proceedings 3-2

Notes on the Simply Typed Lambda Calculus Peter Aczel

Exercises 3.1

1. In this exercise identify the (atomic) formulae of Intuitionistic Implicational

Logic with the (atomic) types of STT . Let x

1

; x

2

; : : :be an in�nite non-repeating

list of variables. Show that

A

1

; : : : ; A

n

`

I

ND

A () 9M [x

1

: A

1

; : : : ; x

n

: A

n

`

I

STT

M : A]:

Moreover show that for all sequents A

1

; : : : A

n

`

I

A there is a one-one corre-

spondence between the ND tree-proofs of A

1

; : : : ; A

n

`

I

A and pairs consist-

ing of a term M and an STT tree-proof of the sequent

x

1

: A

1

; : : : ; x

n

: A

n

`

I

M : A.

2. In the following let � be a context x

1

: A

1

; : : : ; x

n

: A

n

. Prove the following

results.

(a) If � `

I

STT

M : A then var(M) � fx

1

; : : : ; x

n

g.

(b) If �

0

is a context that includes every variable declaration of � then

� `

I

STT

M : A =) �

0

`

I

STT

M : A:

(c) If � `

I

STT

N

i

: A

i

for i = 1; : : : ; n then

� `

I

STT

M : A =) � `

I

STT

M [N

1

; : : : N

n

=x

1

; : : : x

n

] : A:

(d) If M red M

0

then

� `

I

STT

M : A =) � `

I

STT

M

0

: A:

3.2 The variant STT

0

The terms of STT

0

are like the untyped terms except that lambda abstractions have

to include a typing of the variable being bound and so have the form �x : A:M ,

where A is a type. The rules of STT

0

are just as the rules of STT except that the

rule (abstr) has to be replaced by the following rule.

(abstr)

0

�; y : B `

I

M : C

� `

I

�y : B:M : (B ! C)

Exercises 3.2

1. If M is a term of STT

0

then let M

�

be the untyped term obtained by erasing

`: A' from each abstraction subterm �x : A:N . Show that

� `

I

STT

M : A () 9M

0

[M =M

0�

and � `

I

STT

0

M

0

: A]:

2. Show that if there is a type A such that � `

I

STT

0

M : A then there is a unique

such A and for that A there is a unique tree-proof in STT

0

of � `

I

M : A.

By the result of the second exercise we may write type

�

(M) for the unique type

A such that � `

I

STT

0

M : A, when it exists. Also note that if � is the context

x

1

: A

1

; : : : ; x

n

: A

n

then the terms M of STT

0

such that � `

I

STT

0

M : A are

in one-one correspondence with the ND tree-proofs of A

1

; : : : ; A

n

`

I

A. So these

terms M can be viewed as formal expressions that represent the corresponding ND

tree-proofs.

Marktoberdorf 1997 Summer School Proceedings 3-3

Notes on the Simply Typed Lambda Calculus Peter Aczel

3.2.1 Standard Set Theoretical Models of STT

0

Given an assignment of a set [[A

0

]] to each atomic type A

0

we may de�ne a standard

set theoretical model for STT

0

in the following way. De�ne [[A]] for each type

A by structural recursion using the equation

[[A

1

! A

2

]] = [[A

2

]]

[[A

1

]]

;

where, for sets X;Y , Y

X

is the set of all the functions from X to Y . Also, if � is

the context x

1

: A

1

; : : : ; x

n

: A

n

then let

[[�]] = [[A

1

]]� � � � � [[A

n

]]:

Now, by structural recursion on M , whenever � `

I

STT

0

M : A we may assign a

function

[[M]]

�

: [[�]]! [[A]]

using the following equations, where we let ~a = (a

1

; : : : ; a

n

) 2 [[�]].

8

>

>

>

>

<

>

>

>

>

:

[[x

i

]]

�

(~a) = a

i

(i = 1; : : : ; n)

[[(MN)]]

�

(~a) = [[M]]

�

(~a)([[N]]

�

(~a))

[[�y : B:M]]

�

(~a) = (��b 2 [[B]])[[M]]

�;y:B

(~a; b)

where, in the last equation the right hand side is the function f : [[B]] ! [[C]] such

that for all b 2 [[B]]

f(b) = [[M]]

�;y:B

(~a; b):

Note that it would not be so easy to formulate a notion of set theoretical model for

the type theory STT .

3.3 Standard Term Models of STT

The notion of a standard term model of STT will be a useful tool in describing a

variety of constructions for proving that every STT -term is in a set S, for various

sets S such as the setN of normalisable terms or the set SN of strongly normalisable

terms.

Call an untyped term M an STT -term if � `

I

STT

M : A for some context �

and some type A. In this section we introduce a useful notion of term model for

STT . Let T be the set of untyped terms. For subsets X;Y of T let X ! Y and

X !

w

Y be given by the following de�nitions.

X ! Y = fM j 8N 2 X (MN) 2 Y g

X !

w

Y = f�x:M j 8N 2 X M [N=x] 2 Y g

De�nition 3.3 A standard term model of STT is an assignment of a subset

[[A]] of T to each type A such that for all types A

1

; A

2

[[A

1

]]!

w

[[A

2

]] � [[A

1

! A

2

]] � [[A

1

]]! [[A

2

]]:

Given such a model let x

1

: A

1

; : : : x

n

: A

n

j=M : A if

M [N

1

; : : : ; N

n

=x

1

; : : : ; x

n

] 2 [[A]]

for all N

1

2 [[A

1

]]; : : : ; N

n

2 [[A

n

]].

Theorem 3.4 (Soundness) Given a standard term model of STT

� `

I

STT

M : A =) � j=M : A:

Marktoberdorf 1997 Summer School Proceedings 3-4

Notes on the Simply Typed Lambda Calculus Peter Aczel

Proof: This is by a straightforward induction on the size of an STT tree-proof of

� `

I

M : A. The base case, for the axioms (ass), is trivial. The induction step for

the rule (appl) uses

[[B ! C]] � [[B]]! [[C]]:

The induction step for the rule (abstr) uses

[[B]]!

w

[[C]] � [[B ! C]]:

But some care is needed to relabel the variable y, given an instance of the rule

�; y : B `

I

M : C

� `

I

�y:M : (B ! C)

:

The induction hypothesis is �; y : B j= M : C. If � is the context x

1

: A

1

; : : : ; x

n

:

A

n

then this means that for all N

1

2 [[A

1

]]; : : : ; N

n

2 [[A

n

]]

(�) (8N 2 [[B]]) M [N

1

; : : : ; N

n

; N=x

1

; : : : ; x

n

; y] 2 [[C]]:

We can rewrite (�) as

(8N 2 [[B]])M

0

[N=y

0

] 2 [[C]]

where

M

0

=M [y

0

=y][N

1

; : : : ; N

n

=x

1

; : : : ; x

n

];

provided that y

0

is a fresh variable (i.e. distinct from each of x

1

; : : : ; x

n

; y and not

occurring in any of M;N

1

; : : : ; N

n

; N). So we get from (*) that

�y

0

:M

0

2 [[B]]!

w

[[C]] � [[B ! C]]:

Now observe that

�y

0

:M

0

= (�y:M)[N

1

; : : : ; N

n

=x

1

; : : : ; x

n

]:

It follows that for all N

1

2 [[A

1

]]; : : : ; N

n

2 [[A

n

]]

(�y:M)[N

1

; : : : ; N

n

=x

1

; : : : ; x

n

]) 2 [[B ! C]]

so that we have � j= �y:M : (B ! C) as required.

�

De�nition 3.5 A non-empty collection C of sets of terms is de�ned to be an STT -

collection if there is a binary operation m on C such that for all X;Y 2 C

X !

w

Y � m(X;Y) � X ! Y:

We call such an opeartion m an implication operation for C. Call an STT -

collection C variable rich if every variable is in every set in C.

Theorem 3.6 Let S be a set of terms such that there is a variable rich

STT -collection of subsets of S. Then every STT -term is in S.

Proof: Let C be a variable rich STT -collection of subsets of S and choose any

X

0

2 C. We may de�ne a standard term model of STT as follows. We recursively

de�ne [[A]] for all types A by letting [[A

0

]] = X

0

for each atomic type A

0

and letting

[[A

1

! A

2

]] = m([[A

1

]]; [[A

2

]]):

Now if M is an STT -term then there is a context � and a type A such that � `

I

STT

M : A. So, by the previous theorem, � j= M : A. If � is the context

x

1

: A

1

; : : : ; x

n

: A

n

then M 2 [[A]], as x

1

2 [[A

1

]]; : : : ; x

n

2 [[A

n

]], and hence M 2 S.

�

Marktoberdorf 1997 Summer School Proceedings 3-5

Notes on the Simply Typed Lambda Calculus Peter Aczel

3.4 The `Normal Relation' method for STT

We will de�ne the notion of a `regular' set of terms S and the notion of a `normal

relation' for a set of terms S and prove the result that if a regular set S has a normal

relation then we can de�ne a simple variable rich STT -collection of subsets of S so

that every STT -term is in S. We will apply this result to both the sets N and SN .

In this way we cover a variety of constructions that give normalisation proofs for

STT .

For each set S of terms let S

�

be the set of terms that have the form

xN

1

� � �N

k

where x 2 V ar, k � 0 and N

1

; : : : ; N

k

2 S. Observe that we always have S

�

�

(S ! S

�

). We de�ne S to be a regular set if S

�

� S and also whenever (Mx) 2 S,

with x 62 var(M) then M 2 S.

Exercise 3.7 Show that both the set N of normalisable terms and the set SN of

strongly normalisable terms are regular.

Lemma 3.8 If S is a regular set then

S

�

� X;Y � S =) S

�

� (X ! Y) � S:

Proof: Let S be a regular set. First observe that (S

�

! S) � S. For if

M 2 (S

�

! S) then choose a variable x that is not in var(M). Then, as x 2 S

�

,

(Mx) 2 S so that M 2 S, as S is regular. Now let S

�

� X;Y � S. Then, as

the binary operation ! on sets of terms is antimonotone in its �rst argument and

monotone in its second,

S

�

� (S ! S

�

) � (X ! Y) � (S

�

! S) � S:

�

Let S be a set of terms. A relation R on terms is de�ned to be S-invariant if

MRM

0

=) (MN)R(M

0

N)

for all N 2 S. Note that the reduction relation red is always S-invariant.

Lemma 3.9 Let X;Y be sets of terms. If R is an X-invariant relation then

Y is R-closed =) (X ! Y) is R-closed.

Proof: Let R be an X-invariant relation and let Y be R-closed. Given MRM

0

2

(X ! Y) we must show thatM 2 (X ! Y). So let N 2 X . Then (MN)R(M

0

N) 2

Y , as R is X-invariant, so that (MN) 2 Y , as Y is R-closed.

�

Call a redex ((�x:M)N) an S-redex if N 2 S. Let R

S

be the relation on terms

R

S

= f(M;M

^

) jM is an S-redexg:

Given a relation R on terms, S is R-closed if, whenever MRM

0

,

M

0

2 S =) M 2 S:

Lemma 3.10 If X;Y are sets of terms such that Y is R

X

-closed then

(X !

w

Y) � (X ! Y).

Marktoberdorf 1997 Summer School Proceedings 3-6

Notes on the Simply Typed Lambda Calculus Peter Aczel

Proof: Let Y be R

X

-closed and let �x:M 2 (X !

w

Y). If N 2 X then

L = ((�x:M)N) is an X-redex, so that LR

X

L

^

. But L

^

= M [N=x] 2 Y so that

L 2 Y as required.

�

We call a relation R on terms normal for a set S of terms if the following conditions

hold.

1. R

S

� R,

2. R is S-invariant,

3. S is R-closed.

Call an STT -collection C simple if (X ! Y) 2 C for all X;Y 2 C. It follows

that m

max

(X;Y) = (X ! Y) de�nes an implication operation for C, the maximum

possible one.

Theorem 3.11 If S is a regular set having a normal relation R then the collection

C

R

(S) = fX j X is R-closed and S

�

� X � Sg

is a simple variable rich STT -collection of subsets of S.

Proof: As S is R-closed, S 2 C

R

(S), so that C

R

(S) is non-empty. For X;Y 2

C

R

(S) let m

max

(X;Y) = (X ! Y). By Lemma 3.8, S

�

� m

max

(X;Y) � S. As

X � S, R is X-invariant, so that, by Lemma 3.9, m

max

(X;Y) is R-closed, as Y is

R-closed. Thus m

max

(X;Y) 2 C

R

(S). Finally, as X � S, R

X

� R

S

� R so that

Y is R

X

-closed and hence, by Lemma 3.10,

(X !

w

Y) � m

max

(X;Y) = (X ! Y):

Thus C

R

(S) is a simple STT -collection. It is variable rich because V ar � S

�

� X

for any X 2 C

R

(S).

�

Note: Another possible implication operation for C

R

(S) is given by

m

min

(X;Y) = (S

�

[(X !

w

Y))

R

;

where, for any set X of terms, X

R

is the smallest R-closed set that includes X . It

is the set of those terms M such that there is an R-path

MRM

(1)

RM

(2)

R � � �RM

(n)

2 X

with n � 0.

Corollary 3.12 If S is a regular set that has a normal relation then every STT -

term is in S.

Given any relation on terms R, we may form the smallest S-invariant relation, R

S

,

that includes R. In fact it consists of all pairs (MN

1

� � �N

k

;M

0

N

1

� � �N

k

) such that

MRM

0

and N

1

; : : :N

k

;2 S with k � 0.

Exercises 3.13 If S is a regular set show that

1. If S has a normal relation then (R

S

)

S

is its smallest normal relation.

2. S has a normal relation if and only if S is (R

S

)

S

-closed.

3. If R is a normal relation for S and S

0

is a regular subset of S that is R-closed

then R is also a normal relation for S

0

Marktoberdorf 1997 Summer School Proceedings 3-7

Notes on the Simply Typed Lambda Calculus Peter Aczel

Theorem 3.14

1. red is a normal relation for the regular set N .

2. (R

N

)

S

is a normal relation for N whenever N � S.

3. (R

SN

)

S

is a normal relation for the regular set SN whenever SN � S.

By applying the corollary to this result we get several constructions that give the

normalisation theorem for STT , some of them also giving the stronger result for

strong normalisation.

Exercise 3.15 The left-most redex of a non-normal term is that redex that starts

furthest to the left among all redexes. The left-most contraction is the contraction

of the left-most redex. A left-most reduction is a sequence of left-most contrac-

tions. Let LN be the set of those terms having a left-most reduction to normal

form. Show that LN is regular and has a normal relation.

3.5 Girard's method

Girard's `candidate de reducibilit�e' method for proving strong normalisation involves

a slightly di�erent simple variable rich STT -collection of subsets of SN than those

of the form C

R

(SN) used in the previous section. We leave the details as exercises.

De�nition 3.16 We de�ne a set of terms X to be a CR-set if the following three

conditions hold.

(CR1) X � SN ,

(CR2) If M 2 X then [M contr N =) N 2 X],

(CR3) If M does not have the form �x:M

0

and 8N [M contr N =) N 2 X] then

M 2 X.

Let CR = fX j X is a CR-setg.

Exercises 3.17

1. SN 2 CR,

2. CR is a simple variable rich STT -collection of subsets of SN ,

3. If R = (R

SN

)

T

then CR � C

R

(SN).

3.6 Another method for strong normalisation

We describe a method for proving strong normalisation for STT -terms that uses an

STT -collection of sets of variable free terms. Let T

0

be the set of all variable free

terms and for any set S of terms let S

0

= T

0

\ S.

Theorem 3.18 Let S be a set of terms such that

�x:M 2 S =) M 2 S:

If there is an STT -collection of subsets of S then every STT -term is in S.

Marktoberdorf 1997 Summer School Proceedings 3-8

Notes on the Simply Typed Lambda Calculus Peter Aczel

Theorem 3.19 Let S be a set of terms such that for all terms �x:M

(�) 9N(M [N=x] 2 S) =) �x:M 2 S:

If S has a normal relation R then

C

0

R

(S) = fX � S j X is a non-empty R-closed setg

is an STT -collection of subsets of S.

Proof: We de�ne the implication operation for this collection by

m(X;Y) = S \ (X ! Y)

and apply the following result.

Lemma 3.20

1. Y 6= ; =) (X !

w

Y) 6= ;,

2. If (*) then [X 6= ; and Y � S] =) (X !

w

Y) � S.

Exercise 3.21 Show that (R

SN

0

)

S

is a normal relation for SN

0

whenever SN

0

�

S.

By this exercise SN

0

has a normal relation so that, as SN

0

is a set S satisfying

(*), by the theorem there is an STT -collection of subsets of SN

0

. This is an STT -

collection of subsets of SN so that, by Theorem 3.6, as �x:M 2 SN =) M 2 SN ,

every STT -term is in SN .

Marktoberdorf 1997 Summer School Proceedings 3-9

Notes on the Simply Typed Lambda Calculus Peter Aczel

References

[1] H. Barendregt, The Lambda Calculus, North Holland Publishing Co., Ams-

terdam. 2nd edition, 1984.

[2] J. Gallier, \On Girard's \Candidats de Reductibilit�e", in Logic and Com-

puter Science, ed. P. Odifreddi, Vol. 31 in APIC studies in Data Processing,

pp. 123-203, Academic Press, 1990.

[3] J.Gallier, \Constructive Logics, Part I: A tutorial on proof systems and typed

�-calculi", Theoretical Computer Science, 110, 249-339, 1991.

[4] J. Girard, Y. Lafont and P. Taylor, Proofs and Types, Cambridge Tracts in

Theoretical Computer Science 7, Cambridge University Press, 1989.

[5] J. Lambek and P.J. Scott, Introduction to higher order categorical logic,

Cambridge Studies in Advanced Mathematics 7, Cambridge University Press,

1986.

[6] P. Martin-Lof, Intuitionistic Type Theory, Bibliopolis, Napoli, 1984.

[7] B. Nordstrom, K. Petersson and J. Smith, Programming in Martin-Lof 's

Type Theory, An Inroduction, Monographs on Computer Science 7, Oxford

University Press, 1990.

[8] B. Nordstrom and K. Petersson and J. Smith, \Martin-Lof's Type The-

ory." A chapter in Handbook of Logic in Computer Science, written in

1994, to appear. (Available by ftp from ftp://ftp.cs.chalmers.se/pub/cs-

reports/papers/smith/hlcs.ps.gz)

[9] M. Takahashi, \Parallel Reductions in �-Calculus", Information and Com-

putation, 118, 120-127, 1995.

[10] A. S. Troelstra and H. Schwichtenberg, Basic Proof Theory, Cambridge

Tracts in Theoretical Computer Science 43, Cambridge University Press,

1996.

Marktoberdorf 1997 Summer School Proceedings 3-10

