
Efficient Implementation of Linearly Used Finite
Maps?

Péter Diviánszky

Eötvös Loránd Univ., Prog. Lang. and Compilers Dep.,
Budapestdivip@aszt.inf.elte.hu

Abstract. Typical functional implementations of finite maps are based
on association lists or balanced binary trees. This paper describes a non-
typical implementation using mutable references internally.

The interface of the data structure is similar to the interface of the
Data.Map module in Haskell. The main difference is that keys of maps
can only be identifiers. Identifiers are members of an abstract data type.
The implementation provides functions which helps the creation and dis-
tribution of identifiers.

If the number of used maps has an upper bound and the maps are used
linearly, then the insert, delete and search operations are constant time
operations independently of the number of keys. A number of pointer al-
gorithms can be implemented with finite maps so that these constraints
hold. These algorithms could also be implemented with mutable refer-
ences, but the use of finite maps gives a more functional look and feel.

Prototype implementation of the data structure with usage examples
exists in Clean and Haskell. This paper describes the main points of the
implementations and presents two usage examples: An algorithm which
finds strongly connected components in directed graphs and a sequence
data structure implementation.

1 Introduction

Let us begin with a puzzle. Suppose that we have expressions apply, f, g, x, y,
and z in Haskell so that the following equations hold:

apply f x == 15
apply f y == -2
apply f z == 0
apply g x == ”abcd”
apply g y == ”14x”

What are the definitions of these expressions?
For example, f and g can be finite maps. The concrete representation may

vary so that the type of apply is

? Supported by GVOP-3.2.2.-2004-07-0005/3.0 ELTE IKKK and OMAA-ÖAU 66öu2



apply :: (a → b) → a → b, in case of functions,
apply :: Eq a ⇒ [(a, b)] → a → b, in case of association lists,
apply :: Ord a ⇒ Map a b → a → b, in case of size-balanced trees.

(The Data.Map module in Haskell implements the Map data structure with
size-balanced binary trees.)

Let us see a non-standard solution to the puzzle. Let us call f and g maps
and x, y, z keys. In the previous solution the maps hold the values like 15, -2,
”abcd”. Now change this so the keys contain the values. Let f and g are arbitrary
expressions and assume that f 6= g. The definitions of x, y, z and apply are

x = [(f, 15), (g, ”abcd”)]
y = [(f, -2), (g, ”14x”)]
z = [(f, 0)]

apply a l = case lookup a l of

Just b → b

Nothing → error ”. . . ”

The lookup function searches its first argument in the second argument,
which is an association list in this case. The code will not work in Haskell because
of typing errors; we will see a solution for that later.

In which case can be the last solution to the puzzle superior to the previous
ones? Suppose that there are lots of keys x, y, z, . . . , and only a few maps. In
this case it is worth to interchange the roles of keys and maps because every key
will contain at most as many entries as the number of maps, so apply will run
in constant time independently of the number of keys.

This paper shows a finite map data structure implementation with the run-
time behaviour of the last solution to the puzzle. This data structure is more
efficient than the existing finite map implementations in certain usage cases. As
we will see these are the cases when the maps are used linearly, and the number
of maps are much smaller than the number of keys.

2 Module interface of the maps

In a typical implementation of finite maps the type of keys can be any data type
which has ordering (Ord instance in Haskell). In our case the there is more stress
on keys because they will also contain the values in a hidden way. This stress
force us to restrict the type of keys to be an abstract data type. The abstract
data type could hold arbitrary values too, but for simplicity I chose identifiers
as keys.

Identifiers are members of a very simple abstract data structure: the only
operation on identifiers is testing their equality. There are also functions to
construct identifiers, of course.

2.1 Type indexed identifiers

Identifiers are members of the abstract data type Id which is defined in Haskell
as follows:



data Id k

The type Id is indexed by the type k. The interface of identifiers ensures
that k can only be an uninstantiated type variable: one can not create a valid
(non-bottom) identifier of type Id Int, for example.

The type index makes possible the distinction between identifiers by the type
system. For example, we can implement a type-safe bipartite graph with type-
indexed identifiers. A bipartite graph is a special graph where the set of vertices
can be divided into two disjoint sets U and V such that no edge has both end-
points in the same set. We can model the two sets with types Id a and Id b.
The two sets are disjoint if a 6= b because a and b can not be instantiated by
a common type. The graph contains list of edges from Id a to Id b and list of
edges from Id b to Id a:

data BipartiteGraph a b = Graph [Edge (Id a) (Id b)] [Edge (Id b) (Id a)]
type Edge a b = (a, b)

The only thing that can be done with identifiers is comparing of identifiers
with identical index. There is an equality instance for identifiers:

instance Eq (Id k)

2.2 Creation of identifiers

Suppose that we can produce a value of type T provided that we have a list of
different identifiers [Id k]. In other words, we have a function f :: [Id k] → T .
Suppose moreover, that T does not contain the type variable k. This means that
identifiers indexed by k can not ”leak out” from the expression of type T , so it
is safe to construct this expression with arbitrary identifiers which are pairwise
different. In other words, one can safely create new identifiers at any point of the
program, provided that these identifiers will not interact with identifiers created
at an other point of the program.

Fortunately we can get the Haskell type system with rank-2 types to check
that newly created identifiers will not ”leak out”:

runIds :: (∀ k . [Id k] → a) → a

The inner ∀ guarantees that the type variable a can not be instantiated by
a type which depends on k. The same method is used in [6].

Recursive functions consuming identifiers can thread through a list of fresh
identifiers, but then some aspects of functional programming will be lost. Instead,
in these cases we can use the following function:

split :: Id k → [Id k]

The split function generates new identifiers. The new identifiers are fresh
unless they are generated from the same identifier.

split can be implemented by a global mutable variable which holds a map
from identifiers to lists of identifiers. split is sound; it can be proved by a model
in which identifiers are replaced by lists of identifiers. For sake of brevity we pass
by this proof.



2.3 Interface of the maps

The interface of the proposed maps is similar the interface of the Map data type
in the Haskell Data.Map module which implements size balanced binary trees
based finite maps[1]:

data Map k a

A map from keys Id k to values a. Note the difference between Map k a and
Map (Id k) a. The second would mean a map from keys Id (Id k) to values a.
Because identifiers can only be indexed by an uninstantiated type variable,
the second map has no sense.

empty :: Map k a

The empty map.

insert :: Id k → a → Map k a → Map k a

Insert a new key and value in the map. If the key is already present in the
map, the associated value is replaced with the newly supplied value.

delete :: Id k → Map k a → Map k a

Delete a key and value from the map. If the key is not present in the map,
the result is the unchanged input map.

lookup :: Id k → Map k a → Maybe a

Lookup the value at a key in the map.

A specialised version of lookup is the (!) operator:

(!) :: Map k a → Id k → a

m ! i = fromJust (lookup i m)

Note that it is not possible to obtain the list of keys of a map defined
here. Lots of operation relay on the list of keys: traversals, conversions, filtering,
submaps, indexing, operations with minimum and maximum elements. We have
to miss all these features. On the other hand, it is possible to define an other
finite map data structure on top this one which caches the keys of the map,
and provides the previous operations. Eventually the absence of traversal, etc.
operations can be seen as an advantage: in pointer algorithms we do not need
them (see later), so we can use a more efficient finite map implementation.

3 Implementation

The implementation should cope with the following tasks:

– Identification of keys and maps
– Keys should store mutable values



– Keys should store values hidden from the user
– Proper handling of non-linear use

The used techniques are:

– The key identification, and the storing of mutable values are solved with
mutable variables from the Control.Concurrent.MVar module in the base
package of GHC.

– Maps are identified by integers. Fresh integers are drown form a global vari-
able implemented by a mutable variable and use of the unsafePerformIO
function.

– The hidden store of values is solved by abstract data types and Dynamics
(Data.Dynamic module in the base package).

– The proper handling of non-linear use is solved by a patching technique
inspired by the implementation of diff arrays in the Data.Array.Diff module
in the base package of GHC.

3.1 Basics of patching

First let us look at simplified versions of the data types used in the implemen-
tation. On this simplified version we can see the previously mentioned patching
mechanism.

The definition of the Id type:

newtype Id k = Id (AssocList MapId Dynamic)

type AssocList a b = [(a, b)]

Identifiers contain (MapId, Dynamic) pairs. Dynamics are needed because the
key hold values with different types if the key is present in different maps.

The index k is not present in the left-hand-side of the definition, because the
index is needed only during the type checking of the users code.

Each map has a unique map identifier which is an integer value in the im-
plementation:

type MapId = Int

The Map type:

data Map k a

= Pure MapId

| Patched (Id k) (Maybe a) (Map k a)

The map is pure, if all its data corresponding keys and values are stored in
the keys. If the map is patched, then it is a slightly modified version of an other
map. The modification can be either the deletion of a key from the map, or an
update of a value at a key, or an insertion of a key and value pair. In either
case, the key is stored as the first parameter of the patch. In case of deletion,
the second parameter is Nothing. There is no distinction between insertion and
update. In both case, the new value is wrapped in a Just constructor.

According this here is the simplified definition of lookup:



lookup :: Id k → Map k a → Maybe a

lookup id m = case m of

Pure mapId →
case lookup mapId id of

Nothing → Nothing

Just d → fromDynamic d

Patched id′ val m′

| id′ == id → val

| otherwise → lookup id m′

3.2 Current and old maps

To understand the implementation of insert and delete, let us define the notions
current and old maps. During the run of the program the lifecycle of a map is:
current → old. If an insert or delete is performed on a current map, it will be
old; the newly created maps (by insertion or deletion) are current.

Note that in case of linear use every insert and delete will be performed on
a current map.

Note that the evaluation order depends on the evaluation strategy. The ex-
amples in this paper are defined so that maps are used linearly in case of a lazy
evaluation strategy. (Haskell and Clean have lazy evaluation strategy.)

3.3 The patch-transformation

The simplest solution is to implement insert and delete is that we add a patch:

insert′ id a m = Patched id (Just a) m

delete′ id a m

| isNothing (lookup id a m) = m

| otherwise = Patched id Nothing m

This is not optimal; our goal is to ensure fast run in case of linear use. The
best would be the case when all current maps are pure. This can be achieved by
the patch-transformation steps.

Here I describe one of the three patch transformation steps; the other two
are similar.

Suppose that a and b are maps and id is an identifier, so that a is pure with
map identifier mapId. Suppose that b is a patched form of a where the patch is
an update a at id from the old value x to the new value y:

a = Pure mapId

b = Patched id (Just y) a

id = (mapId, x): other

Now we can define the maps a′ and b′ and the identifier id′ so that replacing
a, b, id with a′, b′, id′ does not alter the semantics of maps (the expressions (a,
b, id) and (a′, b′, id′) are contextually equivalent from the view of the user):



a′ = Patched id (Just x) b′

b′ = Pure mapId

id′ = (mapId, y): other

With the three patch transformations it is always possible that the outcome
of a delete or insert on a pure map will also be pure.

3.4 Final data types

The patch transformations should exchange all maps envolved at once (atomi-
cally). In Haskell this can be implemented with mutable variables combined with
unsafePerformIO.

Every time when a Haskell programmer uses an unsafe language feature, a
justification is needed that its use is safe in that particular case. In our case
unsafePerformIO is used in the implementation of the patch-transformations,
which are safe because they does not alter the semantics of expressions.

The final data types are:

newtype Id k = Id (MVar (AssocList MapId Dynamic))
type AssocList a b = [(a, b)]
type MapId = Int

data Map k a

= Map (MVar (MapData k a))
| Empty

data MapData k a

= Pure MapId

| Patched (Id k) (Maybe a) (Map k a)

Identifiers and maps are changed by the patch transformation, so these are
wrapped in mutable variables. The Empty constructor of maps is needed only for
technical reasons (see later).

3.5 Some other function definitions

Let us see the implementation some of the functions on identifiers and maps.
The implementation of runIds is rather simple; we create new mutable vari-

ables and apply the input on them:

runIds :: (∀ k . [Id k] → a) → a

runIds f = f [unsafePerformIO (newMVar []) | <-[1..]]

Note that the GHC compiler may optimise this code so that all identifiers will
be the same mutable variable in the list. This can be prevented with additional
tricks which are not presented here.

For the creation of a new map we need a unique map identifier (of type Int).
The solution is a global mutable variable which holds an integer. Global mutable
variables can be implemented with newMVar and unsafePerformIO:



numOfMaps :: MVar Int

numOfMaps = unsafePerformIO (newMVar 0)

When a new empty map is created, the counter is incremented and its value
will be the identifier of the map.

The naive implementation of empty would be empty = unsafePerformIO
emptyIO. In this case all empty maps would share the same map identifier,
which is wrong. The workaround is that we introduce a new Empty constructor
and write additional function alternatives for the Empty case:

empty :: Map k a

empty = Empty

insert id x Empty = insert id x (unsafePerformIO emptyIO)
insert id x (Map m) = . . .

4 Finite sets

Finite sets can be naturally implemented on top of finite maps. Set k contains
identifiers indexed with k. Set k is a finite map from identifiers indexed with k
to the unit value:

newtype Set k = Map.Map k ()

We use qualified names with Map prefix to distinguish between function of
maps and sets. The implementations of the set functions are very simple:

empty :: Set k

empty = Map.empty

insert :: Id k → Set k → Set k

insert k s = Map.insert k () s

member :: Id k → Set k → Bool

member k s = isJust (Map.lookup k s)

From now on, set operations will be used qualified with the Set prefix and
map operations will be used without qualification.

5 Usage example: Strongly connected components

The graph representation used in this section is a function from graph nodes to
list of graph nodes. Graph nodes are represented by identifiers, so

type Graph k = Id k → [Id k].

5.1 Graph walks

The graph walk algorithm has two parameters: a graph and a list of initial graph
nodes. The result is the list of nodes which are reachable from the initial nodes,
in depth-first order.



walk :: Graph k → [Id k] → [Id k]
walk children l = collect Set.empty l where

collect :: Set k → [Id k] → [Id k]
collect s [] = []
collect s (h:t)

| Set.member h s = collect s t

| otherwise = h : collect (Set.insert h s) (children h ++ t)

The walk function uses a local function called collect. The parameters of
collect is the set of already visited nodes and the list of nodes to be visited.
Seemingly the visited nodes are stored in the set. What happens during execution
is that the set itself stores no information; the information that the node is in the
set is stored in the graph node. So the walk function use the Set data structure
to mark visited nodes. That is exactly like an imperative graph walk algorithm
works.

With some modification of the previous algorithm we get the reachable nodes
in postorder (post-ordering of the depth-first forest [5]), suitable for strongly
connected components detection. We need the Task auxiliary data structure to
mark reached nodes:

data Task k = Return (Id k) | Visit (Id k)

walk′ :: (Id k→[Id k]) → [Id k] → [Id k]
walk′ children l = collect Set.empty (map Visit l) where

collect :: Set k → [Task k] → [Id k]
collect s [] = []
collect s (Return h: t) = h: collect s t

collect s (Visit h: t)

| Set.member h s = collect s t

| otherwise
= collect (Set.insert h s) (map Visit (children h) ++ Return h: t)

The collect local function gets the set of visited nodes and a list of tasks.
This list contains values which are either nodes to visit or nodes to return. If
the first element in the list should be returned, it is returned. If the first element
should be visited, and it was not already visited, then the following tasks are
added to the list of tasks: visit the children of the node and return the node.

5.2 Relation inversion

Suppose that the relation between elements of type a and b is represented as
pair of an a → [b] function and a domain of type [a].

The inverse function inverts a relation between elements of type a and
identifiers index by b:

inverse :: (a→[Id b]) → [a] → (Id b→[a])
inverse r domain = get r′ where



r′ = foldl add empty [(x, y) | x←domain, y←r x]

add :: Map b [a] → (a, Id b) → Map b [a]
add m (a, b) = l ‘seq‘ insert b (a: l) m where l = get m b

get :: Map b [a] → Id b → [a]
get m x = case lookup x m of

Just l → l

Nothing → []

First the relations is transformed into pairs: [(x, y) | x←domain, y←r x]. Then
an empty map from Id b to [a] is created which will hold the result relation. The
pairs are added to the map one-by-one. At the end, the map is transformed to
a Id b→[a] function by the get function.

Note that in function add, the ‘seq‘ function ensures that l = get m b is
evaluated before insert b (a: l) m. Without it, l would be evaluated after the
insertion into m, so a lookup would happen (in the get function) after an insertion
into m, so the use of m would be non-linear. This would not be a problem, but
the algorithm would be slower.

5.3 Strongly connected components

The strongly connected components can be obtained by a reversed postorder
walk and a walk with reversed children relation [5]

The result is a tuple of the number of components and a map which maps a
node to the number of component which contains the node.

scc :: (Id a→[Id a]) → [Id a] → [[Id a]]
scc children l = walk′′ (inverse children l′) l′ where

l′ = reverse (walk′ children l)

walk′′ :: (Id a→[Id a]) → [Id a] → [[Id a]]
walk′′ children l = snd $ mapAccumL (collect []) Set.empty (map (:[]) l) where

collect :: [Id a] → Set a → [Id a] → (Set a, [Id a])
collect acc s [] = (s, acc)
collect acc s (h:t)

| Set.member h s = collect acc s t

| otherwise = collect (h: acc) (Set.insert h s) (children h ++ t)

The walk′′ function maps a lists of nodes into list of children of that nodes.
If a node is once collected, it will not show up again as a children. The Set data
structure is used to remember which node was already collected.

The time and space consumption of the component search algorithm (and
the other algorithms presented here) is O(n) where n is the number of nodes,
provided that the graphs have relatively few edges per nodes.



6 Usage example: Implementation of the Sequence data
structure

In the base package of GHC the Data.Sequence module contains the implemen-
tation of the Seq a data type. Seq a is a double ended list of elements of type a,
implemented by finger trees [3]. One can add and delete elements in O(1) time
on its both ends.

Here is the implementation of Seq a with finite maps. The data structure is
defined as:

data Seq a

= Empty

| ∀ k . Seq

{ value :: Map k a

, first, last :: Id k

, prev, next :: Map k (Id k)
, ids :: [Id k]
}

A sequence is either an empty sequence or an existentially quantified record.
(Existential quantification is denoted by the ∀ keyword in Haskell.) With existen-
tial quantification the k type index can be omitted from the type of the sequence,
so the interface of Seq will be the same as the one defined in Data.Sequence.

The spine of the sequence consists of identifiers indexed by k. The identifiers
are mapped to values by the value map. first and last are the first and last
identifiers of the spine, respectively. The prev and next maps determine the
order of identifiers in the spine. Two invariants of prev and next are:

next ! (prev ! i) == i if i 6= first,
prev ! (next ! i) == i if i 6= last.

(There are other invariants observed by the operations too.)
The ids field contains fresh identifiers. Fresh identifiers are needed when new

elements are added to the sequence.
To make a singleton list one have to use the runIds function.

singleton :: a → Seq a

singleton a = runIds f where

f (id:ids) = Seq

{ value = insert id a empty

, first = id

, last = id



, prev = empty

, next = empty

, ids = ids

}

Insertion to the left end of the sequence:

(<|) :: a → Seq a → Seq a

a <| Empty = singleton a

a <| (Seq value first last prev next (first′:ids)) = Seq

{ value = insert first′ a value

, first = first′

, last = last

, prev = insert first first′ prev

, next = insert first′ first next

, ids = ids

}

Other operations have similar complexity in code. The efficient implemen-
tation of the length operation needs a cached length field in the record above.
The constant time implementation of the (><) infix operation which join two
sequence is future work.

This sequence data structure have similar time and space behaviour to the
sequence in Data.Sequence, but only in case of linear use. So the tradeoff is
between simpler implementation and more liberate use.

Other data structures, like double ended lists with a moving pointer, rings,
or any classical pointer-based data structure can be implemented with similar
code and time complexity.

7 Implementation in Clean

The implementation of the presented map in Clean has both advantages and
drawbacks.

7.1 Advantages with Clean

The advantages come from the graph rewriting semantics behind Clean and the
uniqueness type system in Clean [2]. The uniqueness type system is used in two
ways:

– Initial identifiers are unique and splitting is permitted only on unique iden-
tifiers:

runIds :: (A. k: *[Id k] → a) → a

split :: *Id k → *[*Id k]

The effect is that some misuse of split will be rejected by the compiler
(splitting the same identifier twice) and the implementation of split will
shorter and faster (no need to remember the splitted values).



– The association list of identifiers can be updated destructively, because they
are never shared. In the Clean implementation this is achieved by a variant
of unsafeCoerce# which alters the uniqueness attribute of the association
list. The Clean compiler generates code which do ”compilation time garbage
collection” on unique objects.

The graph rewriting semantics behind Clean has also an effect on the lan-
guage. One effect is that there is a distinction between constants and zero arity
function definitions. Constants are computed only once, while zero arity func-
tions are computed every time when used. This distinction helps the implemen-
tation at two points: the definition of the empty map and the definition of the
fresh identifier (which is an internal impure function). Both can be defined as
zero arity functions and thus the complexity of the implementation reduces a
bit. (For example, the Empty constructor defined in Sect. 3.4 is not needed.)

7.2 Drawbacks with Clean

The drawbacks are that there are no weak pointers and mutable variables im-
plementation in Clean.

The implementation of mutable variables is possible without changing the
compiler. One can use ABC code for this purpose. The code can be derived from
the Heap module in the sources of the Clean compiler frontend, which implements
the Heap and Pointer data structures.

Implementing weak pointers in Clean would be a huge work so I had to miss
them.

8 Current problems

The main problem with the current implementation is its wrong memory usage.
The identifiers hold the values binded to them by maps in association lists.
Currently the unused elements in the association lists are not garbage collected.
The problem can be solved by weak pointers[4] in Haskell: the garbage collection
of an unused map can trigger the garbage collection of the related items in the
association lists of identifiers. However, when I tried this solution I observed
decrease in performance. Another problem, that there are no weak pointers in
Clean.

The consequences are increased space consumption and possible space leaks.
The proposed solution is described in the next section.

9 Future work

9.1 Static check of linear use

The linear use of maps could be checked by the type system.
Unfortunately, the uniqueness type system of Clean can not do this. The

insert and delete functions could have type



insert :: Id k → a → *Map k a → *Map k a

delete :: Id k → *Map k a → *Map k a

(* denotes uniqueness). On the other hand, after one use of lookup one could not
use the unique map any more because of the uniqueness restrictions. A solution
would be to modify lookup so that it returns the same map:

lookup′ :: Id k → *Map k a → (a, *Map k a)

I disagree with this solution because the maps should be threaded in the
code, which makes the code less ”functional”.

Ensuring linear use of the presented maps is a motivating challenge to im-
prove the Clean uniqueness type system.

9.2 Compaction of the association lists of identifiers

In some cases, the association lists of identifiers could be replaced by a record
data structure.

Consider the sequence implementation in Sect. 6. Almost every identifier in
the spine of the sequence has an internal association list which consists values
of the maps value, prev and next. (The first and last identifier in the spine
contains only two of them.) It would be nice if the compiler could replace these
list with a record data type like

Id Seq a = Id Seq

{ value :: a
, prev :: Id Seq a

, next :: Id Seq a

}

The optimised insert, delete and lookup functions would operate on these
records. The resulted data type would be very similar to a double-linked list
implemented in C with structures and pointers.

This optimisation step seems feasible, but it needs first the static check of
linear use of maps.

9.3 Improved memory use

The wrong memory use of the maps should be cured. Currently the only solution
I see is the modification of the garbage collector in the run time environment to
treat the association lists of identifiers specially.

10 Conclusion

The finite map implementation described in this paper is suitable to implement
pointer algorithms in a functional way. The resulted code are also efficient. How-
ever, a problem with memory consumption is not solved yet. Until this problem is
solved, the greatest contribution of this paper is to show how can one implement
a pointer algorithm with finite maps.



References

1. Stephen Adams. Efficient sets: a balancing act. Journal of Functional Programming
3(4), pages 553–562, October 1993.

2. Erik Barendsen and Sjaak Smetsers. Uniqueness typing for functional languages
with graph rewriting semantics. Mathematical Structures in Computer Science,
6(6):579–612, 1996.

3. Ralf Hinze and Ross Paterson. Finger trees: a simple general-purpose data structure.
J. Funct. Program., 16(2):197–217, 2006.

4. Simon L. Peyton Jones, Simon Marlow, and Conal Elliott. Stretching the stor-
age manager: Weak pointers and stable names in haskell. In Implementation of
Functional Languages, pages 37–58, 1999.

5. David J. King and John Launchbury. Structuring depth-first search algorithms in
haskell. In Conference Record of POPL ’95: 22nd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, San Francisco, Calif., pages
344–354, New York, NY, 1995.

6. John Launchbury and Simon L. Peyton Jones. Lazy functional state threads. In
PLDI ’94: Proceedings of the ACM SIGPLAN 1994 conference on Programming
language design and implementation, pages 24–35, New York, NY, USA, 1994. ACM
Press.


