
Deep integration of spatial query processing into
native RDF triple stores

Andreas Brodt
Universität Stuttgart,
Universitätsstraße 38

70569 Stuttgart, Germany
brodt@ipvs.uni-

stuttgart.de

Daniela Nicklas
Carl von Ossietzky Universität

Oldenburg
26111 Oldenburg, Germany

dnicklas@acm.org

Bernhard Mitschang
Universität Stuttgart,
Universitätsstraße 38

70569 Stuttgart, Germany
mitschang@ipvs.uni-

stuttgart.de

ABSTRACT
Semantic Web technologies, most notably RDF, are well-
suited to cope with typical challenges in spatial data manage-
ment including analyzing complex relations between entities,
integrating heterogeneous data sources and exploiting poorly
structured data, e.g., from web communities. Also, RDF can
easily represent spatial relationships, as long as the location
information is symbolic, i.e., represented by places that have
a name. What is widely missing is support for geographic
and geometric information, such as coordinates or spatial
polygons, which is needed in many applications that deal
with sensor data or map data. This calls for efficient data
management systems which are capable of querying large
amounts of RDF data and support spatial query predicates.
We present a native RDF triple store implementation with
deeply integrated spatial query functionality. We model spa-
tial features in RDF as literals of a complex geometry type
and express spatial predicates as SPARQL filter functions
on this type. This makes it possible to use W3C’s stan-
dardized SPARQL query language as-is, i.e., without any
modifications or extensions for spatial queries. We evaluate
the characteristics of our system on very large data volumes.

Categories and Subject Descriptors
H.2 [Database Management]: Database Applications—
Spatial databases and GIS

Keywords
RDF, SPARQL, triple store, spatial database, GIS

1. INTRODUCTION
The use of semantic web technologies—most notably RDF [10]

and the SPARQL query language [16]—for integrating and
analyzing data sets is widely acknowledged. The charac-
teristics of their underlying data model make it easier to
represent, exchange, combine, and link information from

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM GIS ’10 , November 2-5, 2010. San Jose, CA, USA
Copyright 2010 ACM 978-1-4503-0428-3/10/11 ...$10.00.

different, heterogeneous data sets. Huge repositories exist
that publish and link data sets in RDF format, e.g., the data
sets on Linked Data,1 the Uniprot data set,2 the Semantic
Web Challenge 2010 data set,3 or many data sets published
on the data.gov catalog4 of the USA. Those data sets can be
used by researchers from many different domains.

Many of these data sets contain geographical or symbolic
location information, and spatial relations between data en-
tities play a crucial role for searching and analyzing spatial
data. Consequently, the ontological modeling of geographic
entities and their geospatial relations is a significant research
direction in the Geographic Information Science (GIS) com-
munity. The Resource Description Framework (RDF) [10]
developed as part of W3C’s Semantic Web Activity5 treats
relationships as first class objects, which suits it very well to
model and query complex relationships between resources. In
addition, Semantic Web technologies deal well with problems
such as non-unique names or subclass relationships, which
typically occur in data integration tasks that are very com-
mon when working with spatial data [9]. Moreover, Semantic
Web technologies provide a great deal of schema flexibility
which is useful for analyzing and integrating poorly struc-
tured data, e.g., web- or community-based data, such as map
data from the OpenStreetMap project [3].

RDF and related technologies were long deemed inefficient.
Yet, in recent years the database community has addressed
the problem of querying large amounts of RDF data effi-
ciently and achieved enormous performance improvements
in so-called RDF triple stores [1, 19, 13, 6]. As long as
primitive data types, most notably strings, are concerned,
these achievements can be well utilized to analyze geospatial
data—depending on the used location model [4]: systems
working with symbolic coordinate systems, for instance many
indoor location systems, typically use a graph model con-
necting symbolic names. These systems can directly make
use of efficient RDF data management. However, queries
involving geographical positions represented as coordinates,
e.g., range queries or nearest-neighbor queries, require vector-
based coordinates. If these coordinates are represented as
a string, no system can make use of the specific features
of location information (e.g., the need for spatial indexes)
or provide type-safe spatial functions. However, a widely

1http://linkeddata.org/
2http://dev.isb-sib.ch/projects/uniprot-rdf/
3http://challenge.semanticweb.org
4http://www.data.gov
5http://www.w3.org/2001/sw/

33

accepted standard for representing spatial information ex-
ists [7], and the RDF data model allows for extension by new
data types. But to the best of our knowledge, no RDF triple
store does address native spatial data processing yet. Until
now, efficient spatial analyses of RDF data would require
external processing, e.g., using a geo-enabled database.

In this paper, we show how spatial information can be
deeply integrated into the RDF data model, so that native
RDF triple stores can efficiently process spatial queries and
analyses. This is a leap forward from the state of the art
(Section 2): For the RDF data model, deep integration
means that we model geographic data in RDF as complex
objects represented as literals of an abstract geometry type
(following the OpenGIS Simple Features Specification [7]).
By this, spatial features, such as coordinate-based points, line
strings or polygons, are treated as data types like strings or
numbers, and can be manipulated, queried and processed by a
standardized set of spatial functions (Section 3). Likewise, we
propose to integrate spatial predicates by means of SPARQL
filter functions on this geometry type (Section 3.2). This
has the advantage of being expressible in W3C’s SPARQL
query language without any language extensions. To deeply
integrate these concepts into RDF query processing, we
consider two approaches, a spatial selection operator and a
spatial index, which are both implemented in a native RDF
triple store (Section 4) and evaluated with generated and
real-world spatial RDF data (Section 5). Finally, we conclude
our work and discuss promising future research directions in
Section 6.

2. STATE OF THE ART AND FOUNDATIONS
In this section, we review existing approaches to spatial

RDF modeling and processing, and give foundations about
the underlying technology when needed to understand our
approach. In the illustrating examples throughout the paper,
we use the namespaces defined in Table 1.

2.1 The Resource Description Framework
The Resource Description Framework (RDF) [10] was stan-

dardized by W3C as a key enabler of the Semantic Web to ex-
press metadata on the web. Its flexibility and its strength to
model relations between data entities lead to a wide adoption
in many other domains, such as life sciences or information
integration. RDF models resources that are identified by a
Uniform Resource Identifier (URI) and described through
their relationships. The relationships are identified by URIs
as well and connect a resource with another resource or a

Prefix Namespace URI and Comment

gas: http://example.org/gas
example for a user-defined ontology

geo: http://www.w3.org/2003/01/geo/wgs84_pos
W3C Geo [5]

georss: http://www.georss.org/georss
the GeoRSS Standard [17]

geordf: http://example.org/geo
namespace of our approach

gml: http://www.opengis.net/gml
the OpenGIS GML Standard [18]

osm: http://example.org/osm
the test data used in our evaluation

Table 1: Namespace prefixes used in this paper.

Figure 1: An RDF graph describing a gas station.

literal denoting a certain value. A literal is given as a string
and may carry a URI that defines its data type.

Although RDF data is often serialized using XML, the basic
data model of RDF consists of (subject, predicate, object)-
triples, called statements: subject is the URI of the resource
being described, predicate denotes the particular relationship
through its URI, and object is either the URI of another
resource, or a literal. All statements together make up a
directed labeled graph that represents the resources and their
relations. As an example, an RDF graph describing a gas
station might look as show in Figure 1.

The example shows how RDF models attributes, e.g. the
address of the gas station, and relations between two re-
sources, e.g., the ownership of the gas station by the oil
company, equally. This is what makes RDF an ideal choice
for data with large amounts of relations between resources.

Modeling Spatial Features in RDF
There are many ways to model spatial features in RDF.
Spatial features, as standardized by the OpenGIS Simple
Features Specification [7], are complex structures. A point,
for instance, consists of two or three coordinates, a linestring
or a linear ring comprises many points and a polygon is
bounded by a linear ring; it may also have holes, which are
linear rings, too. These relationships can be directly mod-
eled as RDF statements. This approach decomposes every
spatial feature into several separate statements resulting in
a large total amount of statements for spatial data. For
feature types consisting of multiple parts, such as Polygon
or MultiLineString, every part is modeled as a separate data
object having its own URI. This is useful if other data objects
need to reference a single part of a spatial feature. E.g., the
boundary of a lake may be explicitly referenced to represent
a hole in the surrounding meadow. However, the decomposed
approach is unfavorable for processing the feature as a whole,
e.g., perform calculations, index it, etc., as the feature first
needs to be reassembled from its parts.

The W3C Geo Vocabulary [5] (now considered deprecated)
was an extreme example of the decomposed approach. It
represented points using two separate statements for latitude
and longitude. It did not support any other feature types,
though. To express the geographic position of the aforemen-
tioned gas station, W3C Geo would add the two statements
shown in Listing 1 to the RDF graph.

gas:Station1234 geo:lat "48.77".
gas:Station1234 geo:lon "9.18".

Listing 1: W3C Geo example.

34

The initial version of Geography Markup Language (GML)
had an explicit RDF/XML binding [18]. Later GML versions
use an object-property pattern and XML linking which maps
directly to RDF. Thus, it is straightforward to transform
GML data to an RDF graph. The direct translation results
in the decomposed approach with the difference that a list
of coordinates is modeled as a single string containing space-
separated floating point numbers.

GeoRSS GML [17] uses a GML profile to embed spatial
data into RSS feeds, which can be represented in RDF.
GeoRSS GML represents spatial features in a class hierarchy
which consists of the abstract Geometry class and its sub-
classes Point, Line, Box and Polygon. GeoRSS GML omits
multi-geometries and polygons with holes. Every spatial
feature is represented as a resource having its own URI. In
the preferred serialization format, the coordinates are sup-
plied as a single string literal containing a space-separated
coordinate list. This string literal is connected to the spatial
feature via the gml:pos predicate. GeoRSS GML models
the location of the gas station from the upper examples as
shown in Listing 2.

gas:Station1234 georss:where gas:Point2094.
gas:Point2094 a gml:Point.
gas:Point2094 gml:pos "48.77 9.18".

Listing 2: GeoRSS GML example.

As can be seen, GeoRSS GML uses two RDF statements
to specify the location: one to specify the class of the feature
and one to supply the coordinates. I.e., a more complex
feature type, e.g. a polygon, would require two statements as
well. Thus, GeoRSS GML can be seen as a hybrid approach
which does model a spatial feature as a discrete resource,
but does not model its parts separately. The feature still
carries its own URI, which enables adding further metadata
to it, e.g., accuracy or provenance information. It is also
reusable, as other resources may reference it. Yet, to process
the feature, the two RDF statements still need to be joined.

2.2 The SPARQL Query Language
The SPARQL query language was standardized by W3C [16]

to search RDF repositories and is the current W3C recom-
mended query language for RDF data. SPARQL expresses
graph pattern matching queries on an RDF graph as con-
junctions (and also disjunctions) of triple patterns. A triple
pattern may contain variables that are bound to a URI or
literal of the RDF graph and that form the result of a se-
lect query. The variable bindings can be restricted through
filters, which are essentially functions returning a boolean.
SPARQL specifies a number of built-in filter functions, such
as regex or the usual comparison operators (>, !=, . . .). Yet,
SPARQL explicitly allows additional filter functions that are
identified by a URI. Listing 3 shows an exemplary SPARQL
select query returning the address string of all known gas
stations that sell gas cheaper than 1.40 EUR.

Expressing Spatial Query Predicates in SPARQL
Kolas [11] proposed to express spatial query predicates using
so-called query premises, which declare the query parameters
as a non-materialized part of the graph pattern in SPARQL.
Kolas gives an example similar to the query depicted in
Listing 4, which is meant to find all gas stations within
distance 1 from point (48.765 9.175).

SELECT ?address WHERE {
?station a gas:GasStation.
?station gas:address ?address.
?station gas:gasPriceEUR ?price.
FILTER (?price < 1.40)
}

Listing 3: SPARQL example.

SELECT ?x WHERE {
?x a gas:GasStation. ?x georss:where ?y.
?y rcc:part ?p. ?p a gml:Buffer. ?p gml:radius "1".
?p gml:bufferGeometry ?g.
?g a gml:Point. ?g gml:pos "48.765 9.175".
}

Listing 4: SPARQL example using a query premise
for spatial query predicates [11].

This solution mixes graph patterns addressing the mate-
rialized RDF data set and spatial query parameters. The
two parts are connected via the rcc:part predicate, which
expresses the spatial relationship to be evaluated on the fly
(Kolas also supports rcc:connected). This complicates the
query processor and is difficult for humans to read, as differ-
ent parts of the query have different semantics. To address
this problem, Kolas suggests to move the query premise
to a separate section of the query and thus proposes the
scheme SELECT ?x PREMISE {. . . } WHERE {. . . }. However,
this does no longer comply with the SPARQL specification.

To express query predicates which require parameters,
SPARQL provides filter functions. Perry [14] formulates spa-
tial query predicates using a SPATIAL FILTER clause followed
by calls to spatial comparison functions. This is similar to
SPARQL filter functions, but does not match the exact syn-
tax (due to further extensions, this was not Perry’s goal).
Kolas criticizes that expressing spatial relations as functions
breaks the RDF and SPARQL philosophy of modeling all
relations between objects as graph edges [11]. Yet, filter
functions appear a more natural way to formulate the spatial
query predicates, as done by relational spatial databases.

2.3 RDF Data Management
Engines to store and query RDF data, so-called triple

stores, were long of limited interest outside the Semantic Web
community and earlier RDF frameworks, such as Jena [8],
focused on functionality over performance. Only in recent
years, database research addressed the problem of querying
very large RDF datasets efficiently. The challenge of efficient
RDF queries originates from the decomposed triple structure
and lies in the many join operations that are required to
reassemble the data. All state-of-the-art approaches [1, 19,
13, 6, 2] have in common that they first map all URIs and
literals to integer IDs. Internally, the RDF statements are
stored, indexed, and queried by these IDs, which is a lot
faster than processing entire strings. Only to return a query
result, the IDs are mapped back to URIs or literals.

Different indexing techniques for efficient RDF queries
have been published. SW-Store [1] creates a two-column
table in a column-store database for each RDF predicate and
stores the (subject, object)-pairs of the RDF statements in
the respective tables. Virtuoso [6] uses a bitmap index for
fast bit vector joins. BitMat [2] stores RDF statements in
a compressed bit-matrix structure and processes the joins

35

by initial pruning followed by a variable-binding-matching
algorithm. Hexastore [19] and RDF-3X [13] create an index
on all six permutations of the RDF statements, so that every
index lookup returns a sorted list and allows fast merge joins.

Spatial RDF Databases
Perry et. al. presented a framework for analysis of spatial and
temporal RDF data [14, 15] that was implemented as a set of
user-defined functions in Oracle DBMS. It models geographic
features in an ontology based on GeoRSS GML [17], but
stores them as complex objects in relational tables. Its major
disadvantage is the lack of a standardized query language.

Kolas et. al. proposed to use W3C’s SPARQL query
language [16] for spatial RDF data [12]. They use the GeoRSS
RDF vocabulary to model spatial features and formulate
spatial queries by means of the query premises, as discussed
above. Their implementation [11] builds on top of the Jena
Semantic Web Framework [8] and uses a main memory grid
file. No performance results were reported.

Recently, Virtuoso implemented support for spatial data6

using an approach similar to ours. They support spatial joins
(which we will address in future work), but are restricted to
point data thus lacking arbitrary shapes, e.g. Multipolygons.
No performance results were reported on spatial queries.

To the best of our knowledge, no approach exists that
natively integrates arbitrary geographic information into the
RDF data model and allows efficient processing of spatial
operators using a standardized query language. Thus, we
propose our approach of deep integration: location infor-
mation is treated like other basic data types (e.g. string),
which all benefit from type-safe type-specific functions, query
predicates, and efficient processing due to type-specific index
support of industrial-strength data management systems.

3. MODELING AND QUERYING SPATIAL
LITERALS IN RDF

This section introduces our approach for deep integration
of spatial features into RDF processing. For this, we have to
extend both the modeling of spatial features in RDF triples,
and we have to provide spatial predicates in the standard
RDF query language, SPARQL. However, our approach fully
complies with the RDF and SPARQL specifications.

3.1 Spatial Literals in RDF
As described in Section 2.1, most existing approaches de-

compose the spatial information into multiple RDF triples.
Our approach to model spatial features in RDF is entirely op-
posed to the decomposed modeling approach. We represent
spatial features as a complex self-contained data type and
store them in RDF literals. The literals contain the spatial
features expressed in the Well-Known Text (WKT) format,
as standardized in the OpenGIS Simple Features Specifica-
tion [7]. The literals carry a type URI which denotes that
the literal is to be processed as a spatial feature rather than
as an ordinary string. Listing 5 shows how our approach
represents the position of the gas station.

Syntactically, any predicate can connect the literal to any
resource. Thus, to process the spatial feature, only the
single RDF statement which contains the spatial literal is
required, which has two advantages: (1) The spatial feature
can be processed independently of the schema. In GeoRSS

6http://docs.openlinksw.com/virtuoso/rdfsparqlgeospat.html

gas:Station1234 gas:locatedAt
"POINT (48.77 9.18)"^^geordf:geography.

Listing 5: Spatially typed literals.

GML, by contrast, the processing system must know that
the gml:Point type and the gml:pos predicate are related to
spatial data to interpret them accordingly. A data set using
a different schema, e.g., W3C Geo, will not be supported
unless also the spatial RDF classes and predicates are made
available to the processing system. (2) The processing system
is simplified, as it does not need to reassemble the spatial
feature from statements. It may process the RDF data
statement by statement.

Our approach does not assign a URI to a spatial feature,
so that it cannot be directly referenced or augmented by
metadata. However, if this is required, one can easily in-
troduce place resources in a specific ontology. These place
resources, naturally, are identified by their URI, carry the
geometry literal, and may possess further metadata, possibly
including a human-readable name. Their URIs may even be
used as symbolic coordinates. Still, the place resources would
keep all information related to geographic coordinates in the
single RDF statement which carries the spatial literal. All
further statements related to the place resource are “ordinary”
RDF and can be designed in any ontology. Listing 6 shows
the gas station example using a place resource.

gas:Station1234 gas:place gas:Place9274.
gas:Place9274 gas:clearName "123 Main street".
gas:Place9274 gas:source "GPS sensor 2000".
gas:Place9274 gas:locatedAt

"POINT (48.77 9.18)"^^geordf:geography.

Listing 6: A place resource using a typed literal.

3.2 SPARQL Filter Functions
Clearly, it is desirable to express spatial queries on RDF

data in SPARQL as well, rather than introducing yet another
specialized query language. From this arises a challenge, as
SPARQL is designed to search for exact patterns in a (ma-
terialized) RDF graph. For spatial joins on some spatial
predicates, such as within, covers, crosses, etc., it would
be possible to materialize the respective relationships as an
explicit RDF statement (which would require the spatial
features to carry a URI). These statements could be queried
by ordinary SPARQL graph patterns, but would lead to a
combinatorial explosion in the total amount of RDF state-
ments. Generally, spatial predicates rarely search for exact
relations between data objects but involve calculations which
often require parameters. Examples include the maximal
distance in a range query or a given constant geometry with
which to compare the query result.

Our approach to express spatial query predicates in SPARQL
uses filter functions that are identified by a URI. We use the
functions of the OpenGIS Simple Features Specification [7],
as they are well-established. We defined a URI for each of
them. The filter functions act on variables which bind a spa-
tially typed literal, as described in Section 3. Thus, the filter
functions complement well our approach to model spatial
features in RDF as typed literals. Geometry constants to
compare the value of the variable are specified as spatially
typed literals, too; they are given in the well-known text

36

(WKT) format and carry a URI denoting the spatial type.
Listing 7 shows a fully standard-compliant SPARQL query
to find all gas stations within a given area that specifies the
spatial query predicate as a filter function.

SELECT ?x WHERE {
?x a gas:GasStation.
?x geordf:hasGeography ?geo.
FILTER geo:within (?geo, "POLYGON((48.765 9.175,

48.775 9.175, 48.775 9.185, ...))"^^geordf:geography)
}

Listing 7: Spatial query predicates expressed as
SPARQL filter functions.

4. IMPLEMENTATION
We consider two fundamental approaches to implement

an RDF triple store with support for spatial query process-
ing: a spatial selection operator and a spatial index. In
a full-fledged database system, both may be combined for
optimal performance. A spatial selection operator can be
implemented on top of an existing triple store. Thus, the
query is split into a pure RDF pattern matching query and
the spatial query predicate. First, the pattern matching
query is evaluated entirely by the triple store. In a second
step, the selection operator evaluates the spatial query predi-
cate on every tuple returned by the triple store and discards
tuples that do not match. The two steps are performed
sequentially (at least conceptually) and there is no way for
the selection operator to restrict the query result at an ear-
lier stage. To avoid unnecessary intermediate results, the
selection can be pushed down in the query graph. However,
this rules out an implementation on top of the triple store,
as the query planner of the triple store needs to be modified.

Figure 2: The architecture of the triple store (RDF-
3X) and our modifications for deeply integrated sup-
port for spatial queries (marked with +)

Also, the selection operator must cope with the internal data
representation of the triple store in that case.

A spatial index, on the other hand, may select only spatial
features which match the spatial query predicates, right from
the start. A spatial index cannot be deployed without a
comprehensive deep integration of spatial query processing
functionality into a triple store. First of all, the spatial index
requires its own database segment to store the spatial fea-
tures. Whenever spatial data is loaded, the triple store must
recognize it and forward it to the spatial index. Moreover,
the query planner must be deeply modified to recognize the
spatial index and optimize the joins of the spatial features
it returns with other intermediate query results. Naturally,
the spatial index must also provide the spatial features in
a way they can be joined, i.e., it must follow the internal
processing mechanisms of the triple store.

We implemented both approaches. We used RDF-3X [13]
version 0.3.4 as the starting point for a triple store with deeply
integrated spatial query processing. We chose RDF-3X as
it outperforms most other triple stores [13, 2] and is able to
process very large amounts of data. Moreover, contrarily to
other published approaches, RDF-3X is implemented as a
complete end-to-end system and is available as open source.7

However, as all state-of-the-art triple stores share common
characteristics (see Section 2.3), our results are applicable
for other triple store implementations as well.

4.1 Architecture and Processing Model
To illustrate our implementation, we first introduce the

architecture and the processing model, as shown in Figure 2.
The triple store consists of a query front end, a query planner,
physical query operators, a dictionary, and indexes. RDF-3X
indexes the RDF statements (Subject, Predicate, Object) in
all six possible permutations: SPO, SOP, PSO, POS, OSP,
OPS. Note that it possesses further indexes [13] which we
omit here for brevity. The indexes do not list the actual
statements but consist of integer IDs, which the dictionary
maps to the respective URIs or literals. This saves memory
and enables fast join processing.

When the query front end receives a SPARQL query (1),
it parses the query and immediately calls the dictionary
(2) to resolve all URIs and literals to integer IDs. The
logical query graph, which the semantic analysis produces,
is unaware of URIs or literals but uses these IDs exclusively.
Subsequently, the query planner finds an optimal execution
plan (3), as described in [13]. The resulting physical operator
graph is instantiated (4) using the query operators. The
operators query the indexes (5) and join the scanned values
to determine the query result. As all internal processing is
done using IDs, the dictionary finally needs to map the query
result back to URIs and literals (6).

4.2 Spatial Selection Operator
As our first step towards a triple store supporting spatial

queries, we implemented a spatial selection operator that
filters the results of a pure RDF pattern matching query.
The selection operator supports all comparisons specified in
the OpenGIS Simple Features Specification [7]. To imple-
ment the selection we used the GEOS C++ library,8 which
GIS systems, such as PostGIS, use as well. Rather than

7http://www.mpi-inf.mpg.de/~neumann/rdf3x/
8http://trac.osgeo.org/geos/

37

SELECT * WHERE {

?tag osm:key "amenity". ?tag osm:value "fuel". ?node osm:hasTag ?tag. ?node geordf:hasGeography ?geo.

FILTER geo:within (?geo, "POLYGON((...))"^^geordf:geography)

}

Figure 3: Physical operator graph using a spatial selection operator (left) and a spatial index (right). The
query finds all gas stations within a given region in an RDF graph following the schema of OpenStreetMap.

implementing the selection strictly on top the triple store,
we integrated the selection as an additional query operator.
For this, we had to modify the query front end, as it neither
recognized filter functions nor typed literals; RDF-3X does
not implement these parts of the SPARQL specification. We
also had to modify the dictionary to store type information
with literals. We did not modify the query planner. Instead,
we simply put the spatial selection operator in front of the
execution plan which the planner returns. Finally, we had to
modify the result printer to display typed literals correctly
with their type URI. The left side of Figure 3 illustrates a
operator graph that uses the spatial selection.

RDF-3X does support SPARQL filters as long as they are
restricted to identity comparisons (= and !=). This is because
the integer IDs used in internal processing allow no further
comparisons of the values. The spatial selection operator
needs to perform non-trivial calculations to compare spatial
features. There is no way but to look up every single ID
from the dictionary and to restore the actual coordinates
before the spatial predicate can be evaluated. As a dictionary
look-up is a costly operation, we did not consider pushing
the spatial selection down in the query graph. Performing
the selection in the very end prevents unnecessary look-ups.

4.3 Spatial Index
The spatial selection on top of the pattern matching query

enables the triple store to support spatial query predicates
fully and is always applicable. Yet, it performs well only
on queries with a restrictive graph pattern, which return a
rather small number of features to compare. To select only
those spatial features that are of interest to the query, a
spatial index is needed (even if not every spatial index is
applicable on all comparisons, e.g., disjoint). The spatial
index maps the features to their dictionary IDs, so that other
query operators can process them further. We implemented a
spatial index based on the R-Tree index of the libspatialindex
C++ library.9 The spatial index required deep modifications
of the triple store. First of all, we had to modify the data
import to recognize spatial literals and to insert them into
the spatial index. From our work on the spatial selection,

9http://sourceforge.net/projects/spatialindexlib

the query front end was already prepared to interpret the
spatial filter functions. The essential (and most complicated)
modification was to make the query planner generate plans
which use the spatial index and join the results with other
parts of the query.

The fastest join operation of the triple store is the merge
join, which requires both operands to be sorted. However,
the spatial index partitions the features based on geographic
proximity and thus cannot return the feature IDs in a defined
order. For this reason, our spatial index scan buffers all
feature IDs in memory and sorts them before returning
them. Subsequently, a merge join can intersect the feature
IDs efficiently with RDF statements that are sorted by the
variable which binds the features. The alternative to this
sort-merge join would have been a hash join, which buffers
all results in a hash table before joining them.

The right side of Figure 3 shows a query graph which
uses a spatial index scan (displayed on the very right). The
depicted index scan returns exactly those IDs corresponding
to the features which match the spatial query predicate. In
the example, these are features within the polygon of the
FILTER clause. The features are bound to the variable ?geo,
which occurs in the pattern ?node geordf:hasGeography

?geo. To determine valid bindings for the ?node variable, the
features need to be joined with RDF statements containing
the geordf:hasGeography predicate. An index scan on one of
the six RDF statement indexes selects these statements. The
query planner chooses the POS index, so that the predicate in
question is selected and the resulting (object, subject)-pairs
are sorted by ?geo. Subsequently, a merge join combines
these pairs with the feature IDs, which were sorted by ?geo,
too. The resulting set of Node URIs (?node) and spatial
features (?geo), is still sorted by ?geo and must be joined
with the Tags that indicate a gas station. It takes three index
scans and two merge joins to determine the right set of Tags.
The Tags are sorted by the ?tag variable, so a merge join is
not possible. Thus, a hash join completes the query result.

4.4 Storing the Features
As described in Section 3.1, our approach expresses spatial

features as literals of a complex spatial type. The features are
formulated in the Well-Known Text (WKT) format and need

38

to be parsed to evaluate a query predicate on them. This
is the case both for the spatial selection and for the spatial
index. The index only selects candidates based on their
bounding box; a second refine step is required to evaluate the
query predicate exactly. In order to accelerate parsing the
features, we store them in the dictionary and in the spatial
index by means of the Well-Known Binary (WKB) format.
WKB consumes significantly less space and is much easier
to parse. The downside of this approach is that the features
must be converted back to WKT before the final query result
can be returned. Thus, whenever the dictionary resolves the
ID of a spatial feature, it recognizes its type and parses the
WKB string into a geography object. Then it serializes the
object to a WKT string and discards the object.

5. EVALUATION
We carried out extensive performance measurements. Our

approach combines RDF triple store technology with spatial
data processing to a new kind of system, which makes it
difficult to compare to other systems. A relational spatial
database is likely to perform better, as the database schema
may model resources as complete records. This avoids most
of the joins which a triple store requires as the price to pay
for the schema flexibility (and other advantages) of RDF.
Comparisons to other triple stores are not applicable, as they
lack arbitrary spatial functionality. Moreover, our imple-
mentation builds on RDF-3X, which has been extensively
evaluated in literature [13, 2]. Instead, we focused on illus-
trating the specific characteristics of our implementation and
evaluated the effect of our modifications to RDF-3X.

5.1 Test Setup
The test data we used in our evaluation follows the schema

of OpenStreetMap, as shown in Figure 4. In OpenStreetMap,
every spatial resource is a Node. A Node carries a geographic
location and a number of Tags. The Tags describe the Node
through their key and value attributes, which are arbitrary
strings. We imported data from OpenStreetMap and con-
verted it to RDF with spatially typed literals. Moreover, we
generated large amounts of artificial test data, which makes
it easier to estimate the number of features which match a
spatial query predicate. For this we created Node resources
which are located on a grid. The Nodes carry one or more
spatial features, which are points on the grid. The Nodes
own the features exclusively, i.e., there is a 1:1 or a 1:n ratio
between Nodes and points. To evaluate an RDF pattern
matching part in queries, we generated Tags which simply

Figure 4: The data model used in our evaluation
follows the schema of OpenStreetMap (osm).

carry integer values. To achieve different selectivities of RDF
patterns, we tagged every Node with key 1, every second
Node with key 2, every fourth Node with 4, etc., up to 1024.
This enables us to select a fraction of 1

2n (n ∈ {1..10}) of
all Nodes. We used two basic grid sizes. The small grid
contained 1.05 million Nodes which resulted in 11.5 million
RDF statements and database files of 856 MB size. The
large grid contained 104.88 million Nodes, 1.15 billion RDF
statements and made up database files of 89.29 GB.

We measured the end-to-end execution time counted from
the time of query submission to the time including outputting
the final results (except for the dictionary test in Section 5.3).
We ran all queries on cold and warm caches. For cold caches
we dropped the file systems caches using /bin/sync and
echo 3 > /proc/sys/vm/drop_caches. For warm caches we
ran the query once before measuring the time. We measured
all queries ten times. Our figures report, on a logarithmic
scale, the median of ten test runs.

We ran all tests on a Dell Optiplex 755 equipped with
an Intel Core2 Quad Q9300 CPU running at 2.50 GHz and
4 GB of main memory. We used two striped 250 GB SATA
3.0 GB/s hard drives spinning at 7.200 RPM. The test ma-
chine ran a 64 bit 2.6.31 Linux kernel.

5.2 Spatial Selection vs. Spatial Index
First, we compared the spatial selection operator with the

spatial index. As discussed in Section 4, the selection must
evaluate the spatial predicate on all features returned by the
RDF pattern matching query. The index selects only the
relevant features for further processing. We ran the query

 0.001

 0.01

 0.1

 1

 10

 100

10
0

10
1

10
2

10
3

10
4

10
5

ti
m

e
[s

ec
o
n
d
s]

number of Nodes in query region

index

selection

(a) small grid, cold caches

 0.001

 0.01

 0.1

 1

 10

 100

10
0

10
1

10
2

10
3

10
4

10
5

ti
m

e
[s

ec
o
n
d
s]

number of Nodes in query region

index

selection

(b) small grid, warm caches

Figure 5: Spatial selection vs. spatial index.

39

SELECT * WHERE {
?node geordf:hasGeography ?geo.
FILTER geo:within (?geo,

"POLYGON((<<QUERY REGION>>))"^^geordf:geography)
}

Listing 8: Query to compare the spatial selection to
the spatial index for different query regions.

of Listing 8 with different query regions (polygons) on the
small grid of Nodes. The RDF pattern returns all Nodes in
the database, so the query is only selective on the spatial
filter. Figure 5 shows the results. It is obvious that the
spatial selection performs equally for all query regions, as the
pattern matching part always returned all stored features
to the selection. For small regions, fewer query results are
produced, but the selection already resolved the respective
IDs from the dictionary, so that they are always cached. The
spatial index is faster for up to about half a million selected
Nodes, especially on cold caches. Beyond that point, the
costs for joining the intermediate query results dominate the
selection. This strongly depends on how many tuples the
graph patterns produce. For the large grid, the selection
constantly took hundreds of seconds as it had to evaluate
all 105 million Nodes. Thus, an advanced query planner
should choose between the selection and the spatial index,
depending on the specific cardinalities of the query parts.

5.3 Dictionary Performance
As outlined in Section 4.4, we modified the dictionary

to store spatial features in the Well-Known Binary (WKB)
format for faster parsing. The downside is that the geometries
must be parsed in all cases, i.e., also to print them as typed
literals in the Well-Known Text (WKT) format. We ran a
series of tests to determine the parsing overhead. Using the
query of Listing 9 we produced different amounts of IDs for
the dictionary to resolve to URIs or spatial literals. We used
the generated large grid database and a real-world data set
from OpenStreetMap (OSM) of similar size. OSM contains
more complex features, such as Polygons and LineStrings, in
addition to Points. In contrast to all other tests, we did not
record end-to-end execution times in this test, but measured
only the time to resolve the IDs. Figure 6 reports the median
of ten runs.

The dictionary requires exactly two page reads to look up
any ID. Moreover, the IDs are resolved in ascending order,
causing an ideal cache hit ratio. Thus, for small amounts of
IDs the lookup time is very small on cold caches and hardly
measurable on warm caches. The overhead to parse spatial
literals is observable, but only starts to play a role for very
large ID sets. For cold caches, the characteristics of the
data, e.g., page locality, dominate parsing: the grid URIs
perform better than OSM URIs. Also, the more complex
OSM literals take negligibly longer to parse. [2] observed
the performance impact of resolving very large query results.
Our measurements confirm this. Yet, the additional impact

SELECT <<?node | ?geo>> WHERE {
?node geordf:hasGeography ?geo.

} LIMIT <<NUMBER OF DICTIONARY ENTRIES>>

Listing 9: Query to measure the dictionary perfor-
mance.

 0.01

 0.1

 1

 10

10
0

10
1

10
2

10
3

10
4

10
5

10
6

ti
m

e
[s

ec
o
n
d
s]

number of Nodes in query region

spatial literals, OSM

spatial literals, grid

URIs, OSM

URIs, grid

(a) large grid and OpenStreetMap (OSM), cold caches

 0.01

 0.1

 1

 10

10
0

10
1

10
2

10
3

10
4

10
5

10
6

ti
m

e
[s

ec
o
n
d
s]

number of Nodes in query region

spatial literals, OSM

spatial literals, grid

URIs, OSM

URIs, grid

(b) large grid and OpenStreetMap (OSM), warm caches

Figure 6: Dictionary performance.

of parsing WKB literals is only a tiny fraction of the overall
execution time as shown in our further evaluation.

5.4 Different Selectivities
To get a broader understanding of the general performance,

we ran a series of queries with different selectivities in the
RDF pattern matching part and in the spatial query predi-
cate. We queried Nodes with a particular Tag key to influence
the pattern matching part, as every Tag key occurs at a dif-
ferent fraction of the Nodes (see Section 5.1). We influenced
the spatial selectivity through different query regions and
evaluated the spatial query predicate on the spatial index.
Listing 10 shows the test query. Note that the query resolves
and prints all bound variables. Figure 7 shows the results,
both for the small and the large grid database.

Much more than selectivity does the database size make an
impact. Even though RDF-3X is good at discarding unnec-
essary intermediate tuples early [13, 2], the larger database
inevitably causes more of them. For up to 104 resp. 105

Nodes, the results are nearly independent of the query region,

SELECT * WHERE {
?tag osm:hasKey "<<TAG KEY>>".
?node osm:hasTag ?tag.
?node geordf:hasGeography ?geo.
FILTER geo:within (?geo,

"POLYGON((<<QUERY REGION>>))"^^geordf:geography)
}

Listing 10: Query to compare performance with dif-
ferent selectivities.

40

 0.01

 0.1

 1

 10

10
0

10
1

10
2

10
3

10
4

10
5

ti
m

e
[s

ec
o
n
d
s]

number of Nodes in query region

key = 1

key = 16

key = 256

key = 1024

(a) small grid, cold caches

 0.01

 0.1

 1

 10

10
0

10
1

10
2

10
3

10
4

10
5

ti
m

e
[s

ec
o
n
d
s]

number of Nodes in query region

key = 1

key = 16

key = 256

key = 1024

(b) small grid, warm caches

 10

 100

10
0

10
1

10
2

10
3

10
4

10
5

10
6

ti
m

e
[s

ec
o
n
d
s]

number of Nodes in query region

key = 1

key = 16

key = 256

key = 1024

(c) large grid, cold caches

 10

 100

10
0

10
1

10
2

10
3

10
4

10
5

10
6

ti
m

e
[s

ec
o
n
d
s]

number of Nodes in query region

key = 1

key = 16

key = 256

key = 1024

(d) large grid, warm caches

Figure 7: Different selectivities in the RDF pattern matching part and in the spatial predicate of a query.

which indicates that the query plan did not use the spatial
index optimally. Joining the spatial index with the rest of
the query earlier would avoid intermediate tuples. In our
preliminary implementation the query planner does not use
spatial statistics, which leaves potential for future work. Fur-
ther, the less selective Tag keys create higher load, but the
overhead is much smaller than the difference in selectivity.
Generally, we think the shown performance is very good.

5.5 Multiple Spatial Features per Resource
In a final series of tests we address the situation of multiple

spatial features per resource. It depends on the data model
whether this can occur. Models such as OpenStreetMap
or those using the place resources discussed in Section 3.1
contain only 1:1 relationships between resources and features,
i.e., every feature belongs to exactly one resource. Other
models may contain 1:n relationships, e.g., to model both
the center point and the boundary of a building. Our spatial
index contains all features of the entire RDF graph in a single
index structure. Thus, it returns all features that match a

SELECT * WHERE {
?tag osm:hasKey "1".
?node osm:hasTag ?tag.
?node geordf:hasGeography1 ?geo.
FILTER geo:within (?geo,

"POLYGON((<<QUERY REGION>>))"^^geordf:geography)
}

Listing 11: Test query to select one out of multiple
features per resource.

spatial query predicate, regardless of the resource it belongs
to or the predicate connecting it to the resource. I.e. both the
center point and the boundary of the aforementioned building
are returned if they match the spatial predicate—even if the
query only needs the center point.

To measure this effect, we generated different variants
of the small grid database with a different number n of
points per Node, resulting in database sizes of up to 33.9
GB. No two points of the database were identical, i.e., all
points were represented by a different dictionary ID. Also,
all points of the same resource used different predicates
(osm:hasGeography1, osm:hasGeography2, . . .). Listing 11
shows the corresponding test query; to include further pattern
matching parts, it selects Nodes carrying Tag 1. Figure 8
shows the results. Note that the X axis counts Nodes, not
features. Especially for cold caches, a higher amount of
features per resource clearly does increase the costs in our
indexing approach. However, even though more features per
resource take longer, the effect is moderate for queries which
select a small to medium amount of features.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we discuss how spatial data processing can

be natively integrated into RDF modeling and querying. Our
solution models spatial features as typed complex literals,
and defines spatial predicates as filter functions in SPARQL.
Furthermore, we discuss the deep integration of these con-
cepts into RDF triple stores, and present an implementation
of a triple store with spatial functionality. Our evaluation
shows that some of the modifications for our deep integration

41

 0.1

 1

 10

 100

 1000

10
0

10
1

10
2

10
3

10
4

10
5

ti
m

e
[s

ec
o
n
d
s]

number of Nodes in query region

n = 1

n = 4

n = 16

n = 64

n = 256

(a) small grid, cold caches

 0.1

 1

 10

 100

 1000

10
0

10
1

10
2

10
3

10
4

10
5

ti
m

e
[s

ec
o
n
d
s]

number of Nodes in query region

n = 1

n = 4

n = 16

n = 64

n = 256

(b) small grid, warm caches

Figure 8: Multiple spatial features per resource:
Every Node possesses n different features.

approach do create some extra overhead for queries select-
ing very large amounts of spatial features, but we observe
excellent performance for most common spatial query types.

Our implementation fully supports the spatial query pred-
icates of the OpenGIS Simple Features Specification [7] by
means of SPARQL filter functions. Nevertheless, our work
still has promising future research directions. To optimize
queries over huge spatial and non-spatial data sets, statistics
are necessary on how the spatial data is distributed. This way,
the query planner may compute the most efficient query plan
and, e.g., decide whether to use the spatial index or a spatial
selection. In addition, our implemented filter functions cur-
rently compare a spatial feature with a constant value. This
is sufficient for many application scenarios. Evaluating a
spatial relationship between two variables, i.e., a spatial join,
is a challenge we will address in the future. Finally, our work
is about storing and querying static RDF data with rare
updates, as commonly accepted in RDF scenarios. Another
future research direction would be to cope with changes and
updates in the location data, and their effects on indexing
and data processing.

Acknowledgments
We would like to thank Bastian Reitschuster, Tim Waizeneg-
ger, Oliver Schiller and Nazario Cipriani for greatly support-
ing our work.

7. REFERENCES
[1] D. J. Abadi, A. Marcus, S. R. Madden, and

K. Hollenbach. Scalable semantic web data manage-
ment using vertical partitioning. In VLDB, 2007.

[2] M. Atre, V. Chaoji, M. J. Zaki, and J. A. Hendler.
Matrix ”bit” loaded: a scalable lightweight join query
processor for rdf data. In WWW, 2010.

[3] S. Auer, J. Lehmann, and S. Hellmann. LinkedGeoData:
Adding a Spatial Dimension to the Web of Data. The
Semantic Web-ISWC 2009, pages 731–746, 2009.

[4] M. Bauer, C. Becker, and K. Rothermel. Location
models from the perspective of context-aware
applications and mobile ad hoc networks. Personal and
Ubiquitous Computing, 6(5/6):322–328, 2002.

[5] D. Brickley. Basic Geo (WGS84 lat/long) Vocabulary.
W3C Semantic Web Interest Group, 2003.
http://www.w3.org/2003/01/geo/.

[6] O. Erling and I. Mikhailov. RDF Support in the
Virtuoso DBMS. Networked Knowledge-Networked
Media, pages 7–24, 2009.

[7] J. R. Herring. OpenGIS Implementation Specification
for Geographic information - Simple feature access -
Part 1: Common architecture. Candidate, Open
Geospatial Consortium, Inc., 2006.

[8] Jena: a Semantic Web framework for Java.
http://jena.sourceforge.net/.

[9] W. Kammersell and M. Dean. Conceptual search:
Incorporating geospatial data into semantic queries. In
Terra Cognita – Directions to the Geospatial Semantic
Web, 2006.

[10] G. Klyne and J. J. Carroll. Resource Description
Framework (RDF): Concepts and abstract syntax.
Recommendation, W3C, 2004.

[11] D. Kolas. Supporting Spatial Semantics with SPARQL.
Transactions in GIS, 12(s1):5–18, 2008.

[12] D. Kolas and T. Self. Spatially augmented
knowledge-base. In ISWC+ASW, 2007.

[13] T. Neumann and G. Weikum. The RDF-3X engine for
scalable management of RDF data. The VLDB Journal,
19(1):91–113, 2010.

[14] M. Perry. A framework to support spatial, temporal and
thematic analytics over semantic web data. PhD thesis,
Wright State University, 2008.

[15] M. Perry, F. Hakimpour, and A. Sheth. Analyzing
theme, space, and time: an ontology-based approach.
In ACM GIS, 2006.

[16] E. Prud’hommeaux and A. Seaborne. SPARQL query
language for RDF. Recommendation, W3C, 2008.

[17] R. Singh, A. Turner, M. Maron, and A. Doyle. GeoRSS:
Geographically encoded objects for RSS feeds, 2009.
http://georss.org/gml.

[18] The Open Geospatial Consortium. OpenGIS
Geography Markup Language (GML) Encoding
Standard - Version 1.0.0, 2000.

[19] C. Weiss, P. Karras, and A. Bernstein. Hexastore:
sextuple indexing for semantic web data management.
In VLDB, 2008.

42

