
Information and Software Technology 53 (2011) 307–316
Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof
Pattern-based framework for modularized software development
and evolution robustness

Chih-Hung Chang a,⇑, Chih-Wei Lu a, Pao-Ann Hsiung b,1

a Department of Information Management, Hsiuping Institute of Technology, No. 11, Gongye Rd., Dali City, Taichung County, Taiwan, ROC
b Department of Computer Science and Information Engineering, National Chung Cheng University, No. 168, University Rd., Min-Hsiung, Chia-Yi, Taiwan, ROC

a r t i c l e i n f o
Article history:
Available online 23 November 2010

Keywords:
Software standardization and integration
Evolution robustness
Design pattern
Framework
0950-5849/$ - see front matter Crown Copyright � 2
doi:10.1016/j.infsof.2010.11.006

⇑ Corresponding author. Tel.: +886 4 2496
24961100x3000.

E-mail addresses: chchang@hit.edu.tw (C.-H. Cha
Lu), pahsiung@cs.ccu.edu.tw (P.-A. Hsiung).

1 Tel.: +886 5 272 0411x33119.
a b s t r a c t

Context: Software development is now facing much more challenges than ever before due to the intrinsic
high complexity and the increasing demands of the quick-service-ready paradigm.
Objective: As the developers are now called for more quality software systems from the industries, there
is insufficient guidance from the methodologies and standards of software engineering that can provide
assistance to the rapid development of qualified business software.
Method: In this work, we discuss the advantages of the pattern-based software development. We verify
the benefits using a pattern-based software framework called OS2F, and a corresponding system design
architecture that is intended for the rapid development of web applications.
Results: The objective of the framework/architecture is that, through software patterns, developers
should be able to separate the work of system development from the business rules so as to reduce
the problems caused by a developer’s lack of business experiences.
Conclusion: Through a suitable pattern-based software framework, the quality of the product can thus be
enhanced, software development time and cost decreased, and software evolution robustness improved.

Crown Copyright � 2010 Published by Elsevier B.V. All rights reserved.
1. New demand of modern software and old challenge to legacy
system

Software systems now face much more challenges than ever be-
fore due to the intrinsic high complexity of systems and the increas-
ing demands from organizations. Moreover, customers now demand
shorter and shorter time-to-market. For instance, due to the devel-
opment and maturation of WWW and Java [42] technologies in
the recent years, it becomes a noticeable trend that many services
are now web-based or applications are all internet-related. New
requirements emerge that modern software projects, like web-
based applications, can no more be satisfied by just delivering qual-
ified packages to fulfill the first-round requirements of the contract.
As a result, rapid development with rigid discipline seems to become
one of the significant characteristics under the ignited spot lights.

In contrast, such a quick-down time-to-market or rapid
development demand does not mean that the corresponding
system’s life time should be unexpectedly shortened. Once a
software system is adopted and put on the fire line, it becomes a
010 Published by Elsevier B.V. All

1123x3112; fax: +886 4

ng), cwlu@hit.edu.tw (C.-W.
‘‘legacy’’ [38]. Organizations rely on these legacy systems to pro-
vide critical information and support daily business operations.
In fact, software systems are now apparently business-critical for
modern industries. Companies rely more and more on the services
of software, and sometimes trivial failures of the services could
cause serious consequences to damage business activities and
company properties. Thus any change to a legacy system would
be treated chill and criticized. However, from the point that a busi-
ness system is arranged onto the line and starts running, software
has to be changed for necessary fixing/improvement issues or
hardware/environment shifts. Software evolution is an unavoid-
able phase of the software life cycle. Enterprises have no choice
but to invest manpower and money in software maintenance and
evolution which, later proves itself, is regularly much more costly
than the precedent development work.

Even many legacy systems were designed in a traditional way
with an inflexible architecture, it is a hard choice for the organiza-
tions either to step in and fix it or to give up the legacy investment
and start a new one. Due to the rapid development of web applica-
tions, in case of improper representations or designs, they would
be very difficult to understand and maintain. That makes the activ-
ities of software maintenance or software evolution to become
costly. For the necessary evolution, it seems to leave very little
choices to the customers, thus encouraging users to abandon their
legacy systems. Such a circumstance just likely leads the customers
rights reserved.

http://dx.doi.org/10.1016/j.infsof.2010.11.006
mailto:chchang@hit.edu.tw
mailto:cwlu@hit.edu.tw
mailto:pahsiung@cs.ccu.edu.tw
http://dx.doi.org/10.1016/j.infsof.2010.11.006
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof


308 C.-H. Chang et al. / Information and Software Technology 53 (2011) 307–316
to meet dead ends at both sides. Consequently, the risk along with
the cost grow bigger and bigger and finally go into a vicious circle.

Probing into the causes of the problem, traditionally the objec-
tive of software analysis and design of the software development
activities is to find out and match up the user requirements. Under
the pressure of quick-down time-to-market, if there is no suitable
toolset or methodology, developer cannot analyze and design the
system carefully. Mostly programmers would only have time to
finish the system with meeting the user’s first-round require-
ments. Meanwhile, software systems usually involve teamwork.
However, most systems are developed in an ad hoc manner with
very limited standard enforcement, which makes the software
development and evolution even more difficult and costly.

To deal with the problem, one of the most likely solutions is to
extend software development lifecycle by not only meeting with
the first-round user requirements, but also by taking care of the
flexibility and scalability for software evolution robustness seri-
ously from the beginning. To develop a flexible software system,
adopting a practical software standardization and integration is
the essential key, and accordingly, a solid and easy software archi-
tecture for low-cost evolution should be the major factor to meet
the needs for a modern software project.

Regarding the modern software trend of fast-development and
evolution robustness, many standardized software methods and
mechanisms have been proposed and advocated to improve soft-
ware productivity and to reduce the cost of maintenance. These in-
clude object-oriented (OO) technologies, standardization, and
frameworks and so on. For object-oriented technologies, the prop-
erty of inheritance allows software components to be reused,
which obviously can reduce the cost of software development,
such as Unified Modeling Language (UML) in object-oriented de-
sign (OOD) and component-based approaches in object-oriented
programming (OOP). For standardization, software standards, such
as design patterns (DPs), and commonly accepted standard mech-
anisms have been proposed and advocated to improve software
productivity and reduce the high cost of software. Design patterns
provide a clear concept of design structure by describing the rela-
tionships of inheritance and reference between components of the
system. However, programmers usually focus on code reuse while
ignoring design reuse. In short, these developing concepts may
facilitate the rapid development for new internet-related projects
like web applications. However, these very useful tools and con-
cepts still lack systematic organizations.

In this paper, we introduce a software pattern-based frame-
work, the Open Source Software Framework (OS2F), as well as,
the corresponding design architecture, which is intended for rapid
development of web applications. The objective of the framework/
architecture is that, through software patterns, developers should
be able to separate the work of development from the business
rules so as to reduce the problems caused by the developer’s lack
of business experience. With modularization and standardization,
it becomes easy for a system’s evolution robustness.

This paper is organized as follows. Section 2 gives an overview
about related software technologies. The pattern-based software
evolution architecture will be discussed in Section 3. Section 4
shows the experiments and the verification of the proposed ap-
proach. The conclusion is given in Section 5.
2. Background and related technologies for software
standardization and integration

2.1. Object-oriented technologies

Traditional software development usually leads to custom-
made systems, which have the significant advantage of being opti-
mally adapted to the user’s business models and therefore fulfill
most of the requirements of the in-house proprietary knowledge
or practices. But it also has severe disadvantage of high cost and
the limitation and dependence of individual expertise, which
would cause noticeable difficulty of maintenance and evolution.
Thus the necessity of object-oriented technology is revealed.

Object-oriented (OO) technology is a modern software method-
ology, which organizes data/code in ways that ‘‘echo’’ how things
appear, behave, and interact with each other in the real world.
OO technologies greatly influence software development and
maintenance through faster development, cost saving and quality
improvement [37,45].

In OO technologies, software component [38] is a portion of
software design/service that can actually be deployed, and be trea-
ted as an isolated part of a system. It is different from a software
object which almost would not be sold, bought, interchanged, or
deployed across different projects. Another way in which compo-
nent differs from object is that software components usually in-
volve more design issues such as different implementation
technologies, more complex functions, or even various languages/
designs with specific flow controls, i.e. design patterns. Although
‘‘component’’ and ‘‘object’’ are usually used interchangeably, when
we talk about reuse, we have to deal with them separately.

2.2. XML

XML [43] is the standard language supported by the World
Wide Web Consortium (W3C). XML has many useful features, such
as application neutrality (vender independence), user extensibility,
the ability to represent arbitrary and complex information, a vali-
dation scheme of data structure, and is human readable.

The design goals for XML [8] are:

� XML shall be straightforwardly usable over the internet.
� XML shall support a wide variety of applications.
� XML shall be compatible with SGML.
� It shall be easy to write programs which process XML

documents.
� The number of optional features in XML is to be kept to the

absolute minimum, ideally zero.
� XML documents should be human-legible and reasonably

clear.
� The XML design should be prepared quickly.
� The design of XML shall be formal and concise.
� XML documents shall be easy to create.
� Terseness in XML markup is of minimal importance.

XML is also found in certain forms when making data represen-
tations in different domain, such as ebXML [17] (Electronic Business
using eXtensible Markup Language). It is a modular suite of specifi-
cations that enables enterprises to conduct business over the inter-
net. VoiceXML [14,43] covers voice dialogs, speech synthesis,
speech recognition, telephony call control for voice browsers and
other requirements for interactive voice response applications,
including use by people with hearing or speaking impairments.
MathML [43] is a set of low-level specifications for describing math-
ematics as a basis for machine to machine communication. XML
provides both platforms for representation and integration of
development and application in the lifecycle of software
engineering.

2.3. Design patterns

In various domain applications, there are certain characteristic
problems inside the design activity that occur repeatedly. It is obvi-
ously important if we can make such knowledge explicit and pub-



C.-H. Chang et al. / Information and Software Technology 53 (2011) 307–316 309
licly available to other practitioners. The most important advan-
tage of doing so is that inexperienced designers can gain access
to a library of techniques that are immediately applicable, thus
making a good design last longer. This is especially critical for
the process of developing expertise in the relevant design tech-
nique. By the inheritance of object-oriented design technology, de-
sign patterns have become the major way of codifying the ways in
which expert designers tackle and solve particular commonly
occurring problems in design.

Design patterns (DPs) [16,18,27] are a series of familiar usages
and constructions utilized throughout system design. Design pat-
terns allow rapid coding of certain components by following cer-
tain patterns of steps. This can improve the documentation and
maintenance of existing systems by providing an explicit specifica-
tion of class, object interactions and their underlying intents. One
of the main purposes of design patterns is to help software engi-
neers to understand the common characteristics of software ob-
jects/components in specialized domain.

Patterns facilitate reuse of well-established solutions when
known problems are encountered. They support higher abstraction
levels than traditional object-oriented individual classes and in-
stances [16]. Alexander et al. [1] discussed the pattern: ‘‘Each pat-
tern describes a problem which occurs over and over again in our
environment, and then describes the core of the solution to that
problem, in such a way that you can use this solution a million
times over, without ever doing it the same way twice’’.

Most design patterns contain generic structures/behaviors,
which need to be adapted to different applications. Each applica-
tion may involve more than one design pattern at different levels
of the system. Current adaptation and integration of design pat-
terns are implemented manually. Cooper [13] showed how to
use DPs in object-oriented programming. Nguyen [34] imple-
mented data structures, like binary search tree and linked list,
using design patterns. Riehle [36] used class diagrams and role dia-
grams to help designers focus on the collaborations and distribu-
tion of objects using DPs.
2.4. Framework

Framework is another remarkable software technology that
embraces both component reuse and design reuse. Any domain
software developed on existing architecture will have high reus-
ability if designed with a framework in mind [33]. Framework
[7,31,39] is a set of abstract and concrete classes that collaborate
with each other, and contain their interface definition of instances
[10]. These classes are constructed as reusable components for
some domain. Designers can inherit from these instances of classes
to create new ones. Basically framework provides an environment
to support all activities involved in software development.

However, when we attempt to create a composite of different
frameworks we may run into some problems. Mattsson and Bosch
[30] proposed to apply existing design patterns as a solution to
these problems.

Applying framework and design patterns to develop systems
have increased our work efficiency. Framework is usually used
on problems within a specific domain, while design patterns are
used to solve general problems. If we can find the design pattern
that fits our requirement, we can apply design patterns to any
application domain, making design patterns more general than
framework.

Jacobsen et al. [23] proposed that if we can use patterns in the
analysis, design, and implementation phases of system develop-
ment, we can develop system that follow the characteristics of de-
sign patterns, which can reduce the effort of checking consistency
between the phases.
In recent years, web applications as well as the related require-
ments have grown quickly. Many software framework technolo-
gies that can be applied to corresponding web applications were
proposed, such as Spring framework [24]. It is an open source
framework aiming to address and reduce the complexity of devel-
oping an enterprise application, which will be discussed more
lately.
2.5. Struts

Struts [3] is a part of the Apache Software Foundation project,
under Jakarta. Struts is a flexible Control Layer based on standard
technologies such as Java Servlets, JavaBeans, ResourceBundles,
and XML. The framework helps programmers create an extensible
development environment for your application, based on pub-
lished standards and proven design patterns.

Struts is based on a concept known as MVC. The term ‘‘MVC’’
originated with the SmallTalk Model–View–Controller framework.
Under MVC, an application is seen as three distinct parts. The prob-
lem domain is represented as the Model. The output to the users is
the View, and the input from the users is represented as Controller.
Struts is composed of a group of collaboration classes/components,
and the JSP tag lib servlet.

The struts framework provides several components that make
up the Control Layer of a MVC-style application. These include con-
troller components, servlets, developer-defined request handlers,
and several supporting objects.

The Struts taglib component provides direct support for the
View layer of an MVC application. Some of these tags access the
control-layer objects. Other taglibs, including JSTL, can be used
with the framework. Other presentation technologies, like Velocity
Templates and XSLT can also be used with the framework.

The model layer in an MVC application is often project-specific.
The framework is designed to make it easy to access the business-
end of your application, but leaves that part of the programming to
other products, such as JDBC, Enterprise Java Beans, etc.

2.6. Spring

Spring [24] is a layered Java/J2EE application framework, based
on code published in Expert One-on-One J2EE Design and Develop-
ment by Johnson [25].

As Johnson described [26], Spring is a powerful framework that
solves many common problems in J2EE. Spring provides a consis-
tent way of managing business objects, and encourages good prac-
tices such as programming to interfaces, rather than classes. The
architectural basis of Spring is an Inversion of Control (IoC) con-
tainer based around the use of JavaBean properties. However, this
is only a part of the overall picture: Spring is unique in that it uses
its IoC container as the basic building block in a comprehensive
solution that addresses all architectural tiers.

Spring provides the following features:

� A unique data access abstraction, including a simple and pro-
ductive JDBC framework that greatly improves productivity
and reduces the likelihood of errors. Spring’s data access archi-
tecture can also be integrated with TopLink, Hibernate, JDO and
other O/R mapping solutions.
� A unique transaction management abstraction, which enables a

consistent programming model over a variety of underlying
transaction technologies, such as JTA or JDBC.
� An AOP framework written in standard Java, which provides

declarative transaction management and other enterprise ser-
vices to be applied to POJOs or – if you wish – the ability to
implement your own custom aspects. This framework is power-



310 C.-H. Chang et al. / Information and Software Technology 53 (2011) 307–316
ful enough to enable many applications to dispense with the
complexity of EJB, while enjoying key services traditionally
associated with EJB.
� A powerful and flexible MVC web framework that is integrated

into the overall IoC container.

Spring consists of six well-defined modules, as shown in Fig. 1.
Each module (or component) of Spring can be standalone, or be
implemented with one or more other modules. The module func-
tions are described as follows.

(1) Core packaging: The Core provides the basic functions of the
Spring framework. The main component of core container is
BeanFactory, which is the realization of the factory model.
BeanFactory uses Inversion of Control (IoC) to make applica-
tion configuration, dependence norms and the actual appli-
cation code separate.

(2) AOP: the AOP module provides implementation of aspect-
oriented programming that fits with the AOP Alliance, such
as method-interceptors and point cuts. According to the con-
figuration manager function, Spring AOP module integrates
aspect-oriented programming into the Spring framework.
Therefore, it is easy to make any component in the Spring
framework to support AOP. Besides, Spring AOP module
can provide transaction management services so we do not
need to be dependent on EJB components. The transaction
management can be integrated with applications easily.

(3) DAO: The JDBC-abstraction layer provides a useful exception
control framework. It can be used to manage exception han-
dling and the output messages from databases built by dif-
ferent vendors. Exception control frameworks simplify
error handling, and decreases the amount of exception code
(for example, opening and closing the connection) that must
be written. Spring-oriented JDBC DAO complies with the
common abnormal level DAO framework.

(4) ORM: The ORM package provides integration layers for pop-
ular object-relational mapping APIs, including JPA [41], JDO
[40], Hibernate, SQL map and iBatis [4]. All of these follow
the Spring general norms and exception control frameworks.

(5) Web: The advantage of the Spring MVC Web framework is
that the view layer (JPS, HTML, or PDF) can be changed easily
and efficiently according to IoC and AOP functions. Further-
more, you can integrate them with your favorite Web
framework.
Fig. 1. The architecture of Spring framework.
(6) JEE: the JEE module contains JMX, JMS, JCS, EJB, Email and
several enterprise services. It uses abstract classes to encap-
sulate the services. It hides the complex details of system
logic and thus makes it easily usable by programmers.

2.7. Hibernate

Hibernate [21] is a solution for Object/Relational Mapping
(ORM) [20]. Hibernate is object/relational persistence and query
service. Hibernate lets users develop persistent classes following
object-oriented idiom – including association, inheritance, poly-
morphism, composition, and collections. In brief, the relationship
between objects and objects in Java is mapped to a relationship be-
tween tables and tables. Hibernate provides an automatic conver-
sion solution in the program process.

The features of Hibernate [21] are as following:

� Natural programming model – Hibernate supports natural OO
idiom; inheritance, polymorphism, composition and the Java
collections framework.
� Support for fine-grained object models – a rich variety of map-

pings for collections and dependent objects.
� No build-time bytecode enhancement – there’s no extra code

generation or bytecode processing steps in your build
procedure.
� Extreme scalability – Hibernate is extremely performant, has a

dual-layer cache architecture, and may be used in a cluster.
� The query options – Hibernate addresses both sides of the prob-

lem; not only how to get objects into the database, but also how
to get them out again.
� Support for ‘‘conversations’’ – Hibernate supports both long-

lived persistence contexts, detach/reattach of objects, and takes
care of optimistic locking automatically.
� Free/open source – Hibernate is licensed under the LGPL (Lesser

GNU Public License).

3. Pattern-based framework — a feasible solution for software
evolution robustness

Computer networks and the Internet related business activities
have become the main medium for enterprise-level software
deployment. The network operating environment now greatly
stretches the range of scalability, from a few users’ activities to
millions of simultaneous interactions. Scalability means ‘‘no
change in software and guarantee quality of service’’ as the number
of users and connections increases indefinitely. A scalable system
should be robust, reliable, flexible, and adaptable to changing con-
ditions, which is a key character of modern web applications. It in-
cludes the following features:

� Openness – able to integrate with various platforms and
systems.
� Extensibility – easy to extend its interface and applications.
� Maintainability – evolutionary with software/hardware

technologies.
� Modularity – easy to plug in or be integrated with other

components.
� Distribution – deployable to the Internet world.

As the new trend emerges, old big headstone is still unneglect.
In the past, companies have already spent a lot of money on busi-
ness software systems. Many of these old systems are still busi-
ness-critical. These legacy systems [38] need to be maintained
and evolved due to many factors, including error correction,
requirements change, business rules change, structural re-organi-
zation, etc. A fundamental problem in maintaining and evolving



C.-H. Chang et al. / Information and Software Technology 53 (2011) 307–316 311
legacy systems is to understand the subject system [32]. Evolving
legacy systems to scalable systems is expected that can greatly re-
duce the software cost and increase the performance of the essen-
tial systems. However, poor consideration from the beginning for
evolution robustness limits the effectiveness and efficiency of
changes to the legacy systems. For long term consideration, by
trading-off the fast-down new systems and the legacy values, a
proper framework, invoking efficiency pattern based technologies,
of software development from scratch for evolution robustness is
needed.

3.1. Advantages of pattern-based framework

Design patterns (DPs) [16] have integrated successful standard
design practices and expert experiences into a set of components
that exhibit known behaviors with better structures. Patterns facil-
itate reuse of well-established solutions when known problems are
encountered. They support higher abstraction levels of reuse than
traditional object-oriented individual classes and instances.

Design patterns usually provide a possible way to deal with
non-functional requirements since they provide solutions to satisfy
functional requirements, as well as, ‘‘better’’ solutions to meet non-
functional requirements [44].

Polymorphism is one of the design properties in QMOOD [5],
defined as the ability to substitute objects whose interfaces match
for one another at run-time. A system with polymorphism pos-
sesses better flexibility, extensibility and effectiveness.

Fig. 2 is an example of observer design pattern. In the left of the
figure is the original structure, and the right is the new structure
obtained by applying the Observer pattern. The subject object calls
the Observer object directly. After the transformation, two hierar-
chies are created, concrete observers are abstracted as a more gen-
eral class Observer, and the polymorphic methods update is added.
The prosperities of hierarchy, abstraction and polymorphism are
all positive, indicating the Observer pattern is an improver of the
three design properties.

Most polymorphism-improver design patterns are also hierar-
chy-improver and abstraction-improver. Hierarchy represents the
generalization–specialization concept in a design, when properly
Fig. 2. An example of Observer pattern.

Fig. 3. An example of
applied, can enhance a system’s functionality. Abstraction also rep-
resents the generalization–specification concept, but focus on the
average number of classes from which a class inherits information.
The Decorator pattern in Fig. 3 looks like a hierarchy-improver.
Fig. 3a is the original structure and Fig. 3b is the new structure ob-
tained by applying the Decorator pattern. After adapting the Deco-
rator pattern, the inheritance of system class hierarchies shown in
the class diagram is applied to extend functionality, which may
produce an explosion of subclasses to support every combination.
Such a design may have high degree of abstraction. A system with
abstraction may have better extensibility and effectiveness. When
we apply polymorphism to a pattern’s transformation, a new hier-
archy is established and the abstraction increases consequentially.

A pattern with hierarchical structure does not imply it is a hier-
archy- or abstraction-improver. For example, the Decorator pattern
looks like a hierarchy-improver. It is also to provide a flexible
structure for extending responsibilities without defining too many
subclasses. Decorator is actually a complexity-improver since it
can reduce the number of classes and methods.

Fig. 4 illustrates the structure of the Adapter pattern. Using the
adapter pattern, we can increase the reusability of the system. Pro-
grammers can use a class that class a method through an interface,
and does not implement. As Gamma et al. [16] described, the Adap-
ter pattern is applied when use the Adapter pattern when:

� User wants to use an existing class, and its interface does not
match the one user’s need.
� User wants to create a reusable class that cooperates with unre-

lated or unforeseen classes, that is, classes that do not necessar-
ily have compatible interfaces, and
� user needs to use several existing subclasses, but it is impracti-

cal to adapt their interface by subclassing every one. An object
adapter can adapt the interface of its parent class.

As discussed in Hsueh et al. approach [22], after system adapt-
ing pattern, the quality of system will be improved.

In most researches on pattern-based engineering, DPs play a
partial supporting role during the development process. Due to a
lack of global consideration, DPs at present can only offer limited
assistance within system re-engineering. We suggest that DPs
not only should be treated as an assistant wizard on the data-level,
code-level, and design-level, but also they should be extended to
the architecture-level. For instance, the Model/View/Controller
(MVC) triad of classes [28] is used to build user interfaces in Small-
talk-80. The MVC model can be referred to as a high-level DP to
handle the similar problem domain dealing with multiple views
applications.

In short, design patterns integrate successful standard design
practices and expert experiences into a set of components that ex-
hibit known behaviors, but with better structures. Design patterns
are considered to be one of the most forward-looking methods for
Decorator pattern.



Fig. 4. The structure of Adapter pattern.

Fig. 5. The system framework of OS2F.

312 C.-H. Chang et al. / Information and Software Technology 53 (2011) 307–316
modern system analysis and design [29]. Design patterns aim to
make it easier for designers to reuse well-known and successful
designs and architecture from expert experience. It also helps pro-
grammers to choose design alternatives that make a system reus-
able and avoid alternatives that compromise reusability.

3.2. Problems of pattern-based framework

While verifying the usage of pattern-based framework, several
practical problems should be addressed in advance. In our previous
research [11], some problems of pattern-based re-engineering
were discussed. To promote the application into pattern-based
framework, problems should be clarified for pattern-based soft-
ware development and evolution.

3.2.1. The representation and classification of patterns
Properly documenting, representing and classifying design pat-

terns can improve the effectiveness of their usages. In 1992, Coad
[12] stated seven patterns applied in OOA and OOD. Gamma
et al. [16] collected 23 design patterns and categorized these pat-
terns into three classes: Creational Patterns, Structural Patterns
and Behavioral Patterns. Their works provide a very handy refer-
ence book for software designers, particularly for the beginners.

3.2.2. The retrieval of patterns
The effectiveness of retrieving design patterns is strongly re-

lated to their representation and classification. Unfortunately, not
many researches have been focused on this area. The retrieval of
design pattern involves the selection of a set of components, which
is much more complicated than the traditional software compo-
nents retrieval. This is another issue which we do not discuss in
this paper.

3.2.3. The adaptation and integration of patterns
Most of design patterns contain generic structures/behavior

that need to be adapted to different applications. Each application
may involve more than one design pattern at different levels of the
system. Each application may involve more than one design pat-
tern at different levels of the system. Most of approaches to solve
the problems of the adaptation and integration of design patterns
are manual approaches.

3.2.4. The higher-level patterns
In most researches for pattern-based engineering, DPs only play

a partial supporting role in the development process. It is sug-
gested that DPs not only should be treated as an assistant wizard
on the data-level, code-level, and design-level, but also should be
extended to the architecture-level. For instance, the Model/View/
Controller (MVC) triad of classes is used to build user interfaces
in Smalltalk-80 [28]. The MVC model is a framework that contains
high-level DPs that handle the similar problem domain dealing
with multiple views applications.

As the advantages and problems discussed above, adapting
proper architecture/framework to facilitate and integrate the usage
of patterns to a key issue for system fast-development and evolu-
tion robustness. To verify the feasibility and capability of the con-
cept, we design a prototype of the pattern-based framework with
some common patterns, which is applied to the domain of web-
based applications development. The design and the verification
are discussed in the following section.
4. OS2F, an experiment of pattern-based framework design and
verification

In this section, we should verify the benefits of pattern-based
framework through a series of experimental studies. We has de-
signed a pattern-based framework, named the Open Source Soft-
ware Framework (OS2F), which is a system framework as well as
a design architecture based on the concept and open source tech-
nologies described in Section 2.

4.1. System framework of OS2F

As the description in Section 2, Struts is a powerful framework
to help programmers create a development environment for vari-
ous functional modules extension. Hibernate is an ORM solution
for database access. Spring plays a role of coordinator between
user-end and system-end message exchanges. OS2F is proposed
to integrate these open source technologies, as shown in Fig. 5.

Practically, OS2F Presentation Layer is responsible for the ser-
vices of user interface interactions, which on the back-end are con-
trolled by the Control Layer. Business Layer then supports the
integration of the system functional logics. At last, in Data Access
Layer, Hibernate ORM offers more efficient access to the database.
We use Struts in Presentation Layer and Control Layer to provide
View and Control features of MVC system pattern into the user
interface implementation. The corresponding Model feature is
afterward adopted with the following open source integration
framework which is provided by Spring in the Business Layer. With
Spring’s IoC decoupling feature of the execution of a certain task
from implementation, developers can finally focus more on the



Fig. 6. System integration model of OS2F.

C.-H. Chang et al. / Information and Software Technology 53 (2011) 307–316 313
work of control and flow design, rather than on the complex of
business rules and the variety of programming languages. We
use XML as the representation for message exchange and objects
Fig. 7. System implem
mapping among different layers. For implementation practices,
we employ appfuse [35] to complete the task for the open source
technologies integration.

Fig. 6 shows OS2F with another viewpoint of system integration
model. The Spring framework serves as core of the architecture. It
consists of AOP, ORM, DAO and Core from the Spring infrastructure
class libraries. It is a limpid architecture with a bridge-like feature
between the front-end web page design and the corresponding
back-end Hibernate information exchange to database. This frame-
work is now implemented and operated under a Servlet Container,
the most common being Apache Tomcat [2]. Other well-known
Servlet containers may be adopted as needed by a user.

According to the Spring framework characters of Bean Factory
and IoC (described in Section 2.6), OS2F to separate work of devel-
opment from business rules. The implementation deals only with
the business logic (and DAO interaction). It does not have knowl-
edge of infrastructure services.

The Spring BeanFactory represents a class that manages the life
cycle of singleton services (among other things). These services are
injected with dependencies using Inversion of Control (IoC). Ser-
vices that depend on external resources are ‘‘told’’ what those
dependencies are instead of ‘‘getting’’ them using the Service Loca-
tor pattern. The injection of dependents is achieved either via a
constructor or setter injection. The JavaBean that represents the
service has a ‘‘set’’ method that accepts the dependant (setter
injection) or it has a constructor that accepts the dependent object
entation process.



Fig. 8. MVC UI view of Project-A.

Fig. 9. MVC control view of Project-A.

Table 1
The system developing cost with/without OS2F.

Case-A1 Case-A2 Case-B1 Case-B2

Manpower 2 2 6 6
Line of code 28,700 32,500 86,500 98,700
Days 87 98 57 88

Table 2
A comparison between Struts and JSP in the experiment.

Struts JSP

Collaborative development 4.5 1.5
Maintenance 4.6 1.5
Reusability 4.7 1.4
The time of study 1.5 4.3

314 C.-H. Chang et al. / Information and Software Technology 53 (2011) 307–316
(constructor injection). Using an XML configuration file, the service
object is configured with its dependent objects using either of
these two mechanisms. There can be one or more bean factories
in an application. Bean factories can be overlaid, such that there
is one for production but it is overlaid by the one for development.
The bean factory is accessed by the Presentation Layer to access
services offered by the application.

For OS2F, there are four design patterns in our approaches, MVC
Pattern, Observer Pattern, Decorator and Adapter Pattern. The MVC
pattern provides rich functionality for building robust Web Appli-
cations and it is available as a separate module in the Distribution.
The Observer Pattern is also known as a publisher and subscriber
design pattern. This pattern is useful when we have one publisher
and many subscribers (one-to-many) that are interested in the
publisher’s state or messages. Additionally, interested subscribers
have the ability to register and unregister as they please. Lastly,
subscribers are notified of the publisher’s messages automatically
(that is, by no effort of their own). Decorator and Adapter Pattern
including Spring AOP, Dynamic Proxy and Aspect oriented which
those patterns by providing another way of thinking about pro-
gram structure.
4.2. Experiment

In this section, we demonstrate the related experiments to val-
idate the usability and effectiveness of OS2F. The process flows of
the experiment are shown in Fig. 7. The left part of the figure
shows the processes of the experimented projects which adopt
OS2F; on the right it shows the processes of the projects in tradi-
tional ways.

In order to validate the usability and effectiveness of OS2F, we
apply OS2F for two real business projects development and imple-
mentation. The first project is an ERP system (a book logistic sys-
tem, called Project-A later). Project-A is a medium-size case
consisting of 33 tables. The second project is a GLM system (a Glo-



C.-H. Chang et al. / Information and Software Technology 53 (2011) 307–316 315
bal Logistics Management system for a textile factory, called Pro-
ject-B later). Project-B comes to a comparative larger case with
about 100 tables. To reveal the difference by adopting OS2F, each
project had been deployed to two separate development teams.
Team-1 would take advantage of OS2F and team-2 on the other
hand would do the work in that traditional way. Figs. 8 and 9 are
the MVC UI view and Control view from Case-A1’s works that go
with Project-A with OS2F, respectively.

Both of these projects’ database servers are Oracle 10 g, and the
web servers are Tomcat 5. The logging service we use is log4j [19],
the test case generate tool we used is JUnit API [6], and the integra-
tion development environment for both the projects is Eclipse 3
[15].

The requirements of the projects are proposed in advance. The
following steps describing details of the processes for the experi-
ment procedures recommended are also proposed to the experi-
ment teams so they can join and be observed from the scratch as
same as possible.

Step 1: Following the requirements proposed, analysis and
design system using UML.
Step 2: Setup the web server configuration.
Step 3: Implement project applications with/without adopting
OS2F as cases assignment.
Step 4: System verification and validation.

Table 1 shows the costs estimation of this experiment’s result.
Case-A1 and Case-B1 adopt OS2F to develop the systems. On the
other hand Case-A2 and Case-B2 develop systems without OS2F.
To understand the service/benefit of OS2F, we collected the three
kinds of questionnaires of eight project members; include compar-
ison between Struts and JSP, comparison between Hibernate and
JDBC, and comparison between OS2F and traditional web architec-
ture. Each item is given a score of 5–1, where five is excellent, four
is good, three is fair, two is improvement needed, and one is poor.

Table 2 is a score comparison between Struts 1.3.8 and JSP 2.0,
which refers to the work and response of the relevant UI develop-
ment. Table 3 is a comparison result between Hibernate 3 and JDBC
3.0, which refers to the difference about the database access de-
signs. Table 4 shows the comprehensive advantage/difference be-
tween the processes of OS2F and non-OS2F developments.

In these experiments, we use OS2F, as well as, non-OS2F ap-
proaches to implement web applications. The performance in Data
Table 3
A comparison between Hibernate 3 and JDBC 3.0 in the experiment.

Hibernate JDBC

Resource cost 2.5 3.5
Performance 4.4 1.6
Development time 4.7 2.5
The time of study 1.5 4.4

Table 4
A comparison between OS2F and non-OS2F developments.

OS2F Non-OS2F

Scalability 4.7 1.6
Modularization 4.6 1.7
Collaborative development 4.7 1.5
Maintenance 4.6 1.3
Integration 4.5 1.5
Flexibility 4.8 1.5
Performance 3.9 1.4
Reusability 4.7 1.4
Internationalization 4.8 1.6
Database resource cost 2.5 3.8
Data access performance 4.0 2.2
Access Layer with Hibernate technique is obviously much easier
than the work with JDBC/ODBC. Meanwhile, according the benefit
of Hibernate, the source code and database are separated by object
and HQL (Hibernate Query Language) [9]. It is not surprising that if
programmers need to modify database structure later, they only
need to modify hibernate mapping configure of corresponding
hbm.xml, the source code needs not be modify and it makes soft-
ware evolution much easier and more efficient. The similar scenar-
ios happen in Presentation Layer, Control Layer and Business
Layers are similar to data access layer. According to Struts and
Spring, the system structure is more modularized. These properties
make the target web application easier to collaborative develop-
ment, maintenance, and integration. The development/mainte-
nance cost can be therefore reduced.
5. Conclusion

Web applications of late have become high-spotted. Responding
to this need, a host of solutions are emerging, such as Struts, Spring
framework, and Hibernate, but most of them only benefit users
partially. In this article we discuss our proposal and the corre-
sponding experiences with the pattern-based framework OS2F
which integrates Struts, Spring framework, and Hibernate, as well
as, how OS2F can be used to make a web application more main-
tainable and better performing.

In this paper, we discuss the advantages of pattern-based frame-
work, and we use a pattern-based framework design to verify the
benefits of pattern. Software development using pattern-based lay-
ers and modular architecture is helpful to improve system flexibil-
ity and which is also easy to software evolution. In our experiments,
system development using pattern, that improves the issues of sys-
tem abstraction, hierarchy, and complexity. We integrate various
specific open source applications and frameworks into a moderate
framework OS2F, and a corresponding 4-layers software architec-
ture, to show how can a pattern-based architecture improve soft-
ware quality and system development/evolution efficiency. As the
experiment in Section 4, pattern-based framework could really
simplify the management of software hierarchy and therefore de-
crease the cost of the software. We also develop a GLM system
and integrate it with a legacy client–server system application to
verify the feasibility of services integration evolution. At the mean-
time, thanks to the clear-defined layers, all objects could be created
with the same rules; this standardization is helpful while involving
teamwork and collaborative development.

In the cases, we have also experimented on the usability and
estimated the effectiveness of OS2F. While developing a large
web application similar to our cases with OS2F architecture, we
could accomplish a well-organized system and reduce overall cost,
especially the upcoming evolution processes. Besides, the quality
of software development is guaranteed due to the rules and guide-
lines from the promised pattern-based frameworks.

In our up going works, a comprehensive toolset with the pat-
tern-based framework based on the experiment of OS2F should
be designed to get more verification in practical and sized project.

Acknowledgment

This research was supported in part by National Science Coun-
cil, Taiwan ROC, under Grant No. NSC97-2218-E-164-001.

References

[1] C. Alexander, S. Ishikawa, M. Silverstein, M. Jacobson, I. Fiksdahl-King, S.A.
Angel, A pattern language, Oxford University Press, New York, 1977.

[2] Apache Software Foundation, Apache Tomcat, Apache Software Foundation.
<http://tomcat.apache.org/> (accessed 12.05.07).

http://tomcat.apache.org/


316 C.-H. Chang et al. / Information and Software Technology 53 (2011) 307–316
[3] Apache Software Foundation, Apache Struts, Apache Software Foundation.
<http://struts.apache.org/1.3.9/userGuide/index.html> (accessed 15.07.07).

[4] Apache Software Foundation, iBATIS, Apache Software Foundation. <http://
ibatis.apache.org/> (accessed 20.04.09).

[5] J. Bansiya, C.G. Davis, A hierarchical model for object-oriented design
quality assessment, IEEE Transactions on Software Engineering 28 (1) (2002)
4–17.

[6] K. Beck, E. Gamma, D. Saff, JUnit 4.1. <http://www.junit.org/index.htm>
(accessed 12.03.07).

[7] B.H.L. Betlem, R.M. van Aggele, J. Bosch, J.E. Rijnsdorp, An object-oriented
framework for process operation, Technical Report, Department of Chemical
Technology, University of Twente, 1995.

[8] T. Bray, J. Paoli, C.M. Sperberg-McQueen, E. Maler, F. Yergeau, J. Cowan,
Extensible Markup Language (XML) 1.1, second ed., W3C, September 2006.
<http://www.w3.org/TR/2006/REC-xml11-20060816/> (accessed 12.04.07).

[9] H. Chauhan, Introducing HQL: the object-oriented query language from
Hibernate, WebMediaBrands. <http://www.developer.com/java/ent/
article.php/3322131> (accessed 20.04.09).

[10] D.J. Chen, T.K. Chen, An experimental study of using reusable software design
frameworks to achieve software reuse, Journal of Object-Oriented
Programming 7 (2) (1994) 56–67.

[11] C.W. Chu, C.W. Lu, C.H. Chang, Y.C. Chung, Pattern-based Re-engineering,
Handbook on Software Engineering and Knowledge Engineering, vol. I, World
Scientific Publishing, River Edge, NJ, 2001. pp. 767–786.

[12] P. Coad, Object-oriented patterns, Communication of ACM 35 (9) (1992) 152–
159.

[13] J.W. Cooper, Using design patterns, Communication of ACM 41 (6) (1998) 65–
68.

[14] J. Ding, Y. Huang, C.W. Chu, Video database techniques and video-on-demand,
Handbook of Distributed Multimedia Databases: Techniques and Application,
The Idea Group Publishing, Hershey, PA, 2001.

[15] Eclipse Foundation, Eclipse, The Eclipse Foundation. <http://www.eclipse.org/
> (accessed 12.04.07).

[16] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley, Reading MA, 1995.

[17] R.J. Glushko, J.M. Tenenbaum, B. Meltzer, An XML framework for agent-based
e-commerce, Communications of the ACM 42 (3) (1999) 106–114.

[18] M. Grand, Patterns in Java, second ed., vol. 1, Wiley Publishing, Indianapolis,
2002.

[19] C. Gülcü, Short introduction to log4j, Apache Software Foundation. <http://
logging.apache.org/log4j/1.2/manual.html> (accessed 20.04.09).

[20] T. Halpin, Object Role Modeling (ORM). <http://www.orm.net/> (accessed
20.04.09).

[21] Hibernate, Red Hat Middleware. <http://www.hibernate.org/> (accessed
12.04.07).

[22] N.L. Hsueh, P.H. Chu, C.W. Chu, A quantitative approach for evaluating the
quality of design patterns, Journal of Systems and Software 81 (2008) 1430–
1439.

[23] E.E. Jacobsen, B.B. Kristensen, P. Nowack, Patterns in the analysis, design and
implementation of frameworks, in: Proceedings of the 21st International
Computer Software and Applications Conference, IEEE Computer Society Press,
Silver Spring, MD, 1997, p. 344.

[24] R. Johnson, et al., The spring framework – reference documentation,
Interface21. <http://www.springframework.org/docs/reference/index.html>
(accessed 30.04.07).

[25] R. Johnson, Expert One-on-One J2EE Design and Development, Wrox Press,
Hoboken, NJ, 2002.

[26] R. Johnson, Introduction to the spring framework, May 2005. <http://
www.theserverside.com/tt/articles/article.tss?l=SpringFramework> (accessed
02.10.07).

[27] R.E. Johnson, B. Foote, Designing reusable class, Journal of Object-Oriented
Programming 1 (2) (1988) 22–35.

[28] G.E. Krasner, S.T. Pope, A cookbook for using the model-view controller user
interface paradigm in smalltalk-80, Journal of Object-Oriented Programming 1
(3) (1988) 26–49.

[29] C. Larman, Applying UML and Patterns: An Introduction to Object-Oriented
Analysis and Design, Prentice-Hall International, Englewood Cliffs NJ, 1997.

[30] M. Mattsson, J. Bosch, Framework composition: problems, causes and
solutions, in: Proceedings Technology of Object-Oriented Languages and
Systems, Interactive Software Engineering, 1997, pp. 203–214.

[31] M. Mattsson, Object-oriented frameworks, Licentiate Thesis, Department of
Computer Science, Lund University, 1996.

[32] A.V. Mayrhauser, A.M. Vans, Program understanding: models and experiments,
Advances in Computers 40 (1995) 1–38.

[33] S. Moser, O. Nierstrasz, The effect of object-oriented frameworks on developer
productivity, IEEE Computer 29 (9) (1996) 45–51.

[34] D. Nguyen, Design patterns for data structure, in: Proceedings of the 29th
SIGCSE Technical Symposium on Computer Science Education, ACM Press,
1998, pp. 336–340.

[35] M. Raible, Appfuse Confluence. <http://appfuse.org/display/APF/Home>
(accessed 21.08.08).

[36] D. Riehle, Describing and composing patterns using role diagrams, in:
Proceedings of the 1996 Ubilab Conference, 1996, pp.137–152.

[37] D.C. Rine, Supporting reuse with object technology, IEEE Computer 30 (10)
(1997) 43–45.

[38] I. Sommerville, Software Engineering, sixth ed., Addison-Wesley Publishing
Co., Inc., Wokingham, England, 2001.

[39] S. Sparks, K. Benner, C. Faris, Managing object-oriented framework reuse, IEEE
Computer 29 (9) (1996) 52–61.

[40] Sun microsystems, Java Data Objects (JDO), Sun Microsystems. <http://
java.sun.com/jdo/> (accessed 20.04.09).

[41] Sun Microsystems, Java Persistence API, Sun Microsystems. <http://
java.sun.com/javaee/technologies/persistence.jsp> (accessed 20.04.09).

[42] Sun Microsystems, The Source for Java Developers, Sun Developer Network,
Sun Microsystems. <http://java.sun.com> (accessed 12.08.07).

[43] W3C, Extensible Markup Language (XML), World Wide Web Consortium.
<http://www.w3.org/xml> (accessed 01.12.06).

[44] T. Winn, P. Calder, Is this a pattern, IEEE Software 19 (1) (2002) 59–66.
[45] R.J. Wirfs-Brock, R.E. Johnson, Surveying current research in object-oriented

design, Communications of the ACM 33 (9) (1990) 105–124.

http://struts.apache.org/1.3.9/userGuide/index.html
http://ibatis.apache.org/
http://ibatis.apache.org/
http://www.junit.org/index.htm
http://www.w3.org/TR/2006/REC-xml11-20060816/
http://www.developer.com/java/ent/article.php/3322131
http://www.developer.com/java/ent/article.php/3322131
http://www.eclipse.org/
http://logging.apache.org/log4j/1.2/manual.html
http://logging.apache.org/log4j/1.2/manual.html
http://www.orm.net/
http://www.hibernate.org/
http://www.springframework.org/docs/reference/index.html
http://www.theserverside.com/tt/articles/article.tss?l=SpringFramework
http://www.theserverside.com/tt/articles/article.tss?l=SpringFramework
http://appfuse.org/display/APF/Home
http://java.sun.com/jdo/
http://java.sun.com/jdo/
http://java.sun.com/javaee/technologies/persistence.jsp
http://java.sun.com/javaee/technologies/persistence.jsp
http://java.sun.com
http://www.w3.org/xml

	Pattern-based framework for modularized software development and evolution robustness
	New demand of modern software and old challenge to legacy system
	Background and related technologies for software standardization and integration
	Object-oriented technologies
	XML
	Design patterns
	Framework
	Struts
	Spring
	Hibernate

	Pattern-based framework — a feasible solution for software evolution robustness
	Advantages of pattern-based framework
	Problems of pattern-based framework
	The representation and classification of patterns
	The retrieval of patterns
	The adaptation and integration of patterns
	The higher-level patterns


	OS2F, an experiment of pattern-based framework design and verification
	System framework of OS2F
	Experiment

	Conclusion
	Acknowledgment
	References


