
Mining XML Functional Dependencies through
Formal Concept Analysis

Viorica Varga

May 1, 2010

Outline

Definitions for XML Functional Dependencies

Introduction to FCA

FCA tool to detect XML FDs

Finding XML keys

Detecting XML data redundancy

Conclusions and Future Work

Outline

Definitions for XML Functional Dependencies

Introduction to FCA

FCA tool to detect XML FDs

Finding XML keys

Detecting XML data redundancy

Conclusions and Future Work

Outline

Definitions for XML Functional Dependencies

Introduction to FCA

FCA tool to detect XML FDs

Finding XML keys

Detecting XML data redundancy

Conclusions and Future Work

Outline

Definitions for XML Functional Dependencies

Introduction to FCA

FCA tool to detect XML FDs

Finding XML keys

Detecting XML data redundancy

Conclusions and Future Work

Outline

Definitions for XML Functional Dependencies

Introduction to FCA

FCA tool to detect XML FDs

Finding XML keys

Detecting XML data redundancy

Conclusions and Future Work

Outline

Definitions for XML Functional Dependencies

Introduction to FCA

FCA tool to detect XML FDs

Finding XML keys

Detecting XML data redundancy

Conclusions and Future Work

XML Design

I XML data design: choose an appropriate XML schema, which
usually come in the form of DTD (Document Type Definition)
or XML Scheme.

I Functional dependencies (FDs) are a key factor in XML
design.

I The objective of normalization is to eliminate redundancies
from an XML document, eliminate or reduce potential update
anomalies.

I Arenas, M., Libkin, L.: A normal form for XML documents.
TODS 29(1), 195-232 (2004)

I Yu, C., Jagadish, H. V.: XML schema refinement through
redundancy detection and normalization. VLDB J. 17(2):
203-223 (2008)

Schema definition

Definition
(Schema) A schema is defined as a set S = (E ,T , r), where:

I E is a finite set of element labels;

I T is a finite set of element types, and each e ∈ E is associated
with a τ ∈ T , written as (e : τ), τ has the next form:
τ ::= str | int | float | SetOf τ | Rcd [e1 : τ1, . . . , en : τn];

I r ∈ E is the label of the root element, whose associated
element type can not be SetOf τ .

I Types str, int and float are the system defined simple types
and Rcd indicate complex scheme elements.

I Keyword SetOf is used to indicate set schema elements

I Attributes and elements are treated in the same way, with a
reserved ”@” symbol before attributes.

Figure: CustOrder XML tree

Example scheme

CustOrder:Rcd
Customers:SetOf Rcd
CustomerID: str
CompanyName: str
Address: str
City: str
PostalCode:str
Country: str
Phone: str
Orders: SetOf Rcd
OrderID: int
CustomerID: str
OrderDate: str
OrderDetails: SetOf Rcd
OrderID: int
ProductID: int
UnitPrice: float
Quantity: float
ProductName: str
CategoryID: int

I A schema element ek can be identified through a path
expression, path(ek) = /e1/e2/.../ek , where e1 = r , and ei is
associated with type τi ::= Rcd [..., ei+1 : τi+1, ...] for all
i ∈ [1, k − 1].

I A path is repeatable, if ek is a set element. We adopt XPath
steps ”.” (self) and ”..” (parent)

Definition (Data tree) An XML database is defined to be a rooted
labeled tree T = 〈N,P,V, nr 〉, where:

I N is a set of labeled data nodes, each n ∈ N has a label e and
a node key that uniquely identifies it in T ;

I nr ∈ N is the root node;

I P is a set of parent-child edges, there is exactly one
p = (n′, n) in P for each n ∈ N (except nr), where
n′ ∈ N, n 6= n′, n′ is called the parent node, n is called the
child node;

I V is a set of value assignments, there is exactly one v = (n, s)
in V for each leaf node n ∈ N, where s is a value of simple
type.

Descendant, repeatable element definition

I We assign a node key, referred to as @key, to each data node
in the data tree in a pre-order traversal.

I A data element nk is a descendant of another data element n1

if there exists a series of data elements ni , such that
(ni , ni+1) ∈ P for all i ∈ [1, k − 1].

I Data element nk can be addressed using a path expression,
path(nk) = /e1/ . . . /ek , where ei is the label of ni for each
i ∈ [1, k], n1 = nr , and (ni , ni+1) ∈ P for all i ∈ [1, k − 1].

I A data element nk is called repeatable if ek corresponds to a
set element in the schema.

I Element nk is called a direct descendant of element na, if nk is
a descendant of na, path(nk) = . . . /ea/e1/ . . . /ek−1/ek , and
ei is not a set element for any i ∈ [1, k − 1].

Definition(Element-value equality) Two data elements n1 of
T1 = 〈N1,P1,V1, nr1〉 and n2 of T2 = 〈N2,P2,V2, nr2〉 are
element-value equal (written as n1 =ev n2) if and only if:

I n1 and n2 both exist and have the same label;
I There exists a set M, such that for every pair (n′1, n

′
2) ∈ M,

n′1 =ev n′2, where n′1, n
′
2 are children elements of n1, n2,

respectively. Every child element of n1 or n2 appears in
exactly one pair in M.

I (n1, s) ∈ V1 if and only if (n2, s) ∈ V2,where s is a simple
value.

Definition(Path-value equality) Two data element paths p1 on
T1 = 〈N1,P1,V1, nr1〉 and p2 on T2 = 〈N2,P2,V2, nr2〉 are
path-value equal (written as T1.p1 =pv T2.p2) if and only if there
is a set M ′ of matching pairs where

I For each pair m′ = (n1, n2) in M ′, n1 ∈ N1, n2 ∈ N2,
path(n1) = p1, path(n2) = p2, and n1 =ev n2;

I All data elements with path p1 in T1 and path p2 in T2

participate in M ′, and each such data element participates in
only one such pair.

Generalized tree tuple

Definition A generalized tree tuple of data tree T = 〈N,P,V, nr 〉,
with regard to a particular data element np (called pivot node), is
a tree tT

np
= 〈Nt ,Pt ,Vt , nr 〉, where:

I Nt ⊆ N is the set of nodes, np ∈ Nt ;

I Pt ⊆ P is the set of parent-child edges;

I Vt ⊆ V is the set of value assignments;

I nr is the same root node in both tT
np

and T ;

I n ∈ Nt if and only if:
I n is a descendant or ancestor of np in T , or
I n is a non-repeatable direct descendant of an ancestor of np in

T ;

I (n1, n2) ∈ Pt if and only if n1 ∈ Nt , n2 ∈ Nt , (n1, n2) ∈ P;

I (n, s) ∈ Vt if and only if n ∈ Nt , (n, s) ∈ V.

Figure: Example tree tuple

I A generalized tree tuple is a data tree projected from the
original data tree.

I It has an extra parameter called a pivot node. In contrast with
tree tuple defined in Arenas and Libkin’s article, which
separate sibling nodes with the same path at all hierarchy
levels, the generalized tree tuple separate sibling nodes with
the same path above the pivot node

I Based on the pivot node, generalized tree tuples can be
categorized into tuple classes:

Definition(Tuple class) A tuple class CT
p of the data tree T is the

set of all generalized tree tuples tT
n , where path(n) = p. Path p is

called the pivot path.

Definition(XML FD) An XML FD is a triple 〈Cp, LHS ,RHS〉,
written as LHS → RHS w.r.t. Cp, where Cp denotes a tuple class,
LHS is a set of paths (Pli , i = [1, n]) relative to p, and RHS is a
single path (Pr) relative to p.
An XML FD holds on a data tree T (or T satisfies an XML FD) if
and only if for any two generalized tree tuples t1, t2 ∈ Cp

- ∃i ∈ [1, n] , t1.Pli =⊥ or t2.Pli =⊥, or
- If ∀i ∈ [1, n], t1.Pli =pv t2.Pli , then
t1.Pr 6=⊥, t2.Pr 6=⊥, t1.Pr =pv t2.Pr .
A null value, ⊥, results from a path that matches no node in the
tuple, and =pv is the path-value equality defined previous.

Example

(XML FD) In our running example whenever two products agree
on ProductID values, they have the same ProductName . This
can be formulated as follows:
./ProductID → ./ProductName w.r.t COrderDetails

Another example is:
./ProductID → ./CategoryID w.r.t COrderDetails

XML key

Definition (XML key) An XML Key of a data tree T is a pair
〈Cp, LHS〉, where T satisfies the XML FD 〈Cp, LHS , ./@key〉.

Example

We have the XML FD: 〈COrders , ./OrderID, ./@key〉, which implies
that 〈COrders , ./OrderID〉 is an XML key.

Tuple classes with repeatable pivot paths are called essential tuple
classes.
Definition(Interesting XML FD) An XML FD 〈Cp, LHS ,RHS〉 is
interesting if it satisfies the following conditions:

I RHS /∈ LHS;

I Cp is an essential tuple class;

I RHS matches to descendent(s) of the pivot node.

An interesting XML FD is a non-trivial XML FD with an essential
tuple class

I Definition(XML data redundancy) A data tree T contains a
redundancy if and only if T satisfies an interesting XML FD
〈Cp, LHS ,RHS〉, but does not satisfy the XML Key
〈Cp, LHS〉.

Introduction to FCA

I From a philosophical point of view a concept is a unit of
thoughts consisting of two parts:

I the extension, which are objects;
I the intension consisting of all attributes valid for the objects of

the context;

I Formal Concept Analysis (FCA) introduced by Wille gives a
mathematical formalization of the concept notion.

I A detailed mathematic foundation of FCA can be found in:
I Ganter, B., Wille, R.: Formal Concept Analysis. Mathematical

Foundations. Springer, Berlin-Heidelberg-New York. (1999)

I Formal Concept Analysis is applied in many different realms
like psychology, sociology, computer science, biology, medicine
and linguistics.

I FCA is a useful tool to explore the conceptual knowledge
contained in a database by analyzing the formal conceptual
structure of the data.

I FCA studies how objects can be hierarchically grouped
together according to their common attributes. In FCA the
data is represented by a cross table, called formal context.

I A formal context is a triple (G ,M, I).

I G is a finite set of objects

I M is finite set of attributes

I The relation I ⊆ G ×M is a binary relation between objects
and attributes.

I Each couple (g ,m) ∈ I denotes the fact that the object
g ∈ G is related to the item m ∈ M.

I For a set A ⊆ G of objects we define

A′ := {m ∈ M | gIm for all g ∈ A}

the set of all attributes common to the objects in A.

I Dually, for a set B ⊆ M of attributes we define

B ′ := {g ∈ G | gIm for all m ∈ B}

the set of all objects which have all attributes in B.

I A formal concept of the context K := (G ,M, I) is a pair
(A,B) where A ⊆ G , B ⊆ M, A′ = B, and B ′ = A.

I We call A the extent and B the intent of the concept (A,B).

I The set of all concepts of the context (G ,M, I) is denoted by
B(G ,M, I).

Example formal context

I The following cross table describes for some hotels the
attributes they have.

I In this case the objects are: Oasis, Royal, Amelia, California,
Grand, Samira;

I and the attributes are: Internet, Sauna, Jacuzzi, ATM,
Babysitting.

I ({California,Grand})′ := {Sauna, Jacuzzi}.

Internet Sauna Jacuzzi ATM Babysitting
Oasis X X X X
Royal X X X
Amelia X X
California X X
Grand X X
Samira X X

Table: Formal context of the Hotel facilities example

FCA tool to detect XML FDs

I we elaborate an FCA based tool that identify functional
dependencies in XML documents.

I to achieve this, as a first step, we have to construct the
Formal Context of functional dependencies for XML data.

I we have to identify the objects and attributes of this context
in case of XML data.

I tuple-based XML FD notion proposed in the above section
suggests a natural technique for XFD discovery

I XML data can be converted into a fully unnested relation, a
single relational table, and apply existing FD discovery
algorithms directly.

I given an XML document, which contains at the beginning the
schema of the data, we create generalized tree tuples from it.

Construct Formal Context of XML FDs

I each tree tuple in a tuple class has the same structure, so it
has the same number of elements.

I we use the flat representation which converts the generalized
tree tuples into a flat table

I each row in the table corresponds to a tree tuple in the XML
tree

I in the flat table we insert non-leaf and leaf level elements (or
attributes) from the tree

I for non-leaf level nodes the associated keys are used as values

I we include non-leaf level nodes with associated key values, to
detect XML keys

Flat table for tuple class COrders

Example

Let us construct the flat table for tuple class COrders . There are
two non-leaf nodes:

I Orders, appears as Orders@key

I OrderDetails, appears as OrderDetails@key.

Formal Context for class COrders

I Context’s Attributes: PathEnd/ElementName

I for non-leaf level nodes: the name of the attribute is
constructed as: <ElementName>+”@key” and its value will
be the associated key value

I for non-leaf level nodes: the element names of the leaves.

I Context’s Objects: the objects are considered to be the tree
tuple pairs, actually the tuple pairs of the flat table. The key
values associated to non-leaf elements and leaf element’s
values are used in these tuple pairs.

I Context’s Properties: the mapping between objects and
attributes is defined by a binary relation, this incidence
relation of the context shows which attributes of this tuple
pairs have the same value.

Beginning of the Formal Context of functional
dependencies for tuple class COrders

I the analyzed XML document may have a large number of tree
tuples.

I we filter the tuple pairs and we leave out those pairs in which
there are no common attributes, by an operation called
”clarifying the context”, which does not alter the conceptual
hierarchy.

Concept Lattice of functional dependencies’ Formal
Context for tuple class COrders

I we run the Concept Explorer (ConExp) engine to generate the
concepts and create the concept lattice.

Processing the Output of FCA

I a concept lattice consists of the set of concepts of a formal
context and the subconcept-superconcept relation between
the concepts;

I every circle represents a formal concept;

I each concept is a tuple of a set of objects and a set of
common attributes, but only the attributes are listed;

I an edge connects two concepts if one implies the other
directly;

I each link connecting two concepts represents the transitive
subconcept-superconcept relation between them;

I the top concept has all formal objects in its extension;

I the bottom concept has all formal attributes in its intension.

The relationship between FDs in databases and
implications in FCA

a FD X → Y holds in a relation r over R iff the implication
X → Y holds in the context (G ,R, I) where
G = {(t1, t2)|t1, t2 ∈ r , t1 6= t2} and ∀A ∈ R,
(t1, t2)IA⇔ t1[A] = t2[A].

I objects of the context are couples of tuples and each object
intent is the agree set of this couple

I the implications in this lattice corresponds to functional
dependencies in XML.

Example

〈COrders , ./OrderID, ./CustomerID〉
〈COrders , ./Orders@key , ./CustomerID〉
〈COrders , ./OrderDetail/OrderID, ./CustomerID〉

Reading the Concept Lattice

I in the lattice we list only the attributes, these are relevant for
our analysis;

I let there be a concept, labeled by A,B and a second concept
labeled by C , where A, B and C are FCA attributes;

I let concept labeled by A,B be the subconcept of concept
labeled by C ;

I tuple pairs of concept labeled by A,B have the same values
for attributes A, B, but for attribute C too.

I tuple pairs of concept labeled by C do not have the same
values for attribute A, nor for B, but have the same value for
attribute C .

I tuple pairs of every subconcept of concept labeled by A,B
have the same values for attributes A, B.

I the labeling of the lattice is simplified by putting each
attribute only once, at the highest level.

Reading the Concept Lattice

I we analyze attributes A and B:
I if we have only A→ B, then A would be a subconcept of B;
I if only B → A holds then B should be a subconcept of A;
I we have A→ B and B → A, that’s why they come side by side

in the lattice.
I So attributes from a concept imply each other.

Example

We have the next XML FDs:

〈COrders , ./OrderID, ./OrderDetails/OrderID〉
〈COrders , ./OrderID, ./Orders@key〉
〈COrders , ./Orders@key , ./OrderID〉
〈COrders , ./Orders@key , ./OrderDetails/OrderID〉
〈COrders , ./OrderDetails/OrderID, ./Orders@key〉
〈COrders , ./OrderDetails/OrderID, ./OrderID〉

The functional dependencies found by software
FCAMineXFD

Figure: Functional dependencies in tuple class COrders

The concept lattice for the whole XML document

I we can see the hierarchy of the analyzed data:

I the node labeled by Customers/Country is on a higher level,
than node labeled by Customers/City ;

I the Customer’s node with every attribute is a subconcept of
node labeled Customers/City ;

I in our XML data, every customer has different name, address,
phone number, so these attributes appear in one concept node
and imply each other;

I the Orders node in XML is child of Customers, in the lattice,
the node labeled with the key of Orders node, is subconcept
of Customers node, so the hierarchy is visible;

I these are 1:n relationships, from Country to City, from City to
Customers, from Customers to Orders.

I information about products is on the other side of the lattice;
Products are in n:m relationship with Customers, linked by
OrderDetail node in this case.

FDs for the whole XML document

Finding XML keys

FDs with RHS as ./@key values can be used to detect the keys in
XML.
In tuple class COrders we have XML FD:

I 〈COrders , ./OrderID, ./@key〉, which implies that
I 〈COrders , ./OrderID〉 is an XML key.

I 〈COrders , ./OrderDetails/OrderID, ./@key〉, so
I 〈COrders , ./OrderDetails/OrderID〉 is an XML key too.

In tuple class CCustomers software found XML FD:
I 〈CCustomers , ./CustomerID, ./@key〉, which implies that

I 〈CCustomers , ./CustomerID〉 is an XML key.

I other detected XML keys are:
I 〈CCustomers , ./Orders/CustomerID〉;
I 〈CCustomers , ./CompanyName〉;
I 〈CCustomers , ./Address〉;
I 〈CCustomers , ./Phone〉.

Detecting XML data redundancy

I having the set of functional dependencies for XML data in a
tuple class, we can detect interesting functional dependencies.

I in essential tuple class COrders an interesting FD:
〈COrders , ./OrderDetails/ProductID, ./OrderDetails/ProductName〉

I but 〈COrders , ./OrderDetails/ProductID〉 is not an XML key
I So it is a data redundancy.

I the same reason applies for XML FD
〈COrders , ./OrderDetails/ProductName, ./OrderDetails/ProductID〉.

I the other XML FD’s have as LHS a key for tuple class COrders .

Conclusions

I This paper introduces an approach for mining functional
dependencies in XML documents based on FCA.

I Based on the flat representation of XML, we constructed the
concept lattice.

I We analyzed the resulted concepts, which allowed us to
discover a number of interesting dependencies.

I Our framework offers an graphical visualization for
dependency exploration.

Future Work

I given the set of dependencies discovered by our tool:

I propose a normalization algorithm for converting any XML
schema into a correct one

	Definitions for XML Functional Dependencies
	Introduction to FCA
	FCA tool to detect XML FDs
	Finding XML keys
	Detecting XML data redundancy
	Conclusions and Future Work

