
Texture based recognition of topographic map
symbols

Rudolf Szendrei, Istv́an Elek, Istv́an Fekete
Eötvös Loŕand University, Budapest

swap@inf.elte.hu, elek@map.elte.hu, fekete@inf.elte.hu

Abstract—This paper introduces a method that is able to assign
the symbols of vectorized maps into polygon attributes. It reduces
the required storage space of the database by removing the
corresponding polygons from the vectorized data model.

This procedure is presented with optimized pattern matching
on the raster image source of the map, where the symbols are
handled as special textures. This method will be improved by
using a raw vector model and the kernel symbols.

I. I NTRODUCTION

This paper will describe a method recognizes symbols
during the raster-vector conversion of maps. Maps that contain
topographic symbols are made from vector data models,
because photos and remote sensed images obviously do not
contain map symbols.

If a map symbol is identified, then two transformation steps
can be made automatically instead of the usual manual interac-
tion [1], [3]. First, the vectorized polygon of the map symbol
will be removed from the vectorized map. Next, the meaning
of the removed symbol will be assigned as an attribute to
the polygon of the corresponding object in the vector data
model. For instance, after removing the symbol “vineyard”,
this attribute will be added to the boundary polygon of the
“real” vineyard (see Fig. 1). In practice, the attributes of the
polygons are stored in a GIS database.

II. M AIN STEPS OF RASTER-VECTOR CONVERSION

The raster-vector conversion of maps consists of three main
steps.

A. Color classification

In the first step, the amount of the colors will be reduced
in regard to the number of colors that the human eyes can
logically separate during the interpretation of the map. This
process can be set up as a series of image filters. These filters
reduce the errors of the image, emphasize dominant color
values or increase the distance between color classes. After
these filters were applied, the intensity values of pixels are

Rudolf Szendrei is with the Department of Software Technology and Metho-
dology, Istv́an Elek is with the Department of Cartography and Geoinformatics
and Istv́an Fekete is with the Department of Algorithms and Their App-
lications, Ëotvös Loŕand University of Budapest (e-mail: swap@inf.elte.hu,
elek@map.elte.hu, fekete@inf.elte.hu).

The research project was supported by the IKKK (Informatics Research
and Education Cooperation Center) under project code GVOP-3.2.2-2004-07-
0005/3.0.

classified into color classes by clustering methods. Our goal is
to determine appropriate reference colors in order to minimize
the false pixel classifications.

B. Detecting vectors

This step will determine all edge vectors in the color
reduced map. Edge filters and edge detectors, like Canny,
Laplace or Prewitt methods are frequently used to solve this
problem. Using these filters, we can obtain the direction
vectors for each pixel that sits on a line. This will create the
corresponding vector model. If a pixel does not belong to any
edge, it can be dropperd or represented by a null vector.

C. Processing vectors

The last task is to process the vectors. This means, the
extraction of as much structural information as only possible
and storing them with the vectorized map in the database.
This step will build polygons or polylines from the vectors
determined for each pixel.

Fig. 1. Recognizing the symbol of vineyard

Experience shows the most difficult part of the raster-vector
conversion is the third step (see Fig. 2). Let us examine the
roads on a map for illustration. The width of their polylines
can be different according to their types. In this case, most
software interpret them as polygons which have edges on
both sides of roads because of their width. This is not a
correct representation of roads as the width property is only
a symbolic attribute of the road and not a real measure. This
kind of false classification is well known, and even the recent
applications do not yield complete solution to this problem.

III. SYMBOL RECOGNITION

It is important to recognize those objects of the map which
represent a symbol, even if they look like lines or polygons.

2009 International Conference on Artificial Intelligence and Pattern Recognition (AIPR-09)

7



Theuse of texture based pattern matching algorithm developed
by the authors will directly recognize these symbols. This
algorithm also determines the positions of symbols on the map.
The position is needed in order to query its respective polygon
from the vector model. This polygon will be removed from the
vector model and its attribute property (e.g. “vineyard”) will
be assigned to the polygon that contained the polygon of the
removed symbol. A second query is required to determine the
polygon that comprised the symbol [2].

Character recognition is a special case of symbol recogni-
tion [4]. It is assumed, that maps have a legend of symbols
on the map sheet or the map interpreter identifies the map
symbols (see Fig. 2).

A map can be represented as anm× n matrix, where each
pixel described by ak number of color components. It is
assumed, that a part of the map represents the symbol as a
u × v matrix. It is possible that symbols are not rectangular.
This difficulty can be handled by using an otheru× v matrix
that represents a bitmask. This matrix determines which pixels
of the symbol will be used during pattern matching. Section IV.
will show a simple, section V. an improved pattern matching
method.

Fig. 2. The original map and its vectorized model using R2V software

IV. A SIMPLE PATTERN MATCHING METHOD

The basic method applies a brute force pattern matching
as it tries to match the matrix of the symbol to eachu × v
matrix of the map. This is an inefficient solution, because it
determines for each pixel of the map whether the pixel is a part
of a symbol or not. Each map pixel can be covered by au×v
matrix in u∗v different ways. This leads to a number ofu∗v
pattern matching where each costsu ∗ v pixel comparisons.
Thus, the runtime in pixel comparisons will be

Tbf(m,n, u, v, k) = Θ((m ∗ n) ∗ (u ∗ v)2 ∗ k).

In addition, this method works only if the symbols on the
map have the same orientation as in the symbol matrix.
Unfortunately, polylines mostly have transformed symbols in
order to follow the curves of a polyline. Symbols on a map
can be transformed in several ways that makes the matching
more difficult. In the least difficult case an affin transformation
was made to a symbol, e.g. it was rotated. However, it can
be much more difficult to recognize the non-located symbols
(e.g. railroads which continously follow the curves of the
track). In this project only the problem of rotated symbols was
treated. Without additional concrete or contextual information
the rotated symbols can be identified if the matching symbol

is rotated too. If there is no knowledge of the orientations
of symbols, a number of directions has to be defined as
possible positions for rotated pattern matching. Refining the
rotations makes the recognition more accurate. A correct
pattern matching algorithm without any knowledge has to test
at least 20-30 directions. If the symbol is asymmetric, it may
be necessary to do the pattern match with the mirrored symbol
too (e.g. country borders)

As the maps are often distorted or defected, statistical
methods should be applied instead of regular pattern matching
methods. Several tests are known for statistical pattern mat-
ching depending on the problem class and they mainly use
the mean and variance of a matrix. This paper uses a simple
statistical comparison called similarity function. It takes two
u×v matrices as parameters and calculates the variance of their
difference matrix. The pattern matching algorithm uses the
variance as a measure of similarity. In practice, the user defines
or the software calculates a threshold value which will be used
for pattern matching decisions. Each map pixel covered by the
u × v matrix of the symbol is part of the symbol when the
value of the similarity function is less than the threshold.

V. EFFICIENT PATTERN MATCHING

Some commercial software support the raster-vector con-
version process. The embedded algorithms are well known,
and most of them are filters (e.g. edge and corner detectors,
edge filters). The efficient implementations of these filters are
usually available in both pseudo and source codes on the
Internet, therefore, the programming aspects are not discussed
here.

Despite the large number of filters, the Gauss and Laplace
filters are used most often in digital image processing as edge
filters, while Canny and Prewitt (see Fig. 3) methods as edge
detectors.

Fig. 3. An example for Prewitt filter

Our task is to enhance the efficiency of symbol recognition.
As a starting point, the vector data model is needed in an
uninterpreted raw format, which naturally contains redundant
vectors. The goal is to create the model which is as similar
to the raster image as only possible. From this model, those
datas are required, which describe the presence of a vector and
the directon of the vector (when it exists) at a given point. If
a vector exists at a pixel of the map, then the pixel belongs
to an edge, which is represented by a vector with direction
d. If a vector does not exist at a point, no pattern matching
is required there. In other words no symbol is recognized at
this point. The pattern matching is much more efficient if only
those map pixels and symbol pixels will be matched which sit
on a line. Namely, these points have a vector in the vector
data model.

2009 International Conference on Artificial Intelligence and Pattern Recognition (AIPR-09)

8



It is assumed that total length of edges in the map isl ≤
m ∗ n, and the number of edge pixels in the symbol isls ≤
u ∗ v. The cost of pattern matching in a fixed position remain
unchanged (u∗ v pixel comparisons). The estimated runtime
of the improved matching process is then

Teff(m,n, u, v, k) = Θ(l ∗ (u ∗ v) ∗ ls ∗ k).

The total length of the edges may beu ∗ v at worst case. In
this case the runtime can reach asymptotically the runtime of
the brute force algorithm.

The effective runtime of this algorithm is certainly signifi-
cantly less, because, in practice the total length of the symbol
edges is a linear function of the diameter of symbols. As
u = (u, 0) and v = (0, v) vectors are orthogonal,|u − v|
canbe used to estimatels.

ls < |u− v| ∗ c < (u ∗ v),

wherec is a constant factor and

|u− v| = √
u2 + v2.

Theseformulas lead to

min(u, v)
√

2 <
√

u2 + v2 < max(u, v)
√

2.

Now c can be estimated as

c <
u ∗ v

min(u, v)
√

2
.

Becausemin(u, v) = u or v,

c <
u ∗ v

u
√

2
=

v√
2

or c <
u ∗ v

v
√

2
=

u√
2

.

The inequality is guaranteed, if

c <
max(u, v)√

2
.

To determine the efficiency of the improved pattern mat-
ching algorithm, the speed of the simple and the improved
matching methods has to be estimated. Thesi symbol is a
us,i × vs,i matrix andumax and vmax are the maximums of
us,i andvs,i values. The total length of edges in theith symbol
is ls,i andlsm is the mean of thels,i values. It can be assumed
that u = umax, v = vmax and ls = lsm. If the map is totally
covered by non-overlappingu× v matrices, the total length
of the map edgesl can be estimated as

l ≈ ls ∗ m ∗ n

u ∗ v
.

Because

l ∗ u ∗ v ∗ ls ≈ ls ∗ m ∗ n

u ∗ v
∗ (u ∗ v) ∗ ls = m ∗ n ∗ l2s ,

the “speed up factor” of the improved method is

Teff

Tbf
= O

( m ∗ n ∗ l2s ∗ k

m ∗ n ∗ (u ∗ v)2 ∗ k

)
= O

( l2s
(u ∗ v)2

)
.

VI. FINDING THE KERNEL OF THE PATTERN

Certain symbols are used as a tile in maps and this tile is
called kernel. This often happens when the user selects a part
of the map that is larger than the symbol. This part includes the
symbol at least one occurence and may also contain the symbol

partially. In this case the pattern matching is less efficient.
The optimized algorithm uses the smallest tile (see Fig. 4). If
a kernelK is a uK × vK matrix andS is a u × v symbol
matrix, then

|S(i, j)−K(i mod uK , j mod vK)| < T

uK ∗ vK
,

where0 ≤ i < u, 0 ≤ j < v. ThresholdT is used by the
pattern matching algorithm applied on the original symbol.

The kernel can be determined, by for example, a brute
force algorithm makes a self pattern matching with all the
submatrices of the symbol matrix. Instead of using a brute
force method of exponential runtime, the algorithm works with
the vector data model of the symbol in the same way as it is
used by the pattern matching algorithm.

Experience shows that the number of edge pixels in the
vector data model is almost irrelevant in comparison withu∗v.
It is assumed that all tiles of the symbol matrix have the same
direction in the selected area.

Fig. 4. Determining the kernel of the sample

Using vector data, the kernel of the sample can be determi-
ned by a motion vector searching algorithm. The details are not
discussed here, because this algorithm is known in the image
sequence processing to increase the compression ratio. (For
example, the standard of MPEG and its variants use motion
vector compensation and estimation to remove the redundant
image information between image frames.)

VII. L INEARIZING THE NUMBER OF PATTERN MATCHING

To apply the method of pattern matching, the previously
determined kernel will be used. Letu denote the horizontal
andv the vertical dimension of the kernel. A useful property
of the kernel, which is the smallest symbol, is that it can be
used as tiles to cover the selected symbol. The kernel never
overlapped by itself. At this stage, the algorithm freely selects
an edge pixel of the kernel. It is assumed, that the kernel can
be matched in one orientation. The other pixels of the map
region, which is covered by the kernel, do not need to be
evaluated. In best case, theu ∗ v pixels of the map have to be
used only once, that is all the pixels of the map are processed
only once. Calculating with the number of rotations of the
symbol, the runtime in optimal case is

Teff(m,n, u, v, k, r) = Θ(l ∗ (u ∗ v) ∗ ls ∗ k ∗ r),

where k is the number of color components andr is the
number of tested rotations.

The vector which belongs to a pixel may have two direction.
Therefore, in each selected partr = 2. The runtime that
includes the cases of rotated symbols will be

2009 International Conference on Artificial Intelligence and Pattern Recognition (AIPR-09)

9



Teff(m,n, u, v, k) =
Θ(l ∗ (u ∗ v) ∗ ls ∗ k ∗ 2) =
Θ(l ∗ (u ∗ v) ∗ ls ∗ k).

When there is a symbol that is not represented in the pixel of
the map, then two cases are possible

1) the pixel is not a part of an edge, or
2) the pixel is a part of an edge, but it is not identified as

a part of the symbol in the given direction.
In the first case, no further pattern matching is needed. In the

second case, an edge pixel of the symbol will be fixed, which
is a part of an edge, and the pattern matching algorithm will
start to work with rotating. The angle of rotationα can be
calculated as

α(dm, ds) = R( dm−ds

|dm−ds| ).

where ds is the vector that belongs to the fixed edge pixel
of the symbol,dm is the current starting map pixel of the
pattern matching and the functionR returns the angle of the
given vector according toi = (1, 0). The worst case gives the
following runtime:

Teff, worst(m,n, u, v, k) = Θ(l ∗ (u ∗ v) ∗ k).

Using the estimation

l ≈ ls ∗ m ∗ n

u ∗ v
,

the runtime is

Teff, worst(m,n, u, v, k) = Θ(m ∗ n ∗ ls ∗ k) = Θ(m ∗ n).

In practice, k is a constant value (e.g.k = 3 for RGB
images) and the valuels has an upper boundary, which is
not influenced by the size of the map. Therefore, the pattern
matching algorithm works in linear runtime.

VIII. M AP SYMBOLS AS ATTRIBUTES

Finally, the represented attribute of the symbol has to be
assigned to the corresponding object of the vectorized map.
In order to do this, polylines and polygons should be handled
differently. All segments of the polyline should inherit the
attribute of the polyline symbol. The assignment to polygons
is more sophisticated, because both the border and the interior
of a polygon have to receive the attribute. The decision is
user dependent, whether the attribute information is stored
implicitly – assigned only to the polygon – or explicitly –
assigned to all polyline segments of the polygon border.

IX. CONCLUSIONS

A texture based pattern matching algorithm was introduced
that recognizes the symbols of a map. The algorithm needs
both the raster and the raw vector data model of the map.
This method makes it possible to assign the attribute of the
symbol to the corresponding vectorized objects. The result is
an interpreted vector data model of the map that does not have
those vectors which were part of the vectorized symbol. The
process begins on an apropriate part of the map representing
a symbol, selected by the user or the software. After this step,
the algorithm makes pattern matches and determines the po-
sitions of the symbol on the map automatically. The complete

workflow can be seen on Fig. 5, with an optional component.
The quality of the recognition is heavily influenced by the
filter algorithms used before the pattern matching.

Fig. 5. The complete workflow.

REFERENCES

[1] Ablameyko, S., et al. (2002),Automatic/interactive interpretation of color
map images. Pattern Recognition, Vol. 3, pp. 69–72.

[2] Bhattacharjee, S. and Monagan, G. (1994),Recognition of cartographic
symbols. MVA’94 IAPR Workshop on Machine Vision Applications,
Kawasaki

[3] Levachkine, S. and Polchkov, E. (2000),Integrated technique for
automated digitization of raster maps.Revista Digital Universitaria,
Vol. 1., No. 1, http://www.revista.unam.mx/vol.1/art4/

[4] Trier, O. D., et al. (1996), Feature extraction methods for character
recognition - A survey.Pattern Recognition, Vol. 29, No. 4, pp. 641–662.

2009 International Conference on Artificial Intelligence and Pattern Recognition (AIPR-09)

10




