
Database Theory

Database Theory
VU 181.140, SS 2011

5. Complexity of Query Evaluation

Reinhard Pichler

Institut für Informationssysteme
Arbeitsbereich DBAI

Technische Universität Wien

3 May, 2011

Pichler 3 May, 2011 Page 1

Database Theory

Outline

5. Complexity of Query Evaluation
5.1 Measures of Complexity
5.2 Complexity of First-order Queries
5.3 Complexity of Conjunctive Queries
5.4 Complexity of Datalog

Pichler 3 May, 2011 Page 2

Database Theory 5. Complexity of Query Evaluation 5.1. Measures of Complexity

Beyond Traktenbrot’s Theorem

By Traktenbrot’s Theorem, it is undecidable to check whether a
given first-order query Q produces some output over some database.

What happens if D is actually given as input?

Pichler 3 May, 2011 Page 3

Database Theory 5. Complexity of Query Evaluation 5.1. Measures of Complexity

The following are natural (decision) problems in this context:

QUERY-OUTPUT-TUPLE (QOT)

INSTANCE: A database D, a query Q, a tuple ~c of values.
QUESTION: Is it true that ~c ∈ Q(D)?

BOOLEAN-QUERY-EVALUATION (BQE)

INSTANCE: A database D, a Boolean query Q.
QUESTION: Does Q evaluate to true in D?

NOTE: we often view Boolean domain calculus queries {〈〉|φ} simply as
closed formulae φ.

QUERY-NON-EMPTINESS (QNE)

INSTANCE: A database D, a query Q.
QUESTION: Does query Q yield a non-empty result over the DB D, i.e.
Q(D) 6= ∅?

Pichler 3 May, 2011 Page 4

Database Theory 5. Complexity of Query Evaluation 5.1. Measures of Complexity

QOT vs.BQE vs.QNE
We concentrate next on the complexity of BQE.

Not a limitation: in our setting QOT and QNE are essentially the same
problems as BQE:

From QOT to BQE

Assume a database D, a domain calculus query Q = {~x | φ(~x)}, and a
value tuple ~c = 〈c1, . . . , cn〉. Then ~c ∈ Q(D) iff Q ′ evaluates to true in
D, where

~x = 〈x1, . . . , xn〉, and

Q ′ = ∃~x .(φ(~x) ∧ x1 = c1 . . . ∧ xn = cn)

From QNE to BQE

Assume a database D, a domain calculus query Q = {~x | φ(x)}. Then
Q(D) 6= ∅ iff ∃~x .φ(~x) evaluates to true in D.

From BQE to QNE and QOT Ã trivial.

Pichler 3 May, 2011 Page 5

Database Theory 5. Complexity of Query Evaluation 5.1. Measures of Complexity

Complexity Measures for BQE

Combined complexity

The complexity of BQE without any assumptions about the input query
Q and database D is called the combined complexity of BQE.

Further measures are obtained by restricting the input:

Data and query complexity

Data complexity of BQE refers to the following decision problem:
Let Q be some fixed Boolean query.
INSTANCE: An input database D.
QUESTION: Does Q evaluate to true in D?

Query complexity of BQE refers to the following decision problem:
Let D be some fixed input database.
INSTANCE: A Boolean query Q.
QUESTION: Does Q evaluate to true in D?

Pichler 3 May, 2011 Page 6

Database Theory 5. Complexity of Query Evaluation 5.1. Measures of Complexity

Relevant Complexity Classes

We recall the inclusions between some fundamental complexity classes:

L ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXPTIME

L is the class of all problems solvable in logarithmic space,

P —,,— in polynomial time,

NP —,,— in nondeterministic polynomial time,

PSPACE —,,— in polynomial space,

EXPTIME —,,— in exponential time.

Pichler 3 May, 2011 Page 7

Database Theory 5. Complexity of Query Evaluation 5.2. Complexity of First-order Queries

Complexity of First-order Queries

Theorem (A)

The query complexity and the combined complexity of domain calculus
queries is PSPACE-complete (even if we disallow negation and equality
atoms). The data complexity is in L (actually, even in a much lower
class).

To prove the theorem, we proceed in steps as follows:

1 We provide an algorithm for query evaluation:
• it shows PSPACE membership for combined complexity (and thus for

query complexity as well), and

• L membership w.r.t. data complexity,

2 We show PSPACE-hardness of query complexity (clearly, the lower
bound applies for combined complexity as well).

Pichler 3 May, 2011 Page 8

Database Theory 5. Complexity of Query Evaluation 5.2. Complexity of First-order Queries

An algorithm for query evaluation

We consider an arbitrary FO formula ψ and a database D.

W.l.o.g., the formula is of the form

ψ = ∃x1∀y1 . . . ∃xn∀ynϕ(x1, y1, . . . , xn, yn).

Let the active domain dom of D be dom = {a1, . . . , am}.
For the evaluation of the formula, we design two procedures
evaluate∃ and evaluate∀, which call each other recursively.

The algorithm uses global variables n and X = {x1, y1, . . . , xn, yn}.

Pichler 3 May, 2011 Page 9

Database Theory 5. Complexity of Query Evaluation 5.2. Complexity of First-order Queries

GLOBAL x1, y1, . . . , xn, yn

Boolean evaluate∃(Integer i)
for xi from a1 to am do

if evaluate∀(i) = true then return true
endfor
return false.

Boolean evaluate∀(Integer i)
for yi from a1 to am do

if i = n then
if ϕ evaluates to false under the

current values of x1, y1, . . . , xn, yn then return false
endif

else
if evaluate∃(i + 1) = false then return false

endif
endfor
return true.

By construction: ψ is true in D iff evaluate∃(1) = true.

Pichler 3 May, 2011 Page 10

Database Theory 5. Complexity of Query Evaluation 5.2. Complexity of First-order Queries

Let’s analyze the space usage of our algorithm. We have to store:

1 The input database D and the formula ψ:

- do not contribute to the space requirements.

2 The global variables X = {x1, y1, . . . , xn, yn}.
- Each variable requires O(log m) bits of space. Thus X needs O(n log m)

bits. Note that X requires logarithmic space if ψ is fixed.

3 A call stack S = 〈S1, . . . ,Sk〉, where k ≤ 2n and each Sj stores a
state in which a subroutine is called. Clearly, for both subroutines a
state Sj only needs to store the value of i and the return position in
the subroutine.

- Storing a value i ∈ {1, . . . , 2n} requires logarithmic space in the size of
ψ (i.e. O(log n)), but only constant space if ψ is fixed. (The return
position requires constant space in both cases.)

- Hence S needs O(n log n) bits of storage, which is constant if ψ is fixed.

4 Space for evaluating ϕ in an assignment

- requires a transversal of the parse tree of ψ: space O(log ||ψ||) suffices.

Overall we need O(n log m + n log n + log ||ψ||) bits of storage.

Pichler 3 May, 2011 Page 11

Database Theory 5. Complexity of Query Evaluation 5.2. Complexity of First-order Queries

O(n log m + n log n + log ||ψ||) means that we only need polynomial
space in the combined size of D and ψ.

Proposition

BQE ∈ PSPACE w.r.t. combined complexity. This also implies
BQE ∈ PSPACE w.r.t. query complexity.

If ψ is fixed, then the space required is O(log m), i.e. logarithmic in data.

Proposition

BQE ∈ L w.r.t. data complexity.

NOTE: Note that L ⊆ P. In fact, one can show completeness of BQE
w.r.t. data complexity for a much lower circuit class AC0 ⊆ L.

Pichler 3 May, 2011 Page 12

Database Theory 5. Complexity of Query Evaluation 5.2. Complexity of First-order Queries

The PSPACE lower bound

To prove the PSPACE-hardness result, we first recall quantified Boolean
formulae:

QSAT (QBF)

INSTANCE: An expression ∃x1∀x2∃x3 · · ·Qxnφ, where Q is either ∀ or ∃
and φ is a Boolean formula in CNF with variables from
{x1, x2, x3, . . . , xn}.
QUESTION: Is there a truth value for the variable x1 such that for both
truth values of x2 there is a truth value for x3 and so on up to xn, such
that φ is satisfied by the overall truth assignment?

Theorem

QSAT is PSPACE-complete.

Remark. A detailed proof is given in the Komplexitätstheorie lecture.

Pichler 3 May, 2011 Page 13

Database Theory 5. Complexity of Query Evaluation 5.2. Complexity of First-order Queries

Proof of the PSPACE-Hardness of BQE

The PSPACE-hardness result for Theorem (A) can be shown by a
reduction from the QSAT-problem. Let ψ be an arbitrary QBF with

ψ = ∃x1∀x2 . . .Qxnα(x1, . . . , xn)

where Q is either ∀ or ∃ and α is a quantifier-free Boolean formula with
variables in {x1, . . . , xn}.
We first define the (fixed) input database D over the predicate symbols
L = {istrue, isequal, not, or, and} with the obvious meaning:

D = {istrue(1), isequal(0, 0), isequal(1, 1), not(1, 0), not(0, 1),
or(1, 1, 1), or(1, 0, 1), or(0, 1, 1), or(0, 0, 0),
and(1, 1, 1), and(1, 0, 0), and(0, 1, 0), and(0, 0, 0)}

Pichler 3 May, 2011 Page 14

Database Theory 5. Complexity of Query Evaluation 5.2. Complexity of First-order Queries

Proof of the PSPACE-Hardness (continued)

For each sub-formula β of α, we define a quantifier-free, first-order
formula Tβ(z1, . . . , zn, x) with the following intended meaning:
if the variables xi have the truth value zi , then the formula β(x1, . . . , xn)
evaluates to the truth value x .

The formulae Tβ(z1, . . . , zn, x) can be defined inductively w.r.t. the
structure of α as follows:

Case β =

xi (with 1 ≤ i ≤ n): Tβ(z̄ , x) ≡ isequal(zi , x)
¬β′: Tβ(z̄ , x) ≡ ∃t1Tβ′(z̄ , t1) ∧ not(t1, x)
β1 ∧ β2: Tβ(z̄ , x) ≡ ∃t1, t2 Tβ1(z̄ , t1) ∧ Tβ2(z̄ , t2) ∧ and(t1, t2, x)
β1 ∨ β2: Tβ(z̄ , x) ≡ ∃t1, t2 Tβ1(z̄ , t1) ∧ Tβ2(z̄ , t2) ∧ or(t1, t2, x)

Pichler 3 May, 2011 Page 15

Database Theory 5. Complexity of Query Evaluation 5.2. Complexity of First-order Queries

Proof of the PSPACE-Hardness (continued)

The first-order query φ is then defined as follows:

φ ≡ ∃x∃z1∀z2 . . .Qzn Tα(z̄ , x) ∧ istrue(x)

where Q is either ∀ or ∃ (as in the formula ψ).

We claim that this problem reduction is correct, i.e.:
The QBF ψ = ∃x1∀x2 . . .Qxnα(x1, . . . , xn) is true ⇔
the first-order query φ ≡ ∃x∃z1∀z2 . . .Qzn Tα(z̄ , x) ∧ istrue(x)
evaluates to true over the database D.

The proof is straightforward. It suffices to show by induction on the
structure of α that the formulae Tβ(z1, . . . , zn, x) indeed have the
intended meaning.

Pichler 3 May, 2011 Page 16

Database Theory 5. Complexity of Query Evaluation 5.3. Complexity of Conjunctive Queries

Complexity of Conjunctive Queries

Recall that conjunctive queries (CQs) are a special case of first-order
queries whose only connective is ∧ and whose only quantifier is ∃ (i.e., ∨,
¬ and ∀ are excluded).

E.g.: Q = {〈x〉 | ∃y , z .R(x , y) ∧ R(y , z) ∧ P(z , x)}

Theorem (B)

The query complexity and the combined complexity of BQE for
conjunctive queries is NP-complete.

Proof

NP-Membership (of the combined complexity). For each variable u of
the query, we guess a domain element to which u is instantiated. Then
we check whether all the resulting ground atoms in the query body exist
in D. This check is obviously feasible in polynomial time.

Pichler 3 May, 2011 Page 17

Database Theory 5. Complexity of Query Evaluation 5.3. Complexity of Conjunctive Queries

Proof (continued)

Hardness (of the query complexity). We reduce the NP-complete 3-SAT
problem to our problem. For this purpose, we consider the following
input database (over a ternary relation symbol c and a binary relation
symbol v) as fixed:

D = { c(1, 1, 1), c(1, 1, 0), c(1, 0, 1), c(1, 0, 0),
c(0, 1, 1), c(0, 1, 0), c(0, 0, 1), v(1, 0), v(0, 1) }

Now let an arbitrary instance of the 3-SAT problem be given through the
3-CNF formula Φ =

∧n
i=1 li1 ∨ li2 ∨ li3 over the propositional variables

x1, . . . , xk . Then we define a conjunctive query Q as follows:

(∃x1, . . . , xk)c(l∗11, l
∗
12, l

∗
13) ∧ . . . ∧ c(l∗n1, l

∗
n2, l

∗
n3) ∧ v(x1, x̄1) ∧ · · · ∧ v(xk , x̄k)

where l∗ = x if l = x , and l∗ = x̄ if l = ¬x . Moreover, x̄1, . . . , x̄k are
fresh first-order variables. By slight abuse of notation, we thus use xi to
denote either a propositional atom (in Φ) or a first-order variable (in Q).

It is straightforward to verify that the 3-CNF formula Φ is satisfiable ⇔
Q evaluates to true in D.

Pichler 3 May, 2011 Page 18

Database Theory 5. Complexity of Query Evaluation 5.4. Complexity of Datalog

Complexity of Datalog

Theorem (C)

Query evaluation in Datalog has the following complexity:

P-complete w.r.t. data complexity, and

EXPTIME-complete w.r.t combined and query complexity.

To prove the theorem, we first concentrate on ground Datalog programs:

A program is ground if it has no variables.

Such programs are also known as propositional logic programs.

Note that a ground atom R(tim, bob) can be seen as a propositional
variable Rtim,bob.

Pichler 3 May, 2011 Page 19

Database Theory 5. Complexity of Query Evaluation 5.4. Complexity of Datalog

Ground Datalog

Theorem

Query evaluation for ground Datalog programs is P-complete w.r.t.
combined complexity.

Proof: (Membership)

Recall that the semantics of a given program P can be defined as
the least fixed-point of the immediate consequence operator TP

This least fixpoint Tω
P (DB) can be computed in polynomial time

even if the “naive” evaluation algorithm is applied.

The number of iterations (i.e. applications of TP) is bounded by the
number of rules plus 1.

Each iteration step is clearly feasible in polynomial time.

Pichler 3 May, 2011 Page 20

Database Theory 5. Complexity of Query Evaluation 5.4. Complexity of Datalog

P-hardness of Ground Datalog

Proof: (Hardness)

By encoding of a TM. Assume M = (K ,Σ, δ, qstart), an input string
I and a number of steps N, where N is a polynomial of |I |.

We construct in logspace a program P(M,N), a database DB(I ,N)
and an atom A such that

A ∈ Tω
P(M,N)(DB(I ,N)) iff M accepts I in N steps.

Recall that the transition function δ of M with a single tape can be
represented by a table whose rows are tuples t = 〈q1, σ1, q2, σ2, d〉.
Such a tuple t expresses the following if-then-rule:

if at some time instant τ the machine is in state q1, the cursor
points to cell number π, and this cell contains symbol σ1

then at instant τ + 1 the machine is in state q2, cell number π
contains symbol σ2, and the cursor points to cell number π + d .

Pichler 3 May, 2011 Page 21

Database Theory 5. Complexity of Query Evaluation 5.4. Complexity of Datalog

P-hardness of Ground Datalog: the Atoms

The propositional atoms in P(M,N).
(there are many, but only polynomially many...)

symbolα[τ, π] for 0 ≤ τ ≤ N, 0 ≤ π ≤ N and α ∈ Σ. Intuitive meaning:
at instant τ of the computation, cell number π contains
symbol α.

cursor[τ, π] for 0 ≤ τ ≤ N and 0 ≤ π ≤ N. Intuitive meaning: at
instant τ , the cursor points to cell number π.

stateq[τ] for 0 ≤ τ ≤ N and q ∈ K . Intuitive meaning: at instant τ ,
the machine M is in state q.

accept Intuitive meaning: M has reached state qyes.

Pichler 3 May, 2011 Page 22

Database Theory 5. Complexity of Query Evaluation 5.4. Complexity of Datalog

P-hardness of Ground Datalog: the Database

The construction of the database DB(I ,N):

symbol.[0, 0],

symbolσ[0, π], for 0 < π ≤ |I |, where Iπ = σ

symbolÃ[0, π], for |I | ≤ π ≤ N

cursor[0, 0],

stateqstart [0].

Pichler 3 May, 2011 Page 23

Database Theory 5. Complexity of Query Evaluation 5.4. Complexity of Datalog

P-hardness of Ground Datalog: the Rules

transition rules: for each entry 〈q1, σ1, q2, σ2, d〉, 0 ≤ τ < N,
0 ≤ π < N, and 0 ≤ π + d .

symbolσ2
[τ + 1, π] ← stateq1 [τ], symbolσ1

[τ, π], cursor[τ, π]
cursor[τ + 1, π + d] ← stateq1 [τ], symbolσ1

[τ, π], cursor[τ, π]
stateq2 [τ + 1] ← stateq1 [τ], symbolσ1

[τ, π], cursor[τ, π]

inertia rules: where 0 ≤ τ < N, 0 ≤ π < π′ ≤ N

symbolσ1
[τ + 1, π] ← symbolσ1

[τ, π], cursor[τ, π′]
symbolσ1

[τ + 1, π′] ← symbolσ1
[τ, π′], cursor[τ, π]

accept rules: for 0 ≤ τ ≤ N

accept ← stateqyes [τ]

Pichler 3 May, 2011 Page 24

Database Theory 5. Complexity of Query Evaluation 5.4. Complexity of Datalog

P-hardness of Ground Datalog

The encoding precisely simulates the behaviour of M on input I up
to N steps. (This can be formally shown by induction on the time
steps.)

accept ∈ Tω
P(M,N)(DB(I ,N)) iff M accepts I in N steps.

The construction is feasible in logarithmic space.

Note that each rule in P(M,N) has at most 4 atoms. In fact,
P-hardness applies already for programs with at most 3 atoms in the
rules:

• Simply replace each A← B,C ,D in P(M,N) by A← B,E and
E ← C ,D, where E is a fresh atom.

Pichler 3 May, 2011 Page 25

Database Theory 5. Complexity of Query Evaluation 5.4. Complexity of Datalog

Data Complexity of Datalog

Proposition

Query evaluation in Datalog is P-complete w.r.t. data complextity.

Proof: (Membership)

Effective reduction to reasoning over ground Datalog programs is
possible. Given a program P, a database DB, and atom A:

Generate P ′ = ground(P,DB), i.e. the set all ground instances of
rules in P:

ground(P,DB) =
⋃
r∈P

Ground(r ; P,DB)

NB: more details on Ground(r ; P,DB) in Lecture 2.

Decide whether A ∈ Tω
P′(DB).

Pichler 3 May, 2011 Page 26

Database Theory 5. Complexity of Query Evaluation 5.4. Complexity of Datalog

Grounding Complexity

Given a program P and a database DB, the number of rules in
ground(P,DB) is bounded by

|P| ∗#consts(P,DB)vmax

vmax is the maximum number of different variables in any rule r ∈ P

#consts(P,DB) is the number of constants occurring in P and DB.

ground(P,DB) is polynomial in the size of DB.

Hence, the complexity of propositional logic programming is an
upper bound for the data complexity.

Note that ground(P,DB) can be exponential in the size of P.

Pichler 3 May, 2011 Page 27

Database Theory 5. Complexity of Query Evaluation 5.4. Complexity of Datalog

Data Complexity of Datalog: P-hardness

Proof: Hardness

The P-hardness can be shown by writing a simple Datalog
meta-interpreter for ground programs with at most 3 atoms per rule:

Represent rules A0 ← A1, . . . ,Ai of such a program P, where
0 ≤ i ≤ 2, using database facts 〈A0, . . . ,Ai 〉 in an (i + 1)-ary
relation Ri on the propositional atoms.

Then, the program P which is stored this way in a database
DBMI (P) can be evaluated by a fixed Datalog program PMI which
contains for each relation Ri , 0 ≤ i ≤ k , a rule

T (X0)← T (X1), . . . ,T (Xi),Ri (X0, . . . ,Xi).

T (x) intuitively means that atom x is true. Then,

A ∈ Tω
P (DB) iff T (A) ∈ Tω

PMI
(DBMI (P))

P-hardness of the data complexity of Datalog is then immediately
obtained.

Pichler 3 May, 2011 Page 28

Database Theory 5. Complexity of Query Evaluation 5.4. Complexity of Datalog

Combined and Query Complexity of Datalog

Proposition

Datalog is EXPTIME-complete w.r.t. query and combined complexity.

Proof

(Membership) Grounding P using DB leads to a propositional program
ground(P,DB) whose size is exponential in the size of P and DB.
Hence, the query and the combined complexity is in EXPTIME.

(Hardness) We show hardness for query complexity only. Goal: adapt our
previous encoding of TM M and input I to obtain a program
Pdat(M, I ,N) and a fixed database DBdat to decide acceptance of M on I
within N = 2m steps, where m = nk(n = |I |) is a polynomial.

Note: We are not allowed to generate an exponentially large program by
using exponentially many propositional atoms (the reduction would not
be polynomial!).

More details next...

Pichler 3 May, 2011 Page 29

Database Theory 5. Complexity of Query Evaluation 5.4. Complexity of Datalog

Query Complexity of Datalog: EXPTIME-hardness

Ideas for lifting P(M,N) and DB(I ,N) to Pdat(M, I ,N) and DBdat :

use the predicates symbolσ(X,Y), cursor(X,Y) and states(X)
instead of the propositional letters symbolσ[X ,Y], cursor[X ,Y] and
stateq[X] respectively.

W.l.o.g., let N be of the form N = 2m − 1 for some integer m ≥ 1.
The time points τ and tape positions π from 0 to N are encoded in
binary, i.e. by m-ary tuples tτ = 〈c1, . . . , cm〉, ci ∈ {0, 1},
i = 1, . . . ,m, such that 0 = 〈0, . . . , 0〉, 1 = 〈0, . . . , 1〉,
N = 〈1, . . . , 1〉.
The functions τ + 1 and π + d are realized by means of the
successor Succm from a linear order ≤m on {0, 1}m.

Pichler 3 May, 2011 Page 30

Database Theory 5. Complexity of Query Evaluation 5.4. Complexity of Datalog

Query Complexity of Datalog: EXPTIME-hardness

The predicates Succm, Firstm, and Lastm are provided.

The database facts symbolσ[0, π] are readily translated into the
Datalog rules

symbolσ(X, t)← Firstm(X),

where t represents the position π,

Similarly for the facts cursor[0, 0] and states0 [0].

Database facts symbolÃ[0, π], where |I | ≤ π ≤ N, are translated to
the rule

symbolÃ(X,Y)← Firstm(X), ≤m(t,Y)

where t represents the number |I |.

Pichler 3 May, 2011 Page 31

Database Theory 5. Complexity of Query Evaluation 5.4. Complexity of Datalog

Query Complexity of Datalog: EXPTIME-hardness

Transition and inertia rules: for realizing τ + 1 and π + d , use in the
body atoms Succm(X,X′). For example, the clause

symbolσ2
[τ + 1, π]← stateq1 [τ], symbolσ1

[τ, π], cursor[τ, π]

is translated into

symbolσ2
(X′,Y)← stateq1(X), symbolσ1

(X,Y), cursor(X,Y),Succm(X,X′).

The translation of the accept rules is straightforward.

Pichler 3 May, 2011 Page 32

Database Theory 5. Complexity of Query Evaluation 5.4. Complexity of Datalog

Defining Succm(X,X′) and ≤m

The ground facts Succ1(0, 1), First1(0), and Last1(1) are provided in
DBdat .

For an inductive definition, suppose Succi (X,Y), Firsti (X), and
Lasti (X) tell the successor, the first, and the last element from a
linear order ≤i on {0, 1}i , where X and Y have arity i . Then, use
rules

Succi+1(Z ,X,Z ,Y) ← Succi (X,Y)

Succi+1(Z ,X,Z ′,Y) ← Succ1(Z ,Z ′), Lasti (X),Firsti (Y)

Firsti+1(Z ,X) ← First1(Z),Firsti (X)

Lasti+1(Z ,X) ← Last1(Z), Lasti (X)

Pichler 3 May, 2011 Page 33

Database Theory 5. Complexity of Query Evaluation 5.4. Complexity of Datalog

Defining Succm(X,X′) and ≤m

The ground facts Succ1(0, 1), First1(0), and Last1(1) are provided in
DBdat .

For an inductive definition, suppose Succi (X,Y), Firsti (X), and
Lasti (X) tell the successor, the first, and the last element from a
linear order ≤i on {0, 1}i , where X and Y have arity i . Then, use
rules

Succi+1(0,X, 0,Y) ← Succi (X,Y)

Succi+1(1,X, 1,Y) ← Succi (X,Y)

Succi+1(0,X, 1,Y) ← Lasti (X),Firsti (Y)

Firsti+1(0,X) ← Firsti (X)

Lasti+1(1,X) ← Lasti (X)

Pichler 3 May, 2011 Page 34

Database Theory 5. Complexity of Query Evaluation 5.4. Complexity of Datalog

Defining Succm(X,X′) and ≤m

The ground facts Succ1(0, 1), First1(0), and Last1(1) are provided in
DBdat .

For an inductive definition, suppose Succi (X,Y), Firsti (X), and
Lasti (X) tell the successor, the first, and the last element from a
linear order ≤i on {0, 1}i , where X and Y have arity i . Then, use
rules

Succi+1(0,X, 0,Y) ← Succi (X,Y)

Succi+1(1,X, 1,Y) ← Succi (X,Y)

Succi+1(0,X, 1,Y) ← Lasti (X),Firsti (Y)

Firsti+1(0,X) ← Firsti (X)

Lasti+1(1,X) ← Lasti (X)

The order ≤m is easily defined from Succm by two clauses

≤m(X,X) ←
≤m(X,Y) ← Succm(X,Z), ≤m (Z,Y)

Pichler 3 May, 2011 Page 35

Database Theory 5. Complexity of Query Evaluation 5.4. Complexity of Datalog

Combined and Query Complexity of Datalog: Conclusion

Let L be an arbitrary language in EXPTIME, i.e., there exists a
Turing machine M deciding L in exponential time. Then there is a

constant k such that M accepts/rejects every input I within 2|I |
k

steps.

The program Pdat(M, I , |I |k) is constructible from M and I in
polynomial time (in fact, careful analysis shows feasibility in
logarithmic space).

accept is in the answer of Pdat(M, I , |I |k) evaluated over DBdat ⇔
M accepts input I within N steps.

Thus the EXPTIME-hardness follows.

Pichler 3 May, 2011 Page 36

Database Theory 5. Complexity of Query Evaluation 5.4. Complexity of Datalog

Complexity of Datalog with Stratified Negation

Theorem

Reasoning in stratified ground Datalog programs with negation is
P-complete. Stratified Datalog with negation is

P-complete w.r.t. data complexity, and

EXPTIME-complete w.r.t combined and query complexity.

A ground stratified program P can be partitioned into disjoint sets
S1, . . . ,Sn s.t. the semantics of P is computed by successively
computing in polynomial time the fixed-points of the immediate
consequence operators TS1 , . . . , TSn .

As with plain Datalog, for programs with variables, the grounding
step causes an exponential blow-up.

Pichler 3 May, 2011 Page 37

Database Theory 5. Complexity of Query Evaluation 5.4. Complexity of Datalog

Learning Objectives

The BQE, QOT and QNE problems

The notions of combined, data and query complexity

The complexity of first-order queries

The complexity of conjunctive queries

The complexity of plain and stratified Datalog

Pichler 3 May, 2011 Page 38

	Complexity of Query Evaluation
	Measures of Complexity
	Complexity of First-order Queries
	Complexity of Conjunctive Queries
	Complexity of Datalog

