
XML Design: an FCA Point of View
Viorica Varga

Babes-Bolyai University
Cluj Napoca

400081 str. Kogalniceanu 1
Email: ivarga@cs.ubbcluj.ro

Katalin Tünde Jánosi Rancz
Hungarian University of Transylvania

Tirgu Mures
Email: tsuto@ms.sapientia.ro

Christian Săcărea
Babes-Bolyai University

Cluj Napoca
400081 str. Kogalniceanu 1

Email: csacarea@math.ubbcluj.ro

Katalin Csioban
Babes-Bolyai University

Cluj Napoca
Email: cskatyusa@yahoo.com

Abstract—XML (eXtensible Markup Language) documents are
the main format for publishing and interchanging data on the
Web. Integrity constraints are essential in data design. Functional
dependencies are the most important semantic constraints. Func-
tional dependencies satisfied by XML data have been introduced
recently. Formal Concept Analysis (FCA) is a mathematical
theory of concept hierarchies which is based on Lattice Theory.
Data is represented as a two-dimensional context of objects and
attributes. FCA discovers dependencies within the data based on
the relation among objects and attributes. In this paper we take
a first step towards using an FCA approach to study functional
dependencies in XML databases. The novelty of our approach
is the software, which analyzes an XML document, constructs
the Formal Context corresponding to the flat representation of
the XML data and finds the implications, which are functional
dependencies in XML data.

I. INTRODUCTION

Functional dependencies (FDs) are important in defining
redundancies in relational databases [1]. The objective of
normalization is to eliminate redundancies from a database
or an XML document, eliminate or reduce potential update
anomalies. This can be achieved by designing a redundancy-
free schema so that redundant data won’t take up unnecessary
storage, leading to possible update anomalies and inflating data
transfer cost.

Designing XML data means to choose an appropriate XML
schema, which usually come in the form of DTD (Document
Type Definition) or XML Scheme. A large number of classical
database subjects have been reexamined in the XML context
([2], [3], [4], [5]) because XML became more and more
popular. Discovering XML data redundancies from the data
itself becomes necessary and is an integral part of the schema
refinement (or re-design) process.

FDs are provided by database designers, but they are used
in many areas as data analysis, data integration and data
cleaning, and recently investigated with data mining tools [6].
Since XML databases include data which naturally provide
redundancies, it is expected that FDs should also play an
important role in XML databases. Accordingly, the subject of
XML database design received more and more attention and
many recent articles have addressed the issue of normalization

in XML, while XML functional dependencies (called XFDs),
and the related notion of XML normal form have recently
become an important research topic.

The first authors who formally defined XML FD and normal
form (XNF) were Arenas and Libkin introducing the so-called
tree tuple approach [2]. In [7] and [3], the authors used a
path-based approach and built their XML FD notion in a way
similar to the XML Key notion proposed in [8].

Yu and Jagadish [9] show, that these XML FD notions are
insufficient and propose a Generalized Tree Tuple (GTT) based
XML functional dependency and key notion, which include
particular redundancies involving set elements. Based on these
concepts, the GTT-XNF normal form is presented too.

In later work [10], Arenas and Libkin provided a formal
justification for the use of XNF in XML database design,
using the classical information theory approach. A measure
of the information content of data (independent of updates
and queries) is introduced, as an entropy of a suitably chosen
probability distribution. A formal definition of a well designed
XML schema was given and the fact that XNF is both a
necessary and sufficient condition for an XML schema to be
well designed was proved.

Vincent et al. in [4] investigated the problem of justifying
XML normal forms [3], in the terms of closest node XFDs
using redundancy elimination. In [4], a normal form for
XML documents is proposed and it has been proved to be
a necessary and sufficient condition for the elimination of
redundancy.

Formal Concept Analysis (FCA) is a mathematical theory
on which Conceptual Knowledge Processing and Representa-
tion is grounded. Facing the problem of Knowledge Discovery,
Processing and Representation in large databases, FCA enables
methods of identifying patterns in data, the so-called concepts,
structuring them in conceptual hierarchies by an order relation,
called subconcept-superconcept relation and displaying all
the relevant knowledge which can be extracted from the
data set under analysis [11]. Even more, the internal logic
of data can also be displayed, by means of the so-called
implications, which proved to be the proper framework to
describe functional dependencies with FCA tools.

The first authors who presented the problem of finding func-
tional dependencies using FCA were Ganter and Wille [11].
They presented a method to define functional dependencies
in multivalued contexts. Different authors have considered in
[12] and [13] the use of FCA in order to describe and mine
functional dependencies, presenting also efficient algorithms
for extracting functional dependencies. Hereth has already
described in [14] the relationship between FCA and functional
dependencies by the so-called formal context of functional
dependencies. Implications in this context describe exactly the
functional dependencies.

The paper [15] presents an FCA based approach to detect
functional dependencies in a relational database table. The
present paper is devoted to extend these concepts to XML data.
We apply FCA to uncover functional dependencies in XML.
The novelty of this paper relies in the specially developed
software, which reads an XML document, constructs the
formal context corresponding to the flat representation of
the XML data. The corresponding conceptual hierarchy is
computed using Conexp [16]. Then, the list of implications
is determined, these implications being exactly the functional
dependencies in the analyzed XML data.

II. FORMAL CONCEPT ANALYSIS NOTIONS

There is a long philosophical tradition in investigating
concepts, ordering them in a certain hierarchy of subconcept-
superconcept. Traditionally, a concept is determined by its
extent and its intent (or comprehension). The extent of a
concept consists of all objects, individuals or entities which
belong to the concept, while the intent consists of all properties
which are considered valid for that concept. The hierarchy of
concepts is given by the relation of subconcept wrt. certain
superconcept, i.e., the extent of a subconcept is part of the
extent of the superconcept, while the inverse relation holds
for the corresponding intents. Formal Concept Analysis was
born from this vigorous philosophical tradition.

As a mathematical theory, Formal Concept Analysis is based
on the formalization of the notion of concept and of the
medium from where this concept arises, the formal context.
Formally speaking a formal context (mathematically defined
in the next section) is a triple consisting of two sets and
a binary relation between them. Despite of its simplicity, a
formal context encodes in its incidence relation some structural
information which can be found in the so-called formal
concepts, which can be seen as a kind of closed pieces of
the information encoded in the considered formal context.

A. Context and Concept

As we have seen before, Formal Concept Analysis is based
on a set theoretical model proposing a new paradigm of
thinking. A formal context K := (G,M, I) consists of two
sets G and M and a binary relation I between G and M . The
elements of G are called objects (in German Gegenstände)
and the elements of M are called attributes (in German
Merkmale). The relation I is called the incidence relation of
the formal context, and we sometimes write gIm instead of

(g,m) ∈ I . If gIm holds, we say that the object g has the
attribute m.

A small context is usually represented by a cross table, i.e.,
a rectangular table of crosses and blanks, where the rows are
labeled by the objects and the columns are labeled by the
attributes. A cross in entry (g,m) indicates gIm.

For a set A ⊆ G of objects we define

A′ := {m ∈M | gIm for all g ∈ A}

the set of all attributes common to the objects in A. Dually,
for a set B ⊆M of attributes we define

B′ := {g ∈ G | gIm for all m ∈ B}

the set of all objects which have all attributes in B.
A formal concept of the context K := (G,M, I) is a pair

(A,B) where A ⊆ G, B ⊆ M , A′ = B, and B′ = A. We
call A the extent and B the intent of the concept (A,B).
The set of all concepts of the context (G,M, I) is denoted by
B(G,M, I).

B. Implications

Formally, an implication between attributes in M , given a
formal context (G,M, I), is a pair of subsets A and B of M ,
which is denoted by A→ B. This situation is formally stated
in [11]:

Definition 1 A subset T ⊆ M respects an implication A →
B if A (T or B ⊆ T . T respects a set L of implications if
T respects every single implication in L. A → B holds in a
set {T1, T2, . . . } of subsets if each of the subset Ti respects
the implication A→ B.

We say that the implication A → B holds in a context
(G,M, I) if it holds in the system of object intents. In this case
we also say that A → B is an implication in the context
(G,M, I) or, equivalently that withing the context (G,M, I),
A is the premise of B.

C. Power context families

Power context families proved to be the proper frame to
describe both semantics of concept graphs used in Contextual
Logic, and functional dependencies for relational databases.

Definition 2 A power context family is a sequence
−→
K :=

(K0,K1,K2, . . .) of formal contexts Kj := (Gj ,Mj , Ij) with
Gj ⊆ (G0)j for j ∈ N \ {0}. The formal concepts of Kj with
j ∈ N\{0} are called relation concepts, because their extents
represent k-ary relations on the object set G0.

III. DESIGNING XML DATA

We provide in the following a list of definitions. Consider
the following pairwise disjoint sets: El of element names, Att
of attribute names, Str of possible values of string-valued
attributes, V ert of node identifiers. Attribute names starts with
the symbol @. The symbols S and ⊥ are reserved.

Fig. 1. XML tree example

Definition 3 (DTD) A DTD (Document Type Definition) is
defined to be a tuple D := (E,A, P,R, r), where:
• E ⊆ El is a finite set of element types.
• A ⊆ Att is a finite set of attributes.
• P is a mapping from E to element type definitions: Given
τ ∈ E, P (τ) = S or P (τ) is a regular expression α
defined as:

α ::= ε | τ ′ | α | α | α, α | α∗

where ε is the empty sequence, τ ′ ∈ E and ”|” denote
union, ”,” means concatenation and ”*” represents the
Kleene closure.

• R is a mapping from E to the powerset of A. If @l ∈
R(τ), we say that @l is defined for τ .

• r ∈ E is called the element type of the root. We assume
that r does not occur in P (τ) for any τ ∈ E.

The symbol ε represents element type declaration EMPTY,
while S represents #PCDATA.

Definition 4 (DTD path) Given a DTD D = (E,A, P,R, r),
a string w = w1, . . . , wn is a path in D if w1 = r, wi is in the
alphabet of P (wi), for each i ∈ {2, n− 1}, and wn is in the
alphabet of P (wn−1) or wn = @l for some @l ∈ R(wn−1).

We define length(w) as n and last(w) as wn. The set of all
paths in D is denoted by paths(D). We define

EPaths(D) = {p ∈ paths(D) | last(p) ∈ E}

as the set of all paths in D that ends with an element type
(not by an attribute or S).

Definition 5 (XML Tree) An XML tree T is defined to be a
tree (V, lab, ele, att, root), where
• V ⊆ V ert is a finite set of vertices (nodes).
• lab : V → El assigns a label to each node of the tree.

• ele : V → Str ∪ V ∗ assigns to each node a string or an
ordered set of nodes as its children.

• attr : V × Att → Str is a partial function. For each
v ∈ V , the set {@l ∈ Att | att(v,@l) is defined} is
required to be finite.

• root ∈ V is called the root of T.

We assume that there is a parent-child relation on the nodes
of a tree: {(v, v′) ∈ V × V | v′ occurs in ele(V)}. For each
v ∈ V , the elements v′ ∈ V that occur in ele(V) are called
subelements or children of v, and the elements of the set
{@l ∈ Att | att(v,@l) is defined } are called attributes of
node v. For each v ∈ V , lab(V) is refered as the type of node
v. If v is a node of T and @l ∈ Att such that att(v,@l) is
defined, we will use the notation v.@l instead of att(v,@l).

Definition 6 (XML tree conforms DTD) Given a DTD D =
(E,A, P,R, r) and an XML tree T = (V, lab, ele, att, root),
we say that T conforms to D, we write T |= D, if
• lab : V → E is a mapping,
• for each v ∈ V , if P (lab(v)) = S, then ele(v) = [s] for

some s ∈ Str. Otherwise, ele(v) = [v1, . . . , vn], where
the string lab(v1) . . . lab(vn) is in the language defined
by P (lab(v)),

• att : V × A → Str is a partial function such that for
every v ∈ V and @l ∈ A, att(v,@l) is defined if and
only if @l ∈ R(lab(v)),

• lab(root) = r.

Example 7 Consider the following DTD, that describes a part
of a university database. The XML tree which conforms to this
DTD is represented in Figure 1. We will perform an analysis
on it, in order to find functional dependencies.

<!ELEMENT root (specialization*)>
<!ELEMENT specialization (SpecID,

SpecName, Language, Student*)>

<!ELEMENT Student (StudID, GroupID,
StudName, Email, Studmark*)>

<!ELEMENT Studmark (StudID, DiscID,
DName, Mark)>

<!ELEMENT SpecID (#PCDATA)>
<!ELEMENT SpecName (#PCDATA)>
<!ELEMENT Language (#PCDATA)>
<!ELEMENT StudID (#PCDATA)>
<!ELEMENT GroupID (#PCDATA)>
<!ELEMENT Email (#PCDATA)>
<!ELEMENT StudName (#PCDATA)>
<!ELEMENT DiscID (#PCDATA)>
<!ELEMENT DName (#PCDATA)>
<!ELEMENT Mark (#PCDATA)>

The notion of path is used to navigate and query XML trees
and also to define constraints for XML data.

Definition 8 (Tree Path) Let T = (V, lab, ele, att, root) be
a tree, a path in T is a string w = w1 . . . wn, where
w1 . . . wn−1 ∈ El and wn ∈ El ∪Att∪ { S}, such that there
are vertices v1, . . . , vn−1 in V with labels w1, . . . , wn−1, such
that:
• vi+1 is a child of vi, i ∈ {1, n− 2},
• if wn ∈ El then vn−1 has a child vn labeled with wn.

If wn = @l is an attribute in Att, then att(vn−1,@l) is
defined. If wn = S, then vn−1 has a child in Str.

The set of all paths in a tree T that start from the root is
denoted by paths(T). Given two nodes x and y in T such
that y is a descendant of x, we say that w1 . . . wn is a path
from x to y if in the above definition we have x = w1 and
y = wn.

Definition 9 (Path prefix) Given two paths p = w1 . . . wk and
p′ = w′1 . . . w

′
h, p is a prefix of p′ if and only if k ≤ h and

wi = w′i for all i ∈ {1, . . . , k}.

There are different definitions in order to express the satisfac-
tion of a functional dependency by an XML tree. Most of them
define a functional dependency as an expression of the form
p1, . . . , pn → q, where p1, . . . , pn,q are path expressions.

Arenas and Libkin [2] use a relational representation of
XML documents to define the satisfaction of functional depen-
dencies. This relational representation is based on the notion
of tree tuples. Given an XML tree T that conforms to a DTD
D, a tree tuple is intuitively a subtree of T with the same
root that contains at most one occurrence of every path. Then
satisfaction is defined in the usual way: if two tree tuples in
a tree agree on all the paths p1, . . . , pn, then they must agree
on q. A tree tuple may not be defined on some paths, as tree
tuples have at most one occurrence of every path and may
have zero occurrences. Let ⊥ represent such missing values.

Definition 10 (Tree tuple) Given a DTD D = (E,A, P,R, r)
and an XML tree T = (V, lab, ele, att, root), such that T
conforms to D, (T |= D) a tree tuple t in T is formally

Fig. 2. A tree tuple

defined as a function from paths(D) to V ert ∪ Str ∪ {⊥}
such that if for an element path q with last(q) = a we have
t(q) 6= ⊥, then
• t(q) ∈ V and lab(t(q)) = a,
• if path q′ is a prefix of path q, then t(q′) 6= ⊥ and t(q′)

lies on the path from the root to t(q) in T ,
• if @l is defined for t(q) and its value is s ∈ Str, then
t(q.@l) = s.

A tree tuple t in T is maximal if there is no other tree tuple
t′ in T that is obtained by only replacing some null values in
t with values from V ∪Str. The set of maximal tree tuples in
T is denoted by tuplesD(T). An example of a tree tuple from
the tree that conforms DTD from Example 7 is presented in
Figure 2.

Definition 11 (XFD) A functional dependency (FD) over a
DTD D is an expression {q1, . . . , qn} → q, where n ≥ 1
and q, q1, . . . , qn ∈ paths(D). An XML tree T that con-
forms to D satisfies an FD {q1, . . . , qn} → q, written as
T |= {q1, . . . , qn} → q, if for any two tree tuples t1, t2 ∈
tuplesD(T), whenever t1(qi) = t2(qi) 6= ⊥ for all i ∈ {1, n},
then t1(q) = t2(q).

IV. DETECTING XML FUNCTIONAL DEPENDENCIES
USING FCA

In order to mine functional dependencies we extend the
notions introduced in [14] to XML data.

Tuple-based XML FD notion proposed in the above section
suggests a natural technique for XFD discovery. We can
convert the XML data into a fully unnested relation, a single
relational table, and apply existing FD discovery algorithms
directly. Taking this into consideration we use the definition
introduced by Hereth in [14], which makes the translation
from the relational table into a power context family, in order
to define the formal context of functional dependencies. (See
more details in [15]).

Definition 12 Let
−→
K be a power context family, and let

m ∈Mk be an attribute of the k-th context. Then, the formal
context of functional dependencies of m with regard to

−→
K

is defined as FD
(
m,
−→
K

)
:=

(
mIk ×mIk , { 1, 2, ..., k}, J

)
with ((g, h) , i) ∈ J :⇔ πi (g) = πi (h) with g, h ∈ mIk and
i ∈ { 1, 2, ..., k}.

Our approach can be described in five steps. The output of
each step provides the input of the next step. The examples we
provide refer XML data, which conforms DTD from Example
7. The attributes are not listed with the whole path, due to
space considerations.

STEP1: We read an XML document, which contains at
the beginning the schema of the data. Then, by parsing the
document, we create the so called tree tuples, defined in [2].
Each tree tuple has the same structure and has the same
number of elements. We use the flat representation which
converts the XML data into a flat table. The flat table is built
up by tree tuples. Each row in the table corresponds to a
tree tuple in the XML tree. As shown in Figure 3, the flat
representation converts the XML data which conforms DTD
from Example 7 into a single relation of flat tuples.

STEP2: In the second step, we need to produce an appro-
priate context, in order to apply FCA. The formal context of
the functional dependencies for the XML document has to be
constructed.

The relevant information for FCA – objects, attributes and
the incidence relation – is generated as follows: the objects are
considered to be the tree tuple pairs, actually the tuple pairs
of the flat table, while the attributes are the leaves (actually
not the leaves themselves, but the nodes one level above the
leaves) of the tree tuple. The incidence relation of the context
shows which attributes of this tuple pairs have the same value.
The formal context of the functional dependencies for XML
tree which conforms DTD from Example 7 can be seen in
Figure 4.

The flat representation is not an advantageous one since a
lot of attributes are repeated for several times, but our goal
is not to find a way of storing XML documents efficiently,
but rather to find functional dependencies in their data. The
analyzed XML document may have a large number of tree
tuples. Creating the tree tuple pairs, our context table may have
a very large number of rows. Therefore, we filter the tuple pairs
and we leave out those pairs in which there are no common
attributes, by an operation called clarifying the context, which
does not alter the conceptual hierarchy. The application we
wrote creates the corresponding tuple pairs which are written
out in an output file. This file will be the input for the next
step.

STEP3: Once the Formal Context of Functional Dependen-
cies is created, we run the Concept Explorer (ConExp) [16]
engine. Conexp is a tool which builds the concepts and their
hierarchy.

STEP4: In this step we analyze the concept lattice we have
obtained. Figure 5 depicts the Concept Lattice of the concrete
context of FDs from Figure 4 for our example.

Fig. 5. Concept lattice of the FD context

An edge connects two concepts if one implies the other
directly. The lattice has an interesting property: for every two
concepts we choose, either one implies the other, or there
exists a third concept which implies both concepts and also a
fourth concept which is implicated by both concepts. Each link
connecting two nodes represents the subconcept-superconcept
relation between them.

We can observe that attributes listed in a vertex are re-
lated. Information about students, like StudName, Email,
StudID are in one vertex of the lattice. The ana-
lyst can see, that StudId appears two times, one is:
specialization/students/StudID and the second:
specialization/students/StudMark/StudID. It
is a redundancy, which can be seen from the lattice. XML data
has a hierarhical structure. A lattice represent superconcept-
subconcept relation, which can be applied in designing the
hierarhical structure of the tree. In our example data, the type
of the relations are: between languages and specializations
is 1:n, between specialization and groups is 1:n, between
groups and students is 1:n. These attributes can be seen one
as subconcept of the other. The relation between students
and marks is m:n, so there is no subconcept relation. This
subconcept relation can help the XML designer to construct
the XML tree hierarhical structure.

STEP5: In this step we examine the candidate concepts
resulting from the previous steps and uses them to explore
the dependencies. Finally, from the resulted context we gen-
erate the list of all functional dependencies. The implica-
tions in this lattice corresponds to functional dependencies
in XML, as can be seen in the following: the concept la-
beled students/StudID is a subconcept of the concept
labeled students/GroupID,in other words the concept
labeled students/StudID implies the concept labeled
students/GroupID.This means that in every tuple pair
where the StudID field has the same value, the GroupID is
the same. Hence, we have obtained the following implication,
which is functional dependency:

specialization/students/StudID →

Fig. 3. Flat table representation of example XML data

Fig. 4. Formal context of functional dependencies

Fig. 6. Functional depedencies in XML document

specialization/students/GroupID

In the same manner, by using our approach, we can gen-
erate from the conceptual hierarchy the complete list of all
functional dependencies, see Figure 6.

V. CONCLUSION AND FUTURE WORK

Formal Concept Analysis (FCA) has been widely applied in
many fields. In this paper we have proved that FCA offers the
possibility of mining functional dependencies in XML data. As
future work, we propose to suggest a correct XML scheme
of the XML document, in which we found the functional
dependecies by the software.

REFERENCES

[1] A. Silberschatz, H. F. Korth, and S. Sudarshan, Database System
Concepts. McGraw-Hill, Fifth Edition, 2005.

[2] M. Arenas and L. Libkin, “A normal form for xml documents,” ACM
TODS, vol. 29, no. 1, pp. 195–232, 2004.

[3] M. W. Vincent, J. Liu, and C. Liu, “Strong functional dependencies and
their application to normal forms in xml,” ACM TODS, vol. 29, no. 3,
pp. 445–462, 2004.

[4] M. W. Vincent, J. Liu, and M. Mohania, “On the equivalence between
fds in xml and fds in relations,” Acta Informatica, vol. 44, no. 3-4, pp.
207–247, 2007.

[5] M. Arenas, W. Fan, and L. Libkin, “On the complexity of verifying
consistency of xml specifications,” SIAM J. Comput, vol. 38, no. 3, pp.
841–880, 2008.

[6] N. Novelli and R. Cicchetti, “Functional and embedded dependency
inference: a data mining point of view,” Information Systems, vol. 26,
no. 7, pp. 477–506, 2001.

[7] M. Lee, T. Ling, and W. Low, “Designing functional dependencies for
xml,” in Proceedings of the EDBT Conference, 2002, pp. 124–141.

[8] P. Buneman, S. Davidson, W. Fan, , C. Hara, and W.-C. Tan, “Keys for
xml,” in Proceedings of the WWW, Hong Kong, 2001, pp. 201–210.

[9] C. Yu and H. V. Jagadish, “Xml schema refinement through redundancy
detection and normalization,” VLDB, vol. 17, no. 2, pp. 203–223, 2008.

[10] M. Arenas and L. Libkin, “An information-theoretic approach to normal
forms for relational and xml data,” JACM, vol. 52, no. 2, pp. 246–283,
2005.

[11] B. Ganter and R. Wille, Formal Concept Analysis. Mathematical Foun-
dations. 1999, Springer.

[12] S. Lopes, J.-M. Petit, and L. Lakhal, “Functional and approximate
dependency mining: database and fca points of view,” in Special issue of
Journal of Experimental and Theoretical Artificial Intelligence (JETAI)
on Concept Lattices for KDD. Taylor and Francis, 2002, vol. 14, no.
2-3, pp. 93–114.

[13] ——, “Efficient discovery of functional dependencies and armstrong
relations,” Advances in Database Technology EDBT, vol. 1777, pp.
350–364, 2000.

[14] J. Hereth, “Relational scaling and databases,” in Proceedings of the
10th International Conference on Conceptual Structures: Integration and
Interfaces, ser. LNCS, vol. 2393. Springer Verlag, 2002, pp. 62–76.

[15] K. J. Rancz, V. Varga, and J. Puskas, “A software tool for data
analysis based on formal concept analysis,” Studia Univ. Babeş-Bolyai,
Informatica, vol. 53, no. 2, pp. 67–78, 2008.

[16] A. S. Yevtushenko, “System of data analysis ”concept explorer”,” in
Proceedings of the 7th National Conference on Artificial Intelligence
KII, 2000, pp. 127–134.

