
Detecting XML Functional Dependencies
through Formal Concept Analysis

Katalin Tunde Janosi-Rancz1, Viorica Varga2, and Timea Nagy2

1 Hungarian University of Transylvania, Tirgu Mures, Romania
tsuto@ms.sapientia.ro

2 Babeş-Bolyai University, Cluj-Napoca, Romania,
ivarga@cs.ubbcluj.ro

Abstract. As XML becomes a popular data representation and ex-
change format over the web, XML schema design has become an im-
portant research area. Formal Concept Analysis (FCA) has been widely
applied in many fields recently. In this paper, we propose the application
of FCA to find functional dependencies (FDs) in XML databases. Our
work is based on the definitions of the Generalized Tree Tuple, XML
functional dependency and XML key notion presented by [26]. We pro-
pose a framework which parses the XML document and constructs the
Formal Context corresponding to the flat representation of the XML
data. The obtained Conceptual Lattice is a useful graphical representa-
tion of the analyzed XML document’s elements and their hierarchy. The
software also finds the keys and functional dependencies in XML data,
which are attribute implications in the constructed Formal Context.

Keywords and phrases: XML design, Formal Concept Analysis, XML Functional De-

pendency.

1 Introduction

In the last few years several papers discussed the relationship between Formal
Concept Analysis (FCA) and relational databases [9, 11]. Our approach intends
to extend these results by reformulating the XML functional dependency infer-
ence with an FCA viewpoint.

FCA is a mathematical theory of concept hierarchies which is based on Lat-
tice Theory. It is used as a technique for data analysis, knowledge representation;
it is a useful tool to represent knowledge contained in a database.

Designing XML data means to choose an appropriate XML schema, which
usually come in the form of DTD (Document Type Definition) or XML Scheme.
A big number of classical database subjects have been reexamined in the XML
context [8, 2, 21, 20, 4] because XML became more and more popular. Discovering
XML data redundancies from the data itself becomes necessary and it is an
integral part of the schema refinement (or re-design) process.

Recently, there were several attempts to define XFDs (see [7, 19, 10, 22]) but
in general, these approaches have different semantics regarding the tree tuple and

2

closest node XFDs and do not preserve the semantics of FDs when relational data
is mapped to XML via arbitrary nesting.

Functional dependencies (FDs) are a key factor in XML design. Our pa-
per proposes a framework to mine FDs from an XML database; it is based on
the notions of Generalized Tree Tuple, XML functional dependency and XML
key notion presented by [26]. Our contribution is the construction of the formal
context for a tuple class or the whole XML document. Non-leaf and leaf level
elements (or attributes) and corresponding values are inserted in the formal con-
text, then the concept lattice of the XML data is constructed too. The obtained
Conceptual Lattice is a useful graphical representation of the analyzed XML
document’s elements and their hierarchy. The software also finds the keys in the
XML document. The set of implications resulted from this concept lattice will
be equivalent to the set of functional dependencies that hold in that database.

The outline of the paper is the following: Section 2 discusses related work,
Section 3 introduces the minimal definitions needed to understand how formal
concept analysis is used. Section 4 presents Functional dependency for XML
data. Section 5 explains how we combine these two techniques to mine func-
tional dependencies and then discuss the obtained results. Finally, Section 6
summarizes the conclusions and future work.

2 Related work

The first authors who presented the problem of finding functional dependen-
cies using FCA were Ganter and Wille [9]. Different authors [16, 17] use FCA
concepts and methods like agree sets, maximal sets and closed sets, which are
closely related to the concept of closed sets and generators, described previously,
to avoiding the transformation of the original database. The authors use these
concepts to find efficient algorithms to extract functional dependencies for a
given set of data. [5] studied the lattice characterization and its properties for
Armstrong and symmetric dependencies. Hereth has already described the re-
lationship between FCA and functional dependencies in [11], he has introduced
the formal context of functional dependencies. In this context, implications hold
for functional dependencies. The paper [12] presents an FCA based approach to
detect functional dependencies in a relational database table.

The first authors who formally defined XML FD and normal form (XNF)
were Arenas and Libkin introducing the so-called tree tuple approach [2]. In [14]
and [21], the authors used a path-based approach and built their XML FD notion
in a way similar to the XML Key notion proposed in [6].

Yu and Jagadish [26] show, that these XML FD notions are insufficient and
propose a Generalized Tree Tuple (GTT) based XML functional dependency and
key notion, which include particular redundancies involving set elements. Based
on these concepts, the GTT-XNF normal form is presented too.

In later work [3], Arenas and Libkin provided a formal justification for the
use of XNF in XML database design, using the classical information theory ap-
proach. A measure of the information content of data (independent of updates

3

and queries) is introduced, as entropy of a suitably chosen probability distribu-
tion. A formal definition of a well designed XML schema was given and the fact
that XNF is both a necessary and sufficient condition for an XML schema to be
well designed was proved.

Vincent et al. in [20] investigated the problem of justifying XML normal
forms [21], in the terms of closest node XFDs using redundancy elimination. In
[20], a normal form for XML documents is proposed and it has been proved to
be a necessary and sufficient condition for the elimination of redundancy.

3 Formal Concept Analysis in a Nutshell

FCA studies how objects can be hierarchically grouped together according to
their common attributes. In FCA the data is represented by a cross table, called
formal context.

A formal context is a triple (G,M, I). The sets G and M are finite sets of
objects and attributes, respectively. The relation I ⊆ G×M is a binary relation
between objects and attributes. Each couple (g,m) ∈ I denotes the fact that the
object g ∈ G is related to the item m ∈M .

The following cross table describes for some hotels the attributes they have.
In this case the objects are: Oasis, Royal, Amelia, California, Grand, Samira;
and the attributes are: Internet, Sauna, Jacuzzi, ATM, Babysitting.

Internet Sauna Jacuzzi ATM Babysitting

Oasis X X X X

Royal X X X

Amelia X X

California X X

Grand X X

Samira X X

Table 1. Formal context of the Hotel facilities example

For a set A ⊆ G of objects we define

A′ := {m ∈M | gIm for all g ∈ A}

the set of all attributes common to the objects in A. Dually, for a set B ⊆M of
attributes we define

B′ := {g ∈ G | gIm for all m ∈ B}

the set of all objects which have all attributes in B.
For example ({California, Grand })= { Sauna, Jacuzzi }.
A formal concept of the context K := (G,M, I) is a pair (A,B) where A ⊆ G,

B ⊆ M , A′ = B, and B′ = A. We call A the extent and B the intent of the

4

concept (A,B). The set of all concepts of the context (G,M, I) is denoted by
B(G,M, I).

For example ({Amelia, Royal},{Internet}) is a concept of our context. In our
case we have 10 concepts, shown in 2.

c1 ({Oasis, Royal, Amelia, California, Grand, Samira },{ � })
c2 ({Amelia, Royal},{Internet})
c3 ({Samira, Oasis},{ATM})
c4 ({Samira, Amelia},{Babysitting})
c5 ({Oasis, Royal, California, Grand},{Jacuzzi, Sauna})
c6 ({Royal},{Internet, Jacuzzi, Sauna})
c7 ({Oasis},{ATM, Internet, Jacuzzi, Sauna})
c8 ({Amelia},{ Babysitting, Internet})
c9 ({Samira},{Babysitting, ATM})
c10 ({ � },{ Internet, Sauna, Jacuzzi, ATM, Babysitting })

Table 2. Formal concepts of Hotel facilities context

Between the concepts of a given context there is a natural hierarchical order,
the subconcept-superconcept relation.

A concept (X0, Y0) is a subconcept of concept (X1, Y1), denoted by (X0, Y0) ≤
(X1, Y1), if X0 ⊆ X1 (or, equivalently, Y1 ⊆ Y0). Inversely we define that the
concept (X1, Y1) is a superconcept of concept (X0, Y0).

The set of all formal concepts of a context, ordered by this relation, is called
the concept lattice of the formal context. In FCA the data is transformed into
a concept lattice, which can be represented by a hierarchical line diagram. The
concept lattice is the basis for further data analysis. In the lattice every circle
represents a concept and the information of the context can be read from it
in the following way: an object g has an attribute m if and only if there is an
upward leading path from the circle named by g to the circle name by m.

An implication Y 1 → Y 2 between the attributes of context (G,M, I) is a
pair of subsets of M . An implication Y 1→ Y 2 holds in a context (G,M, I) if for
all intent Y of the objects of the context, Y 1 6⊆ Y or Y 2 ⊆ Y . For more details
see [9, 23].

4 Functional dependency for XML data

Arenas and Libkin introduced first the so-called tree tuple notion in [2], they have
defined functional dependency in XML data and XNF normal form for XML.
Redundancies in XML data have several distinct features due to the heteroge-
neous nature of XML data, which makes them richer in semantics as compared
with redundancies in relational data. Yu and Jagadish [26] show, that the XML
FD notion introduced by [2] doesn’t include all possible features of an XML
document and propose a Generalized Tree Tuple (GTT) based XML functional

5

Fig. 1. Concept lattice of hotel facilities context

dependency and XML key notion, which include particular redundancies involv-
ing set elements. They propose the GTT-XNF normal form too based on these
notions. As [26] we treat leaf level elements and attributes in the same manner.
The definitions of this section are based on [26].

Definition 1. (Schema) A schema is defined as a set S = (E, T, r), where:

– E is a finite set of element labels;
– T is a finite set of element types, and each e ∈ E is associated with a τ ∈ T ,

written as (e : τ), τ has the next form:
τ ::= str | int | float | SetOf τ | Rcd[e1 : τ1, . . . , en : τn];

– r ∈ E is the label of the root element, whose associated element type can
not be SetOf τ .

This definition corresponds to basic constructs in XML Scheme [24]. Types
str,int and float are the system defined simple types and Rcd indicate com-
plex scheme elements (elements with children elements). Keyword SetOf is used
to indicate set schema elements (elements that can have multiple matching data
elements sharing the same parent in the data). We will treat attributes and
elements in the same way, with a reserved ”@” symbol before attributes.

The examples of this paper are based on XML tree of Figure 2.
Example 1. The scheme SCustOrder of XML document from Figure 2 is:

CustOrder:Rcd
Customers:SetOf Rcd

CustomerID: str
CompanyName: str
Address: str
City: str
Country: str

6

Fig. 2. Example tree

Phone: str
Orders: SetOf Rcd

OrderID: int
CustomerID: str
OrderDate: str
OrderDetails: SetOf Rcd

OrderID: int
ProductID: int
UnitPrice: float
Quantity: float
ProductName: str
CategoryID: int

A schema element ek can be identified through a path expression, path(ek) =
/e1/e2/.../ek, where e1 = r, and ei is associated with type τi ::= Rcd [..., ei+1 :
τi+1, ...] for all i ∈ [1, k−1]. A path is repeatable, if ek is a set element. We adopt
XPath steps ”.” (self) and ”..” (parent) to form a relative path given an anchor
path.

Definition 2. (Data tree) An XML database is defined to be a rooted labeled
tree T = 〈N,P,V, nr〉, where:

– N is a set of labeled data nodes, each n ∈ N has a label e and a node key
that uniquely identifies it in T ;

– nr ∈ N is the root node;
– P is a set of parent-child edges, there is exactly one p = (n′, n) in P for each
n ∈ N (except nr), where n′ ∈ N,n 6= n′, n′ is called the parent node, n is
called the child node;

– V is a set of value assignments, there is exactly one v = (n, s) in V for each
leaf node n ∈ N , where s is a value of simple type.

7

We assign a node key, referred to as @key, to each data node in the data
tree in a pre-order traversal. A data element nk is a descendant of another data
element n1 if there exists a series of data elements ni, such that (ni, ni+1) ∈ P
for all i ∈ [1, k − 1]. Data element nk can be addressed using a path expression,
path(nk) = /e1/ . . . /ek, where ei is the label of ni for each i ∈ [1, k], n1 = nr,
and (ni, ni+1) ∈ P for all i ∈ [1, k − 1].

A data element nk is called repeatable if ek corresponds to a set element in
the schema. Element nk is called a direct descendant of element na, if nk is a
descendant of na, path(nk) = . . . /ea/e1/ . . . /ek−1/ek, and ei is not a set element
for any i ∈ [1, k − 1].

In considering data redundancy, it is important to determine the equality
between the ”values” associated with two data elements, instead of comparing
their ”identities” which is represented by @key. So, we have:

Definition 3. (Element-value equality) Two data elements n1 of T1 = 〈N1,P1,
V1, nr1〉 and n2 of T2 = 〈N2,P2,V2, nr2〉 are element-value equal (written as
n1 =ev n2) if and only if:

– n1 and n2 both exist and have the same label;
– There exists a set M , such that for every pair (n′1, n

′
2) ∈M , n′1 =ev n

′
2, where

n′1, n
′
2 are children elements of n1, n2, respectively. Every child element of n1

or n2 appears in exactly one pair in M .
– (n1, s) ∈ V1 if and only if (n2, s) ∈ V2,where s is a simple value.

Definition 4. (Path-value equality) Two data element paths p1 on T1 = 〈N1,P1,
V1, nr1〉 and p2 on T2 = 〈N2,P2,V2, nr2〉 are path-value equal (written as T1.p1 =pv

T2.p2) if and only if there is a set M ′ of matching pairs where

– For each pair m′ = (n1, n2) in M ′, n1 ∈ N1, n2 ∈ N2, path(n1) = p1,
path(n2) = p2, and n1 =ev n2;

– All data elements with path p1 in T1 and path p2 in T2 participate in M ′,
and each such data element participates in only one such pair.

The definition of functional dependency in XML data needs the definition of
so called Generalized Tree Tuple.

Definition 5. (Generalized tree tuple) A generalized tree tuple of data tree
T = 〈N,P,V, nr〉, with regard to a particular data element np (called pivot
node), is a tree tTnp

= 〈N t,Pt,Vt, nr〉, where:

– N t ⊆ N is the set of nodes, np ∈ N t ;
– Pt ⊆ P is the set of parent-child edges;
– Vt ⊆ V is the set of value assignments;
– nr is the same root node in both tTnp

and T ;
– n ∈ N t if and only if: 1) n is a descendant or ancestor of np in T , or 2) n is

a non-repeatable direct descendant of an ancestor of np in T ;
– (n1, n2) ∈ Pt if and only if n1 ∈ N t , n2 ∈ N t, (n1, n2) ∈ P;
– (n, s) ∈ Vt if and only if n ∈ N t, (n, s) ∈ V.

8

Fig. 3. Example tree tuple

A generalized tree tuple is a data tree projected from the original data tree.
It has an extra parameter called a pivot node. In contrast with tree tuple defined
in [2], which separate sibling nodes with the same path at all hierarchy levels,
the generalized tree tuple separate sibling nodes with the same path above the
pivot node. See an example generalized tree tuple of tree from Figure 2 in Figure
3. Based on the pivot node, generalized tree tuples can be categorized into tuple
classes:
Definition 6. (Tuple class) A tuple class CT

p of the data tree T is the set of all
generalized tree tuples tTn , where path(n) = p. Path p is called the pivot path.

Definition 7. (XML FD) An XML FD is a triple 〈Cp, LHS,RHS〉, written as
LHS → RHS w.r.t. Cp, where Cp denotes a tuple class, LHS is a set of paths
(Pli , i = [1, n]) relative to p, and RHS is a single path (Pr) relative to p.

An XML FD holds on a data tree T (or T satisfies an XML FD) if and only
if for any two generalized tree tuples t1, t2 ∈ Cp

- ∃i ∈ [1, n] , t1.Pli =⊥ or t2.Pli =⊥, or
- If ∀i ∈ [1, n], t1.Pli =pv t2.Pli , then t1.Pr 6=⊥, t2.Pr 6=⊥, t1.Pr =pv t2.Pr .

A null value, ⊥, results from a path that matches no node in the tuple, and =pv

is the path-value equality defined in Definition 4.

Example 2. (XML FD) In our running example whenever two products agree on
ProductID values, they have the same ProductName. This can be formulated as
follows:
{./ProductID} → ./ProductName w.r.t COrderDetails

Another example is:
{./ProductID} → ./CategoryID w.r.t COrderDetails

In our approach we find the XML keys of a given XML document, so we need
the next definition:

9

Definition 8. (XML key) An XML Key of a data tree T is a pair 〈Cp, LHS〉,
where T satisfies the XML FD 〈Cp, LHS, ./@key〉.

Example 3. We have the XML FD: 〈COrders, ./OrderID, ./@key〉, which implies
that 〈COrders, ./OrderID〉 is an XML key.

Tuple classes with repeatable pivot paths are called essential tuple classes.

Definition 9. (Interesting XML FD) An XML FD 〈Cp, LHS,RHS〉 is inter-
esting if it satisfies the following conditions:

– RHS /∈ LHS;
– Cp is an essential tuple class;
– RHS matches to descendent(s) of the pivot node.

Definition 10. (XML data redundancy) A data tree T contains a redundancy
if and only if T satisfies an interesting XML FD 〈Cp, LHS,RHS〉, but does not
satisfy the XML Key 〈Cp, LHS〉.

5 Overview of the Approach

In this section we describe the methodology of a general approach to use FCA to
build tools that identify functional dependencies in XML documents. To achieve
this, as a first step, we need to define the objects and attributes of interest and
create models of XML in terms of FCA context. Our approach is carried out by
a sequence of processing steps. The output of each step provides the input to the
next step. Every step is illustrated with an example. Our method is supported
by a framework named FCAMineXFD. We will now describe each processing
step in detail.

5.1 Constructing the Formal Context, the Input to FCA

In this step the most important issue is how to map the XML document to
metamodel entities. Our software can analyze the whole XML document or a
tuple class Cp given by the path p. Tuple-based XML FD notion proposed in
the above section suggests a natural technique for XFD discovery. XML data
can be converted into a fully unnested relation, a single relational table, and
apply existing FD discovery algorithms directly. Given an XML document, which
contains at the beginning the schema of the data, we create generalized tree
tuples from it.

Each tree tuple in a tuple class has the same structure, so it has the same
number of elements. We use the flat representation which converts the gener-
alized tree tuples into a flat table. Each row in the table corresponds to a tree
tuple in the XML tree. In the flat table there are non-leaf and leaf level elements
(or attributes) introduced from the tree.

For non-leaf level nodes the associated keys (see Section 4) are used as values.

10

Example 4. Let us construct the flat table for tuple class COrders. There are
two non-leaf nodes: Orders and OrderDetails. These appear as Orders@key and
OrderDetails@key. In Figure 4 we can see the flat representation of tuple class
COrders.

Fig. 4. Flat table for tuple class COrders

Applying our experience in detecting functional dependencies in relational
databases (see more details in [12]), we use the definitions introduced by Hereth
in [11]. Hereth gives the translation from the relational database into a power
context family and based on it he defines the formal context of functional de-
pendencies as follows:

Definition 11. Let
−→
K be a power context family, and let m ∈ Mk be an at-

tribute of the k-th context. Then, the formal context of functional dependencies
of m with regard to

−→
K is defined as FD

(
m,
−→
K

)
:=

(
mIk ×mIk , { 1, 2, ..., k}, J

)
with ((g, h) , i) ∈ J :⇔ πi (g) = πi (h) with g, h ∈ mIk and i ∈ { 1, 2, ..., k}.

The π is the relational algebra projection operation. In the next paragraph we
will see how we construct this formal context of functional dependencies.

In this step the formal context of functional dependencies for XML data is
built, mapping from metamodel entities to FCA objects and attributes.

– Choice of FCA Attributes: PathEnd/ElementName
Due to space considerations we will not specify the whole path to the element
(or attribute) names, only the end of the path. FCA attribute names are
built from the end of the path to the element: PathEnd and element name
as follows:
• for non-leaf level nodes the name of the attribute is constructed as:
<ElementName>+”@key” and its value will be the associated key value
as specified in Section 4. More elements, which have the same path, will
have the same attribute name, but the values will be different.

• the leaves (actually not the values of the leaves, but the element names
of the leaves) of the tree tuple.

– Choice of Objects: the objects are considered to be the tree tuple pairs,
actually the tuple pairs of the flat table. The key values associated to non-
leaf elements and leaf element’s values are used in these tuple pairs.

11

– Choice of Properties: the mapping between objects and attributes is defined
by a binary relation, this incidence relation of the context shows which at-
tributes of this tuple pairs have the same value.

Fig. 5. Beginning of the Formal Context of functional dependencies for tuple class
COrders

The analyzed XML document may have a large number of tree tuples. Creat-
ing the tree tuple pairs, our context table may have a very large number of rows,
therefore, we need to clear the concepts of irrelevant entities. We filter the tuple
pairs and we leave out those pairs in which there are no common attributes, by
an operation called ”clarifying the context”, which does not alter the conceptual
hierarchy.

Example 5. The beginning of the formal context of our running example for
tuple class COrder can be seen in Figure 5. There are only a few columns of it
in the image, due to space considerations. We can see the attributes as column
names, like Orders/Orders@key (for non-leaf element), Orders/CustomerID (for
leaf element). Rows contain the tuple pairs, only the beginning of them can be
seen. If tuple pairs has the same value for an attribute, then X appears in the
context table. This file will be the input for the next step.

5.2 Creating the Concept Lattice

Once the objects and attributes of the context are defined, we run the Concept
Explorer (ConExp) [25] engine to generate the concepts and create the concept
lattice. The main output produced by FCA is the concept lattice.

Example 6. The concept lattice for the formal context of functional dependencies
for XML data constructed in previous step for tuple class COrders can be seen
in Figure 6.

5.3 Processing the Output of FCA

A concept lattice consists of the set of concepts of a formal context and the
subconcept-superconcept relation between the concepts, see [9]. Every circle in

12

Fig. 6. Concept Lattice of functional dependencies’ Formal Context for tuple class
COrders

Figure 6 represents a formal concept. Each concept is a tuple of a set of objects
and a set of common attributes, but only the attributes are listed. An edge con-
nects two concepts if one implies the other directly. Each link connecting two con-
cepts represents the transitive subconcept-superconcept relation between them.
The top concept has all formal objects in its extension. The bottom concept has
all formal attributes in its intension.
Example 7. In Figure 6 node labeled with Orders/CustomerID is on upward
path from node labeled by OrderDetails/OrderID, Orders/OrderID, Orders/
Orders@key. In FCA language, concept with label OrderDetails/OrderID,
Orders/OrderID, Orders/Orders@key implies concept with label Orders/
CustomerID.

5.4 Mining XFDs according to the concept hierarchy

In this step, we examine the candidate concepts resulting from the previous steps
and use them to explore XFDs. Once the lattice is constructed, we can interpret
each concept and generate the list of all functional dependencies.

The relationship between FDs in databases and implications in FCA was
pointed out in [9]: a FD X → Y holds in a relation r over R iff the implication
X → Y holds in the context (G,R, I) where G = {(t1, t2)|t1, t2 ∈ r, t1 6= t2} and
∀A ∈ R, (t1, t2)IA⇔ t1[A] = t2[A].

13

This means that objects of the context are couples of tuples and each ob-
ject intent is the agree set of this couple. Thus, the implications in this lattice
corresponds to functional dependencies in XML.

Example 8. Analyzing the Conceptual Lattice obtained for tuple class COrders

(Figure 6) we can detect functional dependencies like:

〈COrders, ./OrderID, ./CustomerID〉

〈COrders, ./key, ./CustomerID〉

〈COrders, ./OrderDetail/OrderID, ./CustomerID〉

In the lattice we list only the attributes, these are relevant for our analysis.
Let there be a concept, labeled by A,B and a second concept labeled by C. A,
B and C are FCA attributes. Let concept labeled by A,B be the subconcept of
concept labeled by C. Therefore tuple pairs of concept labeled by A,B have the
same values for attributes A, B, but for attribute C too. Tuple pairs of concept
labeled by C do not have the same values for attribute A, nor for B, but have the
same value for attribute C. Tuple pairs of every subconcept of concept labeled
by A,B have the same values for attributes A, B. The labeling of the lattice is
simplified by putting each attribute only once, at the highest level. We analyze
attributes A and B. If we have only A → B, then A would be a subconcept of
B. If only B → A holds then B should be a subconcept of A. We have A → B
and B → A, that’s why they come side by side in the lattice. So attributes from
a concept imply each other.

Example 9. In concept node with labelOrderDetails/OrderID,Orders/OrderID,
Orders/Orders@key the associated objects are tree tuple pairs, where the val-
ues for OrderDetails/OrderID are the same. So we have the next XML FDs:

〈COrders, ./OrderID, ./OrderDetails/OrderID〉

〈COrders, ./OrderID, ./Orders@key〉

〈COrders, ./Orders@key, ./OrderID〉

〈COrders, ./Orders@key, ./OrderDetails/OrderID〉

〈COrders, ./OrderDetails/OrderID, ./Orders@key〉

〈COrders, ./OrderDetails/OrderID, ./OrderID〉

The functional dependencies found by software FCAMineXFD are in Figure
7.

14

Fig. 7. Functional dependencies in tuple class COrders

Example 10. The concept lattice for the whole XML document of Example 1 is
in Figure 8. We can see the hierarchy of the analyzed data. The node labeled by
Customers/Country is on a higher level, than node labeled by Customers/City.
The Customer’s node with every attribute is a subconcept of node labeled
Customers/City. In our XML data, every customer has different name, ad-
dress, phone number, so these attributes appear in one concept node and imply
each other. The Orders node in XML is child of Customers. In the lattice, the
node labeled with the key of Orders node, is subconcept of Customers node, so
the hierarchy is visible. These were 1:n relationships, from Country to City, from
City to Customers, from Customers to Orders.

The information about products is on the other side of the lattice. Products
are in n:m relationship with Customers, linked by OrderDetail node in this case.

Therefore, we say that FCA can serve as a guideline for dependency mining.

5.5 Finding XML keys

The implications found by FCAMineXFD contain some FDs with RHS as ./key
values. These can be used to detect the keys in XML.
Example 11. In tuple class COrders we have XML FD:
〈COrders, ./OrderID, ./@key〉, which implies that 〈COrders, ./OrderID〉 is

an XML key. Another XML FD is 〈COrders, ./OrderDetails/OrderID, ./@key〉,
so 〈COrders, ./OrderDetails/OrderID〉 is an XML key too.

Example 12. In tuple class CCustomers software found XML FD: 〈CCustomers,
./CustomerID, ./@key〉, which implies that 〈CCustomers, ./CustomerID〉 is an
XML key. There are more FDs, with RHS as ./key in tuple class CCustomers, the
detected XML keys are: 〈CCustomers, ./Orders/CustomerID〉, 〈CCustomers,
./CompanyName〉, 〈CCustomers, ./Address〉, 〈CCustomers, ./Phone〉 .

5.6 Detecting XML data redundancy

Having the set of functional dependencies for XML data in a tuple class, we can
detect interesting functional dependencies. In essential tuple class COrders, the

15

Fig. 8. Conceptual Lattice of CustOrders XML data

16

XML FD 〈COrders, ./OrderDetails/ProductID, ./OrderDetails/ProductName〉
found by the software in Figure 7 is an interesting FD, but 〈COrders, ./OrderDetails
/ProductID〉 is not an XML key. So it is a data redundancy.

The same reason applies for XML FD 〈COrders, ./OrderDetails/ProductName,
./OrderDetails/ProductID〉.

The other XML FD’s from Figure 7 have as LHS a key for tuple class COrders.

6 Conclusion and Future Work

This paper introduces an approach for mining functional dependencies in XML
documents based on FCA. We proposed a framework to analyze XML documents
using Concept Analysis. Based on the flat representation of XML, we constructed
the concept lattice. We analyzed the resulted concepts, which allowed us to dis-
cover a number of interesting dependencies. The flat representation is not an
advantageous one, since a lot of attributes are repeated for several times, but
our goal is not to find a way of storing XML documents efficiently, but rather to
find functional dependencies in their data. Our framework offers an interactive
visualization for dependency exploration. Taking in consideration our prelimi-
nary results, we believe that FCA is a promising technique in XML database
design too, but a lot of further research is necessary. We had also previously used
FCA to explore functional dependencies in relational databases, see more details
in [12]. In that approach, we analyzed the relationships between dependencies in
relational databases and implications in FCA. In this paper, we complemented
the information with XML design exploration.

We have started to use our approach on several case studies and in the future
we plan to analyze in depth the obtained results at different levels of abstraction.
Given the set of dependencies discovered by our tool, as a future work we intend
to propose a normalization algorithm for converting any XML schema into a
correct one.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of databases. Addison Wesley (1996)

2. Arenas, M., Libkin, L.: A normal form for XML documents. TODS 29(1), 195-232
(2004)

3. Arenas, M., Libkin, L.: An information-theoretic approach to normal forms for re-
lational and XML data. JACM 52(2), 246-283 (2005)

4. Arenas, M., Libkin, L., Fan, W.: On the Complexity of Verifying Consistency of
XML Specifications. SIAM J. Comput. 38(3), 841-880 (2008)

5. Baixeries, J.: A formal concept analysis framework to mine functional dependencies.
Proceedings of Mathematical Methods for Learning (2004)

6. Buneman, P., Davidson, S., Fan, W., Hara, C., Tan, W.-C.: Keys for XML. In: Proc.
WWW, 201-210. Hong Kong, China (2001)

7. Chen, Y., Davidson, S., Hara, C., Zheng, Y.: RRXS:redundancy reducing XML
storage in relations. In: VLDB, 189-200 (2003)

17

8. Embley, D.W., Mok, W.Y.: Developing XML documents with guaranteed ”good”
properties. In: ER 2001, 20th International Conference on Conceptual Modeling,
426-441 (2001)

9. Ganter, B., Wille, R.: Formal Concept Analysis. Mathematical Foundations.
Springer (1999)

10. Hartmann, S.: Axiomatising functional dependencies for XML with frequencies.
In: FOIKS, 159-178 (2006)

11. Hereth, J.: Relational Scaling and Databases. Proceedings of the 10th Interna-
tional Conference on Conceptual Structures: Integration and Interfaces LNCS 2393,
Springer Verlag, 62-76 (2002)

12. Janosi Rancz, K.T., Varga, V., Puskas, J.: A Software Tool for Data Analysis Based
on Formal Concept Analysis. Studia Univ. Babeş-Bolyai, Informatica, 53, 2, 67-78
(2008)

13. Kolahi, S.: Dependency-preserving normalization of relational and XML data. In:
DBPL, 247-261 (2005)

14. Lee, M., Ling, T., Low, W.L.: Designing functional dependencies for XML. In:
EDBT Conference, 124-141 (2002)

15. Lin, T.W., Lee, M.M., Dobbie, G.: Semistructured Database Design. Springer
(2004)

16. Lopes, S., Petit, J-M., Lakhal, L.: Functional and approximate dependency mining:
database and FCA points of view. Special issue of Journal of Experimental and
Theoretical Artificial Intelligence (JETAI) on Concept Lattices for KDD, 14(2-3):
93-114, Taylor and Francis (2002)

17. Lopes, S., Petit, J-M., Lakhal, L.: Efficient Discovery of Functional Dependen-
cies and Armstrong Relations. Proceedings of the 7th International Conference on
Extending Database Technology (EDBT), Konstanz, Germany (2000)

18. Novelli, N., Cicchetti, R.: Functional and embedded dependency inference: a data
mining point of view. IS, 26(7): 477-506 (2001)

19. Schewe, K.D.: Redundancy, dependencies and normal forms for XML databases,
In: ADC, 7-16 (2005)

20. Vincent, M. W., Liu, J., Mohania, M.: On the Equivalence between FDs in XML
and FDs in Relations. Acta Informatica 44(3-4), 207-247 (2007)

21. Vincent, M. W., Liu, J., Liu, C.: Strong functional dependencies and their appli-
cation to normal forms in XML. ACM TODS, 29(3): 445-462 (2004)

22. Wang, J.,Topor, R.: Removing XML data redundancies using functional and
equality-generating dependencies, In: ADC, 65-74 (2005)

23. Wille, R.: Restructuring lattice theory: an approach based on hierarchies of con-
cepts. In I. Rival (ed.) Ordered sets, Reidel, Dordrecht, Boston, 445-470 (1982)

24. W3C. XML Schema, http://www.w3.org/TR/xmlschema-0/ (2004)
25. Serhiy Yevtushenko, A.: System of data analysis ”Concept Explorer”. (In Russian).

Proceedings of the 7th National Conference on Artificial Intelligence KII-2000, Rus-
sia, 127-134 (2000)

26. Yu, C., Jagadish, H. V.: XML schema refinement through redundancy detection
and normalization. VLDB J. 17(2): 203-223 (2008)

