
RDF, Jena, SparQL and the “Semantic Web”

Michael Grobe
Indiana University

Indianapolis, Indiana
USA

1.317.278.6891

dgrobe@iupui.edu

ABSTRACT
The Resource Description Format (RDF) is used to represent
information modeled as a "graph": a set of individual objects,
along with a set of connections among those objects. In that role,
RDF is one of the pillars of the so-called Semantic Web. This
paper describes how RDF-XML is used to serialize information
represented using graphs, how RDF graphs can be read and
written by using the Jena software package, and how distributed
graphs can be queried using the SparQL query language. It
includes examples showing how SparQL can be used to query
data (such as the Gene Ontology) that is structured in hierarchies,
and how SparQL queries can be submitted through SparQL
“endpoints.” It does not, however, delve into inference or the
Web Ontology Language (OWL), but should provide a foundation
for understanding those topics.

Categories and Subject Descriptors
H.3.3 [Information Systems]: Information storage and retrieval

General Terms
Languages, Standardization

Keywords
Resource Description Framework (RDF), SparQL, query
languages, Semantic Web, Linked Data Web, URIs, metadata

1. INTRODUCTION
The Resource Description Format (RDF) [6, 9] is used to
represent information modeled as a "graph": a set of individual
objects, along with a set of connections among those objects. In
that role, RDF is one of the pillars of the so-called Linked Data
Web (nee Semantic Web). This paper describes how RDF-XML
is used to serialize information represented using graphs, how
RDF graphs can be read and written by using the Jena software
package, and how distributed graphs can be queried using the
SparQL query language.

In general, these topics seem “simple,” but are fraught with
significant complications, limitations, and qualifications,
especially when the casual user attempts to compare these
components with their analogs in relational data approaches to the
same or similar problems. As a result, this paper takes a
“concrete” approach; it focuses on very basic examples and
attempts to build on them in a systematic fashion to illustrate the
various components underlying the use of graphs to represent data
within the Linked Data Web.

2. USING GRAPHS TO REPRESENT DATA
Here are 2 graphs that represent 2 kinds of information associated
with 4 different persons. The first shows the ages and the second
shows the “favorite friend of each person:

Figure 1. Graph #1: Person ages

Figure 2. Graph #2: Favorite Friends

Figure 3 shows the 2 graphs combined using named edges to
represent the same information associated with the same 4
persons.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGUCCS’09, October 11–14, 2009, St. Louis, Missouri, USA.
Copyright 2009 ACM 978-1-60558-477-5/09/10...$10.00.

Figure 3. Graph #3: Person ages (:age) and favorite friends
(:fav)

Read these links as “Smith has age 21” or “Jones has favorite
friend Smith” to make them more “sentence-like”. Each edge is
like the “predicate” of a sentence, connecting a “subject” with an
“object”, so that the whole collection of edges represents a set of
“sentences”. Note, however, that a person node may be connected
to more than one arc of the same type, and that a node may not be
connected to every edge type. That is, Smith’s age could be
unknown, or Smith may not have a favorite friend, or may have
not reported a friendship.

Such data is sometimes represented using so-called “blank nodes”
to help cluster attributes. Figure 4 shows the graphs above
reorganized using blank nodes.

Figure 4. A portion of Graph #3 done with blank node.

Blank nodes are useful for specifying lists of items, but are
discouraged within the Semantic Web.

2.1 Using URIs and URLs to Identify Edges
Now if it hadn’t already happened, someone would certainly
come up with the idea to use Uniform Resource Locators (URL)
to point to Web documents that describe the exact meaning
(semantics) of each edge type.

For example, some popular magazine could publish their
definition of “favorite friend” on a page like

 http://SomeCelebrityMagazine.com/fav

and other documents could define “BFF”, “long-time-friend”,
“family-friend”, “friend with benefits”, etc, And, in fact, these

definitions could themselves refer to other definitions like some
“superset” of relationships such as:

 http://SomeCelebrityMagazine.com/personal_relationships

or the personal_relationships file, itself, could include a collection
of definitions, including “favorite friend, or “fav”, that we might
refer to as:

 http://SomeCelebrityMagazine.com/personal_relationships#fav

using the # convention for targeting a specific location within a
URL.

Such information serves to make the meaning both clear and
sharable, so that other sources of personal information could
employ the same predicate definitions within their own data
collections.

Of course, for a lot of applications this would all be unnecessary;
some arbitrary Uniform Resource Identifier (URI) can just be
used to indicate an edge type known only to the file creator.

3. USING RDF TO SERIALIZE GRAPHS
These approaches to naming edges can be generalized to help
represent, or “serialize” graphs in a text format, so they can be
exchanged with other programs.

When graphs are serialized, each connection is again taken to be
composed of 3 components, a so-called RDF “triple”, composed
of a “subject”, “predicate” and an “object”, where each edge
becomes a named “predicate”, although some writers speak of
“object”, “property”, and “property value”, rather than “subject”,
“predicate,” and “object”.

Each subject is represented as:
 - a blank node, such as “_2”, or

 - a URI, like http://fake.host.edu/smith

Each object is represented as:
 - a blank node,

 - a literal value, such as “some_value”^^some_type where
some_type is a URI, that defines a data type, as in
“Thomas_Jefferson”^^xsd:string, or

 - a URI

Each predicate is represented as:
 - a URI, like http://fake.host.edu/example-schema#fav, as

described above.

Note that URIs may appear in abbreviated forms within syntactic
components like example:age and xsd:string, which will be
expanded by substituting full URI values for the strings
“example:” and “xsd:”.

The following table displays Graph #3 as a set of 12 triples (3 for
each person):

 |-------------------------------------|

 | Subject | Predicate | Object |

 =======================================

 | “Blake” | example:fav | “Blake” |

 | “Blake” | example:age | "12" |

 | “Blake” | example:name | "Blake" |

 | | | |

 | “Jones” | example:fav | “Smith” |

 | “Jones” | example:age | "35" |

 | “Jones” | example:name | "Jones" |

 | | | |

 | “George” | example:fav | “Smith” |

 | “George” | example:age | "21" |

 | “George” | example:name | "George" |

 | | | |

 | “Smith” | example:fav | “Jones” |

 | “Smith” | example:age | "21" |

 | “Smith” | example:name | "Smith" |

Table 1. Graph #3 as a set of triples, in which
http://fake.host.edu/example-schema# is
represented by the string “example:”

Here are two ways to represent the Graph #3 triples using RDF-
XML. It may be important to note that the triple structures are
somewhat obscured in both of these serialized representations of
the data. The triple values remain, but they have been represented
with less redundancy.

1) Properties encoded as XML entities:
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-
syntax-ns#"
 xmlns:example="http://fake.host.edu/example-
schema#">

 <example:Person>

 <example:name>Smith</example:name>

 <example:age>21</example:age>

 <example:fav>Jones</example>

 </example:Person>

</rdf:RDF>

2) Properties encoded as XML attributes:
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-
syntax-ns#"
 xmlns:example="http://fake.host.edu/example-
schema#">

 <rdf:Description example:name=“Smith”

 example:age=“21”

 example:fav=“Jones”
 </rdf:Description>

</rdf:RDF>

3.1 Representing URIs
In work with RDF you will see URIs abbreviated in several ways,
using: namespace, PREFIX and ENTITY definitions, depending
on the context:
 xmlns:lib=“http://some.host.edu/directory”
or
 PREFIX <lib:http://some.host.edu/directory>
or
 !ENTITY lib “http://some.host.edu/directory”

If the namespace abbreviation for “example” is substituted for
each occurrence of “example:” in the Smith data encoding using
XML entities above, then

 <example:name>Smith</example:name>

is actually being represented as:
 <http://fake.host.edu/example-schema#name>

 Smith

 </http://fake.host.edu/example-schema#name>

3.2 RDF Resources to Model Each Person
Persons identified in Graph #3 can modeled as RDF “resources”
by replacing the strings for each node identifier with URIs. Table
2 shows the result for the Blake data:

| Subject |

| Predicate |

| Object |

===

| <http://fake.host.edu/blake> |

| http://fake.host.edu/example-schema#fav |

| <http://fake.host.edu/blake> |

|- -|

| <http://fake.host.edu/blake> |

| http://fake.host.edu/example-schema#age |

| "12" |

|- -|

| <http://fake.host.edu/blake> |

| http://fake.host.edu/example-schema#name |

| "Blake" |

Table 2. Modeling Persons using RDF resources

These subject and object URIs need not be dereferenceable, but
the general recommendation is to use dereferenceable URIs.

The entries in Graph #3 can also be represented as “RDF
resources” in several ways. Here are 2, corresponding to the 2
formats described earlier. Both use “rdf:about” and “rdf:resource”
attributes to specify resources:

Format 1
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-
syntax-ns#"

 xmlns:example="http://fake.host.edu/example-
schema#">

 <example:Person

 rdf:about=“http://fake.host.edu/smith”>

 <example:name>Smith</example:name>

 <example:age>21</example:age>

 <example:fav

 rdf:resource=“http://fake.host.edu/jones”/>

 </example:Person>

</rdf:RDF>

 -

Format 2
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-
syntax-ns#"
 xmlns:example="http://fake.host.edu/example-
schema#">

 <rdf:Description

 rdf:about=“http://fake.host.edu/smith”

 example:name=“Smith”

 example:age=“21” />

 <example:fav

 rdf:resource=“http://fake.host.edu/jones”/>

 </rdf:Description>

</rdf:RDF>

Note that the resource URI references in this example are not
“real” documents; they are not “dereferenceable”, though they
could easily be made so.

If active URLs are used to identify resources, then this data can
become part of the “Gigantic Global Graph”, usually know as
the Linked Data Web or the Semantic Web.

As Tim Berners-Lee writes [2]: “If HTML and the Web make all
online documents look like one huge book, RDF, schema, and
inference languages will make all the data in the world look like
one huge database.” And, in fact, there exist RDF browsers like
the Firefox “Tabulator” plug in, that allow the user to follow
URIs in RDF documents just as if they were HTML links. In
addition the Tabulator will provide views of the data in multiple
formats: XML, N3, Excel, etc.

4. USING GRAPHS IN RDF FORMAT
RDF graphs may be interrogated or manipulated in several ways:
- by physical inspection as text documents or by using a

graphical display tool such as RDF gravity [14] which will
render RDF input as graphical images that can be
manipulated,

- by writing programs using packages such as Jena,
- by using command-line tools that apply SparQL queries,

- by using GUI interfaces accepting SparQL commands that are
 - written in text, or
 - represented graphically

- by submitting URLs containing form parameters to SparQL
“endpoints” [16].

The next sections will discuss several of these approaches.

4.1 Manipulating RDF Graphs using Jena
The Java-based Jena package [9, 11] from HP Labs allows users
to manipulate and query RDF graphs. You can write a program
that uses Jena classes to
 - retrieve and parse an RDF file containing a graph or a

collection of graphs,
 - store it in memory,
 - examine each triple in turn, examine one component (say, the

subject) of each triple in turn, or examine only triples that
meet specified criteria, and,

 - write a serialized version of a graph to a file or STDOT.

For example, one might examine each stored triple searching for a
specific reference URI, or for a specific literal value, as with a
search for triples containing a specific value, “21”^^xsd:age,
in their object portions.

An RDF graph is stored in Jena as a “model”, and a Jena model is
created by a factory, as in:

 Model m = ModelFactory.createDefaultModel();

Once a model has been defined, Jena can populate it by reading
data from files, backend data bases, etc. in various formats, and
once it has been populated, Jena can perform set operations on
pairs of populated models and/or search models for specific
values or combinations (patterns) of values.

For example, there are several methods for creating iterators over
a model so you can access specific components. Iterators may be
built by

 - listing the components of each triple:

 - model.listSubjects();

 - model.listObjects();

 - comparing a specific component with a specified value, as in:

 model.listSubjectsWithProperty(Prop p,

 RDFNode object);

 which will get you a collection of subjects possessing
property/predicate p and specific value object)

 - comparing all components against specific values in 2 steps:

 - define a “selector” possessing specific values s, p and o,
where null or (RDFNode) null matches anything:

 Selector selector = new SimpleSelector(
 subject, predicate, object)

 - and then build the statement list:

 model.listStatements(selector);

This selector capability is the basis for making ad hoc queries
against the RDF data, and underlies the SparQL query language.

4.2 SparQL: A Graph-based Query Language
SparQL [7,10] is a language that lets users query RDF graphs by
specifying “templates” against which to compare graph
components. Data which matches or “satisfies” a template is
returned from the query.

A triple template will contain variables that represent triplet
components (e.g., a subject, predicate, or object within a triplet).
For example the template:

 ?person <example:age> “21”^^example:age .

identifies a list of triplet subjects that have an example:age
property of “21”, and is analogous to asking “Who has age 21?”
The SparQL query engine will return an exhaustive list of the
subject component of triples that satisfy each query through value
substitution. This is basically “query by example” (QBE) where
the user defines an example pattern that the query engine will
attempt to match using components from the data store.

This process is reasonably intuitive, and similar to QBE
approaches applied to relational data and pattern matching within
regular expressions or SQL.

SparQL is implemented in Jena through the ARQ package, and
queries may be made from within Java scripts or via a SparQL
client distributed with Jena.

Here is an example SparQL query that simply asks for a list of up
to 10 of the subject and object portions of the triples in the file
specified in the FROM clause:
PREFIX rdf:

 <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX example

 <http://fake.host.edu/example-schema#>

select $s $o

from

<http://myhost.edu/rdf-example-1.rdf>

where

{

 $s $p $o .

}

LIMIT 10

$s, $p, and $o are variable names that will each be assigned a
value as the query is “satisfied,” and the triplet pattern “$s, $p,
$o” will match any triple that has 3 parts, so all triples should be
displayed. Note that variable names may also start with “?”, and
may be full words.

A subset of the basic syntax of a SparQL select query is shown
below:

BASE < some URI from which relative FROM and

 PREFIX entries will be offset >

PREFIX prefix_abbreviation: < some_URI >

SELECT

 some_variable_list

FROM

 < some_RDF_source_URL >

WHERE

{

 { some_triple_pattern .

 another_triple_pattern . }.

}

Notes:
 - the “<“ and “>” characters are required literals,
 - the BASE and PREFIX entries are optional and BASE applies

to relative URIs appearing in either PREFIX or FROM clauses,

 - other commands that can appear in place of SELECT are:
CONSTRUCT, ASK and DESCRIBE,

 - * is a valid variable list, specifying any variable returned by
the query engine, and may be preceded by DISTINCT, which
will omit duplicate triples from the resulting list,

 - there may be multiple FROM clauses, whose targets will be
combined and treated as a single store,

 - a “.” separating multiple triple patterns is intuitively similar to
an “and” operator,

 - the term WHERE is optional, and may be omitted.

This syntax resembles SQL, and it has similar semantics. In
particular, SQL semantics revolve around joining tables together
and then looking through every row to see if the contents of row
fields meet specified conditions. If one thinks of a collection of
triples containing the same predicate as a (distributed) table
named by the triplet predicate and containing 2 columns, the
triplet subject and object, then the “.” operator in SparQL queries
is similar to a join, in which shared SparQL variables within triple
patterns essentially define a join condition specifying equality.
Here is a SparQL query that can be used to search 4 files holding
“live” data in the first representation format above:

PREFIX rdf:

 <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX example:

 <http://fake.host.edu/example-schema#>

select *

from <http://myhostname.edu/smith>

from <http://myhostname.edu/jones>

from <http://myhostname.edu/george>

from <http://myhostname.edu/blake>

where

{

 $s $p $o .

}

If the data were all in one file, only one FROM clause would
have been required. Here is a representation of the query results:

| s | p | o |
==|
<myname/blake>	example:fav	myname/blake
<myname/blake>	example:age	"12"
<myname/blake>	example:name	"Blake"
<myname/blake>	rdf:type	example:Person
<myname/jones>	example:fav	myname/smith
<myname/jones>	example:age	"35"
<myname/jones>	example:name	"Jones"
<myname/jones>	rdf:type	example:Person
<myname/george>	example:fav	myname/smith
<myname/george>	example:age	"21"
<myname/george>	example:name	"George"
<myname/george>	rdf:type	example:Person
<myname/smith>	example:fav	myname/jones
<myname/smith>	example:age	"21"
<myname/smith>	example:name	"Smith"
<myname/smith>	rdf:type	example:Person

where “myname” is an abbreviation for “http://myhostname.edu”.

In this query all 4 files were searched as if they were in a single
file. (Note that the URI contents are different in this live
example.)

4.3 The Gene Ontology (GO)
The term “ontology” is used in different ways by different people.
Pidcock [13] writes that “People use the word to mean different
things, e.g.: glossaries and data dictionaries, thesauri and
taxonomies, schema and data models, and formal ontologies and
inference.”

And Uschold [15] writes “An ontology may take a variety of
forms, but necessarily it will include a vocabulary of terms, and
some specification of their meaning. . .This includes definitions
and an indication of how concepts are inter-related which
collectively impose a structure on the domain and constrain the
possible interpretations of terms.”

As a working example, we will consider the Gene Ontology [1],
widely used in bioinformatics and biological research. The Gene
Ontology actually has 3 major components, separate sections for
defining terms related to Biological Process (see the “namespace”
entry below), Cellular Component (physical structures or
locations within biological cells), and Molecular Function, each
of which defines several thousand terms.

To begin unpacking Uschold’s definition, we can look at two
entries (of over 26,000) from the RDF version of the Gene
Ontology. This listing includes the ROOT category, here known
as “all”, and the root of the molecular function component of the
Gene Ontology, GO:0003674:
<?xml version="1.0" encoding="UTF-8"?>

<rdf:RDF xmlns:rdf=

 http://www.w3.org/1999/02/22-rdf-syntax-ns#

 xmlns:go=

 "http://www.geneontology.org/dtds/go.dtd#">

 <go:term rdf:about=

 "http://www.geneontology.org/go#all">

 <go:accession>all</go:accession>

 <go:name>all</go:name>

 <go:definition>

 This term is the most general term possible

 </go:definition>

 </go:term>

 <go:term rdf:about=

 "http://www.geneontology.org/go#GO:0003674">

 <go:accession>GO:0003674</go:accession>

 <go:name>molecular_function</go:name>

 <go:synonym>GO:0005554</go:synonym>

 <go:synonym>molecular function</go:synonym>

 <go:definition>Elemental activities, such as
catalysis or binding, describing the actions of a
gene product at the molecular level. A given gene
product may exhibit one or more molecular
functions.

 </go:definition>

 <go:is_a rdf:resource=

 "http://www.geneontology.org/go#all" />

 </go:term>

 </rdf:RDF>

Since all GO terms except the ROOT have at least one “is_a”
relationship to other terms, a collection of GO terms can be easily
represented as a graph, where all entries except the ROOT may
have multiple parents, sometimes referred to as a “directed
acyclic graph” or DAG. Figure 5 (drawn using RDF Gravity [14])
shows a DAG, inspired by Ashburner [1] but heavily modified, in
which molecular function categories are shown as subtypes of one
another. For example, this ontology asserts that the molecular
function “chromatin binding” is a type of “DNA binding”.

Figure 5. Some possible relationships among a subset of the
terms in the GO molecular function ontology (example only)

Note that there is no gene data within the Gene Ontology, because
the ontology is actually a collection of terms that can be used to
describe or annotate genes. In fact, many sources of gene data
use GO to annotate their contents.

4.4 A Gene Ontology Query
Here is a SparQL query to find all of the parents of GO:0004003
in the example GO subset:
PREFIX xsd:

 <http://www.w3.org/2001/XMLSchema#>

PREFIX rdf:

 <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX go:

 <http://www.geneontology.org/dtds/go.dtd#>

select *

from <http://hostname.edu/Some-GO-entries.rdf>

where

{

 http://www.geneontology.org/go#GO:0004003

 go:is_a $parent .

}

Running this query produces a result like:

| parent |

==

| http://www.geneontology.org/go#GO:0008094 |

| http://www.geneontology.org/go#GO:0008026 |

| http://www.geneontology.org/go#GO:0003678 |

Here’s a query that finds all 3 element paths up (towards the
root) from GO:0004003:

PREFIX go:

 http://www.geneontology.org/dtds/go.dtd#

select *

from

 <http://hostname.edu/Some-GO-entries.rdf>

where

{

 <http://www.geneontology.org/go#GO:0004003>

 go:is_a $a .

 $a go:is_a $b .

 $b go:is_a $c .

}

This query will print all combinations of the variables $a, $b, and
$c that can be mapped to 3 triples in the data collection, such that
the first element of a data triple “is a” subset of the third element
of that triple, and that same third element is also the first element
of another triple which asserts that element to be a subset of
another third element, etc.

One might imagine that SparQL would allow traversing such an
ontology to an arbitrary “depth”, and/or derive inferences about
category ancestors and descendents. However, these topics are
beyond the scope of this paper, which only attempts to provide a
foundation upon which to continue investigation of such issues.

4.5 Triplestores and SparQL Endpoints
In the examples so far presented, RDF has been shown as free-
standing content that may be “published” by simply making it
available via a Web server. There exist SparQL processors, such
as Twinkle [8], that can retrieve such RDF files and use them to
satisfy queries. However, most content appears to be stored and
served from database management systems, sometimes called
“triplestores,” that have been customized to handle RDF. Two
examples are Sesame [5] and OpenLink’s Virtuoso system [12].

For example, both the DBpedia and the Bio2RDF “atlas of post
genomic knowledge” are housed in OpenLink Virtuoso database
management systems, and may be accessed through several
SparQL interfaces, or “endpoints”, enabled by Virtuoso. The
“DBpedia is a community effort to extract structured information
from Wikipedia and to make this information available on the
Web” (http://dbpedia.org/About), and the Bio2RDF atlas
(http://bio2rdf.org) currently includes over 2 billion triples taken
from some 40 data resources useful to the bioinformatics
community.

The following SparQL query requests a list of entries about
“Goethe” from the DBpedia collection:
 select distinct *

 from <http://dbpedia.org>

 where

 {

 ?s ?p ?o .

 ?o bif:contains “Goethe_Johann_Wolfgang”

 }

Figure 6 shows this query entered through the DBpedia iSparQL
interface at http://dbpedia.org:8890/isparql via Firefox.

Figure 6. A SparQL DBPedia query via iSparql

Note that the predicate “bif:contains” is a special Virtuoso
predicate that searches specially prepared back-end text indexes,
that allow this query to ask for all triples that include an “object”
containing the specified text.

Figure 7 shows the same query using the iSparql “graphical”
Query-by-Example (QBE) interface which allows users to drag
and drop components of the query graph that defines the query:

Figure 7. A SparQL query within the iSparql QBE interface

Since triple patterns within SparQL are themselves graphs, it’s
easy to see how SparQL can be adapted to this “graphical”
medium.
The same query can be sent to the DBpedia SparQL endpoint
embedded in a URL containing form parameters (with line breaks
added for readability):
http://dbpedia.org/sparql?query=SELECT distinct *

WHERE { $s $p $o .

$o bif:contains “Goethe_Johann_Wolfgang” . }

4.6 Publishing Relational Data
One might ask how data already committed to storage in some
other form, such as that within relational database management
systems, might be made available.

The open-source D2R server [3], among others, does exactly this.
To make SQL-based data available via D2R the user must:

 - interrogate the database via JDBC using the generate-
mapping script to build a configuration (“mapping”) file from
the relational table definitions, and then

 - start the D2R server with the configuration file.

This seems “fairly” straightforward if one imagines that each
table row becomes a separate resource/graph, primary keys (if
any) become resource identifiers, and foreign keys become graph
edges or guide incorporation into larger resources.

The D2R server exposes a SparQL endpoint to which users can
send queries embedded within URLs or access a query form based
on a Javascript component called SNORQL that employs AJAX.
It also provides an interface for directly browsing content.

5. ACKNOWLEDGEMENTS
Thanks to Malika Mahoui of the Indiana University School of
Informatics for reviewing an early version of this paper, and to
Andy Arenson and Michel Tavares of the Pervasive Technology
Institute at Indiana University for reviewing a later version.

6. REFERENCES
[1] Ashburner, M, et al., “Gene ontology: a tool for the

unification of biology”, Nature Genetics, 25, 25-29 (2000).

[2] Berners-Lee, Tim, “Linked Data”, 2006.
http://www.w3.org/DesignIssues/LinkedData.html

[3] Bizer, Chris, “The D2RQ Platform - Treating Non-RDF
Databases as Virtual RDF Graphs”, http://www4.wiwiss.fu-
berlin.de/bizer/d2rq/

[4] Bizer, Chris, Richard Cyganiak, Tom Heath, “How to
Publish Linked Data on the Web”, 2007.
http://www4.wiwiss.fu-
berlin.de/bizer/pub/LinkedDataTutorial/

[5] Broekstra, Jeen, et al., “Sesame: An Architecture for Storing
and Querying RDF Data and Schema Information”,
http://www.cs.vu.nl/~frankh/postscript/MIT01.pdf

[6] Davis, Ian, “An Introduction to RDF”,
http://research.talis.com/2005/rdf-intro/

[7] Dodds, Leigh, “Introducing SparQL: Querying the Semantic
Web”, 2005. http://www.xml.com/lpt/a/1628

[8] Dodds, Leigh,” Twinkle: A SparQL Query Tool”.
http://www.ldodds.com/projects/twinkle/

[9] McBride, Brian, “An Introduction to RDF and the Jena RDF
API “, 2007.
http://jena.sourceforge.net/tutorial/RDF_API/index.html

[10] McCarthy, Philip, “Search RDF data with SPARQL”, 2005.
http://www.ibm.com/developerworks/xml/library/j-sparql/

[11] McCarthy, Philip, “Introduction to Jena”, 2004.
http://www.ibm.com/developerworks/xml/library/j-jena/

[12] OpenLink Software, “Virtuoso: Universal Server Platform
for the Real-Time Enterprise, 2009.
http://www.openlinksw.com/virtuoso/

[13] Pidcock, Woody, “What are the differences between a
vocabulary, a taxonomy, a thesaurus, an ontology, and a
meta-model?”, 2003.
http://www.metamodel.com/article.php?story=20030115211
223271

[14] Goyal, Sunil, Rupert Westenthaler, RDF Gravity (RDF
Graph Visualization Tool), 2009.
http://semweb.salzburgresearch.at/apps/rdf-gravity/

[15] Uschold, Mike, “Building Ontologies: Towards a Unified
Methodology”, AIAI-TR-197, 1999.
http://www.aiai.ed.ac.uk/project/pub/documents/1996/96-
es96-unified-method.ps

[16] W3C, “SparQL protocol for RDF”, 2008.
http://www.w3.org/TR/rdf-sparql-protocol

