Database Theory

Database Theory
VU 181.140, SS 2011

5. Complexity of Query Evaluation

Reinhard Pichler

Institut fur Informationssysteme
Arbeitsbereich DBAI
Technische Universitat Wien

3 May, 2011
v R

Pichler 3 May, 2011

Outline

5. Complexity of Query Evaluation

5.1 Measures of Complexity

5.2 Complexity of First-order Queries
5.3 Complexity of Conjunctive Queries
5.4 Complexity of Datalog

Pichler 3 May, 2011

Beyond Traktenbrot's Theorem

m By Traktenbrot's Theorem, it is undecidable to check whether a
given first-order query @ produces some output over some database.

m What happens if D is actually given as input?

Pichler 3 May, 2011

Database Theory 5. Complexity of Query Evaluation

The following are natural (decision) problems in this context:

QUERY-OUTPUT-TUPLE (QOT)

INSTANCE: A database D, a query @, a tuple ¢ of values.
QUESTION: Is it true that ¢ € Q(D)?

BOOLEAN-QUERY-EVALUATION (BQE)

INSTANCE: A database D, a Boolean query Q.
QUESTION: Does @ evaluate to true in D?

NOTE: we often view Boolean domain calculus queries {{)|¢} simply as
closed formulae ¢.

QUERY-NON-EMPTINESS (QNE)

INSTANCE: A database D, a query Q.

QUESTION: Does query @ yield a non-empty result over the DB D, i.e.
Q(D) 07

Pichler 3 May, 2011

QOT vs.BQE vs. QNE

We concentrate next on the complexity of BQE.

Not a limitation: in our setting QOT and QNE are essentially the same
problems as BQE:

From QOT to BQE

Assume a database D, a domain calculus query @ = {X | ¢(X)}, and a

value tuple ¢ = (c1,...,¢,). Then ¢ € Q(D) iff Q" evaluates to true in
D, where

X=(x1,...,Xn), and

Ql = 3)?(¢()?) ANXg=¢C...N\NX,= Cn)

From QNE to BQE

Assume a database D, a domain calculus query @ = {X | ¢(x)}. Then
Q(D) # (0 iff 3X.¢(X) evaluates to true in D.

From BQE to QNE and QOT ~~ trivial.

Complexity Measures for BQE

Combined complexity

The complexity of BQE without any assumptions about the input query
(@ and database D is called the combined complexity of BQE.

Further measures are obtained by restricting the input:

Data and query complexity

Data complexity of BQE refers to the following decision problem:
Let Q@ be some fixed Boolean query.

INSTANCE: An input database D.
QUESTION: Does @ evaluate to true in D?

Query complexity of BQE refers to the following decision problem:
Let D be some fixed input database.

INSTANCE: A Boolean query Q.

QUESTION: Does @ evaluate to true in D?

Pichler 3 May, 2011

Database Theory 5. Complexity of Query Evaluation

Relevant Complexity Classes

We recall the inclusions between some fundamental complexity classes:

L C P C NP C PSPACE C EXPTIME

m L is the class of all problems solvable in logarithmic space,
m P —,— in polynomial time,

m NP —,— in nondeterministic polynomial time,

m PSPACE —,— in polynomial space,

m EXPTIME —,— in exponential time.

Pichler 3 May, 2011

Database Theory 5. Complexity of Query Evaluation

Complexity of First-order Queries

Theorem (A)

The query complexity and the combined complexity of domain calculus
queries is PSPACE-complete (even if we disallow negation and equality
atoms). The data complexity is in L (actually, even in a much lower

class).

To prove the theorem, we proceed in steps as follows:

We provide an algorithm for query evaluation:

e it shows PSPACE membership for combined complexity (and thus for
query complexity as well), and

e L membership w.r.t. data complexity,

We show PSPACE-hardness of query complexity (clearly, the lower
bound applies for combined complexity as well).

Pichler 3 May, 2011

Database Theory 5. Complexity of Query Evaluation

An algorithm for query evaluation

m We consider an arbitrary FO formula 1) and a database D.

m W.lo.g., the formula is of the form

w o E'X]_\V/y]_ ... Ean\V/ynSO(Xl,)/h I ,Xnyyn)'

m Let the active domain dom of D be dom = {ay,...,an}.

m For the evaluation of the formula, we design two procedures
evaluates and evaluatey, which call each other recursively.

m The algorithm uses global variables n and X = {x1,y1, ..., Xn, ¥n}.

Pichler 3 May, 2011

GLOBAL x1,y1,...,Xn, Vn

Boolean evaluates(Integer /)
for x; from a; to a,, do
if evaluatey(i) = true then return true
endfor
return false.

Boolean evaluate,(Integer /)
for y; from a; to a,, do
if i = n then
if © evaluates to false under the
current values of xq, y1, ..., xs, yn then return false
endif
else
if evaluates(i 4+ 1) = false then return false
endif
endfor
return true.

By construction: v is true in D iff evaluates(1) = true.

Pichler 3 May, 2011

Database Theory 5. Complexity of Query Evaluation

Let's analyze the space usage of our algorithm. We have to store:

The input database D and the formula 2):
- do not contribute to the space requirements.
The global variables X = {x1, y1,..., Xn, ¥n}-
- Each variable requires O(log m) bits of space. Thus X needs O(nlog m)
bits. Note that X requires logarithmic space if 9 is fixed.

A call stack S = (51, ..., S«), where k < 2n and each §; stores a
state in which a subroutine is called. Clearly, for both subroutines a
state S; only needs to store the value of i and the return position in
the subroutine.

- Storing a value i € {1,...,2n} requires logarithmic space in the size of
Y (i.e. O(logn)), but only constant space if ¥ is fixed. (The return
position requires constant space in both cases.)

- Hence S needs O(nlog n) bits of storage, which is constant if v is fixed.

Space for evaluating ¢ in an assignment

- requires a transversal of the parse tree of ¢: space O(log||v||) suffices.

Overall we need O(nlog m+ nlogn + log ||1||) bits of storage.

Pichler 3 May, 2011

Database Theory 5. Complexity of Query Evaluation

O(nlog m+ nlog n + log||w||) means that we only need polynomial
space in the combined size of D and .

Proposition

BQE < PSPACE w.r.t. combined complexity. This also implies
BQE < PSPACE w.r.t. query complexity.

If 1 is fixed, then the space required is O(log m), i.e. logarithmic in data.

Proposition

BQE € L w.r.t. data complexity.

NOTE: Note that L C P. In fact, one can show completeness of BQE
w.r.t. data complexity for a much lower circuit class ACy C L.

Pichler 3 May, 2011

The PSPACE lower bound

To prove the PSPACE-hardness result, we first recall quantified Boolean
formulae:

QSAT (QBF)

INSTANCE: An expression dx;Vxpdxs - - - @x,¢, where @ is either V or 4
and ¢ is a Boolean formula in CNF with variables from

{x1,X0, X3, ..., Xn}
QUESTION: Is there a truth value for the variable x; such that for both

truth values of x» there is a truth value for x3 and so on up to x,, such
that ¢ is satisfied by the overall truth assignment?

Theorem
QSAT is PSPACE-complete.

Remark. A detailed proof is given in the Komplexitatstheorie lecture.

Pichler 3 May, 2011

Database Theory 5. Complexity of Query Evaluation

Proof of the PSPACE-Hardness of BQE

The PSPACE-hardness result for Theorem (A) can be shown by a
reduction from the QSAT-problem. Let ¢ be an arbitrary QBF with

Y = IxiVx0 . .. QxpaXxt, ..., Xn)
where Q is either V or 3 and « is a quantifier-free Boolean formula with
variables in {xq,...,x,}.

We first define the (fixed) input database D over the predicate symbols
L = {istrue, isequal, not, or,and} with the obvious meaning:

D = {istrue(1), isequal(0, 0), isequal(1,1), not(1,0), not(0,1),
or(1,1,1), or(1,0,1), or(0,1, 1), or(0,0,0),
and(1,1,1), and(1,0,0), and(0, 1,0), and(0,0,0)}

Pichler 3 May, 2011

Database Theory 5. Complexity of Query Evaluation

Proof of the PSPACE-Hardness (continued)

For each sub-formula 3 of «, we define a quantifier-free, first-order

formula Tg(z, ..., z,,x) with the following intended meaning:
if the variables x; have the truth value z;, then the formula G(xi, ..., x,)
evaluates to the truth value x.
The formulae Tg(zi, ..., z,, x) can be defined inductively w.r.t. the
structure of « as follows:
Case 3 =
xi (with 1 <i<n): Tg(z,x)=isequal(z, x)
-3 T5(z,x) =3t T (Z, t1) A not(ty, x)
B1 N Ba: TB(E,X) =dt;, b Tgl(z, tl) A Tﬁ2(2, tg) A and(tl, t2,X)
061V Bs: TB(Z,X) = dt1, b T@l(z, tl) A T52(2, tg) A Ol’(tl, tQ,X)

Pichler 3 May, 2011

Database Theory 5. Complexity of Query Evaluation

Proof of the PSPACE-Hardness (continued)

The first-order query ¢ is then defined as follows:
¢ = IxIAnVz ... Qz, To(Z, x) A istrue(x)

where @ is either V or 3 (as in the formula).

We claim that this problem reduction is correct, i.e.:

The QBF v = Ax1Vxz . .. Qxpa(x, ..., Xn) is true <

the first-order query ¢ = Ix3Iz V2 ... Qz, T.(z, x) A istrue(x)
evaluates to true over the database D.

The proof is straightforward. It suffices to show by induction on the

structure of « that the formulae Tg(z, ..., z,, x) indeed have the
intended meaning.

Pichler 3 May, 2011

Database Theory 5. Complexity of Query Evaluation

Complexity of Conjunctive Queries

Recall that conjunctive queries (CQs) are a special case of first-order
queries whose only connective is A and whose only quantifier is 3 (i.e., V,
— and V are excluded).

Eg. Q={()|3dy,z.R(x,y) ANR(y,z) A P(z,x)}

Theorem (B)

The query complexity and the combined complexity of BQE for
conjunctive queries is NP-complete.

Proof

NP-Membership (of the combined complexity). For each variable u of
the query, we guess a domain element to which v is instantiated. Then
we check whether all the resulting ground atoms in the query body exist
in D. This check is obviously feasible in polynomial time.

Pichler 3 May, 2011

Database Theory 5. Complexity of Query Evaluation

Proof (continued)

Hardness (of the query complexity). We reduce the NP-complete 3-SAT
problem to our problem. For this purpose, we consider the following
input database (over a ternary relation symbol ¢ and a binary relation
symbol v) as fixed:

1,1,1), ¢(1,1,0), ¢(1,0,1), ¢(1,0,0),
c(0,1,1), ¢(0,1,0), ¢(0,0,1), v(1,0), v(0,1)}

Now let an arbitrary instance of the 3-SAT problem be given through the
3-CNF formula ® = /\7:1 lin V ;o V I;3 over the propositional variables

X1,...,Xk. I'hen we define a conjunctive query @ as follows:
where I* = x if | = x, and I" = X if [= —=x. Moreover, X1, ..., X) are

fresh first-order variables. By slight abuse of notation, we thus use x; to
denote either a propositional atom (in ®) or a first-order variable (in Q).

It is straightforward to verify that the 3-CNF formula ® is satisfiable <
R evaluates to true in D.

Pichler 3 May, 2011

Complexity of Datalog

Theorem (C)

Query evaluation in Datalog has the following complexity:
m P-complete w.r.t. data complexity, and

m EXPTIME-complete w.r.t combined and query complexity.

To prove the theorem, we first concentrate on ground Datalog programs:
m A program is ground if it has no variables.
m Such programs are also known as propositional logic programs.

m Note that a ground atom R(tim, bob) can be seen as a propositional
variable Rtim pob-

Pichler 3 May, 2011

Ground Datalog

Theorem

Query evaluation for ground Datalog programs is P-complete w.r.t.
combined complexity.

Proof: (Membership)

m Recall that the semantics of a given program P can be defined as
the least fixed-point of the immediate consequence operator Tp

m This least fixpoint Tg(DB) can be computed in polynomial time
even if the “naive” evaluation algorithm is applied.

m The number of iterations (i.e. applications of Tp) is bounded by the
number of rules plus 1.

m Each iteration step is clearly feasible in polynomial time.

Pichler 3 May, 2011

P-hardness of Ground Datalog

Proof: (Hardness)

m By encoding of a TM. Assume M = (K, ¥, 0, Gstart), an input string
| and a number of steps N, where N is a polynomial of |/|.

m We construct in logspace a program P(M, N), a database DB(/, N)
and an atom A such that

A€ T;,"(M’N)(DB(I, N)) iff M accepts | in N steps.

m Recall that the transition function 0 of M with a single tape can be
represented by a table whose rows are tuples t = (g1, 01, g2, 02, d).
Such a tuple t expresses the following if-then-rule:

if at some time instant 7 the machine is in state gi, the cursor

points to cell number 7, and this cell contains symbol o

then at instant 7 + 1 the machine is in state g, cell number =

contains symbol 02, and the cursor points to cell number 7 + d.

Pichler 3 May, 2011

P-hardness of Ground Datalog: the Atoms

The propositional atoms in P(M, N).
(there are many, but only polynomially many...)

symbol [T, 7] for 0 <7< N,0 <7< Nand a€X. Intuitive meaning:
at instant 7 of the computation, cell number 7 contains
symbol «.

cursor|T, | for 0 <7 < N and 0 <7 < N. Intuitive meaning: at
instant 7, the cursor points to cell number .

state,[7] for 0 <7 < N and g € K. Intuitive meaning: at instant T,
the machine M is in state q.

accept Intuitive meaning: M has reached state gyes.

Pichler 3 May, 2011

Database Theory 5. Complexity of Query Evaluation

P-hardness of

Ground Datalog: the Database

The construction of the database DB(/, N):

symbol_ [0, 0],

symbol [0, 7],

symbol [0,]

cursor{0, O

Sta teqstart [O)

for 0 < <|l|, where I, = 0o

, for [I| <7 <N

Pichler 3 May, 2011

P-hardness of Ground Datalog: the Rules

m transition rules: for each entry (q1,01, q2,02,d), 0 <7 <N,
O0<m7< N, and 0 <7 +d.

symbol, [T +1,7] <« stateg[7], symbol, |7, 7], cursor|T,]|
cursof{T +1,m 4+ d| <« stateg[7], symbol, [T, 7], cursor|T,]
stateg,[T + 1] <« stateq, [T], symbol, [T,], cursor|T,]|

m inertia rules: where 0 <7< N, 0<nm<n <N

symbol, [T+ 1,7 <« symbol, |1, 7], cursor|T, ']
symbol, [T +1,7'] <« symbol, [T, '], cursor|T, 7]

m accept rules: for0 <7 < N

accept <« statey [7]

Pichler 3 May, 2011

P-hardness of Ground Datalog

m The encoding precisely simulates the behaviour of M on input / up
to N steps. (This can be formally shown by induction on the time
steps.)

m accept € T,E-,"(M’N)(DB(I, N)) iff M accepts | in N steps.

m T he construction is feasible in logarithmic space.

m Note that each rule in P(M, N) has at most 4 atoms. In fact,

P-hardness applies already for programs with at most 3 atoms in the
rules:

e Simply replace each A« B, C,D in P(M,N) by A+ B, E and
E — C,D, where E is a fresh atom.

Pichler 3 May, 2011

Data Complexity of Datalog

Proposition

Query evaluation in Datalog is P-complete w.r.t. data complextity.

Proof: (Membership)

Effective reduction to reasoning over ground Datalog programs is
possible. Given a program P, a database DB, and atom A:

m Generate P’ = ground(P, DB), i.e. the set all ground instances of
rules in P:

ground(P, DB) = |] Ground(r; P, DB)
reP

NB: more details on Ground(r; P, DB) in Lecture 2.
m Decide whether A € Tg,(DB).

Pichler 3 May, 2011

Grounding Complexity

Given a program P and a database DB, the number of rules in
ground(P, DB) is bounded by

|P| * #consts(P, DB)"™®

m vmax is the maximum number of different variables in any rule r € P

m F#consts(P, DB) is the number of constants occurring in P and DB.

m ground(P, DB) is polynomial in the size of DB.
m Hence, the complexity of propositional logic programming is an
upper bound for the data complexity.

m Note that ground(P, DB) can be exponential in the size of P.

Pichler 3 May, 2011

Data Complexity of Datalog: P-hardness

Proof: Hardness

The P-hardness can be shown by writing a simple Datalog
meta-interpreter for ground programs with at most 3 atoms per rule:

m Represent rules Ag <+ A1, ..., A; of such a program P, where
0 </ <2, using database facts (Ag,...,A;) in an (i + 1)-ary
relation R; on the propositional atoms.

m Then, the program P which is stored this way in a database
DBy (P) can be evaluated by a fixed Datalog program P, which
contains for each relation R;, 0 < < k, a rule

T(Xo) — T(X0), ..., T(X:), Ri(Xo, - .., Xi).

m 7 (x) intuitively means that atom x is true. Then,
A€ Tg(DB) iff T(A) € Tg. (DBui(P))
m P-hardness of the data complexity of Datalog is then immediately
obtained.

Pichler 3 May, 2011

Combined and Query Complexity of Datalog

Proposition

Datalog is EXPTIME-complete w.r.t. query and combined complexity.

Proof

(Membership) Grounding P using DB leads to a propositional program
ground(P, DB) whose size is exponential in the size of P and DB.
Hence, the query and the combined complexity is in EXPTIME.

(Hardness) We show hardness for query complexity only. Goal: adapt our
previous encoding of TM M and input / to obtain a program
Pga:(M, 1, N) and a fixed database DB,,; to decide acceptance of M on |/
within N = 2™ steps, where m = n*(n = |I|) is a polynomial.

Note: We are not allowed to generate an exponentially large program by
using exponentially many propositional atoms (the reduction would not
be polynomiall).

More details next...

Pichler 3 May, 2011

Query Complexity of Datalog: EXPTIME-hardness

Ideas for lifting P(M, N) and DB(I, N) to Pg.:(M, I, N) and DBg,;:

m use the predicates symbol_(X,Y), cursor(X,Y) and states(X)
instead of the propositional letters symbol_[X, Y], cursor[X, Y] and
state,[X] respectively.

m W.lo.g., let N be of the form N = 2" — 1 for some integer m > 1.
The time points 7 and tape positions 7 from 0 to N are encoded in
binary, i.e. by m-ary tuples t. = {c1,...,¢cm), ¢; € {0,1},
i=1,...,m,suchthat 0 =(0,...,0), 1 =(0,...,1),
N=(1,...,1).

m The functions 7 + 1 and m + d are realized by means of the
successor Succ™ from a linear order <™ on {0,1}".

Pichler 3 May, 2011

Query Complexity of Datalog: EXPTIME-hardness

The predicates Succ™, First™, and Last™ are provided.

m The database facts symbol_[0,] are readily translated into the
Datalog rules

symbol_(X,t) <« First™(X),

where t represents the position T,
m Similarly for the facts cursor]0, 0] and state,,[0].

m Database facts symbol [0, 7], where |/| < 7 < N, are translated to
the rule

symbol (X,Y) « First”(X), <™(t,Y)

where t represents the number |/].

Pichler 3 May, 2011

Query Complexity of Datalog: EXPTIME-hardness

m [ransition and inertia rules: for realizing 7+ 1 and 7 + d, use in the
body atoms Succ™ (X, X’). For example, the clause

symbol, [T + 1, 7] « stateg, 7], symbol, [T, 7], cursor|T, 7]

is translated into
symbol, (X', Y) « stateq, (X), symbol, (X,Y), cursor(X,Y), Succ™ (X, X").

m The translation of the accept rules is straightforward.

Pichler 3 May, 2011

Defining Succ™(X, X") and <

m The ground facts Succ'(0, 1), First'(0), and Last'(1) are provided in
DBdat-

m For an inductive definition, suppose Succ (X, Y), First'(X), and
Last' (X) tell the successor, the first, and the last element from a
linear order <’ on {0,1}', where X and Y have arity i. Then, use
rules

i

Succ' (X,Y)

Succ'(Z,Z"), Last' (X), First'(Y)
First'(Z), First'(X)

Last'(Z), Last' (X)

Succt(Z,X,Z,Y)
Succ™(Z,X,Z',Y)
F/rst’H(Z X)
Last't(Z,X)

T 11

Pichler 3 May, 2011

Defining Succ™(X, X") and <

m The ground facts Succ'(0, 1), First'(0), and Last' (1) are provided in

DBdat-

m For an inductive definition, suppose Succ (X, Y), First' (X), and
Last'(X) tell the successor, the first, and the last element from a
linear order <’ on {0,1}', where X and Y have arity i. Then, use

rules _
Succd (0, X,0,Y)
5ucci+1(1, X,1.Y)
Succd™(0,X,1,Y)
Firstt1(0, X)
Last't1(1,X)

[

Succ (X, Y)

Succ (X, Y)
Last'(X), First' (Y)
First'(X)

Last' (X)

Pichler 3 May, 2011

Defining Succ™(X, X") and <

m The ground facts Succ*(0,1), First'(0), and Last'(1) are provided in

DBdat-

m For an inductive definition, suppose Succ (X, Y), First'(X), and
Last'(X) tell the successof, the first, and the last element from a
linear order <’ on {0,1}', where X and Y have arity i. Then, use

rules _
Succ (0, X,0,Y)
Succi+1(1, X,1.Y)
Succd™(0,X,1,Y)
Firstt1(0, X)
Last'(1,X)

[

Succ (X, Y)
Succ (X, Y)
Last'(X), First' (Y)
First'(X)

Last' (X)

m The order <™ is easily defined from Succ™ by two clauses

<"(X,X)

<MX,Y) «— Succ"(X,Z), <™ (Z,Y)

Pichler 3 May, 2011

Combined and Query Complexity of Datalog: Conclusion

m Let L be an arbitrary language in EXPTIME, i.e., there exists a
Turing machine M deciding L in exponential time. Then there is a

. . _ k
constant k such that M accepts/rejects every input / within 2]
steps.

m The program Pg.:(M,1,|1¥) is constructible from M and / in
polynomial time (in fact, careful analysis shows feasibility in
logarithmic space).

m accept is in the answer of Py,:(M,I,|l|%) evaluated over DBy,; <
M accepts input [within N steps.

m [hus the EXPTIME-hardness follows.

Pichler 3 May, 2011

Complexity of Datalog with Stratified Negation

Theorem

Reasoning in stratified ground Datalog programs with negation is
P-complete. Stratified Datalog with negation is

m P-complete w.r.t. data complexity, and
m EXPTIME-complete w.r.t combined and query complexity.

m A ground stratified program P can be partitioned into disjoint sets
S51,...,5, s.t. the semantics of P is computed by successively
computing in polynomial time the fixed-points of the immediate
consequence operators Ts,, ..., Ts, .

n

m As with plain Datalog, for programs with variables, the grounding
step causes an exponential blow-up.

Pichler 3 May, 2011

Database Theory 5. Complexity of Query Evaluation

Learning Objectives

The BQE, QOT and QNE problems

The notions of combined, data and query complexity

O
N

m The complexity of first-order queries
m The complexity of conjunctive queries
O

The complexity of plain and stratified Datalog

Pichler 3 May, 2011

	Complexity of Query Evaluation
	Measures of Complexity
	Complexity of First-order Queries
	Complexity of Conjunctive Queries
	Complexity of Datalog

