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ABSTRACT 
Health monitoring and disease surveillance systems can benefit 
from the integration of multiple data sources and semantic web 
technologies The development and management of exposure 
histories is one particular area that requires integration of data 
from multiple sources. Exposure histories capture the spatial and 
temporal dimensions of possible disease exposure events and 
convey the dynamic factors within individuals’ environments. 
Data sources for an exposure history might include numerous 
governmental, institutional and community records which 
document people’s relationships with various locations. Existing 
monitoring networks and new wireless sensor networks also 
provide data on toxic agents in the environment. This paper 
describes the development of an ontology for a personal exposure 
history (PEH) that specifies explicit relationships between persons 
and locations and locations and putative environmental toxic 
agents.  These relationships provide a foundation for making 
inferences about person to putative toxic exposure relationships. 
The PEH ontology defines a framework of concepts and 
relationships on which to integrate data from heterogeneous 
sources. The ontology does not capture a complete exposure 
profile as yet, but instead represents key spatial and temporal 
concepts and demonstrates how these can be queried using current 
semantic web technologies.  
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1. INTRODUCTION 
Many diseases of interest to epidemiologists, geneticists, and 
public health researchers have long latency periods (e.g. years). 
Analysis of possible relationships of long-latency diseases, such 
as cancer, to environmental risk factors becomes complicated by 
the reality of changing spatial and temporal factors in the 
population and the environment. In a highly mobile society, 
individuals are likely to have moved several times from the point 
in time of possible exposure to disease causing agents to the time 

of disease diagnosis. They may also have associations with 
several locations in any one time period. Similarly, disease 
causing agents may be mobile (e.g. a toxic cloud or plume) or 
transient with time (e.g. a pesticide applied over two years more 
than ten years ago). The dispersion of disease cases over space 
and time makes it difficult for researchers to determine possible 
environmental factors that may be related to the development of a 
disease with any certainty. In order to document the location and 
duration of possible exposures to harmful agents over an 
individual’s lifetime, an analysis strategy must include a host of 
factors operating on disparate scales. A comprehensive exposure 
risk history to support such analysis should contain information 
regarding a person’s behavioral, socioeconomic, environmental, 
and genetic risk factors.  This paper describes the use of semantic 
web technologies for modeling personal mobility information and 
environmental factors as component parts of such a 
comprehensive exposure history. 

2. SEMANTIC WEB TECHNOLOGIES 
Data used in many environmental health monitoring systems are 
often limited for a variety of reasons. Some monitoring systems 
suffer from low spatial or temporal resolution or from inaccurate 
or missing information. Additional problems may arise from 
changes in data measurement, collection practices, changes to the 
information system infrastructure, or how environmental data is 
represented over time and space. Current environmental health 
systems often have difficulty with the integration of longitudinal 
data about people and their relationships with everyday locations. 
As a result, there is a need for systems that can efficiently link 
new, diverse sources of environmental data from an emerging 
‘Sensor Web’ [12] and be flexible enough to integrate data about 
individual human mobility over long periods of time [29].  

The term Semantic Web, [6] has come to represent an extension of 
the World Wide Web where the meaning or semantics of 
heterogeneous data, information and knowledge can be easily 
understood, processed, linked, and exchanged by machines. The 
power of the Semantic Web is its ability to transform the 
underlying language and structure of data into something that 
machines can understand and process directly or indirectly 
through the use of specifically formatted metadata in web based 
content [7]. Semantic Web technologies are rapidly changing data 
integration practices and system structures in many fields such as 
business and bioinformatics. These technologies are ideally suited 
to support information integration from diverse sources due to the 
data annotation features and their ability to link new information  

to existing knowledgebases through the use of explicit ontological 
structures. The Semantic Web and its related technologies can be 
understood through its four primary components [37]. 
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Uniform Resource Identifiers (URIs): The Semantic Web relies 
on URIs as a standardized format for naming resources 
consistently and uniquely. The link between a URI and its 
reference resource allows for easy identification, retrieval and 
linkage to any resource on the web. 

Resource Description Framework (RDF): The RDF model has 
been adopted by the W3C as a formal way of describing and 
representing resources on the web [48]. It offers a general method 
for conceptual description of the information content of web 
resources identified by URIs. RDF uses the triple construct 
(subject, predicate, object) to express assertions. The subject of an 
RDF triple can be a URI or an anonymous blank node, a predicate 
must be a URI, and an object can be a URI, blank node, or literal 
(i.e. values such as strings or numbers) [31].  A set of triples or 
RDF graph is represented as a directed labeled graph with typed 
edges and nodes where the directed edge is the labeled predicate 
connecting subject to object nodes [41]. 
 
Ontologies: An ontology is commonly defined as “an explicit 
specification of a conceptualization” [18] or a “representation of 
real world entities using a sophisticated structure with components 
such as definitions, parts, functions, attributes, and rules of 
relationship” [14]. Ontologies provide standardized vocabularies 
and explicit conceptual frameworks that allow for common 
understandings of concepts and data across multiple domains.  
The Web Ontology Language (OWL) with its basis in Description 
Logics (DLs) has become a cornerstone of the Semantic Web for 
its use in the design of ontologies. OWL defines concepts, 
properties (relationships), and logical combinations of concepts 
(e.g., intersection, union, and complement) and provides an 
inference mechanism by defining restrictions and assertions about 
property types (e.g. transitive, symmetric, functional, inverseOf, 
and inverse functional). The foundation in DL provides precise 
and unambiguous meaning to descriptions of a domain and 
supports reasoning algorithms that can handle complex queries 
about the domain. 
 
Simple Protocol and RDF Query Language (SPARQL):  
SPARQL is an RDF query language for use with the Semantic 
Web [49]. SPARQL is syntactically similar to SQL however it 
allows the user to query RDF graphs via pattern matching. In 
SPARQL, queries behave like RDF in that a pattern consists of 
triples with variables substituted for subjects, predicates, or 
objects. An advantage of SPARQL is that it does not require 
explicit joins to specify the relationship between differently 
structured data. Data from different sources with unpredictable or 
unreliable structure can typically be easily mapped to RDF and 
then queried using SPARQL. Mappings can be performed on the 
fly, allowing exploration of heterogeneous data at a higher level 
than that of the native structure of the original data. 

 Researchers seeking access to data for environmental health 
research face barriers in finding the most current environmental 
monitoring data collected and disseminated through sensor 
networks. This aspect of conducting environmental health 
research can be difficult because of the rapidly changing nature of 
the deployment of these types of networks and the potential 
volume of data they generate. Many of these systems are now 
using web based interfaces, but health researchers could 
potentially spend unnecessary time updating and maintaining this 
type of data within their own databases. Automated pre- and post-
processing of environmental monitoring data could be achieved 

through harnessing the semantic power of web based data, and as 
these types of information sources become more readily available, 
the development of an information system that can semantically 
integrate environmental exposure data becomes a viable concept.  

This paper presents a conceptual framework for a personal 
exposure history. A personal exposure history represents spatio-
temporal relationships between individuals, locations, and toxic 
agent levels that can be interactively queried [13]. The purpose of 
the framework is intended to help various users in the biomedical 
domain (epidemiologists, geneticists, public health researchers) 
detect noteworthy or significant interactions between person-
location relationships and potentially harmful environmental 
events in order to more fully evaluate environmental health risks 
over the course of a person’s lifetime. The approach builds upon 
earlier work of representing relationships between spatio-temporal 
events [5][13] specifically in a public health or epidemiological 
application. A key contribution of the PEH ontology is that it 
specifies different types of person-location relationships as events 
(e.g. person resides at residence) and differentiates these 
relationships, creating a richer semantic context for associated 
activities that can be inferred from them.    

3. A PERSONAL EXPOSURE HISTORY 
The term exposure, in the epidemiological domain, is defined as 
“the event when a person comes into contact with a toxic 
material” [30].  A person’s behavior/lifestyle choices, geographic 
location, socio-economic conditions and genetic predispositions 
will impact an exposure outcome, as will the real world conditions 
of the contact event itself.  In this definition of exposure, a toxic 
agent is an entity that contacts a receptor, which is the entity that 
receives an exposure or a dose (e.g., a human, human population, 
or a human organ). This paper focuses on environmental 
exposures, defined here as human exposure to pollutants 
originating from manmade sources or harmful levels of natural 
elements within a person’s environment. Human beings, 
individually and collectively, are exposed daily to numerous 
harmful elements in both indoor and outdoor settings [42]. 

3.1 Representing Human Mobility 
Exploring human movement in space and time can help health 
researchers to uncover patterns in disease and possible 
environmental agents. The widespread availability of location 
aware ubiquitous computing and communication devices has led 
to a proliferation of data and analysis concerning people as 
dynamic objects. This type of mobility data is often structured as a 
set of triples (o,p,t) recording the presence of an object o in 
position p at time t. The problem becomes how to extract 
information about trends and patterns on interactions within and 
between people and locations, locations and events at those 
locations, and the relationships that might be inferred about 
people and things that happen at locations at which they have 
been present. Hägerstrand’s seminal work [21] discussed issues 
involving the study of individual movement and its ability to 
enhance knowledge of social and group large scale patterns of 
behavior. Odland [36] describes this type of timeline as a lifeline, 
the space-time points of an object’s movement from sample point 
A to sample point B. From this distinction, a geospatial lifeline 
bead is derived [32][22] as a set of all possible spatial locations 
that an object could have occupied between two sample points 
given the maximum velocity at which the object moves between 
two points. A geospatial lifeline is defined as a time-stamped 
record of locations representing places a person has occupied over 
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a period of time. Fine level spatio-temporal detail may provide 
new information and likewise, a coarser granularity or 
aggregation of spatio-temporal data will provide more general 
representations of object movements [24]. A coarsened 
granularity results in less temporal and spatial detail and less 
detail on speed of movement. However, these abstractions are 
useful for generalized views of movements based on very large 
databases of detailed geospatial lifeline data as might be needed to 
represent movement in a personal location history 
framework. This model is often used in representing residential 
tenure at a coarse granularity (months or years). A location 
history [22] is a record of an entity’s location in space over an 
interval of time. Sinha and Mark [44] use residential history 
locations to represent discrete geospatial lifeline data to model 
clusters of people with similar exposure risk histories. 
 

3.2 Representing Human Exposure 
Exposure science and spatial epidemiology have a number of 
existing tools to assist in better understanding the spatial 
distribution of disease in human populations. The CDC’s Epi Info 
[10] and IBM’s Spatiotemporal Epidemiological Modeler (STEM) 
[15] provide epidemiologists, public health practitioners and 
researchers with tools for database construction, data entry, and 
analysis with epidemiologic statistics, maps, and graphs. These 
types of epidemiologic applications typically have spatial data, 
SQL query and HTML output capabilities. STEM provides spatial 
and temporal models of emerging infectious diseases and a 
number of mathematical models to represent multiple populations 
(species) and the transmission process between animal and human 
diseases in order to create a better understanding of 
interconnectedness between global disease transportation links. 
 
Some systems have developed out of the field of exposure 
science. SHEDS (Multimedia v.3)[50] is a probabilistic aggregate 
residential exposure model with a capacity to address a variety of 
chemical classes and exposure scenarios such as particulate 
matter, air toxics and treated wood products. This modeling tool is 
used to simulate an individual’s contact with environmental 
agents and estimate an exposure profile for multiple pathways. 
This system can also be used to predict ranges of exposure in a 
population. The SHEDS model has the capacity to link with 
toxicology source models, and pharmacokinetic (PBPK) models 
to quantify and reduce uncertainty in risk assessments. The data 
model consists of time series data for the simulated environmental 
toxin concentration within a residence, as well as fine scale 
human movement data. A limitation of this system’s data structure 
is that each simulation will have tens of thousands of events for 
each simulated individual. While the results are automatically 
aggregated over time to produce simulated daily exposure 
estimations, the size of the datasets are problematic. Event-level 
exposure profiles are not saved as permanent output and only 
summary statistics on daily and longer periods are saved and 
retrieved for continuous usage. 
In related work from the domain of geographic information 
science, Meliker et al. [33][34] have characterized the concept of 
an exposure lifeline as a temporally continuous data structure 
which allows aspatial attributes such as temporally varying 
exposure estimates to be visually represented. Jacquez, Greiling 
and Kaufmann [28] note that disease surveillance systems require 
spatio-temporal data structures that provide the ability to query on 
people, their disease status as well as the duration and indexing of 
possible exposure events. Their Space Time Information System 

(STIS) uses an object-based approach to model movement and 
attribute change. The PEH ontology based approach differs from 
the STIS data model in several ways: 1) it conceptualizes a 
personal exposure history as explicit event-event relationships 
between dynamic objects (personal location events) it uses event 
sequences at named locations, and 2) it employs of semantic web 
tools to explicitly represent spatial, temporal, and thematic 
semantics. 
 

3.3 Semantic Technologies and Health Data 
Applications of a Semantic Web approach are increasingly 
common in many domains including national security, business, 
regulatory compliance, and biomedical informatics [1][35][37]. 
This type of approach utilizes diverse data sources, ontologies and 
semantic metadata standards to help facilitate the aggregation and 
integration of complex information [39]. A recent application of 
this type of approach can be seen in the development of the cancer 
Biomedical Informatics Grid (caBIG™). Within this larger 
system, the Lymphoma Enterprise Architecture Data-system™ 
(LEAD™) [26] integrates pathology, pharmacy, laboratory, 
cancer registry, clinical trials, and clinical data from a wide 
variety of institutional databases. It utilizes the Cancer Common 
Ontological Representation Environment Software Development 
Kit (caCORE SDK) provided by National Cancer Institute’s 
Center for Bioinformatics to establish a platform for data 
management, controlled vocabularies, and registered metadata to 
achieve semantic integration across multiple cancer databases. 
While this system provides a demonstration of semantic 
technologies in support of a wide range of clinical and research 
tasks, and integrates data from disparate systems into a single 
architecture, it is not designed to handle contextual information 
such as longitudinal data regarding human mobility patterns or 
environmental health monitoring data. 
 
A recent extension of semantic analytics, Geospatial Semantic 
Analytics (GSA) [4][38][40] provides a solution and the necessary 
infrastructure for the representation of contextual information 
through complex spatial, temporal, and thematic information 
analysis by using ontologies based on multimodal geographic 
information. This ontology based approach exploits the 
relationship-centric nature of semantic web data to model and 
query spatial, temporal and thematic data. GSA uses indirect 
relationships to achieve a mapping between thematic objects and 
spatial objects and uses these relationships to define a notion of 
context that can be queried using spatial and temporal properties. 
Our work builds on this approach to support the spatial, temporal 
and semantic integration of data specifically for the construction 
of personal exposure histories. The ontology creates the schema 
for resource descriptions and defines a vocabulary of labels for 
nodes (classes) and edges (properties) that are used to define key 
concepts and relationships of an exposure history. Relationships 
between persons and locations are defined as well as the time 
spent in those relationships. Independently, we define 
relationships between toxic events and locations and the duration 
of these relationships. Potential exposures are then identified by 
spatial and temporal overlaps in these relationships. The approach 
provides substantial flexibility in that the vocabularies can be 
easily extended to meet the description needs or conventions of 
one user group (i.e. toxicologists) while not compromising the 
autonomy in descriptions used by another community or group 
(i.e. healthcare workers, epidemiologists). 
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4. ONTOLOGY BASED PERSONAL 
EXPOSURE HISTORY FRAMEWORK  
The conceptual detail for a personal exposure history ontology 
can be complex, and the intent of this paper is not to cover all 
these complexities but to address key spatial and temporal 
concepts. To adequately represent a personal exposure history, 
concepts are needed for entities that are static and entities that are 
dynamic. Rather than reinvent general concepts, upper level 
ontology concepts for space and time are used to ground the PEH. 
This section introduces definitions of general concepts from an 
upper level ontology and then specialize theses concepts within 
the PEH ontology. 

4.1 Upper Level Ontology  
General spatio-temporal concepts for the PEH utilize the concepts 
from the Basic Formal Ontology (BFO) [16]. The BFO provides 
both a static (snapshot) view and a process (lifespan) view of time 
and space through its SNAP and SPAN divisions. The BFO was 
developed for broad application in the biomedical domain and has 
been used in several related domain ontologies such as clinic-
genomic trials on cancer [9][17].   

The BFO is divided into two kinds of entities: substantive entities 
(continuants) and processual entities (occurrents). These entities 
provide the structure to represent spatial and temporal concepts as 
both abstract and concrete entities (Figure 1). A Continuant is 
classified as a SNAP entity in that it represents a substantive 
entity that exists and persists through time while maintaining its 
identity (examples: a person, a city, a building, a tumor). The 
Continuant entity is the high level concept for several persistent 
entities within the PEH ontology. An Occurrent is a processual 
entity that has temporal parts and represents a ‘timespan’ view of 
the world for entities that exist and are located within an interval 
of time, unfold through time, and then disappear [46]. SPAN 
entities have no realization in a snapshot of time, requiring some 
interval of time to establish a presence [45]. Occurrent entities are 
associated with a temporal setting [47] through a has_A relation. 
This Temporal Setting uses concepts and relations from the OWL-
TIME ontology [23]. 

4.2 Middle Level Ontology 
The middle level of the ontology specializes concepts found in the 
BFO. The primary Continuant subtype in this level is the 
Dynamic Entity and Occurrent subtypes include Spatial 
Occurrents and Non-Spatial Occurrents  (Figure 1). A Dynamic 
Entity is an entity that changes its spatial behavior [38]. Like all 
continuants, a dynamic entity maintains a unique identity but this 
identity is not strongly associated with space.  A Spatial 
Occurrent represents an event with a definite spatial setting for 
every time unit during which it exists. A spatial occurrent’s 
temporal existence is defined by the interval of time for which it 
persists [45]. The occurredAt relation connects the Spatial 
Occurrent entity to a spatial setting. The occuredAt relation has an 
inverse relation, the experiences relation which expresses that a 
Spatial Setting can experience an event. These inverse 
relationships add flexibility for queries as described later and 
OWL supports inference on inverse relations. A Non-Spatial 
Occurrent has only a temporal setting (e.g. a patient treatment 
regime). In the PEH ontology, the non-spatial occurrent concept is 
not fully developed but provides a placeholder for future 
extensions.  

 
Figure 1. Subset of PEH ontology concepts and relations 

4.3 PEH concepts and relations 
Emerging work by Cohen Hubal [11] provides three high level 
concepts for an exposure model: a stressor, a biological receptor, 
and an outcome (Figure 2). The PEH focuses specifically on the 
second tier of this model (highlighted in the figure below), the 
level of the individual. An individual is the dynamic entity of 
interest and the PEH ontology focuses on capturing the dynamic 
behavior of individuals in space and time. The individual is also a 
core entity as individuals can be aggregated to various populations 
(e.g. genetic, geographic, ethnic, socio-economic) as well as being 
a carrier of tissues and cells.  The PEH models relationships of 
individuals to locations and stressors to locations with the intent to 
find where these two types of relationships coincide in space and 
time. Behavioral, socioeconomic and genetic concepts are not 
specified here but would be components of future work in a 
comprehensive exposure model. 

 
Figure 2. Cohen Hubal’s exposure-response processes (2009)  
A Person is the central class in the domain level of the PEH 
ontology representing an individual as the biological receptor. The 
class description for Person includes several basic properties 
necessary for epidemiological research, as well as other 
applications.  General axioms for Person include:  

Declaration(Class(:Person ) )  

SubClassOf( :Person, :BiologicalReceptor)  

FunctionalDataProperty( :hasID )  

FunctionalDataProperty( :lastName )  

FunctionalDataProperty( :birthDate )  

FunctionalDataProperty( :gender )  
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For spatial epidemiological purposes, however, the modeling 
challenge lies in representing a person’s dynamic behaviors. A 
typical person has associations with many locations, some for 
long periods of time and others only very briefly. Current location 
aware technologies can provide nearly continuous traces of 
people’s short-term movements and obtain fine-grained location 
histories for individuals. Representing longitudinal location data 
that captures movement flow and spatio-temporal relationships 
between individuals and the locations where they spend longer 
intervals of time are less common. Rather than near real-time 
location tracking, the PEH models a person’s relationships to 
locations where they tend to spend larger blocks of time: home, 
school, work, or military base.  

The second key class in the PEH is Location. A Location is 
defined as an identifiable geographic place [27] that may or may 
not have well defined physical boundaries such as those 
delineating a mountain, lake, valley, marsh or fiat boundaries as 
delineating a parcel, census block, or town. A location must be 
identified by one or more spatial references, which defines a 
location’s spatial setting. A spatial reference can be a coordinate 
based geospatial object such as a point, line or polygon, a linear 
reference (position along a pathway) or a geoidentifier (e.g. 
placename, zipcode).  Some axioms for Location and Spatial 
Reference include: 

Declaration(Class(:Location ) ) 

Declaration(Class(:SpatialReference) 

SubClassOf(:GeoObject, :SpatialReference) 

SubClassOf(:GeoIdentifier, :SpatialReference) 

ObjectProperty(:locates) 

ObjectPropertyAssertion(:locates, :SpatialReference, :Location) 

InverseObjectProperty( :locates :locatedBy) 

A Person has a relationship to a Location through an OWL object 
property occupies and its inverse hasOccupant.   The two axioms,  

ObjectPropertyAssertion( :occupies :Person,  :Location ) 

InverseObjectProperty( :occupies :hasOccupant) 

allow us to deduce that when arbitrary Person A and Location B, 
are linked by the occupies property, that B and A are interlinked 
by the hasOccupant property. A Structural Location is a subclass 
of Location, which defines a human constructed and physically 
bounded space. Structural locations define confined indoor spaces 
that can have different types of daily exposure risks for a person 
than unbounded geographic locations. A Structural Location is 
subclassed to types of structures that include Residence, 
SchoolBuilding and Workplace. The PEH ontology represents  

explicit semantics for relationships between Person and these 
Structural Location subclasses. These relationships are 
subproperties that specialize the general occupies property 
between Person and Location. For example, a Person has the 
specific relationship livesAt with the Structural Location subclass 
Residence.  

A Residence entity is defined conceptually as a building used as a 
home or dwelling. It is the place where a person lives on a 
permanent basis for some interval of time as distinguished from a 
place of temporary settlement. A person may have many livesAt 
relationships with class Residence as needed to model their 
residential history. Each of these relationships is associated with a 
time interval indicating the period of residency. Treating the 

concept of ‘residency’ as a relationship provides semantic 
flexibility as it can have a specialized inverse. The hasResident 
subproperty specifies the relationship of Residence to Person and 
represents an occupant tenure point of view of a residence.  The 
relationships between person livesAt residence, and its inverse 
hasResident allow for inferences about instances such that if a 
livesAt b we can infer that b hasResident a. The inverse 
relationship shares the same temporal duration as its inverse.  
 
In a similar manner, a Workplace is defined as a structure where a 
person participates in labor activities for wages and is the physical 
space where a person’s place of business or other wage paying 
organization exists. A Person is related to a Workplace through 
the property, worksAt which captures the perspective of the 
person. The inverse property, hasEmployee captures the 
perspective of the workplace. A home-based location of a self-
employed person can be accommodated as a person can have both 
the relationship worksAt and livesAt with Residence.  A person 
can have multiple worksAt relationships with Structural 
Locations, which in the aggregate, describe a person’s 
employment location history. Likewise, a SchoolBuilding is a 
structural location that contains an institution/organization that 
provides instruction and where a person engages in classes or 
educational activities. While a collection of school buildings can 
be viewed as a campus, this entity represents a single building 
occupying a bounded spatial region. A person has a specialized 
relationship with SchoolBuidling through the object property 
attends only if they are enrolled in classes at the SchoolBuilding. 
School staff would not be identified with this relationship as they 
have a worksAt relationship with the structure. A home-based 
private educational program can be accommodated as a person 
may have a relationship, homeschoolsAt with Residence. A 
selected set of axioms for these classes and relationships would 
include: 

SubClassOf(:StructuralLocation :Location)  

SubClassOf( :Residence, : StructuralLocation) 

SubClassOf(:School, : StructuralLocation)  

SubClassOf(: Workplace, : StructuralLocation)  

SubPropertyOf(: livesAt, : occupies) 

SubPropertyOf(: worksAt, : occupies) 

SubPropertyOf(: attends : occupies) 

InverseObjectProperty( :livesAt :hasResident) 

ObjectPropertyAssertion(:livesAt :Person, :Residence) 

ObjectPropertyAssertion(:homeSchoolsAt :Person, :Residence) 

ObjectPropertyAssertion(:worksAt :Person, :Residence) 

ObjectPropertyAssertion(:attends:Person, :School) 

ObjectPropertyAssertion(:workAts:Person, :Workplace) 

The third key class is Agent. An Agent is a subclass of  Cohen-
Hubal’s Stressor entity responsible for creating both an 
Environmental Event and  a Noteworthy Toxic Event. A 
Noteworthy Toxic Event (NTE) occurs when an Agent of interest 
exceeds a user defined threshold for a specific interval of time.   

Declaration(Class( a:Agent) )  

SubClassOf(:Agent :Stressor)  

Declaration(Class( :EnvironmentalEvent)) 
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SubClassOf( :EnvironmentalEvent, :SpatialOccurent) 

SubClassOf(:NTE : EnvironmentalEvent) 

An NTE is established by the detection of the presence (or 
absence) of a toxin as a binary value, or when a sensor reports a 
value that exceeds (or falls below) an established safety threshold 
or health standard. An NTE is a subclass of Environmental Event. 
Environmental Events represent a significant change in a value 
measured by one or more sensor nodes. For example, a significant 
increase or decrease of arsenic in well water between two 
sampling dates would qualify as an Environmental Event. This 
Environmental Event becomes an arsenic NTE if the arsenic level 
in the well exceeds a specified maximum contaminant limit 
(MCL).  Agents are linked to Environmental Events and NTEs 
through the hasAgent relationship and its inverse, agentOf such 
that: 

ObjectPropertyAssertion(:agentOf, :Agent, :EnvironmentalEvent) 

InverseObjectProperty( :agentOf, :hasAgent) 

In this work, Environmental Events and NTEs may be detected 
and extracted explicitly from a sensor data stream. An 
Environmental Event or NTE might represent an event in a data 
stream associated with an air-based agent (e.g. carbon monoxide), 
a water based agent (e.g. arsenic), or a soil-based agent (e.g. 
dioxin or pesticide). To indicate sources pathways for 
Environmental Events and NTEs, these events have a relationship 
hasSourcePathway to a Pathway. These events as subclasses of a 
Spatial Occurrent inherit the occursAt relationship to a spatial 
setting and by definition as an event they have a temporal setting. 
An Environmental Event and NTE share the location of a sensor 
platform which provides their spatial setting.  An instance of a 
Spatial Occurent, and by extension an Environmental Event or 
NTE, can occur at only one location and time. The occursAt 
relationship is therefore modeled by the functional object 
property. This relationship between an event and a location has an 
associated temporal interval. In the case of an NTE, the associated 
temporal interval indicates the period during which an Agent 
exceeded recommended concentration levels. The inverse of 
occursAt is not a functional property as a Location can be 
associated with many NTEs that have occurred over time and may 
be generated by the same or different Agent. The experiences 
property between a Location and a Spatial Occurrent, 
Environmental Event or NTE is defined as the inverse of occursAt 
but not as a functional property such that: 

FunctionalObjectPropertyAssertion(:occurAts,:SpatialOccurent 
:Location) 

InverseObjectProperty( :occursAt, :experiences) 

ObjectPropertyAssertion(:experiences,:Location, 
:SpatialOccurent) 

As a subclassOf property, any event in the Spatial Occurent 
hierarchy inherits the occursAt relationship to a location. This 
relationship is not specialized by location subclasses thus any 
Spatial Occurrent and by extension an Environmental Event or 
NTE can have an occursAt relationship with any location in the 
Location class hierarchy.  Given the axioms:  

ObjectPropertyAssertion(:occursAt,:NTE, :Location) 

InverseObjectProperty( :occursAt, :experiences) 

Declaration (Named Individual ( :NTE211) )  

Declaration (Named Individual ( :B34) )  

ClassAssertion (:Location, :B34) 

ClassAssertion (:NTE, :NTE211) 

an instance of the relationship NTE211 occursAt B34, it can be 
inferred that B34 experiences NTE211. 

Environmental events and NTEs form a set of events for a specific 
location that, when aggregated, define the concept of a location’s 
environmental profile. Exposure risks at a particular location can 
be evaluated by specific types of toxic agents (e.g. carbon 
monoxide). We might find that a particular location had multiple 
toxic agents above the recommended threshold levels at the same 
time or low level concentrations over long intervals of time. This 
type of framework allows detection at a specific location during a 
defined interval of time. For example, this approach would be able 
to represent complex situations where several agents in the air (i.e. 
ozone and particulate matter) may have reached unhealthy levels 
at the same time as arsenic was measured above the threshold in 
the drinking water and dioxin presented a high level of risk in the 
location’s soil. 

4.4 Exposure Events 
The previous sections described relationships between entities 
which allow for the representation of person-location events and 
NTE-location events. An Exposure Event is defined as an instance 
of contact between a NTE and a Person in time and space. In this 
ontology, a putative exposure event occurs if and only if a 
person’s location event intersects in space and time with a NTE. A 
putative exposure event is discovered by matching the locations of 
person-location relationships with locations at which NTEs 
occurred and determining if the temporal intervals of these events 
intersect. If an intersection is discovered, an Exposure Event is 
created with location determined by the shared location of Person 
and NTE and the time period defined by the interval of temporal 
overlap. For example consider the following facts for instances of 
Person and NTE: 

ObjectPropertyAssertion(:livesAt, :Person101, :Residence22) 

[January 20, 1984 : December 20, 1990].  

ObjectPropertyAssertion(:experiences,:Residence22, 
:NTE12387)[September 12, 1988: January 27 1991] 

In this scenario, Person101 lives at Residence 22 from January 
1984 to December 1990. An NTE occurs at Residence 22 from 
September, 1988 through January 27th 1991. The temporal 
intervals associated with the relationships overlap according to 
Allen’s interval relations [2]. Given the presence of an overlap 
relation, an inference can be made that a putative exposure event 
has occurred. Such an exposure event is represented in the 
ontology through the relationship exposedTo between a Person 
and an NTE along with an explicit inverse of an NTE hasExposed 
a Person. An Exposure Event as a subclass of Spatial Occurrent 
inherits the occursAt relation to the shared location. The duration 
of this exposure is the intersection of the location-person 
relationship’s temporal interval and the NTE temporal interval, 
such that:  

ObjectPropertyAssertion(:exposedTo, :Person101, :NTE123872) 

[September 12, 1988 : December 20, 1990].  

5.0 The RDF Store 
The ontology was created in Protégé (v.3.4) [43], converted to 
ntriples and imported into an Allegrograph (v.3.2 ) RDF store [2]. 
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The ontology essentially serves as a schema for the RDF store. 
Relationships specified by the ontology (e.g livesAt,) directly 
correspond to RDF properties connecting subject and object. In 
the ontology, certain relationships are characterized as having a 
temporal interval indicating the duration for which the 
relationship holds. Following work described in Perry [38] and 
Gutierrez et al. [20], temporal information is incorporated by 
labeling relationship instances with their valid times. These time 
intervals are grounded within a discrete, linearly ordered timeline. 
A temporal context is established for a relationship through RDF 
reification. The RDF reification construct allows one to make 
statements about statements.  In this case, a statement asserts that 
a given RDF statement has a valid time. The temporal structure 
for representing the valid time of an RDF statement employs 
many concepts and relations from the OWL-Time ontology [23].  

6.0 Using SPARQL on the PEH 
Once populated with data from various sources, the resulting RDF 
store can be queried. SPARQL is the W3C standard for querying 
RDF data [49]. A SPARQL query is comprised of the following 
elements: 1) prefix declarations for abbreviating URIs, 2) dataset 
definitions that state what RDF graph is being queried, 3) a result 
clause that identifies what information to return from the query, 4) 
a query pattern that specifies what to query in the underlying 
graph dataset, and in some cases 5) query modifiers for slicing, 
ordering, and rearranging query results. The results of SPARQL 
queries can be returned in a number of formats including: XML, 
JSON, RDF, and HTML. A simple SPARQL query example that 
returns all persons (subject) and names (objects) connected by the 
property/relationship (lastName) is as follows: 

 
SELECT ?Person ?name 
WHERE { ?Person exposure:lastName ?name} 

 

To explore a set of person-location relationship instances 
(residence locations) for a single individual along with associated 
temporal context (residence tenure) for a specific instance of 
location, the natural language expression might be phrased “How 
long did person p reside at location l? (Person 8, Residence 10).  

The SPARQL query result provides a conceptual building block 
visualized as an RDF graph (Figure 3) using Allegrograph (v. 3.2) 
and Gruff (v.1.4.1) [2][19].  

 
Figure 3.  Instance of person-residence relationship 
 
An example of a full residence history query for a specific 
instance of person, “Where are the locations person p has 

resided?” would translate into the following SPARQL query and 
resulting graph (Figure 4). 

 
SELECT ?Person ?Residence  
WHERE {?Person <exposure:PID> "P008”. 
                 ?Person <exposure:livesAt> ?Residence} 

 
Figure 4. Person-location history (residence with tenure)  

These query examples use person-residence relationships but any 
other person-location relationship (work or school) would provide 
the same type of information. Although person-person 
relationships are not explicitly represented in this preliminary 
stage of the ontology, researchers may also want to explore 
relationships between people and the locations they may have in 
common.  For example, the user might want to know what people 
might have relationships to one another as occupants of a 
residence at any interval in time or what schools did members of 
the same family attend. These types of person-person 
relationships can be explicitly added to the framework later 
depending on the availability of the data and the needs of the user. 
Similarly, relationships between environmental events, NTEs and 
locations can be explored. Within the domain of exposure science, 
users will be particularly interested in detecting when toxic agents 
have been measured above a certain threshold by sensors at 
associated locations. The set of these NTE events for a single 
location can be thought of as a location’s toxic event profile. An 
agent can also be queried by the locations where it is present at 
user specified levels (Figure 5).  

              
Figure 5.  Instance of location-NTE relationship 
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Researchers need to determine if people have come into contact 
with toxic agents in order to investigate the health related 
outcomes of those interactions. In the PEH, a single intersection 
of a person-location event and an NTE is represented as an 
Exposure Event (Figure 6). These person-toxic event relationships 
form the basis for inferences about a person’s contact with toxic 
agents in single events.  
 

  
Figure 6. Instance of single exposure event 

Ultimately, the knowledgebase needs to represent the aggregate of 
all exposure events for a specific instance of person thus 
presenting a researcher with a PEH for a single individual (Figure 
7). The results provide the user with information on the person’s 
exposure to a number of different toxic agents at different 
locations along with the temporal context of the exposure periods. 
Personal exposure histories, like other aggregate concepts (i.e. 
person-location history and location environmental profile), can 
be generated from this type of query and then added as new RDF 
statements to update the knowledgebase with this derived 
information for later use and modeling.   

 
 Figure 7: PEH for single individual                                                                                                                          

7. CONCLUSIONS 
This preliminary work on the PEH ontology is intended to provide 
a conceptual framework for the identification of event-event 
intersections between data on human mobility over long intervals 
of time and environmental event data at specific locations. The 
primary purpose of the ontology is to define important concepts 
and relationships that contribute to an individual level exposure 
history. Concepts in the framework are developed based on the 
supposition that people have specific relationships with locations 

(residency, employment, attendance) that convey more specific 
semantics about individual’s differing behaviors and associations 
with these locations.  These explicit spatio-temporal event-event 
relationships can provide critical information for the modeling of 
toxic exposures of individuals to environmental health risks from 
multiple sources. The RDF store developed from the ontology 
allows for direct queries on these relationships using the SPARQL 
query language.  
This framework provides semantic clarity about the specific type 
of relationship a person has with an associated location and the 
types of behaviors that can be inferred from that relationship (i.e. 
sleeping, showering, eating, drinking, working, etc.). This 
increased inference capacity has implications for understanding 
what an individual’s exposure risks might be in one setting over 
another depending on the relationships between a person and the 
location. The capacity to represent exposure risk over time for 
individuals also presents the opportunity to aggregate common 
locations among groups of people based on shared relationships 
with locations in their past (i.e. shared residence, shared 
workplace, school building cohort). It then becomes possible to 
identify and model risk groups based on their relationships to 
specific locations.   

This ontology based approach links people with locations through 
a specific relationship to those locations within a valid temporal 
context. It provides a novel way to evaluate environmental health 
risks beyond the traditional person to location layer approach used 
in many existing health information systems. The design 
explicitly allows for expansion and incorporation of additional 
ontologies representing sensor networks, toxic agent-genetic 
interactions, and other related medical or environmental health 
knowledgebases. Future work will include a data driven 
evaluation process to test inference and query performance with a 
variety of data (i.e. tumor registry data, genetic profiles, school 
enrollment registries, sensor network data). This process will also 
identify and address potential issues that might arise with various 
user roles [8]. The integration of diverse data sources raises an 
important limitation of this preliminary work regarding the 
evaluation of data quality and the ways in which users might more 
clearly weight data based on source reliability and uncertainty 
measures. Likewise, this preliminary framework does not yet 
account for critical bioinformatics issues such as accounting for 
data provenance. However, this approach does have the potential 
to provide health researchers with an efficient and cost saving 
solution for the widespread problems associated with the 
integration and analysis large and diverse datasets and presents 
structures to evaluate and model toxic exposures at the individual 
level over space and time.  
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