
A Decade of XML Data Management : An
Industrial Experience Report from Oracle

 Zhen Hua Liu Ravi Murthy
Oracle Corporation
500 Oracle Parkway

Redwood Shores, CA 94065, USA
{firstname.lastname}@oracle.com

ABSTRACT
XML and its related technologies have now been in use for
almost a decade. There has been considerable amount of
effort both from research and industry focusing on XML,
XQuery/XPath, XSLT and SQL/XML processing in the
database. Many research prototypes and industrial products
have been built to satisfy the XML use cases. This paper
reviews several use cases where XML databases are
leveraged to build real-world XML applications. We discuss
the lessons learnt in supporting both data-centric and
document-centric XMLDB applications within a single
database system and the need for the implementation of
different XML storage, index and query optimisation
techniques for different XML use cases. We show the value
of managing XML in databases, the current challenges and
improvements that will hopefully promote future research
directions. This paper also provides a timely checkpoint of
XML data management from industrial perspective with
experience of developing and supporting Oracle XML
products.

I. INTRODUCTION
Since the start of XML technology a decade ago, there

has been tremendous amount of interest and effort in
supporting XML and its associated languages, such as
XPath, XQuery, XSLT and SQL/XML, from both
research and industry in the database community. When
XML became the popular data format for the Internet,
there were many research efforts within the database
community on approaches to store, query and process
XML data. Numerous papers [23,25,27] have researched
how to leverage RDBMS to store XML and index over
XML without taking advantage of XML structures, such
as DTD or schema description of the underlying XML.
Paper [24] researched how to store and query XML in
RDBMS with the help of XML structure. Paper [30]
focuses on building native XMLDB without leveraging
RDBMS. Papers [28,29] have addressed how to model
and query XML view over relational data so that XML
and XQuery languages can integrate variety of data in the
mid-tier.

The commercial database industry has developed three

major approaches for leveraging and supporting XML in
data management system. One is to extend RDBMS with
XML capability and the other is to build pure native XML

database without direct integration with relational system.
The third approach is to position XML and XQuery
support as the data integration solution in the mid-tier
[31][32].

Similar to the object relational wave in the database

community [19], all major relational database vendors
have extended their RDBMS with the capability of
storing, querying and updating XML data in addition to
the traditional relational or object relational data
[13][14][15]. The goal of such hybrid XML and RDBMS
system is to enable users to manage both relational, object
relational and XML data in one platform and to have full
interoperability among all of their data. SQL/XML
standard [16] has played an important role in “gluing”
SQL and XQuery, relational data and XML data,
relational schema and XML schema into one single
platform. On such platforms, XML views can be created
from relational and object relational data whereas
relational views can be created from XML data. SQL can
be used to query XML data and coversely, XQuery can be
used to query relational data.

On the other hand, there are also several “native” XML
database vendors [33]. This is similar to the emergence of
“native” object databases (and OQL), The goal of such
systems is to natively store XML data using a persistent
tree data model and use XQuery/XPath as the language
for manipulating XML. Since XML has a tree based data
model and XQuery/XPath is based on tree model with
wild card path matching capability, combined with full
text searching capabilities, native XML database are quite
attractive for managing document content and facilitate
semi-structured data search. Instead of tables and views,
document collections and documents are the primary
objects in native XMLDB. XQuery is the primary
languages to query documents, to extract pieces of
documents and to construct new documents from various
pieces of documents.

Although there are many convincing use cases for all

of these products, there are still some underlying
philosophical questions and concerns on the fundamental
value of XML within the database community. For

IEEE International Conference on Data Engineering

1084-4627/09 $25.00 © 2009 IEEE

DOI 10.1109/ICDE.2009.18

1351

IEEE International Conference on Data Engineering

1084-4627/09 $25.00 © 2009 IEEE

DOI 10.1109/ICDE.2009.18

1351

Authorized licensed use limited to: UNIVERSITATSBIBLIOTHEK PADERBORN. Downloaded on October 22, 2009 at 10:57 from IEEE Xplore. Restrictions apply.

example, paper [2] questioned that thirty years of
relational database research and industrial practices have
proven that relational data model is much better than
hierarchical data model or network data model, isn’t XML
with its hierarchical tree based model regressing us back
to the hierarchical data model? Is relational model not
sufficient i.e. do we need XML? Does XML have to be
persisted as a tree to match its logical data model? What
are the database application use cases for which XML is
best suited? In terms of query languages, report [45]
argued that “we have moved from SQL to XQuery, one
declarative language to a second declarative language
with roughly the same level of expressiveness”. So what
is the significant value of XQuery compared to SQL?

In this paper, we will attempt to answer these questions

based on the analysis of actual customer XML application
use cases and their adoption of XML technologies in
RDBMS. It is also based on our own development
experience of Oracle XML database systems. We find that
since the concept of XML is too general, the attempt of
finding ‘one size fits all’ universal XML storage and
index solution is not feasible. Instead, it is important to
classify XML use cases into different categories and
leverage different XML indexing, storage and processing
techniques in each category. Failure to do so may cause
sub-optimal solutions and raise doubts of the value of
XML in DB world. Only when we model XML as an
abstract datatype requiring different processing techniques
for different XML use cases , then we can fully realize the
fundamental value of XML in database community. We
discuss these points in section 3.4, 4.5 and 6.

In summary, the main contributions of this paper are

A. We show the importance of separating XMLDB
applications into data centric XMLDB applications
and document centric XMLDB applications because
the two classes require different XML storage,
indexing approaches and query optimisation and
processing techniques.

B. We show the idea of modelling XML as an abstract
data type in database and using an advisor wizard to
find the best XML storage, index and processing
models for different XML applications.

C. We show that promoting XML data model does not
attempt to recycle prior hierarchical database model.
Instead, modelling XML as an abstract data type
enables us to use XML as different models for
different shapes of data. We show that XML acts as a
presentational model for relational data and enhances
the hierarchical expressive power of the relational
model. We also show that XML is an adequate logical
data model for semi-structured data and physical
data model for managing content repository data.

D. We show how XQuery combines the capabilities of
declarative data query, imperative data programming

and flexible data transformation paradigms into a
single language. Therefore, an optimal implementation
of XQuery language requires several different
processing techniques and poses many challenging
research opportunities.

The rest of this paper is organized as follows. Section 2

discusses various XML use cases to provide concrete
examples for A). Section 3 discusses the modelling of
XML for different type of data to support B) and C).
Section 4 discusses the improvements needed and
challenges ahead for XML processing to support B) and
D). Section 5 shows the empirical data for A). Section 6
discusses the fundamental lessons learnt to support A).
Section 7 concludes the paper.

II. XML APPLICATION USE CASES

A. Usecase: XML Data and Report Generation
XML is widely used as a format for data transfer and

thus needs to be generated from relational data for
business data exchange and report generation. This is one
of the most common use cases for XML enabled
RDBMS. The generated XML data is hierarchical in
nature corresponding to the master-detail-detail hierarchy
in the typical OLTP relational model. There are two
syntactic ways of generating XML data in RDBMS. One
is SQL/XML centric and the other is XQuery centric. The
SQL/XML centric approach is to use SQL/XML [16]
generation functions, such as XMLElement(),
XMLForest(), XMLConcat() and XMLAgg(), that can
declaratively generate arbitrarily shaped hierarchical
XML data from relational data. The significance of the
XML generation functions is that they support generating
hierarchical data from relational data inside RDBMS
using XMLType as an abstraction. The XQuery centric
approach is to use pure XQuery with deeply nested
XQuery constructor expressions. The base relational or
XML data is accessed as a built-in XQuery function that
is able to generate XML from flat relational table. One
such example is ora:view() function in Oracle XMLDB
[13]. Query 1 shows the XQuery example. The XQuery
extension function ora:view() generates XML from a
relational table/view (in this case “COMMERCE”) or an
XMLType table/view (in this case “ATTR_XMLT”)
transparently.

However, both the SQL/XML centric way and the

XQuery centric way are algebraically equivalent. Both
can be optimized into the same underlying XML extended
relational algebra and executed on the underlying
SQL/XML engine [17].

<counties>
 {for $c in ora:view("COMMERCE")
 let $coc_county := $c/ROW/COC_COUNTY/text(),
 $coc_name := $c/ROW/COC_NAME,
 $coc_phone := $c/ROW/COC_PHONE/text()

13521352

Authorized licensed use limited to: UNIVERSITATSBIBLIOTHEK PADERBORN. Downloaded on October 22, 2009 at 10:57 from IEEE Xplore. Restrictions apply.

 order by $coc_county
 return
 <county>
 <name>{$coc_county}</name>
 <chamber
phone="{$coc_phone}">{$coc_name/text()}</chamber>
 <attractions>
 {for $a in ora:view("ATTR_XMLT")
 where $coc_county = $a/attraction/county/text()
 return $a
 }
 </attractions>
 </county>}
 </counties>

Query 1- XML Report Generation with pure XQuery

B. Usecase: Structured Query Over XML
This use case is the reverse of the previous relational to

XML generation case that we discussed above. In this use
case, the XML data (potentially generated from a
relational store) is received and then (after some
preliminary analysis and cleansing) decomposed into a set
of relational tables. Even if the XML were generated from
a relational store, there is value in using XML as the
intermediate transport format. This allows decoupling of
the physical schemas of the source and target databases.
Finally after decomposing the XML into relational tables,
users are able to access these relational tables directly.
This use case is typically known as ‘XML shredding’.
However, the problem with shredding is that users still
need to manipulate relational data directly, not XML. One
of the key features of an XML enabled RDBMS is to hide
the XML shredding (and SQL query) via the XML
datatype. Such system enables user to register the XML
schema for XML data directly into the system so that the
system can generate a set of object types and object
relational tables underneath the cover for storing the XML
data. Users directly manipulate the XMLType table
without worrying about its shredding details. They
directly use XPath, XQuery and SQL/XML to query
XMLType table without having needing to explicitly refer
to the underlying relational storage tables. The RDBMS
optimizer is extended to support XML Queries and can
rewrite XPath/XQuery to SQL/XML constructs over the
storage tables transparently. Query 2 shows an example of
creating a XML schema based purchaseOrder table. As
shown, the SQL/XML query with XMLQuery() and
XMLExists() operators and embedded XQuery/XPath is
rewritten by XML query optimizer into an equivalent
query without XQuery/XPath.

Paper [11] discusses the XML schema based object

relational storage and [12] presents XML rewrite in such
use cases. Although this type of use case does not show
the value of XML in terms of handling semi-structured
data, it has the value of showing XML as a good
presentation data model for accessing relational data in a

hierarchical way. We will discuss further details of this in
section 3.1.

Although XML schema registration results in standard

shredding of XML data, there are use cases where the
default automatic way of shredding data is not adequate.
In these use cases, users leverage XMLTable [22]
construct to create relational views over XML.
Afterwards, all the relational access can be built over this
set of base XMLTable views. The XQuery used in the
XMLTable construct is complex such that that automatic
shredding is not feasible.

-- create a table storing all XML document instances for registered
schema ‘http://mypo.xsd’
create table purchaseOrder of xmltype schema ‘http://mypo.xsd’
select
xmlcast(xmlquery(‘$po/PurchaseOrder/@podate’ passing value(po) as
“po”) AS date),
xmlquery(‘<ship_order_cities>
 <shipCity>{if ($po/shipAddr/city) then $po/shipAddr/city
else ()}</shipCity>
 <billingCity>{if ($po/billingAddr/city) then
$po/billingAddr/city else ()}</billingCity>
 </ship_order_cities>’ passing value(po) as “po”)
from purchaseOrder po
where xmlexists(‘$po/PurchaseOrder/lineItems[price > 34 and quantity
< 5]/Parts[partPrice < 23 and partQty > 4]’ passing value(po) as
“po”)
Order by xmlcast(xmlquery(‘$po/PurchaseOrder/@podate’ passing
value(po) as “po”) AS date)
select po.podate, xmlelement(“ship_order_cities”,
 Xmlforest(po.shipCity as “shipCity”,
 Po.billingCity as “billingCity”))
from purchaseOrder po
where exists (select null
 from lineItem li
 where li.price > 34 and li.quantity < 5
 and li.nid = po.snid and
 exists (select null from part prt
 where prt.partPrice < 23 and prt.partQty >4
 and prt.nid = li.snid)
order by po.podate

 Query 2 – Schema based XML Query and Rewrite

Beyond structured XML, users want to just extract

some structured data from the XML for query without the
need to fully shred the XML data. Sometimes, it is not
even feasible to fully shred the XML data because there is
no XML schema or the XML schema has too many
optional components and fields and ‘any’ types so that a
straightforward shredding solution may results in creation
of many relational tables with sparsely populated content.
However, the set of queries to access the XML are pre-
determined by the particular XML applications. All the
query accesses are well controlled and there are no ad-hoc
queries during application run time. Therefore, the index
to satisfy these queries can be determined ahead of time.
The TPoX benchmark paper [37] illustrates examples of
such usage pattern where structured components of XML
need to be indexed and queried.

13531353

Authorized licensed use limited to: UNIVERSITATSBIBLIOTHEK PADERBORN. Downloaded on October 22, 2009 at 10:57 from IEEE Xplore. Restrictions apply.

C. Usecase: XML for Content Management
XML documents are heavily used to represent human

edited information in content stores and knowledge
databases. Owing to its SGML legacy, XML is primarily
used in these domains as a simpler and more standard
format. XML also goes much beyond HTML in its ability
to mark up the content and associate interesting semantic
tags to portions of content. The XML markup is then
exploited to improve relevance of search, and also for
reuse and re-purposing the content within many
documents and applications. XML is invaluable for
applications such as books-on-demand where relevant
content is pulled together dynamically based on user
interests, and a customized book is generated on the fly.

We have studied several customer implementations of
XML based solutions for content management within
Government legislatures, legal firms, etc and summarize
them as follows. XML is the native format for
representing the human edited information. An XML-
aware client or editor is used to create or update the
content. Instead of raw tags being exposed to the end-
users, subtle semantic markers are used. The XML
content that is created via user interactions is stored as
XML into the database. The XML schema is typically
quite complex with a large number of tags, high degree of
variability, optional tags, and recursive structures. The
amount of XML content is also typically quite large
(hundreds of megabytes is common). XML processing
instructions and comments, which are typically alien in
data centric XML, are common in this use case. Queries
are used to both (a) identify documents matching
keywords and structured queries as well as (b) extract
matching fragments. Due to the large size of documents
and possibly expensive post-filtering, indexes are
augmented to store fragment level pointers – facilitating
direct fragment extraction.

In content management applications, XQuery and
XSLT are the primary languages to provide direct
manipulation of document content. Although XQuery is
used similar to SQL in the usecases of querying structured
XML, XQuery shows its full power when it is used in
content management applications because it can
declaratively transform, construct and flexibly traverse the
document content, far beyond the capabilities of SQL.
The (simplified) query example below illustrates some of
the typical operations in a content management
application. Note the use of descendant axis (//) (and in
other queries - wildcard steps). Also the query combines
full text search along with other structured conditions.
Finally the returned value is constructed from multiple
extracted fragments with possible transformation.

 In content management applications, document

references need to be managed as first class constructs. In

particular, intra-document and inter-document references
have to be stored, indexed, queried and updated. For
example, there are references from the table of contents to
all the chapters of a book. Further, a piece of the content
may be reused in several places e.g. the Safe Harbour
statement is included in all financial statements. This is
typically tracked as (a different kind of) reference. Some
sample requirements in this scenario are :

• Find all references to a document (link query)
• Which content referenced by this document has

been modified in the last week? (link query
combined with other query conditions)

• List the most heavily referenced content (link
analysis)

for $b in fn:collection(‘’/books’)
where $b/author=$a or ft:contains($b/abstract, ‘XML Query’)
return
<citationinfo>
 <bookinfo>{$b/title}</bookinfo>
 <citations>{$b//citation}</citations>
</citationinfo>

Query 3 - Sample Query in Content Management

The current standards such as XML schema, XLink
and XInclude do not completely address these
requirements. Consequently applications have to
implement a large amount of custom code to enforce the
link constraints and semantics. [39, 40] has proposed
several declarative mechanisms for comprehensive link
management and better support for graph data models
within XML. The XML schema framework is extended to
express constraints on links, namely the type of link
target, referential integrity and acyclic constraints. The
query language is extended with functions to traverse
links in both the forward (fn:deref) and reverse
(fn:getInLinks) directions. A sample query with proposed
extensions is shown below. The citation element is a link
to another book. All citation links from the given book are
traversed to extract their titles. Additionally all links to
the given book are also identified and their titles
extracted.

for $b in fn:collection(‘’/books’)
where $b/author=$a or ft:contains($b/abstract, ‘XML Query’)
return
<citationinfo>
 <bookinfo>{$b/title}</bookinfo>
 <citedbyme>{fn:deref($b//citation)/title}</citedbyme>
 <citesme>{fn:getInLinks($b, citation)/fn:root(.)/title}</citesme>
</citationinfo>

Query 4 - Query using Link Functions

D. Usecase: Heterogenous and Ad-hoc XML Store
The biggest benefit of XML is the possibility of

schema-later or schema-never applications, compared to
other data models that invariably insist on schema-first
approach. In this usecase, XML documents originating

13541354

Authorized licensed use limited to: UNIVERSITATSBIBLIOTHEK PADERBORN. Downloaded on October 22, 2009 at 10:57 from IEEE Xplore. Restrictions apply.

from a number of different disparate data sources are
aggregated into a single central repository. The owner of
the central repository has little or no authority to impose a
single schema on all the data sources. Instead there is a
loose understanding (in the best case) of a set of
interesting tags that might be used within the documents.
Each of the different data sources (applications) has a
different realm of control. It may have a local schema that
might use some of the interesting tags mixed in with
many local tags. Note that the context of the interesting
tags (i.e. hierarchical nesting) may be quite different in
the different sources. The goal of the application is to
store and query the documents in the centralized
repository in some meaningful fashion.

The common queries in this scenario involve XPath
wildcards and/or descendant axes. This is understandable
given that there is no universally accepted schema.
Instead users search for interesting tags (in any context)
using the descendant axes. The main indexing strategy
here is the universal XML Index [13] that indexes all tags,
paths and values in the XML documents. This provides an
efficient mechanism to lookup any tag and/or value
without apriori schemas. We also see full text search
within a tag context being very useful in this scenario.

for $r in fn:collection(‘/accidentreports’)
where $r//vehicle = ‘Ford’ and ft:contains($r//reason, ‘overturn’)
return $r

Query 5 - Query against Ad-hoc XML

The basic wildcard query returns all results in a flat list.
A better result strategy is to categorize the results based
on their context i.e. return the interesting path contexts
and the number of results in those contexts. The
categorized results provide a succinct but very useful
understanding of the result set and allows the user to drill
down (or refine) the specific context of interest – thereby
iterating from a loose search with no context to
successively better contexts. This process is similar to
faceted or parametric search but the set of facets or
parameters is not predefined. Instead it is calculated
dynamically from the query results.

(: Initial query:)
for $r in fn:collection(‘/reports’)
where $r//vehicle = ‘Ford’
return $r//vehicle
(: Faceted search results :)
120 results found
/reports/accident/vehicle (95)
/reports/accident/reason/impact/vehicle (18)
/reports/witness/vehicle (7)
(: Refined query :)
for $r in fn:collection(‘/reports’)
where $r/accident//vehicle = ‘Ford’
return $r/accident

Query 6 – Query Refinement

Although the initial set of documents in the collection
have no apriori schema, it is still very useful to derive

partial schemas from the instances themselves. This is
similar to structural summaries or Data Guide work
presented in [10]. One difference is that the inferred
schemas also have typing information such as datatypes
for scalar elements, facets such as min and max values,
etc in addition the structural summary. Another difference
is that it may be sufficient to derive a good enough
schema instead of a comprehensive summary. This will
prevent exception cases from polluting the common case.
For example, if the field <Age> appears as a integer in
most of the documents but as a string in a few instances,
the inferred schema may still declare it as a integer field
and deem the exception cases as validation errors. Much
of this behavior can be configured via threshold
parameters. The inferred schema can then be used for
formulating better queries.

III. XML MODEL FOR DIFFERENT TYPES OF DATA
Logical and physical data design independence is a

well-known principle. Database system is divided into
logical data model and physical data model. The logical
data model describes the conceptual layout of the data on
which a declarative language is defined so that the
language has well defined semantics under the model.
Physical data model defines how the data is represented
in memory or disk, how the data is indexed and
partitioned to speed up queries. Changes to the physical
model should not impact the language functionality but
may impact its performance. However, applications often
demand various presentation data models that are more
natural and native to the application objects. There can be
many presentation data models for one logical data model
and there can be multiple physical data models to support
one logical data model. In this section, we will show that
XML plays an important role for modelling different
types of data.

A. XML as hierarchical presentation data model for
relational data

“Making Database Systems Usable” paper [1] argued
that “To make database system usable, it is required to
support various presentation data models to match user’s
logic view of the system. This is beyond just creating an
attractive user interface to the database system, but rather
creating and supporting conceptually different
presentation data models than the logical and physical
data model in the underlying database system.

From this perspective, XML has its value because its
hierarchical tree based data model serves as an excellent
presentation data model on top of underlying flat
relational data model in RDBMS. RDBMS with XML
extensions supports the intuitive hierarchical data model
that end users are familiar with. With hierarchical XML
data model, users can use path-like languages, such as
XPath to traverse hierarchy without worrying about join
operations. In fact, simple path expressions from XPath
[20] are essentially projection and selection operations

13551355

Authorized licensed use limited to: UNIVERSITATSBIBLIOTHEK PADERBORN. Downloaded on October 22, 2009 at 10:57 from IEEE Xplore. Restrictions apply.

without any explicit join operations. This is aligned with
the argument from [1] that a good intuitive query
language should only have selection and projection
without explicit joins.

Figure 1- Presentation, Logical, Physical Data Model
Relationship

In current RDBMS, users have to understand the

explicit primary/foreign key join relationship before
writing SQL queries. Although creation of high-level
relational views is able to hide the details of the join
relationship, the result of relational view is still a flat
relation. But users want to manipulate high-level
hierarchical objects inside RDBMS directly!
Consequently, the impedance mismatch between the
hierarchical view of data from user’s perspective and the
flat physical relational view from database system
perspective has to be resolved outside RDBMS resulting
in many object relational mapping tools today.

Supporting XML as presentation data model in

RDBMS with a set of functions and operators that directly
manipulate XML has precisely solved the impedance
mismatch problem. SQL/XML [16] has defined a set of
XML generation functions to construct hierarchical XML
data from flat relational data. For example,
XMLElement(), XMLForest() makes singular object
whereas XMLAgg() makes collection objects.
XMLConcat() glues different objects together. XPath
embedded functions, such as XMLQuery() and
XMLExists() make path driven query over XML very
easy for users. The XMLTable construct, conceptually an
inverse operator for XMLAgg(), is able to decompose
XML and cast it back to relational data. These inverse
algebraic relationships among these functions and
operators make XML query optimization and rewrite over
relational data feasible [11][12]. The benefits of having
algebraic operators for presentation data model is further
backed up by “The painless future” section of paper [1]
which states that “We must develop an algebra of
operations in the presentation data model such that the
basic needs of most users are met by a very small number
of operators, thus reducing the barrier to adoption”.

However, having argued that XML is a good
presentation data model, then why not use XML as the
actual physical data model for hierarchical data? Why
store hierarchical data using relational model? Our answer
is that for highly structured XML data, relational data
model provides a great physical data model and there is
no reason to switch it to physically persisted XML trees.
Doing so would inevitably regress both the theoretical
advantages and practical success of relational data model
that has successfully replaced the old hierarchical and
network data models [2]. We observe the following key
points when we analyze physical tree storage models for
structured XML:

First, the flat relational data model gives tremendous

freedom for the optimizer to decide how to search for the
data from any relations in the hierarchy instead of forcing
the top-down search direction directly supported by the
physical hierarchy. Any secondary indexing strategies on
the semi-structured data to facilitate the top-down,
bottom-up, hybrid query plans [46] is essentially the same
as the relational optimizer determining the optimal join
order.

Secondly, when XML data is highly structured and can

be described by a pre-defined relational schema, the
overhead of run time structural search can be completely
eliminated by pre-determined relational schema selection
during query compile time - so only data value search is
needed during run time. That is, although answering
XPath query conceptually involves both structure and data
search, the structure search in XPath can be pre-computed
during query compile time for structured XML data.

Thirdly, when XML data has well defined structured

hierarchy, then it is much more efficient to traverse the
hierarchical relationship among nodes using master-detail
primary-foreign key join from the relational model than
using ordered key of nodes. In fact, even if XML were
persisted as a physical hierarchical tree, indexing its
highly structured components using relational model
provides much better query performance when querying
the structured components of XML, especially for
searching the scalar property data of XML. Relational
like XMLTableIndex [18] has shown that indexing
highly structured XML data using relational model is
much more efficient to answer structured query than the
universal structure/path/value index approach.

B. XML as logical data model for semi-structured data
While XML serves as a good hierarchical abstraction

over relational data, XML shows its real strength in
managing semi-structured data where there is insufficient
schema or structure to describe the data so that it can be
fitted into tabular form. This is what “Making Database
Systems Usable” paper [1] described as “Birthing Pain” –
hence a “schema-later” style of heterogeneous database

Presentation DM Presentation DM

Logical DM

Physical DM Physical DM

13561356

Authorized licensed use limited to: UNIVERSITATSBIBLIOTHEK PADERBORN. Downloaded on October 22, 2009 at 10:57 from IEEE Xplore. Restrictions apply.

design is needed. Supporting both structure and value
search during run time allows users to be able to still
query their data while the schema of the data is not fully
known. Paper [3] has outlined some of the key aspects of
querying semi-structured data.

Although relational database system can be leveraged

to support both structure and data search when all
attributes of an entity are not known in advance or there
are too many nullable attributes resulting in sparsely
populated table [7][8], we argue that various techniques to
support these use cases, such as vertical schema approach
[4][7], Entity Attribute-Value model [8], interpreted
storage format for sparse datasets [5][6], essentially
advocate the same underlying idea that we need a data
model to support both structure and data query at run time
because data and structure cannot be separated out
cleanly. XML is the appropriate logical data model for
these use cases. The interpreted storage model [5] is very
similar to binary XML format presented in [13]. In both
approaches, data and structure are interpreted together
at run time.

Beyond the flexibility of representing sparse data as

XML, the wild card query construct and child-or-
descendant query construct expressed in XPath steps
essentially embrace the concept of searching structures
without knowing all the details of the structure in
advance. This implies the underlying data model has to be
able to co-locate both the structure and data so that they
can be searched together at run time instead of storing
structure separately into meta-data catalog in the
relational model. Although such style of query may not be
as efficient and precise as highly structured XML data, it
is still the best approach for querying XML without
knowing structures in advance. Furthermore, the use of
keyword search within XPath/XQuery [21] is a unique
strength of XML. Traditional keyword search can only
search for keywords within a document. With the
hierarchical model of XML, we can also find the context
of keyword occurrences and also find the hierarchical
relationships among these contexts. In [9], although not
explicitly using XML data model, the idea of combining
structure and keyword search for heterogeneous data is
promoted.

Finally, unlike schema in relational data that is used for

defining the table structures for holding the data, the
XML schema used in many XML applications is designed
for data validation. Therefore, although relational schema
is compact and small compared with its data size, XML
schema is quite large, evolving and appears to be ‘over
designed’ from the classical entity-relational design in the
relational model. Therefore, the meaning of schema in
XML world is different enough that we have to separate
the notion of the query schema from the validation
schema. The XML schema is used for data validation

whereas the query schema is used for indexing the data. In
many use cases, the XML schema may be absent,
however, the query schema, which is used for indexing
the data, can be derived from the data guide. In this way,
the indexing size for XML can be compact instead of
bloated.

C. XML as physical data model for document repository
Besides being a hierarchical presentation data model

for relational data, XML is also an ideal physical data
model for document and content repository. In the content
world, the basic high level concepts are files, documents,
folders and repositories instead of rows, columns, tables
in relational model. Folders and documents have a named
path and system assigned identifiers. Folders and
documents are located through directory path mechanism
instead of row ids. The direct manipulation of content
data is often associated with protocols, such as FTP,
HTTP, NFS, WebDAV associated with drag and drop
interface instead of SQL languages. Document versioning
and being able to manipulate multiple versions of the
same document are more common. It is more natural to
manipulate coarse-grained document fragments instead of
fine-grained relational cells. Having direct support for
these high level document concepts in RDBMS via XML
makes RDBMS more usable for content users [34].

XQuery and XSLT are the most natural declarative

languages to manipulate document content replacing the
imperative DOM and SAX APIs and substantially more
powerful than SQL for this usecase.

D. XML as an abstract type
ANSI SQL/XML defines XMLType as a built-in

datatype in the RDBMS [16]. However, unlike other
RDBMS datatypes, XMLType is an abstract datatype that
has several standard query languages, such as,
XQuery/XPath/XSLT and SQL/XML, to process it. The
physical storage model can be changed without affecting
application queries which process XML data via XQuery,
XPath, XSLT and SQL/XML languages. The change in
storage and/or indexing model for XML does not change
the functionality but may impact query performance. As
we have discussed in all the previous use cases, there is
no “one-size-fits-all” storage and index model for XML
that can deliver best query performance for all XML use
cases. This is similar to the situation in pure relational
database design where the optimal physical data layout is
dependent on all the queries used in the application use
cases. For example, traditionally the choice of data
normalization and de-normalization has to be considered
when designing OLTP and decision support application
use cases. Recently, paper [35] argues that column based
storage can improve the performance of data warehouse
queries significantly compared to the classical relational
row storage model.

13571357

Authorized licensed use limited to: UNIVERSITATSBIBLIOTHEK PADERBORN. Downloaded on October 22, 2009 at 10:57 from IEEE Xplore. Restrictions apply.

Using XML as an abstract type allows user to alter the
storage model of XML without changing any
applications. For example, users may start with object
relational storage of XML for highly structured XML data
and later on evolve it into hybrid or binary XML storage
as the XML data evolves to have more unstructured
content. On the other hand, users may start with binary
XML storage model and create (relational-like)
XMLTable indexes to index structured components of the
XML data as the XML structure is discovered. However,
regardless of the changes in XML storage and indexing
strategies, application queries do not have to be changed
at all. That is, XML queries over XMLType abstraction
are supposed to be ‘write once and run
everywhere’[54]. Figuring out the right storage and index
models for XML should be the job of a “storage wizard”.
Paper [43] describes an approach of building schema
advisor for hybrid relational-XML DBMS. Although the
advisor technique is appropriate, however, exactly what
business data should be stored in a relational tables and
what should be stored as XML tree is the choice of
physical model. It can be hidden if we model the business
data as the logical XMLType. With this approach, when
the business data characteristics changes, for example, a
performance critical element is later on identified as an
element with many variations so that its storage has to
move from the relational table storage to XML tree
storage, the query over such elements does not change at
all. Figure 2 shows XMLType serving as an interface type
abstraction between XML languages with its multiple
underlying storage and indexing mechanisms.

Figure 2 - XMLType Abstraction

Having discussed the value of XML in DBMS, we now

discuss the improvements that are needed for XML
processing.

IV. IMPROVEMENTS AND CHALLENGES FOR XML
PROCESSING

A. The need for light-weight typing system for XQuery
XML schema provides a very rich and complex set of

functionality. It is a good mechanism to express validation
rules for wide variety of XML data. However, it is too
cumbersome to be used as a typing mechanism for XML
programming languages, such as XQuery and XQueryP
[44]. When using XML programming languages for
general purpose computation, users prefer a light-weight
mechanism of defining datatypes primarily for scalar
values of the leaf nodes of an XML tree instead of having
to define a full schema for the entire XML tree.
Furthermore, in many common usecases, users prefer to
able to define anonymous type structures to group
relevant fields without having to define an XML schema
and having it imported into the system before it can be
used. Therefore, we believe that it would be more useful
for languages such as XQueryP[44] to introduce a light-
weight and convenient way of defining types for XML
instead of relying on XML schema. XML schema is a
good validation language for XML. However, a general
purpose XML programming language needs a simple
typing mechanism. We propose that XQuery and
XQueryP take the XML Schema Part 2 definitions for all
the basic built-in types, such as xs:integer, xs:string,
xs:date, etc as the base types and then develop a light-
weight mechanism to define structure and class types on
these built-in types.

B. Document links in XQuery
As we had discussed in section 2.3, XQuery currently

does not provide adequate data model and query functions
and operators to support querying link based XML
documents. As real world XML documents are often
compound documents with Xlinks to weave different
components of documents together, XQuery needs basic
function support to traverse XML documents linked
through XLink mechanism. Similar to the object reference
and de-reference concepts in object relational DBMS
[19], XQuery needs to extend its data model and functions
with document reference and de-reference concepts so
that it can manage a graph model of XML documents
instead of the current tree model [40]. Defining, managing
and querying links between XML documents shall be the
first class citizen construct in XQuery. There are basically
two types of relationships among entities in relational
model. The first relationship is master-detail, one-to-many
hierarchical relationship. The second relationship is
many-to-many linking relationship among entities. With
XML model, the hierarchical relationship is built-in,
however, the many-to-many linking relationship
represented by XLink needs to be natively expressed in
XQuery.

XSLT SQL/XML

XMLType Abstraction

Relational
Storage

Tree
Storage

Binary
Storage

XQuery

13581358

Authorized licensed use limited to: UNIVERSITATSBIBLIOTHEK PADERBORN. Downloaded on October 22, 2009 at 10:57 from IEEE Xplore. Restrictions apply.

A common usecase involves evolving the XML
representation of an object from being nested within a
parent document to becoming a standalone full-fledged
document itself. E.g. in the first version of the application,
the customer information is nested within Order
documents. In a later version of the same application, the
customer details are normalized into a separate Customer
document. The new Order documents now contain a link
to Customer document. To minimize impact to existing
applications, it is desirable to shield navigation operations
from this evolutionary change. We are evaluating the use
of a new XPath axis (child-or-deref) that traverses to the
child element (if nested) or traverses the link (if linked).
Uniform use of this axis reduces the impact to
applications in face of many evolutions.

C. Optimization of general purpose XML languages
There has been much discussion about the “impedance

mismatch” problem between the SQL, Java/.NET and
XML models. The benefits of a single data model and
language across all tiers are generally accepted. However,
previous efforts to accomplish them from different
directions have not succeeded.

XQuery is more general than SQL and is able to
support both data query and data transformation. With the
scripting extension of XQuery into XQueryP [44], the
XQuery/XQueryP can potentially be the universal
programming language to integrate data, logic and
presentation into a single platform, XQuery/XQueryP can
then be the integrated language for XML data query,
transformation and programming. Such integration
enables user to write a single holistic program without
thinking about the (artificial in our opinion) boundary
between declarative query and imperative procedure
portions. Today, separating imperative and declarative
logic is mandatory when embedding SQL into host
programming languages. Even for the case of SQL PSM
(such as Oracle PL/SQL), users have to somewhat
demarcate between SQL and procedural logic. Therefore,
contrary to the observation from paper [45] that SQL and
XQuery have the same level of expressiveness,
XQuery/XQueryP can fundamentally blur the boundary
between data query and procedural program. However,
this does raise a major challenge.

Traditional query languages, such as SQL, are based on

iterator lazy evaluation model with index probe and
materialized view matching to scale to large size data sets.
Traditional programming languages, such as C/Java, are
based on imperative eager evaluation model.
Transformation languages, such as XSLT, are based on
template matching model. As XQuery/XQueryP
integrates all of these together, the optimizer needs to
determine when eager evaluation should be used and
when lazy evaluation strategy should be used and achieve
the balance between the two. Optimizing general

purpose XML languages so that the conversion
between the declarative and imperative logic is
automatically handled in a cost based manner is not a
simple exercise. For example, users may program the
logic of child or descendant node search using recursive
functions and the language optimiser should consider
rewriting such recursive functions into child or
descendant XPath expression so that the underlying path
index might be leveraged. These challenges require
cooperation between the database and programming
language communities [53].

D. Storage and index advisor for XML
As discussed in section 3.4, XML is a good abstract

type to model data, however, the physical storage and
index for XML depends on the actual XML usecases and
their set of workload queries [26]. Figure 4 shows a
quadrant diagram for various XML physical storage and
indexing models for data centric XML having embedded
structured component and unstructured content, document
centric XML having embedded structured component and
unstructured content. As evidenced in RDBMS,
automatically figuring out the physical designs, such as
indexes, materialized views, horizontal partitioning, de-
normalization, column store [35] strategies, for a given
work load is an interesting challenge. Recent industrial
efforts for automatic storage and index advisor in
relational applications are discussed in [48, 49, 50]. We
expect similar efforts and research opportunities for
processing XML workloads. Paper [47] shows that for
schema based relational mapping, there is a cost based
approach to find the best mapping solution for an XML
query workload. With schema and non-schema based
XML and universal structure, value, path and relational
XMLTable indexing strategies for XML, there are many
cost based choices to optimize the physical design of
XML for given XML query loads.
Primary Content
Vs
Embedded
Content

Embedded
Structured
Component

Embedded
Unstructured
Content

Data Centric
XML

Structured
storage

Structured
storage with
path/value index
on unstructured
content

Document
Centric XML

Tree/binary
storage with
XMLTable index
on structured
component

Tree/binary
Storage with
path/value/text
Index

Figure 3 – Quadrant Diagram for XML storage/index
model

13591359

Authorized licensed use limited to: UNIVERSITATSBIBLIOTHEK PADERBORN. Downloaded on October 22, 2009 at 10:57 from IEEE Xplore. Restrictions apply.

V. EMPIRICAL DATA FOR XML DB APPLICATIONS
This section presents the empirical data that we have

gathered from various XML DB application use cases.
The data is aggregated from about 30 different real-world
customer applications. Specifically we present the
empirical query and schema complexity for the different
scenarios.

SQL/XML Generation Function

SQL/XML generation functions are commonly used to
generate XML from relational data. This is the usecase
that we discussed in section 2.1. Table3 shows the
average number of SQL/XML generation functions used
and the average depth of hierarchical tree generated in one
such query.

Average Number of SQL/XML
generation functions
(XMLElement, XMLForest,
XMLConcat) used in one
query

Average depth of hierarchical
tree generated in one query
using XMLAgg() with
correlated scalar subquery

28 5

Table 2 – SQL/XML generation function data

Relational View using SQL/XML XMLTable Construct

It is common to query XML relationally by defining
multiple XMLTable views. This is for usecase where
XMLTable relational view is used to query XML
relationally discussed in section 2.2. Table 3 shows the
average number of relational columns projected in
XMLTable construct and the chaining depth of
XMLTable construct. The XMLTable chain corresponds
to traversal of the XML hierarchy. The average
XMLTable chain depth is 4 shown in table 4 and the
hierarchical generation depth is 5 shown in table 3. These
two data correlations indicates the average hierarchical
depth of XML is 4 to 5.

Average Number of
relational columns
projected out of XML

Average number of
XMLTable chain depth to
iterate over XML hierarchy

20 4

Table 3 – XMLTable relational view qry data

XQuery
Paper [51] classifies XQuery into six layers: Simple

XQBE, Core XQBE, Full XQBE, View XQBE,
Arbitrarily nested XQuery, XQuery with user defined
functions and types. Paper [51] concludes that the first
four XQuery layers covering 80% to 90% user’s needs.
Table 5 shows the percentage of different XQuery layers
used in data centric XML usecases from our observation.
XQuery Layer Percentage
Simple XQBE 37%
Core XQBE 12%

Full XQBE 11%
View XQBE 19%
Arbitrarily nested XQuery 12%
XQuery with user defined
functions & types

9%

Table 4 - Usage of XQuery Layer Data

Our data is consistent with paper [51] conclusion. We
also have the first four XQuery layers covering 80% of
XQuery usecases with the first layer simple XQBE be the
highest percentage among all layers and the sixth layer of
supporting user defined function and types be the lowest
percentage. The View XQBE is also quite popular. This
makes sense because let clause is very handy to define
variables that can be referenced multiple times in the
subsequent query. However, this observation is only true
for XQuery over data centric XML. For document centric
XQuery applications, usage of XQuery user defined
functions and sequence data type operations are very
common. Document centric XQuery are usually
associated with XQuery modules and user defined
functions. For document centric XML applications,
average number of lines for XQuery user defined
functions is 21 lines with average 124 user defined
functions defined within an average of 22 modules.
Therefore, it only makes sense to divide XQuery into
layers for data centric XML applications. For document
centric XML applications, XQuery has been leveraged to
its full strength and capability.

Paper [51] asserts that XPath as the basic query

language is not sufficient due to the lack of support for tag
construction. However, we find that with SQL/XML
generation functions, it is common for users to use XPath
only in SQL/XML XMLExists() to qualify XML
documents or document fragments, XMLQuery() to
extract document fragments and then use SQL/XML
generation functions to construct XML results instead of
using XQuery constructor functions. However, again such
XQuery usage pattern is more applicable to data centric
XML applications. For document centric XML
applications, using pure XQuery without SQL/XML
dominates the usecases.

VI. LESSONS LEARNT
Our experience in developing XML DB systems and

studying customer XML applications as discussed in
section 2 clearly show that there are two classes of XML
database applications: data centric and document centric
XMLDB applications. Although both kinds of XML share
the same logical tree data model, their physical data
model ought to be different for efficient query
performance and compact data storage. There is no ‘one-
size-fit-all’ solution for XML database based applications.
The application developer needs to be aware of the

13601360

Authorized licensed use limited to: UNIVERSITATSBIBLIOTHEK PADERBORN. Downloaded on October 22, 2009 at 10:57 from IEEE Xplore. Restrictions apply.

differences so that they can use the appropriate XML
storage and index techniques.

In data centric XMLDB applications, the structure of

the XML is relatively static so that it can be statically
separated from the data into a relational schema. E-R
model [52] is powerful enough to express the hierarchical
tree-based data model. Therefore, the storage of the
structure and data does not have to be physically
clustered. Separating structure into relational schema that
is shared by all the data leads to best data storage
compactness. XPath/XQuery over data centric XML can
be optimised as SQL query over the data in the relational
schema. There is no need to index the structure, only data
needs to be indexed. Query over data centric XML only
needs to search data during run time because the structure
is treated as metadata and “searched” during query
compilation time. This leads to the best query
performance. For such data centric XMLDB applications,
defining a hierarchical XML view over relational DB
model makes sense and all the mature relational DB
technologies can be fully leveraged.

In document centric XMLDB applications, the

structure of XML is dynamic so that it is not possible to
separate structure cleanly from the data. Therefore,
structure and data for document centric XML has to be
physically clustered. Both structure and data has to be
indexed. XPath/XQuery over document centric XML has
to search both structure and data during run time. This
includes matching ad-hoc XPath element names and
sequence types during run time. For such applications, a
native tree or binary physical storage of XML documents
with path-value text index makes sense. The path index
allows users to do wildcard search, descendant search
efficiently. Value index allows user to discover data
values without knowing its containment structures. Full
text index over XML allows user to do classical full text
search without knowing its structure. Furthermore, sparse
structure within document centric XML can be indexed
by XMLTable style of XMLIndex [18].

VII. CONCLUSIONS
In this paper, we have demonstrated the value of XML

in database system by reviewing various XML use cases
in XML data management systems. As paper [2] reviews
the data model evolution history in the database
community and urges people not to repeat history by
recycling data models, it is evident that people tend to
equate the presentation data model with the underlying
physical data model despite the fact that logical and
physical data model independence is well known principle
in RDBMS. We believe that the temptation of making the
presentation data model the same as the physical data
model is the source of the problem. We argue that with
the introduction of the concept of presentation data model
and the clear separation and independence among

presentation, logical and physical data models, XML data
model is not regressing the relational data model but
rather complementing relational data model with its
hierarchical expressive power for structured data.
Relational data model remains a simple but powerful
building block for many other high-level presentational
data models. Hierarchical and network data models can be
built on top of the relational model. However, in some
cases, materializing the presentation data model as
aggregated physical data model has its merits when the
retrieval and manipulation of the aggregated data model
as a unit is required. This is similar to the field of
Organic Chemistry that although all chemical compounds
can be decomposed into atoms, working with high level
chemical compounds, such as sugar, protein, lipid, as an
abstraction are very useful in life science. Our lesson from
XML is not to repeat history by positioning XML data
model as a replacement of relational data model but
rather as a presentation data model for structured
relational data.

Furthermore, we show that XQuery has more

expressive power than SQL. For structured XML that can
be modelled as hierarchical view over relational data,
XQuery with native XPath construct gives more
hierarchical expressive power than SQL. For semi-
structured data, content centric document data, making
XML data model as the logical data model has its merits.
XQuery/XQueryP languages are superior to SQL in
coping with semi-structured data: it allows both structure
and data search simultaneously while the document
structure is unknown in advance. The concept of being
able to do search without defining schema is a major
milestone compared with the rigid schema-first relational
world. Being able to integrate declarative data query,
imperative programming and transformation logic using a
single language is a major improvement over current
solutions of separating query and procedural logic
artificially. We are living in an interesting time for data
management. The value of XML in data management
system is not to repeat the data model history but rather
address problems that challenge the limits of the current
state of art relational solution. Our product experience
shows an optimistic view of XML applications in
database community. However, understanding and
classifying XML application into different categories so
as to use the proper XML storage, index and processing
techniques is crucial to deliver the value of XML in
database management.

VIII. REFERENCES
[1] H. V. Jagadish, A. Chapman, A. Elkiss, M. Jayapandian, Y. Li, A.

Nandi, C. Yu: “Making Database Systems Usable”. SIGMOD
2007.

[2] M. Stonebraker, J.M. Hellerstein: “What Goes Around Comes
Around.”
http://mitpress.mit.edu/books/chapters/0262693143chapm1.pdf

[3] S. Abiteboul: Querying Semi-Structured Data. ICDT, 1997, 1996.

13611361

Authorized licensed use limited to: UNIVERSITATSBIBLIOTHEK PADERBORN. Downloaded on October 22, 2009 at 10:57 from IEEE Xplore. Restrictions apply.

[4] G. P. Copeland, S. Koshafian. A decomposition storage model.
SIGMOD 268-279, 1985

[5] J. L. Beckmann, A. Halverson, R. Krishnamurthy, J. F. Naughton:
Extending RDBMSs To Support Sparse Datasets Using An
Interpreted Attribute Storage Format

[6] E. Chu, J. Beckmann, J. Naughton: The Case for a Wide-Table
Approach to Manage Sparse Relational Data Sets

[7] R. Agrawal, A. Somani, Y. Xu: Storage and Querying of E-
Commerce Data. VLDB 2001

[8] T. J. Eggebraaten, J. W. Tenner, and J. C. Dubbels: A health-care
data model based on the HL7 Reference Information Model. IBM
System Journal, Vol 46, No 1, 2007

[9] X.Dong, A. Halevy: Indexing Dataspaces. SIGMOD 2007
[10] LORE: http://infolab.stanford.edu/lore/
[11] R. Murthy, S. Banerjee: XML Schemas in Oracle XML DB.

VLDB 2003
[12] M. Krishnaprasad, Z. Hua Liu, A. Manikutty, J. Warner, V.

Arora, S. Kotsovolos: Query Rewrite for XML in Oracle XML
DB,VLDB 2004

[13] R. Murthy, Z. Hua Liu, M. Krishnaprasad, S. Chandrasekar, A.
Tran, E. Sedlar, D. Florescu, S. Kotsovolos, N. Agarwal, V.
Arora, V. Krishnamurthy: Towards An Enterprise XML
Architecture , SIGMOD 2005

[14] F. Ozcan, R. Cochrane , H. Pirahesh, J. Kleewein, K. Beyer, V.
Josifovski , C. Zhang: System RX: One Part Relational, One Part
XML, SIGMDO 2005

[15] M. Rys: XML and relational database management systems:
inside Microsoft SQL Server 2005.

[16] I.O. for Standardization (ISO). Information Technology-Database
Language SQL-Part 14: XML-Related Specificaitons
(SQL/XML)

[17] Z. Hua Liu, M. Krishnaprasad, V. Arora: Native XQuery
Processing in Oracle XML DB. SIGMOD 2005

[18] Z. Hua Liu, M. Krishnaprasad, Hui J. Chang, V. Arora:
XMLTable Index - An Efficient Way of Indexing and Querying
XML Property Data, ICDE 2007

[19] M. Stonebraker, P. Brown, D. Moore: Object-Relational DBMSs,
Second Edition Morgan Kaufmann 1998

[20] PathExpression http://www.w3.org/TR/xpath20/#id-path-
expressions

[21] XQuery Full Text: http://www.w3.org/TR/xquery-full-text/
[22] F Zemke, M. Rys, K. Kulkarni, J. Michels, B. Reinwald, F.

Oczan, Z. Hua Liu, I. Davis, K. Hare, "XMLTable" , ISO/IEC
JTC1/SC32 WG3:SIA-051 ANSI NCITS H2 2004-039
http://www.wiscorp.com/H2-2004-039-xmltable.pdf

[23] D. Florescu, D. Kossmann: Storing and Querying XML data
using an RDBMS. IEEE Data Eng Bull 22(3):27-34 (1999).

[24] J. Shanmugasundaram, K. Tufte, G. He, C. Zhang, D. DeWitt, J.
Naughton: Relational Databases for Querying XML documents:
Limitations and Opportunities, VLDB 1999

[25] I. Tatarinov, E. Viglas, K. Beyer, J. Shanmugasundaram, E.
Shekita: Storing and Querying Ordered XML Using a Relational
Database System: SIGMOD 2002

[26] F. Tian, D. DeWitt, J. Chen, C. Zhang: The Design and
Performance Evaluation of Alternatives of Storage Strategies:
SIGMOD Record, Vol 31, No 1, Mar 2002.

[27] M. Yoshikawa, T. Amagasa, T. Shimura, S. Uemura: Xrel: A
Path-Based Approach to Storage and Retrieval of XML
documents Using Relational Databases

[28] J. Shanmugasundaram, J. Kiernan, E. Shekita, C. Fan, J.
Funderburk: “Querying XML Views of Relational Data”. VLDB
2001.

[29] M. Fernandez, A. Morishima, D. Suciu: “Efficient Evaluation of
XML Middleware Queries”, SIGMOD Conf., May 2001

[30] H. V. Jagadish, S. Al-Khalifa, A. Chapman, L. V. S.
Lakshmanan, A. Nierman, S. Paparizos, J. M.Patel, D. Srivastava,
N. Wiwatwattana, Y. Wu, and C. Yu, “TIMBER: A Native XML
Database,” VLDB Journal 11, No. 1, 274–291 (2002),
http://www.eecs.umich.edu/db/timber/files/timber.pdf.

[31] M. J. Carey: Data delivery in a service-oriented world: the BEA
aquaLogic data services platform. SIGMOD Conference 2006:
695-705

[32] V. R. Borkar, M. J. Carey, D. Lychagin, T. Westmann, D.
Engovatov, N. Onose: Query Processing in the AquaLogic Data
Services Platform. VLDB 2006: 1037-1048

[33] MarkLogic: http://www.marklogic.com/
[34] V. Krishnamurthy : Oracle XML DB Repository, SIGMOD 2003:

635
[35] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack,

M. Ferreira, E. Lau, A. Lin, S.Madden, E. J. O'Neil, P. E. O'Neil,
A. Rasin, N. Tran, S. B. Zdonik: C-Store: A Column-oriented
DBMS. VLDB 2005: 553-564

[36] M. Krishnaprasad, Z. Hua Liu, A. Manikutty, J. Warner, V.
Arora: Towards an industrial strength SQL/XML infrastructure,
ICDE 2005.

[37] M. Nicola, I. Kogan, B. Schiefer: “An XML Transaction
Processing Benchmark”, SIGMOD 2007.

[38] XBRL: http://www.xbrl.org/Home/
[39] R.Murthy. Managing Complex Relationships in Oracle XML DB.

XML2006 Conference, Boston, 2006.
[40] R.Murthy. From Trees to Graphs : Evolving XML for Enterprise

Applications. XTech 2007 Conference, Paris, 2007.
[41] A. Balmin, K. S. Beyer, F. Ozcan, M. Nicola: On the Path to

Efficient XML Queries. VLDB 2006
[42] M. Stonebraker: Implementation of Integrity Constraints and

Views by Query Modification. SIGMOD Conference 1975: 65-78
[43] M.M. Moro, L. Lim, Y.Chang: “Schema Advisor for Hybrid

Relational-XML DBMS”. SIGMOD 2007
[44] D. Chamberlin, M. Carey, D. Florescu, D. Kossmann, J. Robie :

XQueryP: Programming with XQuery, XIME-P 2006
[45] S. Abiteboul, R. Agrawal, P. A. Bernstein, M. J. Carey, S. Ceri,

W. B. Croft, D. J. DeWitt, M. J. Franklin, H. Garcia-Molina, D.
Gawlick, J. Gray, L. M. Haas, A. Y. Halevy, J. M. Hellerstein, Y.
E. Ioannidis, M. L. Kersten, M. J. Pazzani, M. Lesk, D. Maier, J.
F. Naughton, H. Schek, T. K. Sellis, A. Silberschatz, M.
Stonebraker, R. T. Snodgrass, J. D. Ullman, G. Weikum, J.
Widom, S. B. Zdonik: The Lowell database research self-
assessment. Commun. ACM 48(5): 111-118 (2005)

[46] J.McHugh, J. Widom, S. Abiteboul, Q. Luo, A. Rajaraman:
Indexing Semistructured Data. http://www-db.stanford.edu/lore

[47] P.Bohannon, J. Freire, P. Roy, J. Siméon: From XML Schema to
Relations: A Cost-Based Approach to XML Storage. ICDE 2002:
64

[48] D.C. Zilio, J. Rao, S. Lightstone, G. Lohman, A. Storm, C.
Garcia-Arellano, S. Fadden: DB2 Design Advisor: Integrated
Automatic Physical Database Design. VLDB 2004

[49] S. Agrawal, S.Chaudhuri, L. Kollar, A. Marathe, V. Narasayya,
M. Syamala: Database Tuning Advisor for Microsoft SQL Server
2005

[50] B. Dageville, D. Das, K. Dias, K. Yagoub, M. Zait, Mo.
Ziaduddin: Automatic SQL Tuning in Oracle 10g. VLDB 2004.

[51] D. Braga, A. Campi, S. Ceri, P. Spoletini: XQuery Layers,
SIGMOD Record, Mar 2007

[52] P. P. Chen: The Entity-Relational Model – Toward a Unified
View of Data, ACM Transactions on Database Systems, Vol 1,
No 1, March 1976, page 9-36

[53] A. Novoselsky, Z. Hua Liu: XVM - A Hybrid Sequential-Query
Virtual Machine for Processing XML Languages. PLAN-X 2008

[54] Z. Hua. Liu, T. Baby, S. Chandrasekar, Hui Chang: Towards a
Physical XML independent XQuery/SQL/XML Engine , VLDB
2008

13621362

Authorized licensed use limited to: UNIVERSITATSBIBLIOTHEK PADERBORN. Downloaded on October 22, 2009 at 10:57 from IEEE Xplore. Restrictions apply.

