Jelolések és szinek

A dokumentacidé ilyen jegyzeteket,

kereteket, kiemeléseket,

S

Haladdéknak:
ezeket a részeket nem kotelezd elolvasni.

Oracle® Database
Concepts

11gRelease 1 (11.1)
B28318-05

October 2008

ORACLE

kiss
Typewriter
A dokumentáció ilyen jegyzeteket,

kiss
Rectangle

kiss
Typewriter
kereteket,

kiss
Sticky Note
megjegyzéseket tartalmaz.

kiss
Typewriter
kereteket,

kiss
Typewriter
kiemeléseket,

kiss
Typewriter
Haladóknak:
ezeket a részeket nem kötelező elolvasni.

kiss
Rectangle

kiss
Typewriter
Jelölések és színek

Oracle Database Concepts, 11g Release 1 (11.1)
B28318-05

Copyright © 1993, 2008, Oracle. All rights reserved.
Primary Author: Richard Strohm

Contributing Authors: Lance Ashdown, Mark Bauer, Michele Cyran, Steve Fogel, Janis Greenberg, Sumit
Jeloka, Paul Lane, Diana Lorentz, Jack Melnick, Sheila Moore, Antonio Romero, Vivian Schupmann, Cathy
Shea, Douglas Williams

Contributors: Omar Alonso, Penny Avril, Hermann Baer, Sandeepan Banerjee, Bill Bridge, Sandra
Cheevers, Carol Colrain, Vira Goorah, Mike Hartstein, John Haydu, Wei Hu, Ramkumar Krishnan, Vasudha
Krishnaswamy, Bill Lee, Bryn Llewellyn, Rich Long, Paul Manning, Mughees Minhas, Valarie Moore, Gopal
Mulagund, Muthu Olagappan, Jennifer Polk, Kathy Rich, John Russell, Bob Thome, Randy Urbano, Mark
Van de Wiel, Michael Verheij, Ron Weiss, Steve Wertheimer

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software—Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway, Redwood City,
CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

Contents

PUrOIACE ...t XXV
AN S Lo 1= U< J RO XXV
Documentation AcCeSSIDILILYcciiiiiiiiiiiiiiic e XXV
Related DOCUIMENTATIONc.veiieieeeiieceeieee ettt ettt eeaeeeta e e eaeeeaeseateeeseeenteesseeenseeteeseeenseenneas XXVi
CONMVEILIONS ..oeietitieeeeeetteee e et e e eee et e e ee ettt eeeeesaateeeeeesataseeesessaassessessasaeesssensasasesesssabeessssnsstaseeesnsnrarees XXVi

Part | What Is Oracle?

1 Introduction to Oracle Database

Oracle Database ArChitecturecccoooooviiiiiiiiiiieiececeeeee ettt et a e eaesbe s e reens 1-1
Overview Of Grid ATChItECUIEccviiuieieetectectect ettt ettt et reereere s aas 1-2
Overview of Application ATChiteCtUrecccoevviviiiriiniircc e 1-2

Client/Server ATCHITECIUTCc.uii ettt ettt s e e st e e s e e e s eaeeessnaeessaeeas 1-2
Multitier Architecture: Application SEIVETScccociiiiiiiiiiiiiiiiiceeeeeeeas 1-3
Multitier Architecture: Service-Oriented Architecturecocooeevevieiecieieeieieenisereeienes 1-3
Overview of Physical Database Structures............cccccovviviviiinininiiin, 1-3
DALALILES ...vecvvireeiecteeeect ettt ettt et b et e te et e beetesteebeeraenbeere et e teenteeteenns 1-4
CONTOL FILES......uieiieiieiietieiecieteeteette ettt e et bbb e b eseesaesaesesseesessassessessessessessesensessensens 1-4
Online Redo LOg Filesccoiiiiiiiiiiiiiiiiiiic s 1-5
Archived Redo Log Files........ccccociiiiiiiiiiiiiiiiiicicc e 1-5
Parameter FIlESooiiiieieiicieceeeeeeeete ettt et e b e s se et e teenaenaeenes 1-5
Alert and Trace Log Files........cccccooviiiiiiiiiiiiiiic s 1-5
Backup FLEScviiiiiiiiiii s 1-6
Overview of Logical Database Structurescccocovviiiiniiiiiiiii, 1-6
Oracle Database Data BlOCKS.......ccccuiiuieiiiiieeeieeseeerteetee ettt st sae e bbb ens 1-6
EXEOINES .ottt ettt et et e et e e e be et e e st e e bt e ba e e beeerae e be e saeenbeebbeesbaereeans 1-6
SEGIMENLS ...t 1-7
TADLESPACESeeieet e 1-7
Overview of Schemas and Common Schema Objectsccccccceviiiiciieiniciiecee 1-8
1= o) 1RSSR 1-8
TNAEXES ettt ettt e b e e e re et e beenbesreeabeebaesbebaenbeeteenaenreenes 1-8
VIEWS ettt e e et e e et e st e e te e s te e e be e saeease e sbeebe e seeaab e e st e asaeeasaeenbeeabaeanbeensaeanseenraeanraan 1-8
L 1] (=) =TSRSS 1-9
SYNONYINS ..ottt s 1-9
Overview of the Oracle Database Data Dictionarycccccccceiiiiiiniiiiiiiicccceeas 1-9

Overview of the Oracle Database INSTANCE.cooveieeiiiieiie ettt 1-9

Oracle Database Background Processesccoouiiieiiicicieiiccieicc e 1-10
Instance MemoOTy StIUCLUTEScccvviiiiiiiiiiiiiiiiicc e 1-11
Overview of Accessing the Databaseccooiiiiii 1-11
Network CONNECLIONS.......c.cviviiiiiiiiiici s 1-11
Starting Up the Database ... 1-12
How Oracle Database WOIKScccoiiiiiiiiiiiiiiiiicic s 1-12
Overview of Oracle Database Utilities..........cccccoeuiiiiiiiiiiiiiiiiiiiies 1-13
Oracle Database FEatures ...ttt 1-13
Overview of Oracle Real Application TeStingcccccevvviiiiiiiiiiiniiiiiicc 1-13
Database Replayccoiii 1-13
SQL Performance ANAlYZeTcccccccuiuciiiriiiiiiiceriieceieereeeeee e 1-14
Overview of Concurrency Features...........c.ooeuieiiiiiiiiiiiiciiicc s 1-14
CONCUITEIICY .ovvitiitititctciete ittt 1-15
Read CONSISLENCYvcvviiiciiicieiciciceceie e 1-15
Caching MeChaniSmS...........cceuiiuiiiiiiiciciec s 1-16
Locking MeCRANISINSccueiiiiiiiieiiiicicie it 1-16
Overview of Manageability FEatUrescccoovvviiiiiiiriiiiiirccccecceeeeeeeee s 1-17
Self-Managing Databaseccccceuririiiiiiniicic s 1-17
Automatic Maintenance Tasks..........cccccciiiiiiiiiiiiii 1-17
Oracle Enterprise Managerccccccvueuiieiriririiiiiiiieieeeieeceeeeeeeeeeeeeseseee e seeeeees 1-17
SQL Developer and SQL*PIUScccoiiiiiniiiiiiciicc s 1-18
Automatic Memory Management ... 1-18
Automatic Storage Management ... 1-18
Automatic Database Diagnostic MONItOrccooeueiiiiiieiiiiicecc 1-19
SQOL Tuning AdVISOIc.cocuiieiiiiieiecicie s s 1-19
SQL ACCESS AQVISOT ..vviuvieriirietiieti et eete et eete et e ete et ete et eeteeaseeseeseesserseesseseeseersesssenseeseenseeseenes 1-19
Streams TunINg AdVISOTc.ouoiiuiiiiiiciciec s 1-20
The Scheduler ... 1-20
Database Resource Managerccccccccucucuciiicicicieieieicieieeieeeeieieeeteeese e seneeeassesesenseeeees 1-20
Overview of Diagnosability Features..........c...cccoeiiiiiiiiiniiiic s 1-20
Overview of Database Backup and Recovery Features ..o, 1-20
Overview of High Availability Features...........cccccooiiiiiiiiiiiiicccceeccceeeeeeeeeees 1-22
Overview of Business Intelligence Features............cccooviiiiiiiiiiiiiicn, 1-23
Data WarehouUSINgccccciiiiiiiiiiiiiiiiciicciic s 1-23
Materialized VIEWScccoviiiiiiiiiiiicccc 1-24
Table COMPIESSIONcvevivieiicicicicicicccc s 1-24
Parallel EXECULIONceoiriiieiiiiniieiirieett ettt et 1-25
ANALYHC SQL....coiiiic s 1-25
OLAP Capabilitiesc.ccceeuiuiiiiiiiiiiiiiiiiiciiiceic s 1-25
Data MININEooviviiiiiiicc e 1-25
Very Large Databases (VLDB)ccccoviiiiiiiiiiiicccnna 1-25
Overview of Content Management Featurescococuoiiiiiiiiciciciiiccc e, 1-26
XML in Oracle Databaseccoeueueirrieieiiiiineiiireecieeieeee sttt 1-26
LOBS ...ttt 1-27
SECUTEFILES.......oviiiiit s 1-27
OFaCle TEXE .evviieiiriicc ettt ettt 1-29

(@) =10 (SR B La =T T<Y=Y ool o SRR 1-29

Oracle Multimediaccoiiiiiiiiiiiiiii s 1-29
Oracle Spatial.......ccccciiiiii e s 1-29
Overview of Security FEatures ... 1-30
Security MeChaniSmscoiiiiiiiiiciec 1-30
Overview of Data Integrity and Triggersccccccerrirriciirririeicrreeeerereeree s 1-31
Integrity CONSTIAINES.cvieiieieiiccei s 1-31
TIIGZOIS oviiiie s 1-32
Overview of Information Integration Features............cccccccoeiuiiiiinniinnicrrecnreccnes 1-32
Distributed SQLooeeeieeeeeee ettt e s a e et ae e ra e beesa e bereenes 1-32
Oracle StreaAmMScccuiiiiiiiiiiiii s 1-33
Oracle Database Gateways and Generic CONNectivityccoceveveririvrvvernrrrrecereene 1-34
Oracle Database Application Developmentccooiiiiiiiniie, 1-34
Overview of Oracle SQLooviiiiieecieeeee ettt ettt a e st re et e s reessesreesaesrsessensnas 1-35
SQOL SEATEIMENES ...c.evieiieeiieeieeeie ettt et et e eveesteesbeesbeeetaeeabeesaseesseesaeasseesessasessssesseansaessennss 1-35
OVErvieWw Of PL/SQL.......oouiiiieteeeeete ettt ettt ettt et eve v eteeeteeteeteeseesseessenseessesteensenseesseessensenseeneas 1-36
OVEIVIEW Of JAVA 11ttt ettt ettt e a ettt sttt st et et et et e st en e e st eseebeebesbesaenean 1-37
Overview of Application Programming Languages (APIS)cccccceeueeicneciccnnccene 1-37
Overview of Application Development ENnvironmentsc.cccooveveeiiiinnineneeeeennen, 1-37
Overview Of DatatyPes........cooiriiiiiicic e 1-38
Overview of GlobaliZationccccvviiiiiiiiiiiiiii e 1-39

Partll Oracle Database Architecture

2 Data Blocks, Extents, and Segments

Introduction to Data Blocks, Extents, and Segmentscccccoooovniiinin, 2-1
OVerview 0f Data BIOCKSc.ccveiiiiieiiiieieee ettt ettt et e e be st ese s e e aessaessesssessaessansaessenseenes 2-3
Data BIOCK FOITNAL ...ccvicvieiiiicieeiecte sttt ettt ettt et sve b e a b e s baes b e s ssesbeeseessesssesseesnenseeneas 2-3
Header (Common and Variable)cccccuecieeirieiiniinecienieseieieeeseteeeeese e s ssessessesseneas 2-4

Table DIreCtOrYocueviiiece e 2-4

ROW DAIECLOTY ..ottt s 2-4
OVETNEAdocviieiiieeeee ettt ettt te et e e teste st e b e sbesbesbessestessesseseassesensessensans 2-4

ROW DAta.ueiiiiiiiieiiieceeet ettt sttt et st e e s te et e e st e ebe e s bt e sbeessbessbeesssessseensaesaseenseenns 2-4

Free SPace........coiiiic s 2-4

Free Space Management...........cccoceiiiiiiiiiniiii s 2-5
Availability and Optimization of Free Space in a Data Block.............ccccevvniiininninininn, 2-5

Row Chaining and Migrating ... 2-5
PCTFREE, PCTUSED, and Row CRainingccccccccueueueiriiiieiniiiiiieeieeeeiciceeeeeeeeeeeieeeeeeeieeennes 2-6
The PCTEFREE Parameterccccecieieviiiieieceeieeeeieeeesteeeeeteseessesseeaesseessesssessesssessessesssesseenes 2-6

The PCTUSED ParamMetercceccvieuieiieiieiecieeerecteeteeteeceeereeveereesesseesesreessesssessessseseessessesssenns 2-7

How PCTFREE and PCTUSED Work Togethercccccociiiiiiiiiieccccecccnceiennes 2-8
OVEIVIEW OFf EXEENEScuiiiiiiciiiiiceeteceeee ettt et e sae e be e b e saeessesssessesseessasssensennes 2-10
When Extents Are ALLOCAtEdooieieiiiiiieiiieieeie ettt et s et ee e v e sae s e aeenaas 2-10
Determine the Number and Size of EXtENtScccvevveieeiiiiiiniiiisieieieeeceeeeesveeese e 2-10
How Extents Are ALIOCAtedccevvieieriiiieiicieiecteteeeeste ettt te et e ssesseessessennes 2-11
When Extents Are Deallocatedcooiovieiieiieiiiiiciieteeie ettt et e re v v eanes 2-11

Extents in NONCIUSEEIed Tablesooouviiiiiiiiiieeeeeeeeee e 2-12

Extents in Clustered Tables ... 2-12
Extents in Materialized Views and Their Logs.......c.ccccccevuvriiiniiiiiccccceeceeeenes 2-13
Extents in INA@XEScoeuiviiiiiiiiiiiiiiiicc s 2-13
Extents in Temporary Segments ..ot 2-13
Extents in Rollback Segments..........c.ccccccciiiiiiiiiiiiiiiceccccceeeee s 2-13
Overview 0f SeGMENtS ..o 2-13
Introduction to Data Segmentsccccooiiiiiiii 2-14
Introduction to INdeX SEZMENLSc.cceuiuiiiiiiiiiiiiiiiccecee s 2-14
Introduction to Temporary SEgMeNtscccovirueieiiiicieiieice s 2-14
Operations that Require Temporary Segmentsccoooueeiiiiiiiiniiceeccc 2-15
Segments in Temporary Tables and Their IndeXes ... 2-15
How Temporary Segments Are Allocatedccoooiiiiiiiiiiiiiccc 2-15
Introduction to Undo Segments and Automatic Undo Management............c.ccooocueueiinnnnnen. 2-16
Manual Undo Managementc.cccoccciiiiiiiiiiiiciceeeereieeeeee e enenes 2-17
UNAO QUOLA ..ottt ete ettt ebe st ste s st et e e st e teess e sesssesseessasseessessesssansanssensesssensenses 2-17
Automatic Undo Retention...........ccccceiiiiiiiiiiiiiiiiiicns 2-17

3 Tablespaces, Datafiles, and Control Files

Introduction to Tablespaces, Datafiles, and Control Filescccccoccocoiiiiiinniininiicnn, 3-1
Oracle-Managed FILES..........ccociiiiiiiiiicccce et 3-2
Allocate More Space for a Database ... 3-2

Overview of TabIeSPACESccciiuiiiiiiiiiiiiii s 3-4
Bigfile TablESPACEScucvuuiuimiiiiiicicicieieie ettt 3-5

Benefits of Bigfile TableSpacescccoouoviiriiiiiiii 3-5
Considerations with Bigfile Tablespaces.............ccoooeueiiiiieiiiieec 3-6
The SYSTEM TabIESPACEcucviuiiiiiiiciciicieieicicee et 3-6
The Data DIiCHONATYcovieieieiiicie it 3-6
PL/SQL Program Units Description..........ccoceuoiiiciiiiiiicieeccie s 3-6
The SYSAUX TablESPACE.......ciiiiiiiiiiiicieiicieieieice et 3-7
UNdO TableSPaCescceviiiiiiiiiiiiiciiiicc s 3-7
Creation of Undo TableSpacesccccccuiiiiiiiiiiiiiiiiiiiiiicicececteeeee e 3-8
Default Temporary TableSpaceccccccuiuciiiiiiiiiiiicceececeeeeeeeeeeeeeeee e 3-8
How to Specify a Default Temporary Tablespace..........ccococvivviiiniiniiiniiiiiiins 3-8
Using Multiple TableSpaces..........cccccciiiiiiiiiiniiiiiiiciiiiiciccess e 3-8
Managing Space in TablesSpacesccccocuieiiiiiiiiiiiiececee e 3-9
Locally Managed Tablespacescccoceueiiiuriciiiiiicicccic e 3-9
Segment Space Management in Locally Managed Tablespacesc..ccccoveueiiiruenninnnes 3-10
Dictionary Managed TableSpacesccccccceuiiiiiiriririeiciieeeceeeeeeeeee s 3-10
Multiple BIOCK SIZES.......c.ouiuiiiiiiiiiiiiiiiiiiiiciciicict s 3-11
Online and Offline TableSPacesccccoccuiiiiiiiiiiiiiiiiiiiiic s 3-11
Bringing Tablespaces Offlineccccccciiiiiiiiiiiiiiiccceceeeeee e 3-11
Read-Only TableSpacescococrieiiiuiiiiiicieic e 3-12
Temporary TableSPaces.........cccccciuiiiiiiiiiiiiiiie s 3-12
SOTt SEZMENLS ..ot e 3-13
Creation of Temporary TableSpaces ... 3-13
Transport of Tablespaces Between Databasescccoeeieiiiiiniiiciiiccecc 3-13

vi

4

Tablespace RePOSItOTYccccvviiiiiiiiiiiiiiiiiiiccc s 3-14

How to Move or Copy a Tablespace to Another Databaseccccccceeeiiiiiiininnnnnnn. 3-14
OVErview Of Datafilescccoooieiiieiieieieiee ettt s e et et et e s e et e se et eeseeseennenneens 3-15
Datafile CONLENES ...c.eecvieieiieiiieeieee ettt ettt te et e s re et e sae e sesteessesssessesssessesseessesssessensees 3-15
SIZE Of DAtAIlES ..uviviiiieiieiiciice ettt ettt et e re bt te e be et e aa e beere e b e eseenaesreenaeareas 3-16
OFfIINE DAtAfileS.....ccvivviieieieieieieieieere ettt ettt et ese st e esesbesbessesbessessessessaseesessensessensenses 3-16
Temporary Datafiles ... 3-16
OVerview 0f CONIOL FIlescocciiiiiiiiieiicececeee ettt e reeae s re s e eae e aeens 3-17
CONIOL FIle CONTENES ...vivviviieiieieeieiieieieteeeiee st ettt et et e st esaeseesessessessessessessessessessessesessessenses 3-17
Multiplexed Control Files ... 3-18

Transaction Management

Introduction to TraNSACHIONScceecvieiieiieiecieic ettt e e e s e s seesae s e e sreess e seessessaessenseenes 4-1
Statement Execution and Transaction Controlcooeveieiriiininenieeeeeececee e 4-2
Statement-Level ROIIDACKc.ccvvieiiiiirieieieieietet ettt ettt ese s esasse s s s essessessesassessens 4-3
Resumable Space ALlOCAtION..........coiiiiiiiiiiiiiiiiiicc e 4-3

Overview of Transaction Management..............cccccocooiiiiiiiiiiiis 4-4
(@007 0'00 0 0N LA 1=V Tt Lol (o) T TP SR 4-4
ROIIback Of TIaNSACIONSccecvieiieiieiiriieieriesteeieste et e steetesteeaesreeaesseessessaessesssessesseessesseessesssessensees 4-5
Savepoints In TranSactions ... 4-6
Transaction NamUiNEcccciiiiiiiiiii s 4-7

How Transactions Are NaAMEdccccvvcieriecierieeierieiestieiesteeee e saeseeae e e sae e essessesssessesssenns 4-7
COMMUE COMIMEINL ..evviiiiieiieiieeieerte et este et steete et eebeebeessseeseessseeseessseesseesssesssessssessseesseeans 4-7
The Two-Phase Commit MeChaniSImccevvevieiiieieieieieese et neas 4-8

Overview of Autonomous TranSaCtioNSccccvvcviriecierieiiceeteeee ettt se et es e be s e reesseseeens 4-8

Autonomous PL/SQL BLOCKSocouiioiiiiieeeieeeee ettt ettt eetee et et eveeeaeeeveesteeeaeeeseesaveensenaneens 4-9
Transaction Control Statements in Autonomous BIOCKSccccoeevievierienieieieieieieeeennns 4-9

Schema Objects

Introduction to Schema Objects ... 5-1
OVEIVIEW Of TADIESocvieiiiiiieieeeeeeee ettt ettt e s re e s e s seesaessaesbesssesseessansaessenseenns 5-3
How Table Data Is STOTedcc.eceeeuieiiiieeecieceeieeeeere ettt ettt ettt et e et e veebeeseebeersenneseennas 5-4
ROW FOrmat and SIZEccovvevieieieieieieieire ettt ettt aetestesseese s s e sbessessessessessessessasens 5-5
ROWIAS Of ROW PIECESvevieeiiiieiieceieieitete ettt ettt s e et s seeaesraebesnaessessnensasssensenseenes 5-7
COIUMIN OFAET ..ottt ettt ettt et be e e te et e e te e s e ebeenbesreeseersenbessseseeseensenseenns 5-7

Table COMPTESSION «....cvviiiiiiiee et 5-7
Using Table COMPTESSION.........cooirieiiiiirieieiciet et 5-8

Nulls Indicate AbSENCE Of VAIUE......cc.oceeviiiriiiiciiecteceeteeeeeteee ettt ettt e a e 5-8
Default Values fOr COIUIMNSccociiirierieieieieietet ettt se ettt steste e eseesessassessessessessessessesessessens 5-9
PartitionNed TaBIESc.cccveeiieiiriieieeietece ettt ettt e re et e s e te s e e e saesbaessensaessesaesreensenneas 5-10
INESEEA TADLES ...veceeerieiieeieeeeeteee ettt ettt ettt et te et eebeeab e beesaeeteessebeesbesseesseeseensesrsensensean 5-10
Temporary TabLEscccciiiiiiii e s 5-10
Segment ALIOCAtION.........c.oiiirieiici s 5-11

Parent and Child TranSactionsccccveviieieiieerieiteeeeeteeeeere et st ereebeeaesreeseereeaseeseenns 5-11
EXEEINAL TADIES ...ouvivieeieeieiieiieitetiete ettt ettt ettt e e eseebeebesbesbessessessessessesseseasansansensessensas 5-12
The ACCESS DITIVETeeiieeieiicieieeteste ettt s et e et aesreesae s st e aesssesaessesseessenseessensennes 5-12

vii

viii

Data Loading with External Tables............c.cooooiiiii 5-12

Parallel Access to External Tables ..o 5-13
OVErVIEW Of VIEWS ..o 5-13
HoW Views are StOred..........ccoiviiiiiiiiiiiiiicii e 5-14
HOW VIews AT USed ..o s 5-15
Mechanics Of VIEWSc.c.cuiuiiiiiiiiiiiiiiiciciciceeceeiee ettt 5-15
Globalization Support Parameters in VIEWs........cccccocovveiiiiiiiiiiiiiiicccs 5-16

Use of Indexes Against VIEWS.........c.oueruiioiiiiiiiccie e 5-16
Dependencies and VIEWSccccccuiiiiiiiriiriiiieeeeeeeeeeeeeeeeee e 5-16
Updatable JOIn VIEWScoiiiiiiiiiiiiiiciicc st 5-17
ODJECt VIBWS .ottt 5-17
ININE VIBWS .ottt 5-17
Overview of Materialized VIEWSccccccciiiiiiiiiiiniiiii s 5-18
Define Constraints 0N VIEWScccoiuiiiiiiiiiiiiccccceccc e 5-19
Refresh Materialized VIEWSccccocoiiuiiiiiiiiiiiicccceeece e 5-19
Materialized VIEW LOZSccoouoiiiiiieiiiic 5-20
Overview of DIMENSIONSccccccoiiiiiiiiiiii e 5-20
Overview of the Sequence Generatorccccoeoirieiririecnieieere e 5-21
OVerview Of SYNONYINS ...ttt 5-22
OVerview Of INA@XESccciiiiiiiiiiiii e 5-23
Unique and Nonunique INAeXeScccooiiiiiiiiiiiicicicceeeeeeeeeeeee e 5-24
Visible and Invisible INAEXES..........ccccciiiiiiiiiiiiiiiiii s 5-24
ComPOSite INAEXES.....c.cviiieiiiictt 5-24
Indexes and KEYSccccuiuiiiiiiiiiiiiiiicccce e 5-25
Indexes and NULLS ... s 5-25
Function-Based INAEXESccciuiiiiiiiiiiiiiicc s 5-26
Uses of Function-Based INAEXES ... 5-26
Optimization with Function-Based Indexescccccoovieiiiiiiiiiiiiic, 5-27
Dependencies of Function-Based INdeXesccoccueviiiriiiiiiiciiiic 5-27

How Indexes Are StOTedcccuiuiiiiiiiiiiiiiceeeceeeteeeeceeeeee e 5-28
Format of Index BIOCKS........ccccoviiiiiiiiiiiiiiicic s 5-28

The Internal Structure Of INAEXESccccciririiiiriniiiiiiccreee e 5-28

INAEX PrOPEIHIES ...ttt 5-29
Advantages of B-tree StIUCtUIe..........cccociiiviiiiiiiiii 5-30

INdex UNIQUE SCANviviiiiiiiiiiiicc s 5-30
INAeX RANEGE SCANoviiiiiiiiiiccicicce et 5-30
Key COMPTESSIONouviiiiiiiciiicct et 5-30
Prefix and SUffix ENIesccoociioiiiiiiiiciecceeeere et 5-31
Performance and Storage Considerationsc.ccccccoeueurieuerininiiiienrrcerreeeresecenes 5-31

Uses of Key COMPIESSIONoiuiuiiiiiiiiiieieiiciei i 5-31
Reverse Key INAEXESccccuiuiiiiiiiiiiiiiiiiiiicicc s 5-32
BItmMap INAEXESoviviiiiiciiieiicccccecce et 5-32
Benefits for Data Warehousing Applicationsccccceevviiiiiiiiiiiiiicccc 5-33
Cardinalityccooeiuiiiiiiii s 5-33

Bitmap Index EXamplecccciiiiiiiiiiiccccecce s 5-34

Bitmap Indexes and INULILSccccovveiiiiiiiiiiiii s 5-35

Bitmap Indexes on Partitioned Tablescccccccoiiiiiiininiiiniiiiiccs 5-35

Bitmap JOIN INA@XESc.oviviviiiiiiiiicii s 5-36

Overview of Index-Organized Tablescccocooiiiiiiiiiii e 5-36
Benefits of Index-Organized Tables ... 5-37
Index-Organized Tables with Row Overflow Area ..o, 5-38
Secondary Indexes on Index-Organized Tablescccooiiiiiiiiiiii, 5-38
Bitmap Indexes on Index-Organized Tables..........c.cccccoeiiiiiiiiiiiiiicceececceeeeeees 5-39

Mapping Tablecooiiiiiiiiiiiii s 5-39
Partitioned Index-Organized Tablescccooiiiiiiii 5-40
B-tree Indexes on UROWID Columns for Heap- and Index-Organized Tables.................... 5-40
Index-Organized Table APPliCatioNscccciuiviiiiiiiiiieiciicccc s 5-40

Overview of Application Domain Indexes ... 5-40

OVerview Of CIUSEETSooiiimiiiicc et 5-41

Overview of Hash CIUSEeTScccoiiiiiiiiiiiicc e 5-42

6 Schema Object Dependencies

Overview of Schema Object Dependencies..............cccccoeriiiiiiiiiiiiiiiiiiis 6-1
Querying Object Dependencies ... 6-4
ODbject StatUsccoiiiiiiiii 6-4
Invalidation of Dependent Objects..............cccooiuiiiiiiiiiiiiiii s 6-4
Session State and Referenced Packagesccooeruiiiiiiiiiiiici 6-8
Security AUhOTIZAtIONcceuiiiiiiiiiiciiiicerece e 6-8
Guidelines for Reducing Invalidation ... 6-8
Add New Items to End of Package...........cccouiiiiriiiiii 6-8
Reference Each Table Through a VIEW ... 6-8
Object Revalidation ... 6-9
Name Resolution in Schema Scope.............ccccoovviiiiiiiiii 6-10
Local Dependency Managementoccccviiiiiiiiiiiiiiiiiicccss s 6-11
Remote Dependency Management ... 6-11
Dependencies Among Local and Remote Database Procedurescccccevvvviviiiiininininnnnn 6-11
Dependencies Among Other Remote ObJECtS........c.cceuvuruiiiiiiriririciiirreeeeeeeeeeeeeeeeeeeees 6-11
Dependencies of APPLICAtIONS.........cvuiuiviiiiiiiiiiiiiiiiiic s 6-12
Remote Procedure Call (RPC) Dependency Management...............cccccceiuiuiiuiiiiiciiincnccenennns 6-12
Time-Stamp Checkingccccociiiiiiiiiccccceee e 6-12
Signature CheCKiNg ..ot 6-14
Switching Datatype CLassesccociiiiiiiiiiiiiiicccee s 6-16
Examples of Changing Procedure Signaturescccccocceueueiceieceereeenceeeeeeneeennees 6-17
Controlling Remote Dependencies ... 6-18
Dependency ReSOIUtIONcccccucuiiiiiiiiiiiiiiiiiiicic s 6-19
Suggestions for Managing Dependenciesc.ccoccceuvvvieiiiniiiincrneccreeceeeees 6-20

Shared SQL Dependency Management................ccoouiuriiiiiiiiiiiiiininiiieeeieee s 6-20

7 The Data Dictionary

Introduction to the Data Dictionarycccooiiiiiiiiiiiiiiic e 7-1
Structure of the Data DIiCtiONarycccccccuviviiiiiiiiiiiiiiin e 7-2
SYS, Owner of the Data DIiCtiONaryccocovivirieiririiiiirrncrrrrccr e 7-2

How the Data Dictionary Is Usedccccoiuiiiiiiiiiiiiic e 7-2

How Oracle Database Uses the Data Dictionaryccccoooeiiiiiinicicccce 7-2

Public Synonyms for Data Dictionary VIEWScccccoooiiiiiiiiiiiiiic 7-3

Cache the Data Dictionary for Fast ACCESS........ccoceuiuiiimiiiiiieiieiicieiiciccreeeeereeeeeeeeneeeeennes 7-3

Other Programs and the Data Dictionarycoooeueiiiiioiiii 7-3

How to Use the Data DictioNaryccccoiiioiicieiiiiccice e 7-3
Views with the Prefix USER ... s 7-4

Views with the Prefix ALL ..o 7-4

Views with the Prefix DBA ..o 7-5

The DUAL Tablecoiiiiiiiiiiieicii s 7-5
Dynamic Performance Tablesccccoviiiiiiiiiiiiii 7-5
Database Object Metadata............ccccooouviiiiiiiiiiiiiiiii 7-5

Memory Architecture

Introduction to Oracle Database Memory Structures ... 8-1
Basic MemOry SrUCUTESc.ooviiiiiiiiiiiiiic e 8-1
Overview of the System Global Area...........cccccooiiiiiiiiiiiii s 8-2
Database Buffer Cache...........ccccciiiiiiiiiiiiiiiiiiic s 8-3
Organization of the Database Buffer Cacheccccoovivviininniiceee 8-3

The LRU Algorithm and Full Table Scanscccocooeiiiiiiiiiiceccc e 8-4

Redo Log BUer ... 8-4
Shared POOLcooviiiiiiiic s 8-4
Library Cache ... e 8-5
Dictionary Cache.........c.o.oviiii e 8-7

RESULE CAChE ..o 8-7

Large POOL......ocei e 8-8
JAVA POOL .ttt ettt a et b bbbt e bttt n e et eae b eae e 8-9
SEEAIMS POOL.......viiiiiii s 8-9
Overview of the Program GIobal Area ..o 8-9
Content of the PGA ..o 8-9
SESSION MEIMOTYoviiiiiiiiic s 8-9

Private SQOL ATa.....ccciccieeieeieerieiieti e steetesestesteetesteestessesssesseessesseessesseessessesssasseessensesssesennes 8-10

PGA Memory Use in Dedicated and Shared Server Modes............ccccccccuiuiiiiiiiiniiinnnnne, 8-11
Overview of Memory Management Methodscccooiiiin 8-12
About Software Code ATeascccocoiiiieiiiiiiiiiiiiiiie s 8-14

Process Architecture

INtrodUuction t0 PrOCESSESccoccvieiiiiieiiieiiciece ettt este et ettt e et et e s e e ssessa e sessaesbeessassaessansaessaseenes 9-1
Multiple-Process Oracle SYStEmSccccocuiiiiiiiiiiiiiiiiiiiciiiccc e 9-1
TYPES Of PIOCESSES ...ttt 9-2

OVEIVIEW Of USEI PrOCESSESc.veceiiiieiiiiieiiecteetesttete st estesteesse e e esteeseesesseessesssessesssessesssessesssensasssensennes 9-3
ConNEctioNS ANd SESSIONSccvieveierieieirieieete et ettt eete et e ereeeesteertesreeaesseeaesseessesseesesseessesseesesseenes 9-3

Overview of Oracle Database ProCeSSES..........ccooivoierirrienieiiieieieeteeeee et sressse e sesseensenseenes 9-3
Oracle Database SEIVer PIrOCESSES.ccvevuereirieriieieeieieereeieseesteeseesaeseessesssessesseessesseessesseessesseesses 9-4
Oracle Database Background Processes ... 9-4

ATchiver Processes (ARCH) ...ccccveieieriiieiieieieiet ettt e e ses e s se e sessessestessessessessassssessessens 9-5
Checkpoint Process (CKPT) ..o 9-6

Database Writer Process (DBW)ccoeireiriineinieirietretnetseeieteieee ettt 9-6

10

11

JOD QUEUE PrOCESSES ...c..euveiiiiieieieteteeeeett ettt ettt sttt ettt be bbb 9-7

Log Writer Process (LGWR)couoiiiiiiii s 9-8
Process Monitor Process (PIMOIN)oocvvcviririerenieieeieieeeeneeeseeteseessesseessesseessesssensesssensenns 9-9

Queue Monitor Processes (QIMINTL)cc.oiirieierienieieieteeeeee ettt 9-9
Recoverer Process (RECO)ccoirrinrenniininenieenieiestei ettt st sttt st sttt ee 9-9

System Monitor Process (SMON) ... 9-10

Other Oracle Database Background Processes.............cocoeueuiiuiieieiiiiicicniccicieeciens 9-10

Oracle Database Trace Files and the Alert LOgccccooirueiiiiiciiiic 9-11
Shared Server Architecture ..o 9-12
Dispatcher Request and Response QUEUEScceeeiiiiiiiiiiiiiiiiiiicieee s 9-13
Dispatcher Processes (DRAm)ccccvvvviiviiiiiiiiiiiiiiis s 9-15

Shared Server ProCeSSES (SHMM) ...ucicirirrerieeieierieieereeterieesssssessessessessessessessessesessessessessessens 9-15
Restricted Operations of the Shared Server ... 9-16
Dedicated Server Configuration ... 9-16
Database Resident Connection Pooling ..., 9-18
Using Database Resident Connection POOINGcccoviviieiiiiiiiiiiiicc 9-19
CoNNECHON CLASSESeuiiiiiiiiii e 9-20

SESSION PUTILY ..o 9-20

The Program INterface ... 9-21
Program Interface Structure ... 9-21
Program Interface DIIVETS ... 9-21
Communications Software for the Operating Systemcccccooviiiiiii, 9-22

Application Architecture
Introduction to Client/Server Architecture ... 10-1
Overview of Multitier Architecture ... 10-3
CHENES <.ttt 10-4
APPLCALION SEIVETS......cvviviiiiiiciciic s 10-4
Database SEIVETSc.c.ciiriiuiiiiiiii e 10-4
Oracle Database as a Web Service Provider..........cccccccvcueuciiiieicnncicierccererereeeeccenes 10-5
Overview of Oracle Net Services ... 10-5
How Oracle Net Services WOTKS..........cccccociiiiiiiiiiicceecses 10-6
THE LASEENET ...t 10-6
Service Information Registration...........cccueuiiiiiiiiiii 10-7
Oracle Database Utilities

Introduction to Oracle Database Utilitiesccccooiiiiiiiiiicc, 11-1
Overview of Data Pump Export and Import..............c.cocooiiiiiiiicceccceeas 11-2
Data PUMP EXPOTt.....coiiiiiiiiiiiiiii s 11-2
Data Pump IMPOTt ..o s 11-2
Overview of the Data Pump APL..........ccoooiiiiiiicee e 11-2
Overview of the Metadata AP ... 11-3
OVerview 0f SQLFLOAAETccoeoiieiieiiiieieeeetetee ettt et et e tesreesaesbe e se s e essessaessasseessesssensennes 11-3
Overview of External Tablesccccccoiiiiiiiiiiiiiiccecceecre et 11-4
OVverview of LOZGIMINETcccooiiiiiiiiiic s 11-4
Overview of DBVERIFY UHLIEYcccooooiiiiiiiiiiiiiiccs e 11-5

xi

Overview of DBNEWID UHILtY ... 11-5
ADRCI: ADR Command Interpreter............ccocooovviiiiiiiiniiiniiiiiniescseses 11-5

12 Database and Instance Startup and Shutdown

Introduction to an Oracle INStance ..o 12-1
The Instance and the Databasecccccccoeuiiiiiiiiiiccc s 12-2
Connection with Administrator Privileges ..., 12-2
Initialization Parameter Files and Server Parameter Files............ccccccoviiniiinnininnnnnn, 12-3

Server Parameter Files and Hardware Assisted Resilient Data..........cccccocevevvirevrnnnnne. 12-3
How Parameter Values Are Changed...........ccoououiiiiiiiiiiiiic 12-3

Overview of Instance and Database Startupccccooeiiiiiiiiiiia 12-4

How an Instance Is Started ... 12-4
Restricted Mode of Instance Startupcceeveeeieiiiiiiiniiciicccccees 12-5
Forced Startup in Abnormal Situations............ccoeoiiiiicii 12-5

How a Database Is Mountedc.cccciiiiiiiiiiiccceeeceeeee e 12-5
How a Database Is Mounted with Oracle Real Application Clusters............c.cccceueunnee. 12-5
How a Clone Database Is Mounted.............cccccoeiiiiiiiiiiiiiiiiccecceeenes 12-6

What Happens When You Open a Database............cccccccciiiiiiiiiniiicicccceceeeeenes 12-6
Crash and Instance RECOVETYc.ouuiuiiiiiiicieic s 12-6
Undo Space Acquisition and Management.............cccooovieiiiiiicieiiiccece s 12-9
Resolution of In-Doubt Distributed Transaction..........c.cccccceeevrviiiennrnincrrrerreeees 12-9
Open a Database in Read-Only Modeccooouoiiiiiiiiic 12-9

Overview of Database and Instance Shutdown ..., 12-10

Close @ DAtabasecccceuviiiiiriiieiiiirrr e 12-11

Close the Database by Terminating the Instance ..o 12-11
Unmount @ Database ..o 12-11
Shut DOWn an INSTANCEc.cceueuiuiiiiiiriiiiiciiereccerrer s 12-11
Abnormal Instance SHUtAOWI ... 12-11

Part lll Oracle Database Features

13 Data Concurrency and Consistency

Introduction to Data Concurrency and Consistency in a Multiuser Environment.................. 13-1
Preventable Phenomena and Transaction Isolation Levelscccocoiiiiiiiiiiiicnnnee. 13-2
Overview of Locking MeChanisSmScccccueuiueiiiiiiiiiiiciiiiiciciccce et 13-2

How Oracle Database Manages Data Concurrency and Consistency.............ccccocevviiiinnnnnn 13-3
Multiversion Concurrency CONtrol ... 13-3
Statement-Level Read CONSISTENCYc.ccuiuiiiiiiiiiiiiiiiiiicicircccreree s 13-4
Transaction-Level Read CONSIStENCYooiuivimiiiiiiiiiiiiiicicii s 13-5
Read Consistency with Oracle Real Application ClUsters............cccccceeueiirivriiiinninninnnenes 13-5
Oracle Database Is0lation LeVelsccccciiiiiiiiiiiiiicecceeeee e 13-5

Set the Isolation Level ... 13-6
Read Committed ISOIatioNccoueueuiiririeiiiriccicecc e 13-6
Serializable ISOLatioN.........cccoiiiiiiiiiiiccccccce s 13-6
Comparison of Read Committed and Serializable Isolationccccooeiiiiiiiiinnnnn, 13-7
Transaction Set CONSISTENCYccveviviiiiiiiiiiiic e 13-8

Xii

ROW-LeVel LOCKINGccoiiiiiiiiiiiiiiiiiccicc s 13-8

Referential INt@@Iitycovoiruriiiiieice s 13-9
Distributed TranSacCtioNsS.........cecvivvirierierierierieieseee st et st eaeseesaesseeseseessesseesesseensesssessennes 13-9
Choice Of ISOlAtioN LEVELc.vecieiieeieiieiecieceeteeee ettt s a e aesbe s s e ssesseeseessennees 13-9
Read Committed ISOIAtioNccviiuieiiiiieiiciecteeeeceee ettt 13-10
Serializable ISOLAtiON......c.ccivvirierieieieieteiete ettt ettt e teereeseesesbesbesbessesseseessesansenns 13-10
QUIESCE DAtabaASEcuvieieiieeeeieeeee ettt st b et e re e b e ernenaeeneas 13-11
How Oracle Database LOcKS Data..........cccocveiiieiiiiieiiiieecece ettt sae e 13-13
Transactions and Data CONCUITENCYcccceuiuiuimiiiiniiiiieicieeeececieeeie e 13-13
Modes Of LOCKING........c.oviiiiiiiiici s 13-14
LOCK DUTLAHION ...c.tietieiicieiecteteeee ettt ettt et et saeesa e be e s e beesaeseessesseensesseennas 13-14
Data Lock Conversion Versus Lock Escalationcccceeveeieieincieinininesesceeeeveenne 13-14
DIEAAIOCKS ...veuvieeiieiieieeiiee ettt et ettt et e st e et e e e st e seess e s e eseesseesaessesseesseessesseesaesaessansaessenseenes 13-15
Deadlock DeteCiON.....c..icuieeiiiieiecieeti ettt e ste et te e e s beess e be e s e reesseeseeneas 13-15
AVOIA DEAAIOCKS......cuiivieiieiiiitiieeeete ettt ssese e esaesessesse s e sessessensennans 13-16
TYPES Of LOCKS . 13-16
DML LOCKS 1.ttt ettt ettt ettt et ettt e et et e s esseasesaessessetsebeetaeseesesbensessessersessersaseans 13-16
ROW LOCKS (TX) 1.tititeieieieieieteteteee ettt ettt aeeseste b e sbesbessessessessesneseassasansenns 13-17
Table LOCKS (TIM) ..ottt ettt st st st sttt et et es e 13-17
DML Locks Automatically Acquired for DML Statements............ccccoouovoiiiciiiiiicicienne, 13-21
DL LOCKS .cuteuteuteeieiteetetteteteeteete et et esbeste st esbesteseestasesssssessessassessessessessessesessessensessessessessassassessessans 13-22
EXCIUSIVE DL LOCKS. .. ccctiiiiiieeieieeteieeiese ettt s aeseeesae v esse s e essessaensesseesesssassesneas 13-23
SHare DL LOCKS....cciiitieiieieeiieteeieeeete ettt e e v et b e e e st e saesbeessessessaesseenneseeessensens 13-23
Breakable Parse LOCKScoueieiiiiinieiriiet ettt sttt et saesaeseese s ansanns 13-23
Duration Of DL LOCKScccuivieiirieierieieseetetee ettt see et st se e esesreessesseessesssassessens 13-24
DDL LOCKS aNd CIUSEEISvecviiiieeiieteeieeteeie ettt ettt ve et seesae s e ssesraessesssessesssensens 13-24
Latches and INternal LOCKSccooiviiviiriesieieieieieese sttt ettt ss e s saesaesassa s 13-24
= el =T TSRS 13-24
INEEINIAL LOCKS ..ottt ettt et ettt e ae st sb e s te e b e s beesbeeseeseesnanseennas 13-24
Explicit (Manual) Data LOCKINGcccvovviiiiiiiiiiiiiicccccccccccccceeceeee e 13-25
Oracle Database Lock Management SEIVICESccccovveveriiiiiiiiniiiiiiiinie s 13-26
Overview of Oracle Flashback QUETY ... 13-26
Flashback QUery Benefits.........cccciieiiiiiiiiiiiiiiiiirrrr e 13-27
Some Uses of Flashback QUETY ..ot 13-28

14 Manageability

Installing Oracle Database 11g and Getting Startedccooooiiiiiii 14-1
Simplified Database Creation............ccccciiiiiiiiiiiiicc s 14-2
INStANE CLENt....cvvviiiiiiicc e 14-2
Automated UpPGrades ..o 14-2
Basic Initialization Parametersococciriieiiininiiiccininceeiiereeere ettt 14-3
Data Loading, Transfer, and ArchiVing........cccccccevvviiiinnnnrrncecreesee e 14-3

Intelligent INfrastructure ... 14-3
Automatic Workload RepOSItOry........ccoeiiiiiiiiiiiiicieieccccc e 14-4
Automatic Maintenance Tasks ... 14-4
Fault Diagnosability INfrastructureoooeiieiiiiiiii 14-5

Automatic Diagnostic ReEpOSItOry ..o 14-6

xiii

Incident Packaging SeIvice........ccouiiiiiiiiiiiiiiiiiiici s 14-6

Server-Generated ALETtS.........cciiiiiiiiiiiiii s 14-7
AdVISOT FTameWOTIK. ..o 14-7
Hang Managercccooueuiiiiiiiiiiiiiiii s 14-7
Performance Diagnostics and Troubleshooting ... 14-8
Application and SOQL TUNINGccccooiiiiiiiiiii s 14-8
Memory Managementcoouoiiiiiiiiiiicc s 14-10
Space Managementccoooiiiiiiiiiiiic e 14-11
Automatic Undo Managementcccccvueuviiiiiirninninicicrceerereees e 14-11
Oracle-Managed Files..........c.oiiiii 14-12
Free Space Management............c.ccoueieiiiiiiiiiiiii 14-12
Proactive Space Management.............ccccciiviiiiiiiiiiiiiii e 14-12
Intelligent Capacity Planning..........c.cccooiriiieiiiiiiiiiiiee 14-13
Space Reclamation ... 14-13
Automatic Storage Managementccoeeiiiiiiiiiiiii s 14-14
Backup and ReCOVELY ... 14-15
RecoOVEry ManageTcccceveiiiiiiiicieic s 14-16
Mean Time to RECOVETY ... 14-17
Self Service Error COTTeCtiONccviiiiiiiiiiiiiiiiiiir s 14-17
Configuration Management ... 14-17
Workload Management............ccooeiiiiiiiiiiii s 14-18
Overview of the Database Resource Manager............cccocoeueueirveiiiniciciinieece e 14-18
Database Resource Manager CONCepts........ccocueveieirucieiiiicicieiceieccv s 14-19
OVErVIEW Of SETVICESoucviviiiiiiiiieic e 14-20
Workload Management with Services..........coieieiiiiiciiiiciccc e 14-21

High Availability with Services ..o 14-21

Oracle Scheduler ... 14-22
What Can the Scheduler Do?.........ccooiiiiiiii s 14-23
Schedule JOD EXECULIONoouiiiiiiiiieieieee ettt ettt sttt neene 14-23
Time-Based SChedUling..........ccccceiuiiiiiiiiriiiiir e 14-24
Event-Based Scheduling............cccccovieiiiiiiiiiniiiiiic s 14-24

Define Multi-Step JODSc.ccouiiiiiiiiiiiiiiciiii s 14-24
Schedule Job Processes that Model Business Requirementscccccevevveencrincncnccanes 14-24
Manage and Monitor JODS ... 14-24
Execute and Manage Jobs in a Clustered Environmentcccccocovvvviiinnnnnnnnnne. 14-25

15 Backup and Recovery

Xiv

Introduction to Backup and ReCOVEIYccccoeiiiiiiiiiininiiciieccceiec et 15-1
Flash RECOVETY ATEQcuviuiiiciiiririicieieereteee ettt 15-2
Database Backupsccoiiiiiiiiiiiii s 15-3
What Are Database BackUps? ... s 15-3
Whole Database and Partial Database Backupsc.cccccoceueiiiiiiiiniiiiiiinccccrceceenes 15-3
Consistent and Inconsistent Backups...........cooviiiiiiiiininiiiic 15-4
Overview of Consistent Backups..........cccouiioiiiiiiiiiccc 15-4
Overview of Inconsistent Backupsccccceiiiciiiiiiiicecccceeeeeeeeeeees 15-4

RMAN and User-Managed Backups..........c.cccooviiiiiiiiiiiniiiiiicccs 15-5
Online Backupscccuiiiiiiiiiiiiiiiiiicc s 15-5

Control File BaCKUPSccvuiviiiiiiiiiiiiciicicccc s 15-6

Archived Redo Log Backups..........o.ooriiiiiiii 15-6
Problems Requiring Data Repair..........cccooooiiiiiiiiiiiiiiiii 15-7
Media FailUurescoviiiiiiiiiiiiiiiiicicc s 15-7
USET EITOTS ...ttt st a s ene s 15-8
Data REPaAT ..ottt et see e 15-8
Data ReCOVEIrY AAVISOToueveiiiiiiiieiiiciei ettt 15-9
Oracle Flashback Technologycooiiuiiiiiiiiiic 15-9
Oracle Flashback Database..........cccccovvviiiuiiiiiiiiiiiii s 15-10

Oracle Flashback Table..........c.cccovviiiiiiiiiiiiiiiiiii e 15-10

Oracle Flashback DIOpPcoceuiiuiioiiiicieiece s 15-11

Media RECOVETY ...ttt 15-12
Datafile Media RECOVEIYcoviiiiiiiiiiici s 15-13

Block Media ReCOVETYcoiiiieiiiiicicie e s 15-13
COMPlete RECOVETYooviiiiiiie et 15-14
Database Point-in-Time ReCOVETYcooiuiiiiiiiiiiiici s 15-14

RMAN and User-Managed ReCOVErYcooiiiimiiiiiiicicieiecice s 15-15

16 Business Intelligence

Introduction to Data Warehousing and Business Intelligence...............ccccccccoiiiiiiiiinnnns 16-1
Characteristics of Data WarehouSing...........ccccoceeieiiiiiiiiiiiiccceecccceeeeeeeeeeeeeeeeeees 16-1
Subject Orientedccoviiiiiiiiiiiiiiii s 16-2
INteGIatedoouiieece s 16-2
INONVOIALILE ... 16-2

Time Variant ... 16-2
Differences Between Data Warehouse and OLTP Systemsccccceuoiviiiioiiiiniciciccie 16-2
WOTKIOA. ...t 16-2

Data ModifiCations.........cccvuiiiiiiiiiiiiiiiiiciii s 16-3
Schema DESIIN ..ot s 16-3

Typical OPerations..........ccccccuicieiiuiiiieicieieicceeee ettt eeees 16-3
Historical Data........ccociiiiiiiiiiiiiic s 16-3

Data Warehouse ArchiteCtUrec.occuieiririiiiniicceccreeret ettt 16-3
Data Warehouse Architecture (BaSic)ccccvvereriererierieieieieeeceeesreeresie e ssessesseseessessssnssens 16-3

Data Warehouse Architecture (with a Staging Area)c.cccooeeieiniiieiiiiieiicc, 16-4

Data Warehouse Architecture (with a Staging Area and Data Marts).............cccceevnnne. 16-5
Overview of Extraction, Transformation, and Loading (ETL)ccccccccocovviiiinniinnnnnnnn, 16-5
Transportable TableSPaces...........ccccvviiiiiiiiiiiiiiiiiii s 16-6
Table FUNCHONS.coviieiiiiiieiciiictce ettt st 16-6
EXternal TabIESc.c.ccuiiiiiiiiiiiiiciciicccec e 16-7
Table COMPIESSIONcccveviviiiiiiiiciciicc s 16-8
Change Data Caplure ..o 16-8
Overview of Materialized Views for Data Warehouses................cccccovviiiniiniin, 16-8
Overview of Bitmap Indexes in Data Warehousing............ccccocooiiiiiiiiiniiii, 16-9
Overview of Parallel EXeCULIONc.ccocooiiiiiiiiiiiiiiiiccec e 16-10
How Parallel Execttion WOTKSccccciuiiiiiiiiiiiiiiiiccccecceee s 16-10
Overview of Analytic SOL ... 16-11
SQL fOr AGgregation........ccccciuiiiiiiiiiiiiiiiiiiirrr e 16-12

XV

SQL fOr ANQALYSIS......ooiueieiiiicieiicic 16-12

SQL fOr MOAELNE.....cooviiiiiiiiiiiiiiiiiiiii e 16-13
Overview of OLAP Capabilities.........cccccoeviiiniiiiniiiniicccneeeee e 16-13
Full Integration of Multidimensional Technologycccoiieiiiiiiii, 16-14
Ease of Application Developmentccoooiiiiiiiiiicic e 16-14
Ease of AdminisStration............cocoveiiiiiiiiiiii e 16-14
SOCUIILY vttt 16-15
Unmatched Performance and Scalabilitycooooiiiiiiiiiiiic 16-15
RedUCE COSES ...ttt 16-15
Overview of Data MININg..........ccoooiiiiiiiiiic e 16-16

17 High Availability

Introduction to High Availabilitycccooiiiiiiii 17-1
Causes Of DOWNEIIME. ...t 17-2
Protection Against Computer Failures.............cccooviiiiiii 17-2
Overview of Enterprise Grids with Oracle Real Application Clusters and Oracle Clusterware....
17-3
Fast Start Fault RECOVEIY......ooiiiiriiii 17-4
Oracle Data GUATcovimiiiiiiiiii s 17-4
Oracle StrAIMNScuiuiuiiiiiiiticiiccec s 17-5
Protection Against Data Failures...............cccooooiiiiiiiiiiiice 17-5
Protecting Against Storage Failuresc.cccccvviiiiiiiiiircceeeeceeeeeeee s 17-6
Protecting Against HUMan EITOrs. ... 17-7
Guarding Against Human EITors........cooooiiicc s 17-7
Oracle Flashback TeChNOlOZYc.ccocuiuiiiiiiiiiiiiiiiicccceeeeecee s 17-7
LogMiner SQL-Based LOg ANALYZETcccoooriiiiiiiiiiiicie s 17-10
Protecting Against Data COrruptions ..ottt 17-10
Protecting Against Site Failures............ococoviiriiiininiiiiiiiccccccccceccceeeenenes 17-13
Avoiding Downtime During Planned Maintenance...............cccccocooviiiinnn, 17-16
Avoiding Downtime for Data Changes.............ccooooiiic 17-16
Online Schema and Data Reorganization...........ccccccovvveririrnnnernnnnnrreereeesesecnes 17-17
Partitioned Tables and INAeXeS..........c.cccovuiiiiiiiiiiiiiiniiiiii e 17-17
Avoiding Downtime for System Changes...........cccooeiiiiiiiiiiiiiiiiiccccccccccenes 17-18
Rolling Patch Updates..........ccccueviiiiiiiiriiiiirreccrrn e 17-18
Rolling Release Upgrade..........coocueuiiiirieiiiicieiei s 17-19
Dynamic Resource ProviSioning...........ccoeceveveieiiiiiiiiininieicseccceeceseenceenenns 17-19
Maximum Availability Architecture (MAA) Best Practices............cccccovviiiiniiiinniiinnn, 17-20

18 Very Large Databases (VLDB)

Introduction to Partitioning ... 18-1
Partition Keyocciiiiiiiiii s 18-2
Partitioned TaBIESc.cccveeuieuiiiieiece ettt ettt ettt ettt eteeae e te e beereebeereeseeseeseenseseenean 18-2
Partitioned Index-Organized Tablesc.ccccccciiiiiiriiiiiiicceeeeeeeeesee s 18-3
Partitioning Methods..........cooomiiiii 18-3

Overview of Partitioned INAEXEScoioiiiiiiiiiicieeeeeeeeeee ettt 18-4
Local Partitioned INAEXES........c.coveieieiiieiniiriisiesiesieiesieieet et seessessessessessessessesaessesesssesassessessenses 18-4
Global Partitioned INAEXESccvieeeriieieiieiesieeiee ettt e ste et esteesae e este s e essesteessesseessesseessessenseas 18-5

XVi

19

20

Global Range Partitioned INdeXescccceuvveviviiiiiiiiiiiiiiiii 18-5

Global Hash Partitioned INAeXes...........ccccouviviiiiininiiiiiiiiniiiis 18-5
Maintenance of Global Partitioned INdeXes..............cccoovrviiiirniiniiiiiices 18-5

Global Nonpartitioned INAeXes...........cccceuiviiiiiiiiiiiiiiiiiiiiiiic s 18-6
Miscellaneous Information about Creating Indexes on Partitioned Tables............................ 18-6
Using Partitioned Indexes in OLTP Applicationscccoevvevevinrerinininininiieccecccccecenee 18-6
Using Partitioned Indexes in Data Warehousing and DSS Applications............cccccueveunenee. 18-6
Partitioned Indexes on Composite Partitionscccceeuirueieiiicieiciicecccc e, 18-7
Partitioning to Improve Performance..............cccooviiiiiiiiin 18-7
Partition PIUNINGcccciiiiiiiiiii s 18-7
Partition Pruning EXamplecccooiiii 18-8
PartitioN-WiSE JOINSeecveeiieieriieieeieteree e stee e eetesse et esseestesseessesseessesseensesseessesseensesssensesssensesnens 18-8

Content Management
Introduction to Content Management..................ccccoviiiiiiiiiiiii s 19-1
Overview of XML in Oracle Database ... 19-2
OVerview Of LOBS........cooiiiiiiii et 19-3
Overview of Oracle Text..........ccoooiiiiiiiicccccc e 19-3
Oracle Text INdeX TYPeS.....coeiiiiieieiic e 19-4
Oracle Text Document SEIVICESccciiiiiiiiiiiiiiiiicic s 19-4
Oracle Text QUErY Package.........ccociiuiuiiiiiiiiiiieieciccecee et eeees 19-5
Oracle Text Advanced Features..........cccooiiiiiiiiiiii s 19-5
Overview of Oracle Ultra Search...............cococoiiiiiiiiiiii e 19-5
Overview of Oracle Multimedia ... 19-6
Overview of Oracle Spatial ... 19-7
Database Security

Introduction to Database Security ... 20-1
Database Users and SChemas ... 20-1
Security DOMAINcocuiviiiiiiiiiiic e 20-2
PLIVIIRZES ..ottt 20-2
ROIES ..ttt 20-2
Storage Settings and QUOLAS............cccuciiviiiiiiiiiii 20-2
Default TableSPaCec.ccueviviiiiiiiiiiiiiicciicc s 20-2
Temporary TableSPace ... 20-3
Tablespace QUOLASc.cccuiuiuiiririiieiiceeee e s 20-3
Profiles and Resource LIMits........c.ccoveiiiiiiiiiiiiniiiiiiiicc s 20-3
Overview of Transparent Data ENcryption ... 20-3
Tablespace ENCIYPHIONc.cciuiiiiiiiiiiiicccccceeee et 20-4
Overview of Authentication Methods ..o 20-4
Authentication by the Operating Systemcooooeiiiiiiiinii e, 20-5
Authentication by the Network ... 20-5
Third Party-Based Authentication Technologiesccccooiiriiiiiiiiiiiiie, 20-5
Public-Key-Infrastructure-Based Authentication............cccccoeeiiiiiiiiiniii 20-5
Remote Authentication ... 20-6
Authentication by Oracle Database.............oooiueiiiiiiiii e, 20-6

xvii

Password ENCIYPHONooiiiiii s 20-7

AccOUNT LOCKING ...ouieiiiici s 20-7
Password Lifetime and EXPIration ... 20-7
Password Complexity Verification ..o 20-7
Multitier Authentication and Authorization ... 20-7
Authentication by the Secure Socket Layer Protocol.............ccccceeciiiiicieccceecceenenen 20-8
Authentication of Database AdminisStrators ... 20-8
Overview of Authorization ... 20-9
User Resource Limits and Profiles.........cciiiiiiiiiiiiiiiiccceecceeeeeeeeenene e 20-9
Types of System Resources and Limitscccoevoiiiiiiiiiiiii e 20-10
PIOflES ..oviiiiiiiiiicic s 20-11
INtroduction t0 PrivIIEZESscccoeuiiiiiiiiiiriiiiiiiiccrre e 20-12
System Privilegescuoviiurieiiiiiit s 20-12
Schema Object Privilegescccocrueiiiiiiiiiiciciece s 20-13
INtroduction t0 ROLIESc.c.cuiuiiiiiiiiiiircccccc e 20-13
Common Uses for ROLEScceiiiiiiiiiiiiiiiiic s 20-14
Role MeChaNISINSccvviiiiiiiiiiiiiii s 20-15
The Operating System and ROLESccccccoueiiiiiiiiiiiiiiniicrecereee s 20-15
Secure Application ROIEScccccuiiiiiiiiiiiiiiiiiii e 20-15
Overview of Access Restrictions on Tables, Views, Synonyms, or Rows...........cccccocccieenes 20-16
Fine-Grained Access CONLIOL..........coviiiiiiiiiiiicrre e 20-16
Dynamic Predicates ... 20-17
ApPPlication CONtEXt.......oviiiueiiiiicie e 20-17
Dynamic CONtEXES. ..o 20-17
Fine-Grained AUditingcoovoiiuiioiiiie 20-18
Overview of Security POLICIes ... 20-18
System SecUTrity POLICYcceuviriiiiiiiriricir e 20-18
Database User Management...........c.cccoeueiiiiiiiniiieiiiiiniiiiessses s 20-19
User Authentication..........ccccocviiiiiiiiiiiii e 20-19
Operating System SECUTILYccciviviiiiiniiiiii s 20-19
Data Security POLICYcooiiueieiiieiciec 20-19
User Security POLICYcccccuiiiiiiiiiiiiciciiiiiiirnn e 20-20
General USer SECUTILYcouiuiiiiiiiieirre e 20-20
End-USer SECUIItYcvviiiiiiic s 20-20
AdmInistrator SECUTILYcccoviiiviiiiiiiiiiiiiii e 20-21
Application Developer SECUTILY........cccccoccuiuiuiuiiiiiiiiiieiirieeiecee e 20-21
Application Administrator SECUTItY ..o 20-22
Password Management POLICYcccooviiiiiiniiiininiiniiicc e 20-22
AUAIHING POLCY ..ottt 20-22
Overview of Database Auditing.............ccooiiiiiiiiiiiien 20-23
Types and Records of AUdItINgccceuviviiiiiiiiiiiiiiiiiiic e 20-23
Audit Records and the Audit TrailScccocoueviuiiririiiiiiiincr e 20-24

21 Data Integrity

Introduction to Data Integrity.............cccocoiiiiiniiiiiii 21-1
Data Integrity RUIES ..o 21-1
How Oracle Database Enforces Data INtegrityccocooeveiiiiiiiiiiiicicecc, 21-2

xviii

(@) 150 =11 g L 7= 1 <1 FUU R 21-2

Overview of Integrity CONStraints............cccoooiiiiiiiiiiiii e 21-3
Advantages of Integrity CONSLraintsccccccceviriiirirririiirrreeereee s 21-4
Declarative Base ..o 21-4
Centralized RuUles..........cccooiiiiiiiii s 21-4
Maximum Application Development Productivity...........cccccceoceciiiiiciiicniiinene 21-4
Immediate User Feedback ... 21-5
Flexibility for Data Loads and Identification of Integrity Violations..........cccccccceeeunnine. 21-5

The Performance Cost of Integrity CONStraintsocccoeoeeeeueeceeeeceeeeeeeeeeeneneeees 21-5
Types of Integrity COnstraintsccccoovviiiiiiiii s 21-5
NOT NULL Integrity Constraintsc.ccccoeeueieimiiiiiiiiiieeee e 21-5
UNIQUE Key Integrity Constraintscccocoeiiiiniiiiiniincces 21-6
Unique Keys.......couoiiiiiiiiii s 21-6
Combining UNIQUE Key and NOT NULL Integrity Constraints............cccccccevvuriniennee. 21-6
PRIMARY KEY Integrity Constraintsccocoeiviiiiinniiiiiccceecs 21-6
Primary KeYScccoeiiieiiiiiiii s 21-7
PRIMARY KEY Constraints and Indexes...........cccccooviiiiiiiiniiiiicceen 21-7
Referential Integrity CONSLIAINTSccooiiiiiiiiiiiiceececeeee s 21-7
Self-Referential Integrity ConStraints..........ccccocoevorueiiieiiieiieiicccee e 21-9

Nulls and Foreign Keys...........c.ooiiiice i 21-9
Actions Defined by Referential Integrity Constraintscccccceeeuvvvverrnncnnncnccnes 21-9
Concurrency Control, Indexes, and Foreign Keysccooeiiiiiiiiniinicie 21-10
CHECK Integrity CONStIaintscccoceueieiiieiiiiiiiiieiece e 21-12
The Check CONAItION......coiviiiiiiiiii s 21-13
Multiple CHECK CONStraintscccoceeveviiiiiiiiiiiiiiicnic s 21-13

The Mechanisms of Constraint Checking ..o, 21-13
Default Column Values and Integrity Constraint Checkingcccccoeeeiiiiiiccciccnenae 21-15
Deferred Constraint Checking.............ccocoooiviiiiiiiii 21-15
Constraint Atributes ... 21-15
SET CONSTRAINTS MOorviiiiiiiiiiiiiiciiicc s 21-15
Unique Constraints and INAeXeScccceeveviiiiiiiiiiiiiiiiiiiii s 21-16

22 Triggers

Introduction to TIIGZETSccccoiiiiiiiiiii s 22-1
How Triggers Are USEdcccccuiiiiiiiiiiiiiiiiiiiiciiciciic s 22-2
Some Cautionary Notes about TrZers ... 22-3
Triggers Compared with Declarative Integrity Constraintsccccooeeuniiieiiinccnnnes 22-3
Components of @ TrIGET ... 22-3
The Triggering Event or Statementccccccceiiiiiiiiiiccrceeeeeeeeeeeeeeeeeeeeeeeeeeees 22-4
Trigger ReSIIICHON ...coucviviiiiiiiiiiiiii s 22-5
TTIGEET ACION ..ot 22-5
TYyPes Of THIGGETScooviviiiiiiiicc s 22-5
Row Triggers and Statement TTiggers ..o 22-5
ROW TIIGEZEIS .ovviiiiiiiiiictct s 22-6
Statement TTIGEETSccoviiiiiiiiiiiii s 22-6
BEFORE and AFTER TTIGEeTSc.cvoiiuiieiiiicieieieci i 22-6
BEFORE TTIGEETS ..cooviiiiiiiiititiiictctctc s 22-6

Xix

AFTER TIIGZOIS ovcviiiiiiiiiiiiiiiiciciciciciitt s 22-7

Trigger Type COombIiNatioNnscccooioirieiiiicieieiecce s 22-7
COMPOUN TTIZGETS.....emviiiiiiiicicicieiceice ettt ees 22-7
INSTEAD OF TIIZZETS ...ovueviiiiiieeicieticicte ittt 22-8

MOAIfY VIEWS .ot s 22-8

Views That Are Not Modifiable ... 22-9

INSTEAD OF Triggers on Nested Tablesccooiiiiiiiiiiiiii 22-9
Triggers on System Events and User EVentsccoooiiiiiiiicce, 22-9

Event PUBLICAtiONcccoviiiiiiiiiiiiic s 22-10

Event AtriDULeSccoviviiiiiiiiii 22-10

System EVENtSccccoiiiiii s 22-11

USEI EVENLS ..ottt s 22-11

Trigger EXeCUtiON ... 22-12
The Execution Model for Triggers and Integrity Constraint Checkingcccccccoeevn.. 22-13
Data Access fOr TTIZZETSc.cuvuriiiiiiiririiieiierrrerrer e 22-13
Storage of PL/SQL TTIGERTScocvueiiiieiieieiicieiieceni ettt 22-13
Execution Of TIIZZETrScooruiiiiiiieieicc e 22-13
Dependency Maintenance fOr TTIZZETrScccouvurirriririririniiiiiieccccccciceee e 22-13

23 Information Integration

Introduction to Oracle Information Integration.................cccccooiiiiinnin 23-1
Federated ACCESS...........ccooviiiiiiiiiiiiiiicc s 23-2
Distributed SQL........ccooiiiiiiiiiiiiii s 23-2
Location TransparenCy ... 23-3
SQL and COMMIT TranSparenCycccccueeeeueieiiunieieiissieie ettt 23-3
Distributed Query Optimization ..o 23-4
Information Sharing ... 23-4
Oracle StrAIMNScuiviuiiiiiiiiciciicc s 23-5
Oracle Streams ArchiteCture............cccociiiiiiiiiiiii s 23-5
Replication with Oracle Streams...........cccoccciiiiiiiiiineerreer s 23-7

Oracle Streams Advanced QUEUINGcoveueueiiiiiieiiiiice e 23-8
Database Change NOtificationcccocoeiiiiiiiiicc s 23-10
Change Data Caplurecccccucuiiriiiiiiiriircereeee s 23-10
Heterogeneous ENvIronmMents...........ccoeeeieiiiiiiiiininiiiiii s 23-11

Oracle Streams Use CaseS.......cceeueuiirueueuiirinicieiitrieieeeesee ettt eae e 23-11
Materialized VIEWS ..o 23-12
Data Comparison and Convergence at Oracle Databasesccccooviiiiiiiiiiiiinn, 23-13
Integrating Non-Oracle SyStemscccooiiiiiiiiiiiicccce e 23-13
Generic CONNECIVILYccovvviuiiiiiiiiiiiii e 23-14
Oracle Database GateWaYscccccueiiiiurieiiiiiieie e 23-14

Part IV Oracle Database Application Development

24 SQL
INtroduction $0 SQL.......ocoiiiiiece ettt ettt ettt e tb e e b e e e teeeaae e beeeabeeereesabeebaenanen 24-1
SOL STAEIMEIES .. .couvieiiitieiieieeiet ettt ettt et e e et e st e ea e te et e st e eatesseestesbeensesneesesseenseeseenseeneenseenes 24-2

XX

25

Data Manipulation Language Statements..............cccouiiiiiiiiiiiicicc 24-2

DML Error LOZGINGc.cvoviiiieiieieieieieieeeeet s 24-3

Data Definition Language Statementscccccceeuieirrriinrnreereeeeeeeeeeeeeeeeeeeeeeeseees 24-3
Transaction Control Statements............ccoeviiiiiiiiiii 24-4
Session Control Statements...........ccccuiuiiiiiiiiiiiiiiiiii 24-4
System Control STAtEMENtSc.cceucuiuiiiiiiiiiiieeeectcee s 24-4
Embedded SQL StatemeNtSccceveeieriiecieeieeiieeeteeeete et ste st e veesse e ssseseesesseessesseessesssessensens 24-4
CUISOTS. ...ttt bbb a et b bbb e et bbbt a et et ne s 24-5
SCIOIIADIE CUISOTS ...ovvviiiriiiiii s 24-5
Shared SQL ATEASc.ccceeieiieeieiieieeteeteette et ete st e e e teebeese e sesseeseesaesseersesseassasssessasssessanseessesseensenses 24-5
PaTSINE ..ot 24-6
QUETY ProCeSSING.......ccooviiiiiiiiiiiiii s 24-6
SQL PIOCESSINEGocuiiiiiiiiiiii bbb s 24-7
flowchart of SQL Statement EXeCULIONccuivviiiiiiiiiiiicieeceeeeete et 24-7
Description of SQL Statement PrOCESSINGcccceuvurirruriririrririierirreeererereeeeeeeeseeesee e 24-8
Stage 1: Open or Create @ CUISOT ..ot 24-9

Stage 2: Parse the Statementooooiiiiii 24-9

Stage 3: Determine if there is @ QUETYc.ccccceuiiiiiiiiiiiiicccccccce e 24-9

Stage 4: Describe Results of a Query (Queries Only)..........cccoovreiioiiieniiiiiieiccie 24-9

Stage 5: Define Output of a Query (Queries Only) ..o 24-10

Stage 6: BINd ANy Variablescccooiiiniiiiccccccecceeeesee e 24-10

Stage 7: Parallelize the Statement (Optional).........cccccoeeieiiiiiiinii 24-10

Stage 8: Run the Statementccoooii e 24-10

Stage 9: Fetch Rows of a Query (Queries Only)cccocoevvvviniinnicrercerene 24-10

Stage 10: Close the CUISOT ..ot s 24-11
Processing Other Types of SQL Statementsccooreiiiiiiiiicccc 24-11
DDL Statement ProcesSingc.cccvviviviiiiniiiiiiiiinicics s 24-11
Transaction Control ProCeSSINGcccovviiviiiiiiiiiiiiiiiiiiii s 24-11

Other Processing TYPes.......ccoueurueiiiricieieccie it 24-11
Overview of the OPtimuZer ..o e 24-11
SQL Plan Management (SPM)........ccociuiiiniiiiiiniiiciiiccine s 24-12
EXECUHION PIANS ..ottt 24-12
Stored OULHNES.........coiviiiiiiii s 24-13

Editing Stored OULLNES..........cccovvviiiiiiiiiiiii e 24-13

Supported Application Development Languages

Introduction to Oracle Application Development Languages............c.ccccoeeiiiiiiniciiinenennns 25-1
Overview of C/C++ Programming Languages...............cccccciiiiiiiiiiiiiiiicicccceeeeeenennas 25-1
Overview of Oracle Call Interface (OCI)ccovevverierieieieieieieeee ettt eese e esae e eseeseeeas 25-2
Overview of Oracle C++ Call Interface (OCCI)ccuerterieiinrinininierieieseseeeee et 25-3
OCCI Associative Relational and Object Interfaces.............ccocoveveviiiiininis 25-3

OCCI Navigational Interface............cocociiiiiiiiiiiiiiieeeceeeee e 25-3
Overview of the Oracle Type Translator ..., 25-4
Overview of Pro*C/C++ Precompiler ... 25-4
Dynamic Creation and Access of Type DeScriptionscccccceuvueeeueucuiuveeereirvnseneeenenns 25-5
OVErvieWw Of PL/SQLL........cooiiiiiieieeieetesteete ettt et et e st e te st e s e ssaesseesaesseessesssessasssessesseensesssensenses 25-5
HOW PL/SQL RUINS ettt ettt et et eete et eeveeeteeeaveeeaeseseeessesesseeesesensesnseesnsseseeeseeenres 25-6

XXi

Interpreted EXECULION.......coiiiiiiiiiiiiici s 25-6

Native EXECUIONc.ciiiiiiiiiiiiiiiccc e 25-6
Language Constructs for PL/SQLc.cccociiiiiiiiicceceeeeeeee e 25-8
Variables and CONStants ... 25-8
CUTSOTS ..t 25-8
EXCEPHONS ..ot 25-8
Dynamic SQL in PL/SQL ...c.oviiiiiiicticctet s 25-9
PL/SQL Program URItS.........ccccciiiiiiiiiiiiiiiiiiiiiiisssssss s 25-9
Stored Procedures and FUNCHONSc.cccceuiiiiiiiiiiiiiiiiiieccceeeeee s 25-9
Benefits of Procedures ... 25-11
Procedure GUIAEINESccccooiiiiiiiiiiiiiiiiicic e 25-12
Anonymous PL/SQL Blocks Compared with Stored Proceduresccccccoeuevverennce. 25-12
Standalone Procedures ... 25-13
Dependency Tracking for Stored Proceduresc..ccoooeioiiiiiiiiicc 25-13
External ProCedUIESccccccoiiiiiiiiiiiiiicccrr e 25-13
Table FUNCLIONScccuiuiiiiiiiiiiciici e 25-13
PL/SQL PACKAGEScvvviiiiiiiiiciiii s 25-14
Benefits of PACKAGESccceuruiiiiiiiiiiiicicc e 25-15
PL/SQL Collections and RECOTASccouievuieeuiiiiieeiiecreecieeete ettt et eeeeveeeeeeeveeereeeveesraesaneens 25-16
COILECHIONS ... 25-16
RECOTAS .ot 25-17
PL/SQL SeIVer PAGESc.ceveviiiiiiiiiiiiiiciiiic s s 25-17
OVEIVIEW Of JAVA ..ottt ettt ettt sttt sttt st a b 25-17
Java and Object-Oriented Programming Terminologyccccccvceeeieceeicerecnenceeennns 25-18
CLASSES ..ttt 25-18
ABTIDULES .. 25-19
IMETNOMS ... 25-19
Class Hierarchyccoiiiiiiiiic e 25-20
INEETEACES .. 25-20
POLYMOTPRISIIL ...t 25-21
Overview of the Java Virtual Machine (JVM)coceverieriiirininininisesesieeeeeeeetee e 25-21
Why Use Java in Oracle Database?............cccoooiiioiiiiieiniiccceccc e 25-23
MUIRIEAAING ... 25-24
Automated Storage Management............cccoeeeieiiiiiiiiiiiic 25-24
FOOLPTINT...eiiiiie e 25-25
PerfOIMANCE ...ttt 25-25
Dynamic Class LOAdingcoovirieiiiiiiiieiicc s 25-26
Oracle's Java Application Strategyccoovoieueieiiiiiiiicecc 25-27
Java StOred PrOCEAUTIESceeviviiriiieieieietetet ettt sttt ettt seeseesessessesesesbessessesseneas 25-27
PL/SQL Integration and Oracle Database Functionality...........cccocooevoiiiiiiicinne 25-28
TDBC ...ttt 25-28
SOL 1t 25-29
JPUDLISIET ...ttt sttt ettt ettt s 25-29
Java Messaging ServiCe ... 25-29
Overview of Microsoft Programming Languages...............cccccccoviiininiiinniiicnes 25-30
Open Database CONNECtiVItyc.coiiiiiiiiiiieiec 25-30
Overview of Oracle Objects for OLEccccoooiiiiiiiiiiiceece e, 25-31

XXii

OO40O AULOMALION SEIVET ..ottt e s ea e e saaeesete e s saaeesneeessnresennneeas 25-31

Oracle Data CONtrol........cccooviiiiiiiiiiiiiiiiii e 25-31

The Oracle Objects for OLE C++ Class Librarycccccceeeevvvrvrvnnrnrrncercreeenes 25-31

Oracle Data Provider for INETccccccoviiiiiiiiiiiiana 25-31
Overview of Legacy Languages............cccoviiiiiiiiiiiiiiicccice e 25-32
Overview of Pro*COBOL PrecOmMPILerccooviiviriiiriiiii e 25-32
Overview of Pro*FORTRAN Precompiler..........ccccovvviiiiiiiiiininiiiiiiiiccccncicene 25-32

26 Oracle Data Types

Introduction to Oracle Datatypes.............cccoiiiiiiiiiii e 26-1
Overview of Character Datatypes ... 26-2
CHAR DatatyPe ...cooovieiiiiiiiiiiiicic s 26-2
VARCHAR?2 and VARCHAR Datatypesccccoooiiiiiiiiiicec 26-3
VARCHAR DatatyPeccceuviiiiiiiiiciiiiiiesissi e 26-3

Length Semantics for Character Datatypes........c.cccoccueciiiiiiiiiceeeceeeccceeeeeeeees 26-3
NCHAR and NVARCHAR2 Datatypescccceuoimieieiiiiiiieiiiceieece 26-4
INCHAR ..o bbb 26-4
NVARCHARZ......ooiiiiiiece s 26-5

Use of Unicode Data in Oracle Database..............cccocoiuieiiiiiiiiiiiiiiiicceees 26-5
Implicit Type CONVEISIONc.cvoviiieieiiieciei et 26-5

LOB Character DatatyPescccoceueucicuimiuiiiiiiicieieiicictcieieieieieeeeteeee e seneseeees 26-5
LONG DatatyPe ...coooucueieiieiieieiiiiicie ettt bbb 26-5
Overview of Numeric Datatypes...........ccccoooiiiiiiiiiiiii e 26-6
NUMBER Datatype......cccocvuiuiiiiiiiiiiiiiiiiiiiici s 26-6
Internal Numeric FOrmat ... 26-7
Floating-Point NUMDETS............coioiiiiii e 26-7
BINARY_FLOAT Datatypeccccooeiiiiiiiiiiiiniiiciiiiccic e 26-8
BINARY_DOUBLE Datatype.......cccccoiiiiniiniiiiiiiiiiiiniiscsssssssnssssssesssssnnns 26-8
Overview of DATE Datatype ..o 26-8
TS Of JULAN DALES ...cuvvvievieiiiiiiiieieieiet ettt ettt ettt et esaeseeseeseese s e s essessessessessesansensessensas 26-9
Date Arithmeticooiiviiiiiii s 26-9
Centuries and the Year 2000cccccooeiiiiriicinniieeiieeeeeeeee ettt esesnene 26-10
Daylight Savings SUPPOTtccurviririiiiiiiec e 26-10
TIME ZIOMNES ...ttt 26-10
Overview of LOB Datatypescccccciiiiiiiiiiiiiicicccc e 26-11
BLOB DatatyPeccouvuiiiiiiiiiiiiiiccc s 26-12
CLOB and NCLOB Datatypescccccoeueuiiurieiiicieiecie et 26-12
BFILE DatatyPecccceiiiiiiiiiiiicicic e 26-12
Overview of RAW and LONG RAW Datatypes...........ccccccviiiiininiiiniiicces 26-13
Overview of ROWID and UROWID Datatypescccoooeiiiiiiiiiiiiiicceceescneneennes 26-13
The ROWID PseudOCOIUMINc.ciiiiiiiiiiiciiiiictceeteet ettt 26-14
Physical ROWIASc.cueuiiiiiiiiiiciiiiciciiceccr et 26-14
Extended ROWIASccceviiiiiiiiiiiiiiiii s 26-15
Restricted ROWIASc.ciiriiiiiiiiiicieccccce et 26-15
Examples of ROWIA USE ..o 26-16

How Rowids Are Usedcccocviviiiiiiiiiiiiiiiiiicc s 26-17

Logical ROWIAS ..o 26-17

xXiii

Comparison of Logical Rowids with Physical ROWidscccccoeoeiiiiiiiiniiiiiii 26-18

Guesses in Logical ROWIdSccccciiiiiiiiiiiniiiiiiiic s 26-18
Rowids in Non-Oracle Databasescccceevvivierierieieieieeeiieesesesieseesseseessesessssessessessessessessens 26-19
Overview of ANSI, DB2, and SQL/DS Datatypes..........ccccoceeiiviiiiiinniiiiniiiicnccienes 26-19
Overview of XML Datatypes...........ccoooiiiiiiiiiiiii e 26-19
XMLTYPe DatatyPe......ccouviiiiiiiiiiiiiiiiiiic s 26-19
Overview of URI Datatypes ...t 26-20
Overview of Object Datatypes and Object VIEWS ..o, 26-20
Data CONVEISIONooueeiiiiieieeieieeteteetest et e st et e steste s e e eessessseseessesseensesseensesseensesseensesseensesseesesseens 26-20
Glossary
Index

XXiv

Audience

Preface

This manual describes all features of the Oracle database server, an object-relational
database management system. It describes how the Oracle database server functions,
and it lays a conceptual foundation for much of the practical information contained in
other manuals. Information in this manual applies to the Oracle database server
running on all operating systems.

This preface contains these topics:
= Audience

= Documentation Accessibility
= Related Documentation

s Conventions

Oracle Database Concepts is intended for database administrators, system
administrators, and database application developers.

To use this document, you must know the following;:
= Relational database concepts in general
= Concepts and terminology in Chapter 1, "Introduction to Oracle Database"

s The operating system environment under which you are running Oracle

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an

XXV

otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services

Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services
within the United States of America 24 hours a day, 7 days a week. For TTY support,
call 800.446.2398. Outside the United States, call +1.407.458.2479.

Related Documentation
For more information, see these Oracle resources:

» Oracle Database Upgrade Guide for information about upgrading a previous release
of Oracle

n Oracle Database Administrator’s Guide for information about how to administer the
Oracle database server

» Oracle Database Advanced Application Developer’s Guide for information about
developing Oracle database applications

» Oracle Database Performance Tuning Guide for information about optimizing
performance of an Oracle database

» Oracle Database Data Warehousing Guide for information about data warehousing
and business intelligence

n Oracle Database Utilities for information about the utilities mentioned in this
document

Many books in the documentation set use the sample schemas of the seed database,
which is installed by default when you install Oracle. Refer to Oracle Database Sample
Schemas for information on how these schemas were created and how you can use
them yourself.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

XXVi

Part |

What Is Oracle?

Part I provides an overview of Oracle Database concepts and terminology. It contains
the following chapter:

s Chapter 1, "Introduction to Oracle Database"

1

Introduction to Oracle Database

This chapter provides an overview of the Oracle database server. The topics include:
= Oracle Database Architecture
= Oracle Database Features

» Oracle Database Application Development

Oracle Database Architecture

A database is a collection of data treated as a unit. The purpose of a database is to store
and retrieve related information. A database server is the key to information
management. In general, a server reliably manages a large amount of data in a
multiuser environment so that many users can concurrently access the same data. A
database server also prevents unauthorized access and provides efficient solutions for
failure recovery.

Oracle Database is the first database designed for enterprise grid computing, the most
flexible and cost-effective way to manage information and applications. Enterprise
grid computing creates large pools of industry-standard, modular storage and servers.
With this architecture, each new system can be rapidly provisioned from the pool of
components. There is no need to provide extra hardware to support peak workloads,
because capacity can be easily added or reallocated from the resource pools as needed.

The database has physical structures and logical structures. Because the physical and
logical structures are separate, the physical storage of data can be managed without
affecting access to logical storage structures.

The section contains the following topics:

s Overview of Grid Architecture

s Overview of Application Architecture

= Overview of Physical Database Structures

= Overview of Logical Database Structures

s Overview of Schemas and Common Schema Objects
s Overview of the Oracle Database Data Dictionary

s Overview of the Oracle Database Instance

s Overview of Accessing the Database

s Overview of Oracle Database Utilities

Introduction to Oracle Database 1-1

Oracle Database Architecture

Overview of Grid Architecture

Grid computing is an information technology (IT) architecture that produces more
resilient and lower cost enterprise information systems. With grid computing, groups
of independent, modular hardware and software components can be connected and
rejoined on demand to meet the changing needs of businesses.

The grid style of computing solves some common problems with enterprise IT:
= Application silos that lead to underutilized, dedicated hardware resources

= Monolithic, unwieldy systems that are expensive to maintain and difficult to
change

= Fragmented and disintegrated information that cannot be fully exploited by the
enterprise as a whole.

Compared with other models of computing, IT systems designed and implemented in
the grid style deliver higher quality of service, lower cost, and greater flexibility.
Higher quality of service is achieved because there is no single point of failure, there is
a robust security infrastructure, and management is centralized and policy-driven.
Lower costs derive from increasing the utilization of resources and dramatically
reducing management and maintenance costs. Rather than dedicating a stack of
software and hardware to a specific task, all resources are pooled and allocated on
demand, thus eliminating underutilized capacity and redundant capabilities. Greater
flexibility is achieved because grid computing also enables the use of smaller
individual hardware components, thus reducing the cost of each individual
component and enabling the enterprise to devote resources in accordance with
changing needs.

Overview of Application Architecture

The two most common database architectures are client/server and multitier. As
internet computing becomes more prevalent in computing environments, many
database management systems are moving to a multitier environment.

This section includes the following topics:
s Client/Server Architecture
= Multitier Architecture: Application Servers

s Multitier Architecture: Service-Oriented Architecture

Client/Server Architecture

An Oracle database system can easily take advantage of distributed processing by
using its client/server architecture. In this architecture, the database system has two
parts: a front-end or a client, and a back-end or a server.

The Client The client is a database application that initiates a request for an operation
to be performed on the database server. It requests, processes, and presents data
managed by the server. The client workstation can be optimized for its job. For
example, the client might not need large disk capacity, or it might benefit from graphic
capabilities. Often, the client runs on a different computer than the database server.
Many clients can simultaneously run against one server.

The Server The server runs Oracle Database software and handles the functions

required for concurrent, shared data access. The server receives and processes requests
that originate from client applications. The computer that manages the server can be

1-2 Oracle Database Concepts

Oracle Database Architecture

optimized for its duties. For example, the server computer can have large disk capacity
and fast processors.

Multitier Architecture: Application Servers
A traditional multitier architecture has the following components:

= A client or initiator process that starts an operation

= One or more application servers that perform parts of the operation. An
application server contains a large part of the application logic, provides access to
the data for the client, and performs some query processing, thus removing some
of the load from the database server. The application server can serve as an
interface between clients and multiple database servers and can provide an
additional level of security.

= Anend server or database server that stores most of the data used in the operation
This architecture enables use of an application server to do the following:

m Validate the credentials of a client, such as a Web browser

= Connect to an Oracle Database server

s Perform the requested operation on behalf of the client

If proxy authentication is being used, then the identity of the client is maintained
throughout all tiers of the connection.

Multitier Architecture: Service-Oriented Architecture

Service-oriented architecture (SOA) is a multitier architecture in which application
functionality is encapsulated in services. SOA services are usually implemented as Web
services. Web services can be accessed with the HTTP protocol and are based on a set
of XML-based open standards, such as WSDL and SOAP.

Beginning with Oracle Database 11g, Oracle Database can act as a Web service
provider in a traditional multitier or SOA environment.

See Also:

s "Oracle Database as a Web Service Provider" on page 10-5 for
more information about Oracle Database as a Web service
provider

» Oracle XML DB Developer’s Guide for more information about
using Web services with the database

Overview of Physical Database Structures

The following sections explain the physical database structures of an Oracle database,
including datafiles, control files, redo log files, archived redo log files, parameter files,
alert and trace log files, and backup files.

This section includes the following topics:
= Datafiles

= Control Files

= Online Redo Log Files

= Archived Redo Log Files

Introduction to Oracle Database 1-3

Oracle Database Architecture

= Parameter Files
s Alert and Trace Log Files
= Backup Files

Datafiles

Every Oracle database has one or more physical datafiles, which contain all the
database data. The data of logical database structures, such as tables and indexes, is
physically stored in the datafiles allocated for a database.

Datafiles have the following characteristics:

= One or more datafiles form a logical unit of database storage called a tablespace.
= A datafile can be associated with only one tablespace.

= Datafiles can be defined to extend automatically when they are full.

Data in a datafile is read, as needed, during normal database operation and stored in
the memory cache of Oracle Database. For example, if a user wants to access some
data in a table of a database, and if the requested information is not already in the
memory cache for the database, then it is read from the appropriate datafiles and
stored in memory.

Modified or new data is not necessarily written to a datafile immediately. To reduce
the amount of disk access and to increase performance, data is pooled in memory and
written to the appropriate datafiles all at once, as determined by the background
process database writer process (DBWn).

Datafiles that are stored in temporary tablespaces are called tempfiles. Tempfiles are
subject to some restrictions, as described in "Temporary Datafiles" on page 3-16.

See Also: "Overview of the Oracle Database Instance" on page 1-9
for more information about the Oracle Database memory and process
structures

Control Files

Every Oracle database has a control file. A control file contains entries that specify the
physical structure of the database, including the following information:

= Database name
= Names and locations of datafiles and redo log files
s Timestamp of database creation

Oracle Database can multiplex the control file, that is, simultaneously maintain a
number of identical control file copies, to protect against a failure involving the control
file.

Every time an instance of an Oracle database is started, its control file identifies the
datafiles, tempfiles, and redo log files that must be opened for database operation to
proceed. If the physical makeup of the database is altered (for example, if a new
datafile or redo log file is created), then the control file is automatically modified by
Oracle Database to reflect the change. A control file is also used in database recovery.

See Also: Chapter 3, "Tablespaces, Datafiles, and Control Files"

1-4 Oracle Database Concepts

Oracle Database Architecture

Online Redo Log Files

Every Oracle Database has a set of two or more online redo log files. These online
redo log files, together with archived copies of redo log files, are collectively known as
the redo log for the database. A redo log is made up of redo entries (also called redo
records), which record all changes made to data. If a failure prevents modified data
from being permanently written to the datafiles, then the changes can be obtained
from the redo log, so work is never lost.

To protect against a failure involving the redo log itself, Oracle Database lets you
create a multiplexed redo log so that two or more copies of the redo log can be
maintained on different disks.

See Also: "Overview of Database Backup and Recovery Features" on
page 1-20

Archived Redo Log Files

Archived redo log files are database-generated offline copies of online redo log files.
Oracle Database automatically archives redo log files when the database is in
ARCHIVELOG mode. Oracle recommends that you enable automatic archiving of the
online redo log.

Parameter Files

Parameter files contain a list of configuration parameters for that instance and
database. Both parameter files (pfiles) and server parameter files (spfiles) let you store
and manage your initialization parameters persistently in a server-side disk file. A
server parameter file has these additional advantages:

» The file is concurrently updated when some parameter values are changed in the
active instance.

» The file is centrally located for access by all instance in a Real Application Services
database.

Oracle recommends that you create a server parameter file as a dynamic means of
maintaining initialization parameters.

See Also:

s '"Initialization Parameter Files and Server Parameter Files" on
page 12-3

s Oracle Database Administrator’s Guide for information about
creating and changing parameter files

Alert and Trace Log Files

Each server and background process can write to an associated trace file. When an
internal error is detected by a process, the process dumps information about the error
to its trace file. Some of the information written to a trace file is intended for the
database administrator, while other information is for Oracle Support Services. Trace
file information is also used to tune applications and instances. The alert file, or alert
log, is a special trace file. The alert log of a database is a chronological log of messages
and errors.

The following features provide automation and assistance in the collection and
interpretation of trace and alert file information:

s The Automatic Diagnostic Repository (ADR) is a system-managed repository for
storing and organizing trace files and other error diagnostic data. ADR provides a

Introduction to Oracle Database 1-5

Oracle Database Architecture

comprehensive view of all the critical errors encountered by the database and
maintains all relevant data needed for problem diagnosis and eventual resolution.
When the same type of incident occurs too frequently, ADR performs flood control
to avoid excessive dumping of diagnostic information.

s The Incident Packaging Service (IPS) extracts diagnostic and test case data
associated with critical errors from the ADR and packages the data for transport to
Oracle.

See Also: Oracle Database Administrator’s Guide for more
information

Backup Files

To restore a file is to replace it with a backup file. Typically, you restore a file when a
media failure or user error has damaged or deleted the original file.

User-managed backup and recovery requires you to actually restore backup files
before you can perform a trial recovery of the backups.

Server-managed backup and recovery manages the backup process, such as
scheduling of backups, as well as the recovery process, such as applying the correct
backup file when recovery is needed.

See Also:

s Chapter 15, "Backup and Recovery"

» Oracle Database Backup and Recovery User's Guide

Overview of Logical Database Structures

This section discusses logical storage structures: data blocks, extents, segments, and
tablespaces. These logical storage structures enable Oracle Database to have
fine-grained control of disk space use.

This section includes the following topics:
s Oracle Database Data Blocks

= Extents

= Segments

n Tablespaces

Oracle Database Data Blocks

At the finest level of granularity, Oracle Database data is stored in data blocks. One
data block corresponds to a specific number of bytes of physical database space on
disk. The standard block size is specified by the DB_BLOCK_SIZE initialization
parameter. In addition, you can specify up to four other block sizes. A database uses
and allocates free database space in Oracle Database data blocks.

Extents

The next level of logical database space is an extent. An extent is a specific number of
contiguous data blocks, obtained in a single allocation, used to store a specific type of
information.

1-6 Oracle Database Concepts

Oracle Database Architecture

Segments

Above extents, the level of logical database storage is a segment. A segment is a set of
extents allocated for a table, index, rollback segment, or for temporary use by a
session, transaction, or SQL parser. In relation to physical database structures, all
extents belonging to a segment exist in the same tablespace, but they may be in
different data files.

When the extents of a segment are full, Oracle Database dynamically allocates another
extent for that segment. Because extents are allocated as needed, the extents of a
segment may or may not be contiguous on disk.

Tablespaces

A database is divided into logical storage units called tablespaces, which group
related data blocks, extents, and segments. For example, tablespaces commonly group
together all application objects to simplify some administrative operations.

Each database is logically divided into two or more tablespaces. One or more datafiles
are explicitly created for each tablespace to physically store the data of all logical
structures in a tablespace. The combined size of the datafiles in a tablespace is the total
storage capacity of the tablespace.

Every Oracle database contains a SYSTEM tablespace and a SYSAUX tablespace. Oracle
Database creates them automatically when the database is created. The system default
is to create a smallfile tablespace, which is the traditional type of Oracle tablespace.
The SYSTEM and SYSAUX tablespaces are created as smallfile tablespaces.

Oracle Database also lets you create bigfile tablespaces, which are made up of single
large file rather than numerous smaller ones. Bigfile tablespaces let Oracle Database
utilize the ability of 64-bit systems to create and manage ultralarge files. As a result,
Oracle Database can scale up to 8 exabytes in size. With Oracle-Managed Files, bigfile
tablespaces make datafiles completely transparent for users. In other words, you can
perform operations on tablespaces, rather than the underlying datafiles.

See Also:
» Chapter 2, "Data Blocks, Extents, and Segments"
» Chapter 3, "Tablespaces, Datafiles, and Control Files"

= "Introduction to Undo Segments and Automatic Undo
Management" on page 2-16

= "Read Consistency” on page 1-15

s "Overview of Database Backup and Recovery Features" on
page 1-20

Online and Offline Tablespaces A tablespace can be online or offline. A tablespace is
generally online, so that users can access the information in the tablespace. However,
to simplify administration, sometimes a tablespace is taken offline to make a portion of
the database unavailable while allowing normal access to the remainder of the
database.

Read-only Tablespaces A tablespace can be read only, which means that data in the
tablespace cannot be modified. The primary purpose of read-only tablespaces is to
eliminate the need to perform backup and recovery of large, static portions of a
database. Oracle Database never updates the files of a read-only tablespace, and
therefore the files can reside on read-only media such as CD-ROMs or WORM drives.

Introduction to Oracle Database 1-7

Oracle Database Architecture

Overview of Schemas and Common Schema Objects

A schema is a collection of database objects. A schema is owned by a database user
and has the same name as that user. Schema objects are the logical structures that
directly refer to the database's data. There is no relationship between a tablespace and
a schema. Objects in the same schema can be in different tablespaces, and a tablespace
can hold objects from different schemas. Schema objects include structures such as
tables, views, and indexes. Some of the most common schema objects are defined in
the sections that follow.

This section includes the following topics:
s Tables

= Indexes

s Views

s Clusters

= Synonyms

Tables

Tables are the basic unit of data storage in an Oracle database. Database tables hold all
user-accessible data. Each table has columns and rows. A table that has employee
information, for example, can have a column called employee_number, and each row
in that column is an employee number.

Indexes

Indexes are optional structures associated with tables. You can create indexes to
increase the performance of data retrieval. Just as the index in this manual helps you
quickly locate specific information, an Oracle database index provides an access path
to table data.

When processing a request, Oracle Database can use some or all of the available
indexes to locate the requested rows efficiently. Indexes are useful when applications
frequently query a table for a range of rows (for example, all employees with a salary
greater than 1000) or a specific row (for example, the employee with the highest
salary).

You create an index on one or more columns of a table. Thereafter, Oracle Database
automatically uses and maintains the index. Changes to table data (such as adding
new rows, updating rows, or deleting rows) are automatically incorporated into all
relevant indexes.

Views

Views are customized presentations of data in one or more tables or other views. A
view can also be considered a stored query. Views do not contain actual data. Rather,
they derive their data from the tables on which they are based, referred to as the base
tables of the views.

You can query, update, insert into, and delete views as you can with tables, with some
restrictions. If the view is updatable, then all operations performed on the view
actually affect the base tables of the view.

Views can provide table security by restricting access to a predetermined set of rows
and columns of a table. They also hide data complexity and store complex queries.

1-8 Oracle Database Concepts

Oracle Database Architecture

Clusters

Clusters are groups of one or more tables physically stored together because they
share common columns and are often used together. Because related rows are
physically stored together, disk access time improves.

Like indexes, clusters do not affect application design. Whether a table is part of a
cluster is transparent to users and to applications. SQL statements access data stored in
a clustered table in the same way that they access data stored in a nonclustered table.

Synonyms

A synonym is an alias for any table, view, materialized view, sequence, operator,
procedure, function, package, Java class schema object, user-defined object type, or
another synonym. A synonym is simply an alias, so it requires no storage other than
its definition in the data dictionary.

See Also: Chapter 5, "Schema Objects" for more information on
these and other schema objects

Overview of the Oracle Database Data Dictionary

Each Oracle database has a data dictionary, which is a set of tables and views that
serve as a reference about the database. For example, a data dictionary stores
information about both the logical and physical structure of the database. A data
dictionary also stores the valid users of an Oracle database, information about
integrity constraints defined for tables in the database, and the amount of space
allocated for a schema object and how much of that space is in use, among much other
information.

A data dictionary is created when a database is created. To accurately reflect the status
of the database at all times, the data dictionary is automatically updated by Oracle
Database in response to specific actions, such as when the structure of the database is
altered. Database users cannot modify the data dictionary. Various database processes
rely on the data dictionary to record, verify, and conduct ongoing work. For example,
during database operation, Oracle Database reads the data dictionary to verify that
schema objects exist and that users have proper access to them.

See Also: Chapter 7, "The Data Dictionary” for more information

Overview of the Oracle Database Instance

An Oracle Database server consists of an Oracle Database and one or more Oracle
Database instances. Every time a database is started, a shared memory area called the
system global area (SGA) is allocated and Oracle Database background processes are
started. The combination of the background processes and the SGA is called an Oracle
Database instance.

Oracle Real Application Clusters Some hardware architectures (for example, shared
disk systems) enable multiple computers to share access to data, software, or
peripheral devices. Oracle Real Application Clusters (Oracle RAC) comprises two or
more Oracle Database instances running on multiple clustered computers that
communicate with each other by means of an interconnect. Oracle RAC uses Oracle
Clusterware to access a shared database that resides on shared disks. Oracle RAC
combines the processing power of these multiple interconnected computers to provide
system redundancy, near linear scalability, and high availability. Oracle RAC also
offers significant advantages for both OLTP and data warehouse systems, and all
systems and applications can efficiently exploit clustered environments.

Introduction to Oracle Database 1-9

Oracle Database Architecture

You can scale applications in Oracle RAC environments to meet increasing data
processing demands without changing the application code. When you add resources
such as nodes or storage, Oracle RAC extends the processing powers of these
resources beyond the limits of the individual components.

See Also: Oracle Real Application Clusters Administration and
Deployment Guide

When users connect to an Oracle Database server, they are connected to an Oracle
Database instance. The database instance services those users by allocating other
memory areas in addition to the SGA, and starting other processes in addition to the
Oracle Database background processes. The following sections describe the various
Oracle Database memory areas and processes:

s Oracle Database Background Processes

= Instance Memory Structures

Oracle Database Background Processes

An Oracle database uses memory structures and processes to manage and access the
database. All memory structures exist in the main memory of the computers that
constitute the database system. A process is a mechanism in an operating system that
can run a series of steps. Some operating systems use the terms job or task. Oracle
Database server uses three types of processes: Oracle processes—which include server
processes and background processes—and user processes. On almost all systems, the
Oracle processes and the user processes are on separate computers.

= Oracle Database creates a set of background processes for each instance. The
background processes consolidate functions that would otherwise be handled by
multiple Oracle Database programs running for each user process. They
asynchronously perform I/O and monitor other Oracle Database processes to
provide increased parallelism for better performance and reliability.

See Also: "Oracle Database Background Processes" on page 9-4 for
more information on some of the most common background processes

= User processes—sometimes called client processes—are created and maintained to
run the software code of an application program (such as an OCI or OCCI
program) or an Oracle tool (such as Oracle Enterprise Manager). Most
environments have separate machines (laptops, desktops, and so forth) for the
client processes. User processes also manage communication with the server
process through the program interface, which is described in a later section.

s Oracle Database creates server processes to handle requests from connected user
processes. A server process communicates with the user process and interacts with
Oracle Database to carry out requests from the associated user process. For
example, if a user queries some data not already in the database buffers of the
SGA, then the associated server process reads the proper data blocks from the
datafiles into the SGA.

Oracle Database can be configured to vary the number of user processes for each
server process. In a dedicated server configuration, a server process handles
requests for a single user process. A shared server configuration lets many user
processes share a small number of server processes, minimizing the number of
server processes and maximizing the use of available system resources.

See Also: Chapter 9, "Process Architecture”

1-10 Oracle Database Concepts

Oracle Database Architecture

Instance Memory Structures

Oracle Database creates and uses memory structures for various purposes. For
example, memory stores program code being run, data shared among users, and
private data areas for each connected user. Two basic memory structures are associated
with an Oracle Database:

s The System Global Area (SGA) is a group of shared memory structures, known as
SGA components, that contain data and control information for one Oracle
Database instance. The SGA is shared by all server and background processes.
Examples of data stored in the SGA include cached data blocks and shared SQL

areas.

» The Program Global Areas (PGA) are memory regions that contain data and
control information for a server or background process. A PGA is nonshared
memory created by Oracle Database when a server or background process is
started. Access to the PGA is exclusive to the process. Each server process and
background process has its own PGA.

See Also: Chapter 8, "Memory Architecture” for more information

Overview of Accessing the Database

This section describes Oracle Net Services, as well as how to start up the database, in
the following sections:

s Network Connections
s Starting Up the Database
s How Oracle Database Works

Network Connections

Oracle Net Services is the interface between Oracle Database and the network
communication protocols that facilitate distributed processing and distributed
databases. Communication protocols define the way that data is transmitted and
received on a network. Oracle Net Services supports communications on all major
network protocols, including TCP/IP, HTTP, FIP, and WebDAV.

Using Oracle Net Services, application developers do not need to be concerned with
supporting network communications in a database application. If a new protocol is
used, then the database administrator makes some minor changes, and the application
requires no modifications and continues to function.

Oracle Net, a component of Oracle Net Services, establishes and maintains a network
session from a client application to an Oracle Database server. Once a network session
is established, Oracle Net acts as the data courier for both the client application and
the database server, exchanging messages between them. Oracle Net can perform
these jobs because it is located on each computer in the network.

See Also:

m Oracle Database Net Services Administrator’s Guide for more
information about network connections

s Oracle XML DB Developer’s Guide for information about using
WebDAYV with the database

Introduction to Oracle Database 1-11

Oracle Database Architecture

Starting Up the Database

The three steps to starting an Oracle database and making it available for systemwide
use are:

1.
2.
3.

Start an instance.
Mount the database.

Open the database.

A database administrator can perform these steps using Oracle Enterprise Manager,
the SQL*Plus STARTUP statement, the srvctl command-line tool, or the Express
Edition START command. When Oracle Database starts an instance, it reads the server
parameter file (spfile) or initialization parameter file (pfile) to determine the values of
initialization parameters. Then, it allocates an SGA and creates background processes.

See Also: Chapter 12, "Database and Instance Startup and
Shutdown"

How Oracle Database Works

The following example describes Oracle Database operations at the most basic level.
This illustrates an Oracle Database configuration where the user and associated server
process are on separate computers, connected through a network.

1.

An instance has started on the computer running Oracle Database, often called the
host or database server.

A computer running an application (a local computer or client workstation) runs
an application in a user process. The client application attempts to establish a
connection to the server using the proper Oracle Net Services driver.

The server is running the proper Oracle Net Services driver. The server detects the
connection request from the application and creates a dedicated server process on
behalf of the user process.

The user runs a SQL statement and commits the transaction. For example, the user
changes a name in a row of a table.

The server process receives the statement and checks the shared pool (an SGA
component) for any shared SQL area that contains a similar SQL statement. If a
shared SQL area is found, then the server process checks the user's access
privileges to the requested data, and the existing shared SQL area is used to
process the statement. If not, then a new shared SQL area is allocated for the
statement, so it can be parsed and processed.

The server process retrieves any necessary data values, either from the actual
datafile (table) or those stored in the SGA.

The server process modifies data in the system global area. The database writer
process (DBWn) writes modified blocks permanently to disk when doing so is
efficient. Because the transaction is committed, the log writer process (LGWR)
immediately records the transaction in the redo log file.

If the transaction is successful, then the server process sends a message across the
network to the application. If it is not successful, then an error message is
transmitted.

Throughout this entire procedure, the other background processes run, watching
for conditions that require intervention. In addition, the database server manages
other users' transactions and prevents contention between transactions that
request the same data.

1-12 Oracle Database Concepts

Oracle Database Features

See Also: Chapter 9, "Process Architecture" for more information
background processes

Overview of Oracle Database Utilities

Oracle Database provides several utilities for data transfer, data maintenance, and
database administration They are described briefly in Chapter 11, "Oracle Database
Utilities" and more fully in Oracle Database Utilities.

Oracle Database Features
This section contains the following topics:
= Overview of Oracle Real Application Testing
= Overview of Concurrency Features
s Overview of Manageability Features
» Overview of Diagnosability Features
s Overview of Database Backup and Recovery Features
s Overview of High Availability Features
s Overview of Business Intelligence Features
s Overview of Content Management Features
s Overview of Security Features
s Overview of Data Integrity and Triggers

= Overview of Information Integration Features

Overview of Oracle Real Application Testing

System changes, such as hardware and software upgrades and patch application, are
essential for businesses for compliance and security purposes or to maintain their
competitive edge. Oracle Real Application Testing helps you fully assess the effect of
system changes on real-world applications in test environments before deploying
them in production. Oracle Real Application Testing consists of two features:

= Database Replay

= SQL Performance Analyzer

Database Replay

Database Replay enables realistic testing of system changes by essentially re-creating
the production workload environment on a test system. It does this by capturing a
workload on the production system and then replaying it on a test system with the
exact timing, concurrency, and transaction characteristics of the original workload.
This makes possible complete assessment of the impact of the change including
undesired results, new contention points, and performance regressions. Extensive
analysis and reporting is provided to help identify any potential problems, such as
new errors encountered and performance divergences.

With Database Replay, businesses can rapidly test changes and adopt new
technologies with a high degree of confidence in the overall success of the effort and at
significantly lower risk.

Introduction to Oracle Database 1-13

Oracle Database Features

Database Replay can be used to assess the impact of the following types of system
changes:

= Database upgrades, patches, parameter, and schema changes

= Configuration changes, such as conversion from a single instance to Oracle Real
Application Clusters and Automatic Storage Management

= Storage, network, and interconnect changes

s Operating system patches, upgrades, and parameter changes and hardware
migrations

SQL Performance Analyzer

Changes that affect SQL execution plans can severely impact system performance and
availability. As a result, DBAs spend considerable time in identifying and fixing SQL
statements that have regressed due to a change.

SQL Performance Analyzer automates the process of assessing the overall effect of a
change on the full SQL workload by identifying performance divergence for each
statement. A report that shows the net impact on the workload performance due to the
change is provided. For regressed SQL statements, appropriate execution plan details,
along with recommendations to tune them, is also provided. As a result, DBAs can
remedy any negative outcome before their end users are affected and can confirm,
with significant time and cost savings, that the system change to the production
environment will, in fact, result in net improvement.

You can use the SQL Performance Analyzer to analyze the SQL performance impact of
any type of system change. Examples of common system changes include:

s Database upgrades

= Configuration changes to the operating system, hardware, or database
= Database initialization parameter changes

= Schema changes, such as adding new indexes or materialized views

= Gathering optimizer statistics

= SQL tuning actions, such as creating SQL profiles

See Also: Oracle Database Performance Tuning Guide to learn how to
use the SQL Performance Analyzer

Overview of Concurrency Features

All information management systems have these important requirements:
= Data concurrency of a multiuser system must be maximized.

= Data must be read and modified in a consistent fashion. The data a user is viewing
or changing must not changed (by other users) until the first user is finished with
the data.

» High performance is required for maximum productivity from the many users of
the database system.

Oracle Database contains several software mechanisms that satisfy these requirements.
This contains the following sections:

s Concurrency

1-14 Oracle Database Concepts

Oracle Database Features

= Read Consistency
s Caching Mechanisms

s Locking Mechanisms

Concurrency

A primary feature of a multiuser database management system is concurrency, which
is the simultaneous access of the same data by many users. Without adequate
concurrency controls, data could be updated or changed improperly, compromising
data integrity.

One way to manage data concurrency is to make each user wait for a turn. The goal of
a database management system is to reduce that wait so it is either nonexistent or not
noticeable to users. Data manipulation language operations (inserts, updates, and
deletes) should proceed with as little interference as possible, and destructive
interactions between concurrent transactions must be prevented. A destructive
interaction is one that incorrectly updates data or incorrectly alters underlying data
structures. Neither performance nor data integrity can be sacrificed.

Oracle Database resolves these issues by using various types of locks and a
multiversion consistency model. These features are based on the concept of a
transaction.

The transaction is key to the Oracle Database strategy for providing read consistency.
This unit of committed (or uncommitted) SQL statements:

= Dictates the start point for read-consistent views generated on behalf of readers

= Controls when modified data can be seen by other transactions of the database for
reading or updating

It is the application designer's responsibility to ensure that transactions fully exploit

these concurrency and consistency features.

See Also: Chapter 4, "Transaction Management"

Read Consistency
Read consistency, as provided by Oracle Database, achieves the following goals:

= Guarantees that the set of data seen by a statement is consistent with respect to a
single point in time and does not change during statement execution
(statement-level read consistency)

» Ensures that readers of database data do not wait for writers or other readers of
the same data

m Ensures that writers of database data do not wait for readers of the same data

= Ensures that writers only wait for other writers if they attempt to update identical
rows in concurrent transactions

In the Oracle Database implementation of read consistency, it is as if each user
operates a private copy of the database. This is sometimes called a multiversion
consistency model.

See Also: Chapter 13, "Data Concurrency and Consistency"
Read Consistency, Undo Records, and Transactions To manage the multiversion

consistency model, Oracle Database uses current information in the System Global
Area and information in the undo records to construct a read-consistent view of a

Introduction to Oracle Database 1-15

Oracle Database Features

table's data for a query. When an update occurs, the original data values are recorded
in the database undo records. As long as this update remains part of an uncommitted
transaction, any user that later queries the modified data views the original data
values. Only when a transaction is committed are the changes of the transaction made
permanent. Queries that are initiated after the transaction is committed see the changes
made by the committed transaction.

Read-Only Transactions By default, Oracle Database guarantees statement-level read
consistency. The set of data returned by a single query is consistent with respect to a
single point in time. However, in some situations, you might also require
transaction-level read consistency. This is the ability to run multiple queries within a
single transaction, all of which are read-consistent with respect to the same point in
time, so that queries in this transaction do not see the effects of intervening committed
transactions. If you want to run a number of queries against multiple tables and if you
are not doing any updating, you can initiate the transaction with commands that
define it as a read-only transaction.

See Also: Oracle Database Concepts for more information on
transaction-level read consistency

Caching Mechanisms

Oracle Database optimizes database performance by caching in memory user data, log
data, dictionary data, and other types of data.

Oracle Database also caches query results, so that if a query is repeated, the database
can return results from the cache instead of reprocessing the query and reading data
from storage. The cached results are stored in a dedicated portion of the shared pool.
Query retrieval from the query result cache is faster than rerunning the query. The
query result cache enables explicit caching of results in database memory. Frequently
executed queries especially see performance improvements when using the query
result cache.

Locking Mechanisms

Oracle Database also uses locks to control concurrent access to data. When updating
information, the data server holds that information with a lock until the update is
submitted or committed. Until that happens, no one else can make changes to the
locked information. This ensures the data integrity of the system.

Oracle Database provides unique nonescalating row-level locking. Unlike other data
servers that escalate locks to cover entire groups of rows or even the entire table,
Oracle Database always locks only the row of information being updated. Because the
database includes the locking information with the actual rows themselves, it can lock
an unlimited number of rows so users can work concurrently without unnecessary
delays.

Automatic Locking Oracle Database locking is performed automatically and requires no
user action. Implicit locking occurs for SQL statements as necessary, depending on the
action requested.

The Oracle Database lock manager maintains several different types of row locks,
depending on what type of operation established the lock. The two general types of
locks are exclusive locks and share locks. Only one exclusive lock can be placed on a
resource (such as a row or a table); however, many share locks can be placed on a
single resource. Both exclusive and share locks always permit queries on the locked
resource but prohibit other activity on the resource (such as updates and deletes).

1-16 Oracle Database Concepts

Oracle Database Features

Manual Locking Under some circumstances, you might want to override default locking.
With Oracle Database, you can manually override automatic locking features at both
the row level (by first querying for the rows that will be updated in a subsequent
statement) and the table level.

Overview of Manageability Features

People who administer the operation of an Oracle database system, known as database
administrators (DBAs), are responsible for creating Oracle databases, ensuring their
smooth operation, and monitoring their use. In addition to the many alerts and
advisors Oracle provides, Oracle Database also offers features described in the
following sections:

= Self-Managing Database

= Automatic Maintenance Tasks

s Oracle Enterprise Manager

s SQL Developer and SQL*Plus

= Automatic Memory Management
= Automatic Storage Management
= Automatic Database Diagnostic Monitor
= SQL Tuning Advisor

s SQL Access Advisor

= Streams Tuning Advisor

s The Scheduler

s Database Resource Manager

Self-Managing Database

Oracle Database provides a high degree of self-management by automating routine
DBA tasks and reducing complexity of space, memory, and resource administration.
Oracle Database self-managing features include the following: automatic undo
management, automatic server memory management, Oracle-managed files, free
space management, and Recovery Manager (RMAN).

Automatic Maintenance Tasks

Oracle Database automatically schedules periodic maintenance tasks such as statistics
collection and space recovery. These tasks run in a set of Oracle Scheduler windows
known as maintenance windows. You can control the start time and duration of these
maintenance windows, and limit the amount of CPU and 1/O resources that they
consume.

Oracle Enterprise Manager

Oracle Enterprise Manager is a system management tool that provides central
management of your database environment. Combining a graphical console, Oracle
Management Servers, Oracle Intelligent Agents, common services, and administrative
tools, Oracle Enterprise Manager provides a comprehensive systems management
platform for managing Oracle products.

From the client interface, the Oracle Enterprise Manager Console, you can perform the
following tasks:

Introduction to Oracle Database 1-17

Oracle Database Features

= Administer the entire Oracle environment, including databases, Oracle
Application Server servers, applications, and services

= Diagnose, modify, and tune multiple databases

= Schedule tasks on multiple systems at varying time intervals

= Monitor database conditions throughout the network

= Administer multiple network nodes and services from many locations
= Share tasks with other administrators

= Group related targets together to facilitate administration tasks

= Launch integrated Oracle and third-party tools

s Customize the display of an Oracle Enterprise Manager administrator

SQL Developer and SQL*Plus

Oracle SQL Developer is a graphical development tool that provides a convenient way
to perform these tasks:

= Browse, create, edit, and delete (drop) database objects
= Edit and debug PL/SQL code

s Run SQL statements and scripts

= Manipulate and export data

s Create and view reports

With SQL Developer, you can connect to any target Oracle database schema using
standard Oracle database authentication. Once connected, you can perform operations
on objects in the database. You can also connect to schemas for selected third-party
(non-Oracle) databases, such as MySQL, Microsoft SQL Server, and Microsoft Access,
view metadata and data in these databases, and migrate these databases to Oracle.

SQL*Plus is a basic command-line tool for entering and running ad hoc database
statements. It lets you run SQL statements and PL/SQL blocks, and perform many
additional tasks as well.

See Also: Oracle Database SQL Developer User's Guide and
SQL*Plus User’s Guide and Reference for more information on these
tools

Automatic Memory Management

Beginning with Oracle Database 11g, Release 1, Oracle Database can manage the
System Global Area (SGA) memory and instance Program Global Area (PGA) memory
completely automatically. You designate only the total memory size to be used by the
instance, and Oracle Database dynamically exchanges memory between the SGA and
the instance PGA as needed to meet processing demands. This capability is referred to
as automatic memory management. In this memory management mode, the database
also dynamically tunes the sizes of the individual SGA components and the sizes of
the individual PGAs.

See Also: Oracle Database 2 Day DBA for more information
Automatic Storage Management

Automatic Storage Management automates and simplifies the management of all
types of database files. Database files are automatically distributed across all available

1-18 Oracle Database Concepts

Oracle Database Features

disks, and database storage is rebalanced automatically whenever the storage
configuration changes. Automatic Storage Management also provides redundancy
through the mirroring of database files.

Oracle Database has built-in support for the network file system (NFS) and does not
depend on OS support for NFS. This improves manageability and diagnosability of
network attached storage accessed with NFS.

Automatic Database Diagnostic Monitor

The Automatic Database Diagnostic Monitor (ADDM) lets you conduct performance
analyzes over any time period defined by a pair of Automatic Workload Repository
(AWR) snapshots taken on a particular instance. Analysis is performed top down, first
identifying symptoms and then refining them to reach the root causes of performance
problems. ADDM also documents non-problem areas of the system. For example, wait
event classes that are not significantly affecting the performance of the system are
identified and removed from the tuning consideration at an early stage, saving time
and effort that would be spent on items with little or no impact on overall system
performance.

In addition to problem diagnostics, ADDM recommends possible solutions. When
appropriate, ADDM recommends multiple solutions for the DBA to choose from.
ADDM considers a variety of changes to a system while generating its
recommendations, which include hardware changes, database configuration changes,
modification of schema objects, modification of applications, and referrals to other
advisors.

See Also: Oracle Database 2 Day DBA for more information about
Automatic Database Diagnostic Monitor and Oracle Database
Performance Tuning Guide for more information about Automatic
Workload Repository

SQL Tuning Advisor

Oracle Database provides a server utility called the SQL Tuning Advisor. The SQL
Tuning Advisor takes one or more SQL statements as input and invokes the Automatic
SQL Tuning Advisor to perform SQL tuning on the statements. The output of the SQL
Tuning Advisor is in the form of an advice or recommendation, along with a rationale
for each recommendation and its expected benefit. The recommendation relates to
collection of statistics on objects, creation of new indexes, restructuring of the SQL
statement, or creation of SQL Profile. Users can choose whether or not to accept the
recommendation to complete the tuning of the SQL statements.

See Also: Oracle Database Performance Tuning Guide for more
information

SQL Access Advisor

The SQL Access Advisor makes schema modification recommendations. It can
recommend that you create access structures such as indexes and materialized views
to optimize SQL queries. It can also recommend that you partition tables, indexes, or
materialized views to improve query performance.

The SQL Access Advisor takes a SQL workload as input. You can select your workload
from various sources, including current and recent SQL activity, a SQL repository, or a
user-defined workload such as from a development environment. The advisor then
recommends changes to improve the performance of the workload as a whole.

Introduction to Oracle Database 1-19

Oracle Database Features

See Also: Oracle Database 2 Day + Performance Tuning Guide for more
information

Streams Tuning Advisor

A Streams topology is a representation of the databases in a Streams environment, the
Streams components configured in these databases, and the flow of messages between
these components. The Streams Performance Advisor reports performance
measurements for a Streams topology, including throughput and latency
measurements. The Streams Performance Advisor also identifies bottlenecks in a
Streams topology so that they can be corrected. In addition, the Streams Performance
advisor examines the Streams components in a Streams topology and recommends
ways to improve their performance.

See Also: Oracle Streams Concepts and Administration for more
information

The Scheduler

To help simplify management tasks, as well as providing a rich set of functionality for
complex scheduling needs, Oracle Database provides a collection of functions and
procedures in the DBMS_SCHEDULER package. Collectively, these functions are called
the Scheduler, and they are callable from any PL/SQL program.

The Scheduler lets database administrators and application developers control when
and where various tasks take place in the database environment. For example,
database administrators can schedule and monitor database maintenance jobs such as
backups or nightly data warehousing loads and extracts.

Database Resource Manager

Traditionally, operating systems regulated resource management among various
applications, including Oracle databases, that run on a system. The Database Resource
Manager controls the distribution of resources among various sessions by controlling
the execution schedule inside the database. By controlling which sessions run and for
how long, the Database Resource Manager can ensure that resource distribution
matches the plan directive and hence, the business objectives.

See Also: Chapter 14, "Manageability" for more information on
Database Resource Manager

Overview of Diagnosability Features

Beginning with Oracle Database 11g, Oracle Database includes an advanced fault
diagnosability infrastructure for preventing, detecting, diagnosing, and resolving
problems. The problems that are targeted are critical errors such as those caused by
database code bugs, metadata corruption, and customer data corruption. For
information on the goals of this infrastructure and the Oracle technologies that achieve
these goals, see "Fault Diagnosability Infrastructure" on page 14-5.

Overview of Database Backup and Recovery Features

The possibility of a system or hardware failure exists in every database system. The
purpose of a backup and recovery strategy is to protect the database against data loss
caused by failures and reconstruct the database after data loss.

RMAN and User-Managed Backup and Recovery Database backups are the
cornerstone of any backup and recovery strategy. A backup is a copy of data. This

1-20 Oracle Database Concepts

Oracle Database Features

copy can include important parts of the database such as datafiles, the control file, and
the server parameter file. Media recovery is the application of redo logs or incremental
backups to a restored backup datafile or individual data block. By reapplying the lost
changes, recovery rolls the backup forward in time.

When implementing a backup and recovery strategy, you have the following solutions
available:

= Recovery Manager (RMAN). This tool integrates with sessions running on an
Oracle database to perform a range of backup and recovery activities, including
maintaining an RMAN repository of historical data about backups. You can access
RMAN through the command line or through Enterprise Manager.

s User-managed backup and recovery. In this solution, you perform backup and
recovery with a mixture of host operating system commands and SQL*Plus
recovery commands.

Both of the preceding solutions are supported by Oracle and are fully documented, but
RMAN is the preferred solution for database backup and recovery. RMAN provides
access to several backup and recovery techniques and features not available with
user-managed backup and recovery. The most noteworthy are the following:

» Incremental backups

= Block media recovery

s Unused block compression
= Binary compression

= Encrypted backups

Whether you use RMAN or user-managed methods, you can supplement physical
backups with logical backups of schema objects made with Data Pump Export utility.
You can later use Data Pump Import to re-create data after restore and recovery.

See Also: "RMAN and User-Managed Backups" on page 15-5 for
more information about these backup methods and Oracle Database
Utilities for more information about Data Pump

Oracle Flashback Technology Most Oracle flashback features operate at the logical
level, enabling you to view and manipulate database objects. The logical-level
flashback features of Oracle do not depend on RMAN and are available whether or not
RMAN is part of your backup strategy. With the exception of Flashback Drop, the
logical flashback features rely on undo data, which are records of the effects of each
database update and the values overwritten in the update. Oracle Database includes
the following logical flashback features:

s Oracle Flashback Query

» Oracle Flashback Version Query

s Oracle Flashback Transaction Query
s Oracle Flashback Transaction

s Oracle Flashback Table

s Oracle Flashback Drop

» Flashback Data Archive

See Also: "Oracle Flashback Technology" on page 15-9 for more
information about these features

Introduction to Oracle Database 1-21

Oracle Database Features

Data Recovery Advisor Oracle Database includes a Data Recovery Advisor tool that
automatically diagnoses persistent data failures, presents appropriate repair options,
and executes repairs at your request. The Data Recovery Advisor provides a single
point of entry for Oracle backup and recovery solutions. You can use Data Recovery
Adpvisor through the Enterprise Manager Database Control or Grid Control console or
through the RMAN command-line client.

See Also:

= Chapter 15, "Backup and Recovery" for more information about
Oracle backup and recovery methods

= "Data Recovery Advisor" on page 15-9 for more information about
this tool

Overview of High Availability Features

Computing environments configured to provide nearly full-time availability are
known as high availability systems. Such systems typically have redundant hardware
and software that makes the system available despite failures. Well-designed high
availability systems avoid having single points of failure.

Oracle Database includes a number of products and features that provide high
availability in cases of unplanned downtime or planned downtime. These features,
which are described in the sections that follow, can be used in various combinations to
meet specific high availability needs.

Oracle Real Application Clusters Oracle Real Application Clusters (Oracle RAC)
allows Oracle Database to run any packaged or custom application unchanged across
a set of clustered servers. This capability provides the highest levels of availability and
the most flexible scalability. If a clustered server fails, Oracle Database continues
running on the surviving servers. When more processing power is needed, you can
add another server without interrupting access to data.

Oracle Data Guard Oracle Data Guard provides a comprehensive set of services that
create, maintain, manage, and monitor one or more standby databases to enable
production Oracle databases to survive failures, disasters, errors, and data corruption.
Data Guard maintains these standby databases as transactionally consistent copies of
the production database. If the production database becomes unavailable due to a
planned or an unplanned outage, Data Guard can switch any standby database to the
production role, thus greatly reducing the downtime caused by the outage.

Oracle Streams Oracle Streams enables the propagation and management of data,
transactions, and events in a data stream, either within a database or from one
database to another. Streams provides a set of elements that enables you to control
what information is put into a data stream, how the stream is routed from node to
node, what happens to events in the stream as they flow into each node, and how the
stream terminates.

Oracle Flashback Technology Flashback technology provides a set of features that
let you switch between views of the data as it existed at different points in time. Using
flashback features you can query past versions of schema objects and historical data.
You can also perform change analysis and self-service repair to recover from logical
corruption while the database is online. Flashback technology is unique to Oracle
Database and supports recovery at all levels including row, transaction, table,
tablespace, and database.

1-22 Oracle Database Concepts

Oracle Database Features

Online Table Redefinition Oracle provides a Reorganize Objects wizard in Oracle
Enterprise Manager that can automatically generate a script and perform online table
reorganization. The entire redefinition process occurs while users have full access to
the table.

Automatic Storage Management Automatic Storage Management (ASM) provides a
vertically integrated file system and volume manager directly in the Oracle kernel.
ASM spreads files across all available storage. To protect against data loss, ASM
extends the concept of SAME (stripe and mirror everything) and adds more flexibility
in that it can mirror at the database file level rather than the entire disk level. DBAs
using ASM create and administer a large-grained object called a disk group. The disk
group identifies the set of disks that are managed as a logical unit. Automation of file
naming and placement of the underlying database files save DBAs time and ensures
adherence to standard best practices.

Recovery Manager is an Oracle Database utility to manage the backup and recovery
of the database. RMAN determines the most efficient method of executing the
requested backup, restoration, or recovery operation and then submits these
operations to the Oracle Database server for processing. RMAN and the server
automatically identify modifications to the structure of the database and dynamically
adjust the required operation to adapt to the changes.

Flash Recovery Area The flash recovery area is a unified storage location for all
recovery-related files and activities in Oracle Database. When this feature is enabled,
all RMAN backups, archive logs, control file autobackups, and datafile copies are
automatically written to a specified file system or to an Automatic Storage
Management disk group. The management of this disk space is handled by RMAN
and the database server. The flash recovery area eliminates the bottleneck of writing to
tape. Further, if database media recovery is required, then datafile backups are readily
available.

See Also: Chapter 17, "High Availability"

Overview of Business Intelligence Features

This section describes the following business intelligence features:
= Data Warehousing

= Materialized Views

n Table Compression

= Parallel Execution

= Analytic SQL

s OLAP Capabilities

s Data Mining

s Very Large Databases (VLDB)

Data Warehousing

A data warehouse is a relational database designed for query and analysis rather than
for transaction processing. It usually contains historical data derived from transaction
data, but it can include data from other sources. It separates analysis workload from
transaction workload and enables an organization to consolidate data from several
sources.

Introduction to Oracle Database 1-23

Oracle Database Features

In addition to a relational database, a data warehouse environment includes an
extraction, transformation, and loading (ETL) solution, an online analytical processing
(OLAP) engine, client analysis tools, and other applications that manage the process of
gathering data and delivering it to business users.

Extraction, Transformation, and Loading (ETL) You must load your data warehouse
regularly so that it can serve its purpose of facilitating business analysis. To perform
this operation, data from one or more operational systems must be extracted and
copied into the warehouse. The process of extracting data from source systems and
bringing it into the data warehouse is commonly called ETL, which stands for
extraction, transformation, and loading.

Bitmap Indexes in Data Warehousing The purpose of an index is to provide pointers
to the rows in a table that contain a given key value. In a regular index, this is achieved
by storing a list of rowids for each key corresponding to the rows with that key value.
Oracle Database stores each key value repeatedly with each stored rowid. Fully
indexing a large table with a traditional B-tree index can be prohibitively expensive in
terms of space because the indexes can be several times larger than the table data.

In a bitmap index, the database stores a bitmap for each key value instead of a list of
rowids. Bitmap indexes are typically only a fraction of the size of the indexed data in
the table. Data warehousing environments typically have large amounts of data and

ad hoc queries, but a low level of concurrent database manipulation language (DML)
transactions. For such applications, bitmap indexing provides several advantages:

= Reduced response time for large classes of ad hoc queries
= Reduced storage requirements compared with other indexing techniques

= Dramatic performance gains even on hardware with a relatively small number of
CPUs or a small amount of memory

» Efficient maintenance during parallel DML and loads

In addition, bitmap join indexes improve query performance for typical data
warehouse queries—which often include dimension/fact table joins—with about the
same space usage as regular bitmap indexes.

Materialized Views

A materialized view provides access to table data by storing the results of a query in a
separate schema object. Unlike an ordinary view, which does not take up any storage
space or contain any data, a materialized view contains the rows resulting from a
query against one or more base tables or views. Query response time is improved
because the query accesses the materialized view instead of executing against the base
tables. A materialized view can be stored in the same database as its base tables or in a
different database.

Materialized views stored in the same database as their base tables can further
improve query performance through query rewrite. Query rewrite is a mechanism
that automatically rewrites a SQL query to use a materialized view instead of its base
tables. With query rewrite, developers need not rewrite applications to take advantage
of materialized views. Query rewrite is particularly useful in a data warehouse
environment.

Table Compression

Oracle provides comprehensive data compression capabilities to compress all types of
data, backups, and network traffic in an application transparent manner. These
capabilities include table compression targeted at OLTP workloads, resulting in

1-24 Oracle Database Concepts

Oracle Database Features

reduced storage consumption and improved query performance while incurring
minimal write performance overhead. Table compression can be used to compress any
relational data. To compress unstructured content use SecureFiles compression.
Deduplication provides the ability to automatically eliminate redundant copies of
SecureFiles data. A new faster compression algorithm is included to speed up RMAN
backups. Data Pump exports can now be compressed to reduce disk space
requirements. Finally, Data Guard can compress redo data resulting in reduced
network traffic and faster gap resolution.

See Also: "Table Compression" on page 5-7

Parallel Execution

When Oracle Database runs SQL statements in parallel, multiple processes work
together simultaneously to run a single SQL statement. By dividing the work
necessary to run a statement among multiple processes, Oracle Database can run the
statement more quickly than if only a single process ran it. This is called parallel
execution or parallel processing. Parallel execution dramatically reduces response
time for data-intensive operations on large databases.

Analytic SQL

Oracle Database has many SQL operations for performing analytic operations in the
database. These include ranking, moving averages, cumulative sums, ratio-to-reports,
and period-over-period comparisons.

OLAP Capabilities

Oracle online analytical processing (OLAP) provides native multidimensional storage
and speed-of-thought response times when analyzing data across multiple
dimensions. The database provides rich support for analytics such as time series
calculations, forecasting, advanced aggregation with additive and nonadditive
operators, and allocation operators. These capabilities make the Oracle database a
complete analytical platform, capable of supporting the entire spectrum of business
intelligence and advanced analytical applications. Oracle OLAP is fully integrated in
the database, so that you can use standard SQL administrative, querying, and
reporting tools.

Data Mining

With Oracle Data Mining, data never leaves the database — the data, data preparation,
model building, and model scoring results all remain in the database. This enables
Oracle Database to provide an infrastructure for application developers to integrate
data mining seamlessly with database applications. Typical applications of data
mining include call centers, ATMs, E-business relational management (ERM), and
business planning. Oracle Data mining supports a PL/SQL API, a Java API, SQL
functions for model scoring, and a graphical user interface called Oracle Data Miner.

See Also: Chapter 16, "Business Intelligence" for more
information about Oracle Data Mining

Very Large Databases (VLDB)

Partitioning is a critical feature for managing very large databases (VLDB). Growth is
the basic challenge that partitioning addresses, and partitioning allows a database to
scale for very large datasets while maintaining consistent performance, without
unduly increasing administrative or hardware resources. Partitioning allows a table,
index, or index-organized table to be subdivided into smaller pieces called partitions.

Introduction to Oracle Database 1-25

Oracle Database Features

No modifications to applications are necessary when accessing a partitioned table
using SQL DML statements.

Partitioning can provide tremendous benefit to a wide variety of applications by
improving availability, manageability, and performance.

Information Lifecycle Management (ILM) Information Lifecycle Management (ILM) is a set
of processes and policies for managing data throughout its useful life. One of the
benefits of implementing an ILM solution is to reduce costs, by leveraging appropriate
storage tiers, while maintaining all of the data required for business or regulatory
purposes. Partitioning is the capability that enables an ILM solution to be
implemented within the database.

See Also: Chapter 18, "Very Large Databases (VLDB)" for more
information about VLDB topics

Overview of Content Management Features

Oracle Database includes datatypes to handle all the types of rich content such as
XML, text, audio, video, image, medical image, and spatial. These datatypes appear as
native types in the database. They can all be queried using SQL. A single SQL
statement can include data belonging to any or all of these datatypes.

This section includes the following topics:
= XML in Oracle Database

= LOBs

» SecureFiles

s Oracle Text

» Oracle Ultra Search

s Oracle Multimedia

= Oracle Spatial

XML in Oracle Database

Oracle XML DB is a set of Oracle Database technologies related to high-performance
XML storage and retrieval. It provides native XML support by encompassing both
SQL and XML data models in an interoperable manner. Oracle XML DB includes the
following features:

= Support for the World Wide Web Consortium (W3C) XML and XML Schema data
models and standard access methods for navigating and querying XML. The data
models are incorporated into Oracle Database.

= The ability to store, query, update, and transform XML data while accessing it
using SQL.
» The ability to perform XML operations on SQL data.

= A simple, lightweight XML repository where you can organize and manage
database content, including XML, using a file/folder/URL metaphor.

= Aninfrastructure independent of storage format, content, and programming
language for storing and managing XML data. This infrastructure provides new
ways of navigating and querying XML content stored in the database. For
example, Oracle XML DB Repository facilitates this by managing XML document
hierarchies.

1-26 Oracle Database Concepts

Oracle Database Features

s Industry-standard access to and update of XML. The standards include the W3C
XPath recommendation and the ISO-ANSI SQL /XML standard. FTP, HTTP(S), and
WebDAV can be used to move XML content into and out of Oracle Database.
Industry-standard APIs provide programmatic access and manipulation of XML
content using Java, C, and PL/SQL.

s XML-specific memory management and optimizations.

= Enterprise-level Oracle Database features for XML content: reliability, availability,
scalability, and security.

Oracle XML DB can be used in conjunction with Oracle XML Developer's Kit (XDK) to
build applications that run in the middle tier in either Oracle Application Server or
Oracle Database.

LOBs

The LOB datatypes BLOB, CLOB, NCLOB, and BFILE enable you to store and
manipulate large blocks of unstructured data (such as text, graphic images, video clips,
and sound waveforms) in binary or character format. They provide efficient, random,
piece-wise access to the data.

See Also: Oracle Database SecureFiles and Large Objects Developer’s
Guide for more information about SecureFiles LOBs

SecureFiles

SecureFiles is a new feature in Oracle Database 11¢ that offers the best solution for
storing file content, such as images, audio, video, PDFs, and spreadsheets.
Traditionally, relational data is stored in a database, while unstructured content—both
semi-structured and unstructured—is stored as files in file systems. SecureFiles is a
major paradigm shift in the choice of files storage. SecureFiles is specifically
engineered to deliver high performance for file data comparable to that of traditional
file systems, while retaining the advantages of Oracle Database. SecureFiles offers the
best database and file system architecture attributes for storing unstructured content.

Key Technical Advantages SecureFiles includes advanced features, typically found
in high-end file systems, such as:

= Deduplication: Oracle Database automatically detects multiple, identical
SecureFiles data and stores only one copy, thereby saving storage space. In
addition to storing only one copy, SecureFiles maintains references to other
duplicates. Deduplication is completely transparent to applications and, in
addition to simplifying storage management, it also results in significantly better
performance, especially for copy operations. Duplicate detection happens within a
LOB segment. The 1ob_storage_clause allows for specifying deduplication at
a partition level so that duplicate detection does not span across partitions or
subpartitions for partitioned SecureFiles columns.

See Also: Oracle Database SecureFiles and Large Objects Developer’s
Guide for more information about deduplication

SecureFiles deduplication is part of the Advanced Compression option.

= Compression: SecureFiles data is compressed using industry standard
compression algorithms. Compression not only results in significant savings in
storage but also improved performance by reducing 1/O, buffer cache
requirements, redo generation, and encryption overhead. If the compression does
not yield any savings or if the data is already compressed, SecureFiles

Introduction to Oracle Database 1-27

Oracle Database Features

automatically turns off compression for such columns. Compression is performed
on the server side and allows for random reads and writes to SecureFiles data.
SecureFiles provides for varying degrees of compression: MEDIUM (default) and
HIGH, which represent a trade-off between storage savings and latency.

See Also: Oracle Database SecureFiles and Large Objects Developer’s
Guide for more information about compression

SecureFiles compression is part of the Advanced Compression option.

Encryption: In Oracle Database 11g, Oracle has extended the encryption capability
to SecureFiles and uses the Transparent Data Encryption (TDE) syntax. Oracle
Database supports automatic key management for all SecureFiles columns within
a table and transparently encrypts and decrypts data, backups, and redo log files.
Applications require no changes and can take advantage of Oracle Database 11g
SecureFiles using TDE semantics. SecureFiles supports the following encryption
algorithms:

— 3DES168: Triple Data Encryption Standard with a 168-bit key size

- AES128: Advanced Encryption Standard with a 128 bit key size

- AES192: Advanced Encryption Standard with a 192-bit key size (default)
- AES256: Advanced Encryption Standard with a 256-bit key size

See Also: Oracle Database SecureFiles and Large Objects Developer’s
Guide for more information about encryption

SecureFiles encryption is part of the Advanced Security option.

File System-like Logging: Modern file systems have the ability to keep a running
log of the file system metadata. Putting this metadata into a running log (called a
journal) that is flushed in a lazy fashion increases performance and removes the
need for file system checking operations like £sck. SecureFiles' file system-like
logging provides this same high performance journaling. File system-like logging
also allows for soft corruptions, so that if an error is found on a block, SecureFiles
returns a block with the LOB fill character. This allows the application to detect the
error by seeing known invalid data and to recover either through deletion of the
LOB (something that is not possible with the original implementation of LOBs) or
by other means.

In addition to the aforementioned advanced file system features, SecureFiles can take
advantage of several advanced Oracle Database capabilities, including:

Transactions, read consistency, and flashback

100% backward compatibility with LOB interfaces

Readable standby, consistent backup, and point-in-time recovery
Fine-grained auditing and label security

XML indexing, XML queries, and XPath

Oracle Real Application Clusters

Automatic Storage Management

Partitioning and ILM

Search across metadata and file content

1-28 Oracle Database Concepts

Oracle Database Features

High Performance SecureFiles is designed from the ground up for high performance
and scalability. SecureFiles delivers comparable file system-like performance for basic
read and write operations. The optimized algorithms with SecureFiles make it up to 10
times faster than LOBs. The scalability associated with SecureFiles goes far beyond
what is offered in file systems. Organizations can scale-up using large SMP systems, or
scale-out using Oracle Real Application Clusters to hundreds of computers while still
preserving a single system image. Scaling of CPUs and disks can be done
independently and transparently. With Oracle Database 11g, organizations can store all
types of content and scale to store petabytes or exabytes of data.

Oracle Text

Oracle Text indexes any document or textual content to add fast, accurate retrieval of
information. Oracle Text lets you combine text searches with regular database searches
in a single SQL statement. The ability to find documents based on their textual content,
metadata, or attributes, makes the Oracle Database the single point of integration for
all data management.

The Oracle Text SQL API makes it simple and intuitive for application developers and
DBAs to create and maintain Text indexes and run Text searches.

Oracle Ultra Search

Oracle Ultra Search lets you index and search Web sites, database tables, files, mailing
lists, Oracle Application Server Portals, and user-defined data sources. This search
capability lets you use Oracle Ultra Search to build different kinds of search
applications.

Oracle Multimedia

Oracle Multimedia provides an array of services to simplify the development of
applications that include images, audio, and video. Oracle Multimedia objects are
accessed as columns in tables, like other more typical relational data. Multimedia
content can be stored and managed internally in the database, or externally by storing
references to the content in the database. Java and PL/SQL APIs provide metadata
extraction, image format conversion, and thumbnail image generation to greatly
reduce application development and maintenance costs. Excellent integration with
application development tools such as Oracle JDeveloper, Application Express, and
Oracle Application Server Portal enable application developers to create and maintain
media-rich applications with ease. In addition, Oracle Multimedia provides similar
support for Digital Imaging and Communications in Medicine (DICOM) content such
as single-frame and multiframe images, waveforms, slices of 3-D volumes, video
segments, and structured reports.

See Also: Chapter 19, "Content Management" for more information
about Oracle Multimedia

Oracle Spatial

Oracle Database includes built-in spatial features that let you store, index, and manage
location content—assets, buildings, roads, land parcels, sales regions, and so on—and
query location relationships using the power of the database. The Oracle Spatial
option adds advanced spatial features such as linear reference support and coordinate
systems.

See Also: Chapter 19, "Content Management" for more
information about Oracle Spatial

Introduction to Oracle Database 1-29

Oracle Database Features

Overview of Security Features

Oracle Database includes security features that control how a database is accessed and
used. Security mechanisms are needed for several purposes:

s To prevent unauthorized database access
= To prevent unauthorized access to schema objects
= To audit user actions

Associated with each database user is a schema by the same name. By default, each
database user creates and has access to all objects in the corresponding schema.

Database security can be classified into two categories: system security and data
security.

System security lets you control access to and use of the database at the system level.
System security mechanisms check whether a user is authorized to connect to the
database, whether database auditing is active, and which system operations a user can
perform. For example, system security includes:

= Valid user name/password combinations
s The amount of disk space available to a user's schema objects
s The resource limits for a user

Data security lets you control access to and use of the database at the schema object
level. For example, data security determines:

= Which users have access to a specific schema object and the specific types of
actions allowed for each user on the schema object (for example, user SCOTT can
issue SELECT and INSERT statements but not DELETE statements using the
employees table)

s The actions, if any, that are audited for each schema object

= Data encryption to prevent unauthorized users from bypassing Oracle Database
and accessing data

Security Mechanisms

Oracle Database provides discretionary access control, which is a means of restricting
access to information based on privileges. The appropriate privilege must be assigned
to a user in order for that user to access a schema object. Appropriately privileged
users can grant other users privileges at their discretion.

Oracle Database manages database security using several different facilities:

= Authentication to validate the identity of the entities using your networks,
databases, and applications

= Authorization processes to limit access and actions, limits that are linked to user's
identities and roles

m Access restrictions on objects such as tables or rows
= Security policies

= Database auditing

See Also: Chapter 20, "Database Security" for more information
on security mechanisms

1-30 Oracle Database Concepts

Oracle Database Features

Overview of Data Integrity and Triggers

Data must adhere to certain business rules, as determined by the database
administrator or application developer. For example, assume that a business rule says
that no row in the inventory table can contain a numeric value greater than nine in
the sale_discount column. If an INSERT or UPDATE statement attempts to violate
this integrity rule, Oracle Database must undo the invalid statement and return an
error to the application. Oracle Database provides integrity constraints and database
triggers to manage data integrity rules.

Note: Database triggers let you define and enforce integrity rules,
but a database trigger is not the same as an integrity constraint.
Among other things, a database trigger does not check data already
loaded into a table. Therefore, Oracle strongly recommends that you
use database triggers only when the integrity rule cannot be enforced
by integrity constraints.

This section includes the following topics:
= Integrity Constraints

s Triggers

Integrity Constraints

An integrity constraint is a declarative way to define a business rule for a column of a
table. An integrity constraint is a statement about table data that is always true and
that follows these rules:

» If an integrity constraint is created for a table and some existing table data does
not satisfy the constraint, then the constraint cannot be enforced.

» After a constraint is defined, if any of the results of a DML statement violate the
integrity constraint, then the statement is rolled back, and an error is returned.

Integrity constraints are stored as part of the table's definition in the data dictionary, so
that all database applications adhere to the same set of rules. When a rule changes, you
define it only once at the database level and not once for each application. A key is the
column or set of columns included in the definition of certain types of integrity
constraints. Keys describe the relationships between the different tables and columns
of a relational database. Individual values in a key are called key values.

The following integrity constraints are supported by Oracle Database:
= A not null constraint disallows nulls (empty entries) in a table's column.

= A unique constraint disallows duplicate values in a column or set of columns. The
unique key is the column or set of columns included in the definition of a unique
constraint.

= A primary key constraint disallows duplicate values and nulls in a column or set
of columns. The primary key is the column or set of columns included in the
definition of a table's primary key constraint. The primary key values uniquely
identify the rows in a table. You can define only one primary key for each table.

= A foreign key constraint—sometimes called a referential integrity
constraint—requires each value in a column or set of columns to match a value in
another table's unique key or primary key. Foreign key constraints also define
referential integrity actions that dictate what Oracle Database should do with
dependent data if the data it references is altered. The foreign key is the column or

Introduction to Oracle Database 1-31

Oracle Database Features

set of columns included in the definition of the foreign key constraint. The
referenced key is the unique key or primary key of the same or a different table
referenced by a foreign key.

= A check constraint disallows values that do not satisfy the logical expression of the
constraint.

See Also: Chapter 21, "Data Integrity" for more information about
integrity constraints

Triggers

Triggers are procedures written in PL/SQL, Java, or C that run (fire) implicitly
whenever a table or view is modified or when some user actions or database system
actions occur.

Triggers supplement the standard capabilities of Oracle Database to provide a highly
customized database management system. For example, a trigger can restrict DML
operations against a table to those issued during regular business hours.

See Also: Chapter 22, "Triggers" for more information about
triggers

Overview of Information Integration Features

A distributed environment is a network of disparate systems that seamlessly
communicate with each other. Each system in the distributed environment is called a
node. The system to which a user is directly connected is called the local system. Any
additional systems accessed by this user are called remote systems. A distributed
environment lets applications access and exchange data from the local and remote
systems. All the data can be simultaneously accessed and modified.

This section includes the following topics:
s Distributed SQL
s Oracle Streams

s Oracle Database Gateways and Generic Connectivity

Distributed SQL

A homogeneous distributed database system is a network of two or more Oracle
databases that reside on one or more computers. Distributed SQL enables applications
and users to simultaneously access or modify the data in several databases as easily as
they access or modify a single database.

A distributed Oracle database system can appear as though it is a single Oracle
database. Companies can use this distributed SQL feature to make all its Oracle
databases look like one and thus reduce some of the complexity of the distributed
system.

Oracle Database uses database links to enable users on one database to access objects
in a remote database. A local user can access a link to a remote database without
having to be a user on the remote database.

Location Transparency Location transparency occurs when the physical location of data
is transparent to applications and users. For example, a view that joins table data from
several databases provides location transparency because the user of the view does not
need to know from where the data originates.

1-32 Oracle Database Concepts

Oracle Database Features

SQL and Transaction Transparency Oracle Database provides query, update, and
transaction transparency. For example, standard SQL statements like SELECT,
INSERT, UPDATE, and DELETE manipulate data just as they do in a nondistributed
database environment. Applications can control transactions using the standard SQL
statements COMMIT, SAVEPOINT, and ROLLBACK. Oracle Database ensures the
integrity of data in a distributed transaction using the two-phase commit mechanism,
whereby all nodes in a distributed system are instructed to commit the transaction. If
this is not possible, then all nodes roll back the transaction.

See Also: Oracle Database Administrator’s Guide for more information
on the two-phase commit mechanism

Distributed Query Optimization Distributed query optimization uses cost-based
optimization to find or generate SQL expressions that extract only the necessary data
from remote tables, process that data at a remote site or sometimes at the local site, and
send the results to the local site for final processing. This operation reduces the
amount of required data transfer when compared to the time it takes to transfer all the
table data to the local site for processing.

Oracle Streams

Oracle Streams enables the propagation and management of data, transactions, and
events in a data stream either within a database or from one database to another. The
stream conveys published information to subscribed destinations.

Oracle Streams lets users control what information is put into a stream, how the
stream flows or is routed from node to node, what happens to events in the stream as
they flow into each node, and how the stream terminates. By specifying the
configuration of the elements acting on the stream, a user can address specific
requirements, such as message queuing or data replication.

Capture Oracle Streams implicitly and explicitly captures events and places them in
the staging area. Database events, such as DML and DDL operations, are implicitly
captured by mining the redo log files. Sophisticated subscription rules can determine
what events should be captured.

Staging The staging area is a queue that stores and manages captured events. Changes
to database tables are formatted as logical change records (LCRs), and stored in a
staging area until subscribers consume them. LCR staging provides a secure holding
area and supports auditing and tracking of LCR data.

Consumption Messages in a staging area are consumed by the apply engine, where
changes are applied to a database or consumed by an application. A flexible apply
engine lets you use a standard or custom apply function. Support for explicit dequeue
lets application developers use Oracle Streams to reliably exchange messages. They
can also notify applications of changes to data.

Message Queuing Oracle Streams Advanced Queuing is built on the flexible Oracle
Streams infrastructure. It provides a unified framework for processing events. Events
generated in applications, in workflow, or implicitly captured from redo logs or
database triggers can be captured in a queue. These events can be consumed in a
variety of ways. They can be automatically applied with a user-defined function or
database table operation, can be explicitly dequeued, or a notification can be sent to
the consuming application. These events can be transformed at any stage. If the
consuming application is on a different database, then the events are automatically

Introduction to Oracle Database 1-33

Oracle Database Application Development

propagated to the appropriate database. Operations on these events can be
automatically audited, and the history can be retained for a user-specified duration.

Data Replication Replication is the maintenance of database objects in two or more
databases. Oracle Streams provides powerful replication features that can be used to
synchronize multiple copies of distributed objects.

Oracle Streams automatically determines what information is relevant and shares that
information with those who need it. This active sharing of information includes
capturing and managing events in the database, including data changed with DML
operations, and propagating those events to other databases and applications. Data
changes can be applied directly to the replica database, or can call a user-defined
procedure to perform alternative work at the destination database, for example,
populate a staging table used to load a data warehouse.

Oracle Streams is an open information sharing solution, supporting heterogeneous
replication between Oracle and non-Oracle systems. Using a transparent gateway,
DML changes initiated at Oracle databases can be applied on non-Oracle platforms.

Oracle Streams is fully interoperational with materialized views, which can maintain
updatable or read-only, point-in-time copies of data. They can contain a full copy of a
table or a defined subset of the rows in the master table that satisfy a value-based
selection criterion. Materialized views can be multitier, where one materialized view is
a subset of another materialized view. Materialized views are periodically updated, or
refreshed, from their associated master tables through transactionally consistent batch
updates.

Oracle Database Gateways and Generic Connectivity

Oracle Database Gateways and Generic Connectivity extend distributed Oracle
database features to non-Oracle systems. Generic Connectivity is a generic solution.
Oracle Database Gateways are tailored solutions, specifically coded for a particular
non-Oracle system. Oracle Database can work with non-Oracle data sources,
non-Oracle message queuing systems, and non-SQL applications, ensuring
interoperability with other vendors' products and technologies.

Oracle Database Gateways and Generic Connectivity can be used for synchronous
access, using distributed SQL, and for asynchronous access, using Oracle Streams.
Introducing a Transparent Gateway into an Oracle Streams environment enables
replication of data from an Oracle database to a non-Oracle database.

Oracle Database Gateways and Generic Connectivity translate third-party SQL
dialects, data dictionaries, and datatypes into Oracle Database formats, thus making
the non-Oracle data store appear as a remote Oracle database. These features enable
companies to seamlessly integrate the different systems and provide a consolidated
view of the company as a whole.

See Also: Chapter 23, "Information Integration”

Oracle Database Application Development
SQL and PL/SQL form the core of the Oracle Database application development stack:
= Most enterprise back-ends run SQL

= Web applications accessing databases do so using SQL (wrapped by Java classes as
JDBC)

= Enterprise Application Integration applications generate XML from SQL queries

1-34 Oracle Database Concepts

Oracle Database Application Development

s Content-repositories are built on top of SQL tables

SQL and PL/SQL provide a simple, widely understood, unified data model. They are
used standalone in many applications, but are also invoked directly from Java (JDBC),
Oracle Call Interface (OCI), Oracle C++ Call Interface (OCCI), or XSU (XML SQL
Utility). Stored packages, procedures, and triggers can all be written in PL/SQL or in
Java.

This section includes the following topics:

s Overview of Oracle SQL

s Overview of PL/SQL

s Overview of Java

s Overview of Application Programming Languages (APIs)
s Overview of Application Development Environments

= Overview of Datatypes

s Overview of Globalization

Overview of Oracle SQL

Structured query language (SQL—pronounced "sequel”) is the programming language
that defines and manipulates the database. SQL databases are relational databases,
which means that data is stored in a set of simple relations.

SQL Statements

All operations on the information in an Oracle database are performed using SQL
statements. A SQL statement is a string of SQL text. A statement must be the
equivalent of a complete SQL sentence, as in:

SELECT last_name, department_id FROM employees;

Note: The end of a SQL statement is indicated differently in different
programming environments. This documentation set uses the default
SQL*Plus character, the semicolon (;).

Only a complete SQL statement can run successfully. A sentence fragment like the
following one generates an error indicating that more text is required:

SELECT last_name

A SQL statement can be thought of as a very simple but powerful computer program
or instruction. SQL statements are divided into the following categories:

Data definition language (DDL) statements create, alter, maintain, and drop schema
objects. DDL statements also include statements that permit a user to grant other users
the privileges to access the database and specific objects within the database.

Data manipulation language (DML) statements manipulate data. Querying,
inserting, updating, and deleting rows of a table are all DML operations. The most
common SQL statement is the SELECT statement, which retrieves data from the
database. Locking a table or view and examining the execution plan of a SQL
statement are also DML operations.

Introduction to Oracle Database 1-35

Oracle Database Application Development

Transaction control statements manage the changes made by DML statements. They
enable a user to group changes into logical transactions. Examples include COMMIT,
ROLLBACK, and SAVEPOINT.

Session control statements let a user control the properties of the current session,
including enabling and disabling roles and changing language settings. The two
session control statements are ALTER SESSION and SET ROLE.

System control statements changes the properties of the Oracle database instance.
ALTER SYSTEM is the only system control statement. It lets you change settings, such
as the minimum number of shared servers. It also lets you terminate a session and
perform other systemwide tasks.

Embedded SQL statements incorporate DDL, DML, and transaction control
statements in a procedural language program, such as those used with the Oracle
precompilers. Examples include OPEN, CLOSE, FETCH, and EXECUTE.

See Also: Chapter 24, "SQL" for more information about SQL

Overview of PL/SQL

PL/SQL is the Oracle procedural language extension to SQL. PL/SQL combines the
ease and flexibility of SQL with the procedural functionality of a structured
programming language, including such routines as IF ... THEN, WHILE, and LOOP.

When designing a database application, consider the following advantages of using
stored PL/SQL.:

s PL/SQL code can be stored in a database. Network traffic between applications
and the database is reduced, so application and system performance increases.
Even when PL/SQL is not stored in the database, applications can send to the
database blocks of PL/SQL rather than individual SQL statements, thereby
reducing network traffic.

= Native compilation of PL/SQL code is very easy and offers significant
performance advantages.

= Data access can be controlled by stored PL/SQL code. PL/SQL users can access
data only as intended by application developers, unless another access route is
granted.

» Oracle supports PL/SQL Server Pages, so your application logic can be invoked
directly from your Web pages.

The following sections describe some of the PL/SQL program units that can be
defined and stored centrally in a database.

Procedures and functions are sets of SQL and PL/SQL statements grouped together
as a unit to solve a specific problem or to perform a set of related tasks. They are
created and stored in compiled form in the database and can be run by a user or a
database application. Procedures and functions are identical, except that functions
always return a single value to the user. Procedures do not return values.

Packages encapsulate and store related procedures, functions, variables, and other
constructs together as a unit in the database. They offer increased functionality. For
example, global package variables can be declared and used by any procedure in the
package. Packages also improve performance, because all objects of the package are
parsed, compiled, and loaded into memory once.

See Also: Chapter 24, "SQL" for more information about PL/SQL

1-36 Oracle Database Concepts

Oracle Database Application Development

Overview of Java

Java is an object-oriented programming language efficient for application-level
programs. Oracle Database provides all types of JDBC drivers and enhances database
access from Java applications. Java Stored Procedures are portable and secure in terms
of access control, and they let non-Java and legacy applications transparently invoke
Java. In addition, native compilation of Java code is very easy and offers significant
performance advantages.

See Also: "Overview of Java" on page 25-17 for more information
about Java

Overview of Application Programming Languages (APIs)

Oracle Database developers have a choice of languages for developing
applications—C, C++, Java, COBOL, PL/SQL, PHP, and Visual Basic. The entire
functionality of the database is available in all of the languages. All language-specific
standards are supported. Developers can choose the languages in which they are most
proficient or one that is most suitable for a specific task. For example, an application
might use Java on the server side to create dynamic Web pages, PL/SQL to implement
stored procedures in the database, and C++ to implement computationally intensive
logic in the middle tier.

See Also: The following books describe the various Oracle APIs:
» Pro*C/C++ Programmer’s Guide

» Oracle Call Interface Programmer’s Guide

» Pro*COBOL Programmer’s Guide

» Oracle Database PL/SQL Language Reference

» Oracle Database Data Cartridge Java API Reference

Also refer to Chapter 25, "Supported Application Development
Languages" for more information.

Overview of Application Development Environments

Oracle provides different application development environments for different
application developer needs.

s Oracle Application Express is a hosted declarative development environment for
developing and deploying database-centric Web applications. Using only a Web
browser and limited programming experience, you can develop and deploy
professional applications that are both fast and secure. The Application Express
engine lives completely within your Oracle database and is written in PL/SQL. It
renders applications in real time from data stored in database tables. When you
create or extend an application, Oracle Application Express creates or modifies
metadata stored in database tables. When the application is run, the Application
Express engine then reads the metadata and displays the application. Oracle
Application Express also transparently manages session state in the database.
Application developers can get and set session state using simple substitutions as
well as standard SQL bind variable syntax. Application Express is a tool to build
Web-based applications and the application development environment is also
conveniently Web based itself.

Introduction to Oracle Database 1-37

Oracle Database Application Development

See Also: Oracle Database Express Edition 2 Day Developer Guide for
more information

» PHP—a self-referencing acronym for PHP - Hypertext Preprocessor—is a popular
scripting language commonly embedded with HTML to create dynamic web
pages. PHP is perfect for rapidly developing Web 2.0 applications. PHP's oci8
extension is a stable, high-performance PHP database driver that is fully
integrated with Oracle Database. Using PHP with Oracle Database, you can query
and update data, execute stored procedures and functions, load images, and easily
build scalable, global applications.

See Also: Oracle Database 2 Day + PHP Developer’s Guide for more
information

s In the Microsoft Windows environment, Oracle provides the following
development environments:

— The Oracle Data Provider for .NET (ODP.NET) features optimized data access
to the Oracle database from a .NET environment. ODP.NET allows developers
to take advantage of advanced Oracle database functionality, including Oracle
Real Application Clusters, XML DB, and advanced security. The data provider
can be used from any .NET language, including C# and Visual Basic .NET.

See Also:

Overview of Datatypes

Each column value and constant in a SQL statement has a datatype, which is
associated with a specific storage format, constraints, and a valid range of values.
When you create a table, you must specify a datatype for each of its columns.

Oracle Database lets you use many datatypes, in several categories:
= Scalar datatypes, such as character, numeric, and datetime datatypes

» Collection types such as variable-length arrays (varrays) and nested tables for
more fine-graine3d organization of and access to data in the database

= ANSI-supported types, which facilitates working with data from non-Oracle
databases

= Supplied datatypes, which are SQL-based interfaces for defining new types when
the built-in or ANSI-supported types are not sufficient. The behavior for these
types can be implemented in C/C++, Java, or PL/ SQL.

In addition, user-defined object types can be created from any built-in datatypes or
any previously created object types, object references, and collection types. Metadata
for user-defined types is stored in a schema available to SQL, PL/SQL, Java, and other
published interfaces.

A user-defined object type differs from native SQL datatypes in that it specifies both
the underlying persistent data (attributes) and the related behaviors (methods). Object
types are abstractions of the real-world entities and are sometimes called abstract
datatypes (ADTs).

1-38 Oracle Database Concepts

Oracle Database Application Development

See Also:

» Oracle Database SQL Language Reference for a complete listing of
the Oracle built-in and supplied datatypes

Chapter 26, "Oracle Data Types"
» Oracle Database Object-Relational Developer’s Guide

Overview of Globalization

Oracle databases can be deployed anywhere in the world, and a single instance of
Oracle Database can be accessed by users across the globe. Information is presented to
each user in the language and format specific to his or her location.

The Globalization Development Kit (GDK) simplifies the development process and
reduces the cost of developing internet applications for a multilingual market. GDK
lets a single program work with text in any language from anywhere in the world.

See Also: Oracle Database Globalization Support Guide for more
information about globalization

Introduction to Oracle Database 1-39

Oracle Database Application Development

1-40 Oracle Database Concepts

Part li

Oracle Database Architecture

Part II describes the basic structural architecture of the Oracle database, including
physical and logical storage structures. Part II contains the following chapters:

» Chapter 2, "Data Blocks, Extents, and Segments"

» Chapter 3, "Tablespaces, Datafiles, and Control Files'
» Chapter 4, "Transaction Management"

s Chapter 5, "Schema Objects"

s Chapter 6, "Schema Object Dependencies”

s Chapter 7, "The Data Dictionary"

» Chapter 8, "Memory Architecture"

» Chapter 9, "Process Architecture"

» Chapter 10, "Application Architecture"

s Chapter 11, "Oracle Database Utilities"
» Chapter 12, "Database and Instance Startup and Shutdown"

kiss
Rectangle

kiss
Sticky Note
Ezeknek a fejezeteknek a tartalmát meg kell tanulni.

Segment Extents Data Disk
blocks blocks

Logical and Physical Database
Structures

Physical

Database

AN) A\ ‘
[Schema] Tablespace

I

Segment

N
Extent

N

Oracle data
block

o o e o e e e e o o e e e e e e e e e e e e

kiss
Stamp

kiss
Stamp

2

Data Blocks, Extents, and Segments

Adatblokkok, extensek, szegmensek

This chapter describes the nature of and relationships among the logical storage
structures in the Oracle database server.

This chapter contains the following topics:

Introduction to Data Blocks, Extents, and Segments
Overview of Data Blocks
Overview of Extents

Overview of Segments

Introduction to Data Blocks, Extents, and Segments

Oracle Database allocates logical database space for all data in a database. The units of
database space allocation are data blocks, extents, and segments. Figure 2-1 shows the
relationships among these data structures.

Data Blocks, Extents, and Segments 2-1

kiss
Typewriter
Adatblokkok, extensek, szegmensek

Introduction to Data Blocks, Extents, and Segments

valahdny szegmens
ugyanabban a
tdblatérben

Egy extens egy
adatfajlhoz
tartozhat,

egy szegmens tobb
adatfajlbol is
tartalmazhat
extenseket.

Figure 2-1 The Relationships Among Segments, Extents, and Data Blocks

N A szegmensek, extensek, adatblokkok
AN kdézti kapcsolat
A AN
Segment A

96Kb N

N\

N N Kb
\ B \ —
\ . Kb
\ - —

\ AN

AN Extent | Extent. [

v | 24kb 72kb ko

\

[2xg [} [2xb [2kb [2kb

" | 2k [}]| 2Kb | 2b | 2K6

V| 2xo || 2x6 | 2kb | 2k

V| 2koy] [2K6 | 2kb | 2kb

\ [2kby| 1| 2kb [26 | 2K

| 2ko)| || 2kb | 2Kb | 2K0

\
| 2kb |] 2Kb | 2Kb | 2Kb!
\
2Kb | | 2Kb | 2kb | 2kb
Data Blocks

At the finest level of granularity, Oracle Database stores data in data blocks (also
called logical blocks, Oracle blocks, or pages). One data block corresponds to a
specific number of bytes of physical database space on disk. valahany fizikai blokk

The next level of logical database space is an extent. An extent is a specific number of folytonos
contiguous data blocks allocated for storing a specific type of information. adatblokkok

The level of logical database storage greater than an extent is called a segment. A
segment is a set of extents, each of which has been allocated for a specific data
structure and all of which are stored in the same tablespace. For example, each table's
data is stored in its own data segment, while each index's data is stored in its own

index segment. If the table or index is partitioned, each partition is stored in its own
segment.

Oracle Database allocates space for segments in units of one extent. When the existing
extents of a segment are full, Oracle Database allocates another extent for that
segment. Because extents are allocated as needed, the extents of a segment may or may
not be contiguous on disk.

A segment and all its extents are stored in one tablespace. Within a tablespace, a
segment can include extents from more than one file; that is, the segment can span
datafiles. However, each extent can contain data from only one datafile.

Although you can allocate additional extents, the blocks themselves are allocated
separately. If you allocate an extent to a specific instance, the blocks are immediately
allocated to the free list. However, if the extent is not allocated to a specific instance,
then the blocks themselves are allocated only when the high water mark moves. The
high water mark is the boundary between used and unused space in a segment.

2-2 Oracle Database Concepts

kiss
Highlight

kiss
Highlight

kiss
Highlight

kiss
Typewriter
 A szegmensek, extensek, adatblokkok
 közti kapcsolat

kiss
Typewriter
valahány fizikai blokk

kiss
Typewriter
folytonos
adatblokkok

kiss
Typewriter
valahány szegmens
ugyanabban a
táblatérben

kiss
Typewriter
Egy extens egy
adatfájlhoz
tartozhat,
egy szegmens több
adatfájlból is
tartalmazhat
extenseket.

kiss
Highlight

kiss
Highlight

Overview of Data Blocks

Note: Oracle recommends that you manage free space automatically.
See "Free Space Management" on page 2-5.

Overview of Data Blocks 2z adatblokkok

Oracle Database manages the storage space in the datafiles of a database in units
called data blocks. A data block is the smallest unit of data used by a database. In
contrast, at the physical, operating system level, all data is stored in bytes. Each
operating system has a block size. Oracle Database requests data in multiples of
Oracle Database data blocks, not operating system blocks.

A blokkméret a

. , , The standard block size is specified by the DB_BLOCK_SIZE initialization parameter.
fizikai blokkméret

In addition, you can specify of up to five nonstandard block sizes. The data block sizes

tobbszdrdse, ami should be a multiple of the operating system's block size within the maximum limit to
inicializalaskor avoid unnecessary I/O. Oracle Database data blocks are the smallest units of storage
allithatd be. that Oracle Database can use or allocate.

This section includes the following topics:
= Data Block Format
»s Free Space Management

s PCTFREE, PCTUSED, and Row Chaining

See Also:

= Your Oracle Database operating system-specific documentation
for more information about data block sizes

= Multiple Block Sizes on page 3-11

Data Block Format

The Oracle Database data block format is similar regardless of whether the data block
contains table, index, or clustered data. Figure 2-2 illustrates the format of a data
block.

Figure 2-2 Data Block Format Az adatblokk felépitése

Database Block

. Common and Variable Header Fej rész

B Table Directory téblakényvtar
[l Row Directory rekordkdényvtar
[Free space szabad hely

B row Data adatrekord

Data Blocks, Extents, and Segments 2-3

kiss
Typewriter
Az adatblokkok

kiss
Highlight

kiss
Typewriter
A blokkméret a
fizikai blokkméret
többszöröse, ami
inicializáláskor
állítható be.

kiss
Typewriter
Az adatblokk felépítése

kiss
Typewriter
Fejrész
táblakönyvtár
rekordkönyvtár
szabad hely
adatrekord

Overview of Data Blocks

This section discusses the following components of the data block:
s Header (Common and Variable)

= Table Directory

= Row Directory

s Overhead

= Row Data

»n Free Space

Header (Common and Variable)

The header contains general block information, such as the block address and the type
of segment (for example, data orindex). A blokk cime, a szegmens tipusa, stb.

Table Directory
This portion of the data block contains information about the table having rows in this
block. Informdcidk a téblardl, amihez a blokk tartozik.

Row Directory

This portion of the data block contains information about the actual rows in the block
(including addresses for each row piece in the row data area). A rekordok cimei, stb.

After the space has been allocated in the row directory of a data block's overhead, this
space is not reclaimed when the row is deleted. Therefore, a block that is currently
empty but had up to 50 rows at one time continues to have 100 bytes allocated in the
header for the row directory. Oracle Database reuses this space only when new rows
are inserted in the block.

Overhead Az el6z8 harom egylittesen.

The data block header, table directory, and row directory are referred to collectively as
overhead. Some block overhead is fixed in size; the total block overhead size is
variable. On average, the fixed and variable portions of data block overhead total 84 to
107 bytes.

Row Data Az adatrekordok vagy indexrekordok.

This portion of the data block contains table or index data. Rows can span blocks.

A rekordok &tnytlhatnak mésik blokkba.
See Also: "Row Chaining and Migrating” on page 2-5

Free Space Ures hely kell beszuraskor és médositaskor is.

Free space is allocated for insertion of new rows and for updates to rows that require
additional space (for example, when a trailing null is updated to a nonnull value).

In data blocks allocated for the data segment of a table or cluster, or for the index

segment of an index, free space can also hold transaction entries. A transaction entry

is required in a block for each INSERT, UPDATE, DELETE, and SELECT...FOR UPDATE

statement accessing one or more rows in the block. The space required for transaction

entries is operating system dependent; however, transaction entries in most operating

systems require approximately 23 bytes.

A tranzakcidés mlGveletek is igényelnek tranzakcids bejegyzést.

2-4 Oracle Database Concepts

kiss
Highlight

kiss
Highlight

kiss
Highlight

kiss
Highlight

kiss
Highlight

kiss
Highlight

kiss
Typewriter
A blokk címe, a szegmens típusa, stb.

kiss
Typewriter
Információk a tábláról, amihez a blokk tartozik.

kiss
Typewriter
A rekordok címei, stb.

kiss
Typewriter
Az előző három együttesen.

kiss
Typewriter
Az adatrekordok vagy indexrekordok.

kiss
Typewriter
A rekordok átnyúlhatnak másik blokkba.

kiss
Typewriter
Üres hely kell beszúráskor és módosításkor is.

kiss
Highlight

kiss
Typewriter
A tranzakciós műveletek is igényelnek tranzakciós bejegyzést.

kiss
Highlight

Overview of Data Blocks

Free Space Management

A téblatérre
lehet megadni,
a szegmensei
automatikusan kezeljék
szabad helyeket.

hogy

A torlés és mdédosités
ndovelheti a szabad
tertletet.

A felszabadult helyet
hasznédlhatja
ugyanannak a
tranzakcidénak

a kovetkezdé beszurésa
vagy egy masik
tranzakcid beszlrésa
is, ha az elsé

mar véglegesitve lett
(commitalt) .

A szabad helyeket
csak akkor egyesiti,
ha méskép nem lehetne
beszltrni.

Nagy a rekord
beszluraskor

vagy

médositéds hatéséra
keletkezhet.

Ures helyek kezelése

Free space can be managed automatically or manually.

Free space can be managed automatically inside database segments. The in-segment
free/used space is tracked using bitmaps, as opposed to free lists. Automatic
segment-space management offers the following benefits:

= Ease of use

= Better space utilization, especially for the objects with highly varying row sizes
= Better run-time adjustment to variations in concurrent access

= Better multi-instance behavior in terms of performance/space utilization

You specify automatic segment-space management when you create a locally managed
tablespace. The specification then applies to all segments subsequently created in this
tablespace.

See Also: Oracle Database Administrator’s Guide

This section includes the following topics:
= Availability and Optimization of Free Space in a Data Block
= Row Chaining and Migrating

Availability and Optimization of Free Space in a Data Block

Two types of statements can increase the free space of one or more data blocks:
DELETE statements, and UPDATE statements that update existing values to smaller
values. The released space from these types of statements is available for subsequent
INSERT statements under the following conditions:

» If the INSERT statement is in the same transaction and subsequent to the
statement that frees space, then the INSERT statement can use the space made
available.

» If the INSERT statement is in a separate transaction from the statement that frees
space (perhaps being run by another user), then the INSERT statement can use the
space made available only after the other transaction commits and only if the
space is needed.

Released space may or may not be contiguous with the main area of free space in a
data block. Oracle Database coalesces the free space of a data block only when (1) an
INSERT or UPDATE statement attempts to use a block that contains enough free space
to contain a new row piece, and (2) the free space is fragmented so the row piece
cannot be inserted in a contiguous section of the block. Oracle Database does this
compression only in such situations, because otherwise the performance of a database
system decreases due to the continuous compression of the free space in data blocks.

Row Chaining and Migrating Rekordok lancolésa,

In two circumstances, the data for a row in a table may be too large to fit into a single
data block. In the first case, the row is too large to fit into one data block when it is first
inserted. In this case, Oracle Database stores the data for the row in a chain of data
blocks (one or more) reserved for that segment. Row chaining most often occurs with
large rows, such as rows that contain a column of datatype LONG or LONG RAW. Row
chaining in these cases is unavoidable.

atmozgatasa

However, in the second case, a row that originally fit into one data block is updated so
that the overall row length increases, and the block's free space is already completely

Ilyenkor beszuradskor lancolunk,

médositéaskor inkabb atmozgatjuk

oda, ahol mar elfér.

Data Blocks, Extents, and Segments 2-5

kiss
Typewriter
Üres helyek kezelése

kiss
Highlight

kiss
Highlight

kiss
Typewriter
A táblatérre
lehet megadni, hogy
a szegmensei
automatikusan kezeljék
szabad helyeket.

kiss
Typewriter
A törlés és módosítás
növelheti a szabad
területet.

kiss
Highlight

kiss
Highlight

kiss
Typewriter
A felszabadult helyet
használhatja
ugyanannak a
tranzakciónak
a következő beszúrása
vagy egy másik
tranzakció beszúrása
is, ha az első
már véglegesítve lett
(commitált).

kiss
Typewriter
A szabad helyeket
csak akkor egyesíti,
ha máskép nem lehetne
 beszúrni.

kiss
Typewriter
Rekordok láncolása, átmozgatása

kiss
Typewriter
Nagy a rekord
beszúráskor
vagy
módosítás hatására
keletkezhet.

kiss
Highlight

kiss
Typewriter
Ilyenkor beszúráskor láncolunk,
módosításkor inkább átmozgatjuk
oda, ahol már elfér.

Overview of Data Blocks

A médosités
elétti
rekord
megmarad,

de kiegészil
eqgy
mutatéval, ahol
a

médositott
rekord
szerepel.

filled. In this case, Oracle Database migrates the data for the entire row to a new data
block, assuming the entire row can fit in a new block. Oracle Database preserves the
original row piece of a migrated row to point to the new block containing the migrated
row. The rowid of a migrated row does not change.

When a row is chained or migrated, I/O performance associated with this row
decreases because Oracle Database must scan more than one data block to retrieve the

information for the row.

See Also:

= "Row Format and Size" on page 5-5 for more information on the
format of a row and a row piece

= "Rowids of Row Pieces" on page 5-7 for more information on

rowids

= "Physical Rowids" on page 26-14 for information about rowids

» Oracle Database Performance Tuning Guide for information about
reducing chained and migrated rows and improving 1/O

performance

A szegmensek szabadhely-kezelésének kézi

PCTFREE, PCTUSED, and Row Chaining pe&llitasa

For manually managed tablespaces, two space management parameters, PCTFREE

and PCTUSED, enable you to control the use of free space for inserts and updates to the
rows in all the data blocks of a particular segment. Specify these parameters when you
create or alter a table or cluster (which has its own data segment). You can also specify
the storage parameter PCTFREE when creating or altering an index (which has its own

index segment).

This section includes the following topics:
s The PCTFREE Parameter
s The PCTUSED Parameter

Tablak, klaszterek,
indexek készitésekor,
megvaltoztatasakor
allithatd be.

» How PCTFREE and PCTUSED Work Together

Note: This discussion does not apply to LOB datatypes (BLOB,
CLOB, NCLOB, and BFILE). They do not use the PCTFREE storage

parameter or free lists.

See "Overview of LOB Datatypes" on page 26-11 for information.

The PCTFREE Parameter

The PCTFREE parameter sets the minimum percentage of a data block to be reserved
as free space for possible updates to rows that already exist in that block. For example,
assume that you specify the following parameter within a CREATE TABLE statement:

PCTFREE 20

Legaladbb ennyi (%) szabad hely

maradjon a késé8bbi mbédositasokra.
This states that 20% of each data block in this table's data segment be kept free and
available for possible updates to the existing rows already within each block. New
rows can be added to the row data area, and corresponding information can be added
to the variable portions of the overhead area, until the row data and overhead total
80% of the total block size. Figure 2-3 illustrates PCTFREE.

Legfeljebb 1-PCTFREE

(%) helyet tolthetink fel

beszurédsokkal a blokkban.

2-6 Oracle Database Concepts

kiss
Highlight

kiss
Highlight

kiss
Typewriter
A módosítás előtti
rekord megmarad,
de kiegészül egy
mutatóval, ahol a
módosított rekord
szerepel.

kiss
Typewriter
A szegmensek szabadhely-kezelésének kézi
beállítása

kiss
Highlight

kiss
Highlight

kiss
Typewriter
Táblák, klaszterek,
indexek készítésekor,
megváltoztatásakor
állítható be.

kiss
Highlight

kiss
Typewriter
Legalább ennyi (%) szabad hely
maradjon a későbbi módosításokra.

kiss
Typewriter
Legfeljebb 1-PCTFREE (%) helyet tölthetünk fel
beszúrásokkal a blokkban.

Overview of Data Blocks

Figure 2-3 PCTFREE

Data Block
PCTFREE =20

IS]—

? , 20% Free Space

—— Block allows row inserts
until 80% is occupied,
leaving 20% free for updates
to existing rows in the block

Csak akkor enged beszurni,
ha a foglalt teriilet (%) ez alatt az érték
The PCTUSED Parameter alatt van. (Médositani lehet!)

The PCTUSED parameter sets the minimum percentage of a block that can be used for
row data plus overhead before new rows are added to the block. After a data block is
filled to the limit determined by PCTFREE, Oracle Database considers the block
unavailable for the insertion of new rows until the percentage of that block falls
beneath the parameter PCTUSED. Until this value is achieved, Oracle Database uses the
free space of the data block only for updates to rows already contained in the data
block. For example, assume that you specify the following parameter in a CREATE
TABLE statement:

Csak addig lehet beszurni,

PCTUSED 40 amig el nem érjiik ezt a (%) korlatot.

In this case, a data block used for this table's data segment is considered unavailable
for the insertion of any new rows until the amount of used space in the block falls to
39% or less (assuming that the block's used space has previously reached PCTFREE).
Figure 24 illustrates this.

Data Blocks, Extents, and Segments 2-7

kiss
Highlight

kiss
Typewriter
Csak akkor enged beszúrni,
ha a foglalt terület (%) ez alatt az érték
alatt van. (Módosítani lehet!)

kiss
Typewriter
Csak addig lehet beszúrni,
amíg el nem érjük ezt a (%) korlátot.

kiss
Rectangle

Overview of Data Blocks

Figure 2-4 PCTUSED

Data Block
PCTUSED = 40

p—

—|

61% Free
Space

— No new rows are
inserted until amount
of used space falls
below 40%

How PCTFREE and PCTUSED Work Together

PCTFREE and PCTUSED work together to optimize the use of space in the data blocks
of the extents within a data segment. Figure 2-5 illustrates the interaction of these two
parameters.

A két paraméter egylitt is hasznalhaté.

2-8 Oracle Database Concepts

kiss
Rectangle

kiss
Typewriter
A két paraméter együtt is használható.

Overview of Data Blocks

IPCTFREE = 20 |
IPCTUSED =40 |

Nem lehet tobbet
beszurni,
ha elértik a 80%-ot.

Ha a médositdsok miatt

lecsokken a foglalt
teriilet 40% ala,

A szegmensekhez
tartozik

egy lista,

amely azt mutatja
meg,

hogy melyik blokkban
van

hely beszuréasra.

akkor
Ujbél lehet besztrni.

Figure 2-5 Maintaining the Free Space of Data Blocks with PCTFREE and PCTUSED

Médositani
lehet!

Addig lehet besztrni
vagy médositani,
amig el nem érjik

a 80%-ot.

Yy

4 Rows are
inserted up to
80% only,
because

3 After the PCTFREE

amount of

specifies that
20% of the
block must
remain open
for updates of
existing rows.
This cycle
continues . . .

used space
falls below
40%, new
rows can
again be
inserted into
this block.

2 Updates to
exisiting rows
use the free
space

1 Rows are reserved in

inserted up to the block.
80% only, No new rows
because can be
PCTFREE inserted into
specifies that the block
20% of the until the
block must amount of
remain open used
for updates of space is 39%
existing rows. or less.

I i

1

In a newly allocated data block, the space available for inserts is the block size minus
the sum of the block overhead and free space (PCTFREE). Updates to existing data can
use any available space in the block. Therefore, updates can reduce the available space
of a block to less than PCTFREE, the space reserved for updates but not accessible to
inserts.

For each data and index segment, Oracle Database maintains one or more free
lists—lists of data blocks that have been allocated for that segment's extents and have
free space greater than PCTFREE. These blocks are available for inserts. When you
issue an INSERT statement, Oracle Database checks a free list of the table for the first
available data block and uses it if possible. If the free space in that block is not large
enough to accommodate the INSERT statement, and the block is at least PCTUSED,
then Oracle Database takes the block off the free list. Multiple free lists for each
segment can reduce contention for free lists when concurrent inserts take place.

After you issue a DELETE or UPDATE statement, Oracle Database processes the
statement and checks to see if the space being used in the block is now less than
PCTUSED. If it is, then the block goes to the beginning of the transaction free list, and it
is the first of the available blocks to be used in that transaction. When the transaction
commits, free space in the block becomes available for other transactions.

Data Blocks, Extents, and Segments 2-9

kiss
Text Box
PCTFREE = 20

kiss
Text Box
PCTUSED = 40

kiss
Rectangle

kiss
Rectangle

kiss
Rectangle

kiss
Rectangle

kiss
Typewriter
Nem lehet többet beszúrni,
ha elértük a 80%-ot.

kiss
Typewriter
Módosítani
lehet!

kiss
Typewriter
Ha a módosítások miatt
lecsökken a foglalt
terület 40% alá, akkor
újból lehet beszúrni.

kiss
Typewriter
Addig lehet beszúrni
vagy módosítani,
amíg el nem érjük
a 80%-ot.

kiss
Highlight

kiss
Typewriter
A szegmensekhez tartozik
egy lista,
amely azt mutatja meg,
hogy melyik blokkban van
hely beszúrásra.

Overview of Extents

Overview of Extents

Az extensek folytonos adatblokkok.

An extent is a logical unit of database storage space allocation made up of a number of
contiguous data blocks. One or more extents in turn make up a segment. When the

existing space in a segment is completely used, Oracle Database allocates a new extent
for the segment.

Ha a szegmens minden extense foglalt,
This section includes the following topics: akkor Gj extenset foglal le az Oracle
s When Extents Are Allocated a szegmens szamara.

s Determine the Number and Size of Extents

s How Extents Are Allocated

s When Extents Are Deallocated

When Extents Are Allocated

Beallithatd egy
szegmens kezdeti
extensének
mérete,

a kovetkezd
extens

mérete,
mennyivel
novekedjen

az extens mérete
az elézéhoz
képest,

minimum, maximum
hany extensbdl
4dllhat a
szegmens.

When you create a table, Oracle Database allocates to the table's data segment an
initial extent of a specified number of data blocks. Although no rows have been
inserted yet, the Oracle Database data blocks that correspond to the initial extent are
reserved for that table's rows.

If the data blocks of a segment's initial extent become full and more space is required
to hold new data, Oracle Database automatically allocates an incremental extent for
that segment. An incremental extent is a subsequent extent of the same or greater size
than the previously allocated extent in that segment.

For maintenance purposes, the header block of each segment contains a directory of
the extents in that segment.

Note: This chapter applies to serial operations, in which one server
process parses and runs a SQL statement. Extents are allocated
somewhat differently in parallel SQL statements, which entail
multiple server processes.

Determine the Number and Size of Extents

Ha nem adjuk
meg,

akkor a
tablatér
STORAGE
paramétereit
orokli.

Storage parameters expressed in terms of extents define every segment. Storage
parameters apply to all types of segments. They control how Oracle Database allocates
free database space for a given segment. For example, you can determine how much
space is initially reserved for a table's data segment or you can limit the number of
extents the table can allocate by specifying the storage parameters of a table in the
ORAGE clause of the CREATE TABLE statement. If you do not specify a table's
storage parameters, then it uses the default storage parameters of the tablespace.

You can have dictionary managed tablespaces, which rely on data dictionary tables to
track space utilization, or locally managed tablespaces, which use bitmaps (instead of
data dictionary tables) to track used and free space. Because of the better performance
and easier manageability of locally managed tablespaces, the default for non-SYSTEM
permanent tablespaces is locally managed whenever the type of extent management is
not explicitly specified.

A tablespace that manages its extents locally can have either uniform extent sizes or
variable extent sizes that are determined automatically by the system. When you
create the tablespace, the UNTIFORM or AUTOALLOCATE (system-managed) clause
specifies the type of allocation.

A tablaterek lokalisan vagy szoétartdblakon segitségével kezelik a
tdroladsi paramétereket. A lokalis esetben az extensek mérete vagy

egyforma

(UNIFORM) vagy a rendszer hatarozza meg (AUTOALLOCATE) .

2-10 Oracle Database Concepts

kiss
Typewriter
Az extensek folytonos adatblokkok.

kiss
Typewriter
Ha a szegmens minden extense foglalt,
akkor új extenset foglal le az Oracle
a szegmens számára.

kiss
Highlight

kiss
Typewriter
Beállítható egy
szegmens kezdeti
extensének mérete,
a következő extens
mérete,
mennyivel növekedjen
az extens mérete
az előzőhöz képest,
minimum, maximum
hány extensből
állhat a szegmens.

kiss
Sticky Note
CREATE TABLE tipus_proba(...)
TABLESPACE users
PCTUSED 50 PCTFREE 20 INITRANS 1 MAXTRANS 255
STORAGE (INITIAL 32K MINEXTENTS 1 MAXEXTENTS 200 PCTINCREASE 0
 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT);

STORAGE(...): hogyan viselkedjenek az extensek, mekkorák legyenek, hogyan bővüljenek stb.
- INITIAL: első extens mérete.
- NEXT: következő extens mérete.
- PCTINCREASE: milyen mértékben növekedjenek az extensek (%-ban) az előzőhöz
 képest. (50 azt jelenti, hogy másfélszerese lesz a következő.)
- MINEXTENTS: minimális extens darabszám (a tábla létrehozásakor ennyit
 automatikusan létrehoz).
- MAXEXTENTS: maximális extens darabszám.

kiss
Typewriter
Ha nem adjuk meg,
akkor a táblatér
STORAGE paramétereit
örökli.

kiss
Highlight

kiss
Typewriter
A táblaterek lokálisan vagy szótártáblákon segítségével kezelik a
tárolási paramétereket. A lokális esetben az extensek mérete vagy
egyforma (UNIFORM)vagy a rendszer határozza meg (AUTOALLOCATE).

Overview of Extents

s For uniform extents, you can specify an extent size or use the default size, which is
1 MB. Ensure that each extent contains at least five database blocks, given the
database block size. Temporary tablespaces that manage their extents locally can
only use this type of allocation.

= For system-managed extents, Oracle Database determines the optimal size of
additional extents, with a minimum extent size of 64 KB. If the tablespaces are
created with 'segment space management auto’, and if the database block size is
16K or higher, then Oracle Database manages segment size by creating extents
with a minimum size of 1M. This is the default for permanent tablespaces.

The storage parameters INITIAL, NEXT, PCTINCREASE, and MINEXTENTS cannot be
specified at the tablespace level for locally managed tablespaces. They can, however,
be specified at the segment level. In this case, INITIAL, NEXT, PCTINCREASE, and
MINEXTENTS are used together to compute the initial size of the segment. After the
segment size is computed, internal algorithms determine the size of each extent.

See Also:
= "Managing Space in Tablespaces" on page 3-9
= '"Bigfile Tablespaces" on page 3-5

s Oracle Database Administrator’s Guide

How Extents Are Allocated Extensek lefoglalasa

A tablatér
adatfajljai kozul az
elsd olyanban
fogaljuk le az
extenst, ahol wvan
szliikséges szamy,
egymas utani {ires
blokk.

Oracle Database uses different algorithms to allocate extents, depending on whether
they are locally managed or dictionary managed.

With locally managed tablespaces, Oracle Database looks for free space to allocate to a
new extent by first determining a candidate datafile in the tablespace and then
searching the datafile's bitmap for the required number of adjacent free blocks. If that
datafile does not have enough adjacent free space, then Oracle Database looks in
another datafile.

Note: Oracle strongly recommends that you use locally managed
tablespaces.

When Extents Are Deallocated Extensek felszabaditéasa

Altaléban
extenst

csak a téabla
vagy

klaszter
megszlntetése
(DROP)

esetén
szabaditunk fel.

Oracle Database provides a Segment Advisor that helps you determine whether an
object has space available for reclamation based on the level of space fragmentation
within the object.

See Also:

s Oracle Database Administrator’s Guide for guidelines on reclaiming
segment space

» Oracle Database SQL Language Reference for SQL syntax and

semantics

In general, the extents of a segment do not return to the tablespace until you drop the
schema object whose data is stored in the segment (using a DROP TABLE or DROP
CLUSTER statement). Exceptions to this include the following:

= The owner of a table or cluster, or a user with the DELETE ANY privilege, can
truncate the table or cluster with a TRUNCATE...DROP STORAGE statement.

Data Blocks, Extents, and Segments 2-11

kiss
Highlight

kiss
Highlight

kiss
Highlight

kiss
Typewriter
A táblatér adatfájljai közül az első olyanban fogaljuk le az extenst, ahol van
szükséges számú, egymás utáni üres blokk.

kiss
Typewriter
Extensek lefoglalása

kiss
Typewriter
Extensek felszabadítása

kiss
Typewriter
Általában extenst
csak a tábla vagy
klaszter
megszűntetése (DROP)
esetén szabadítunk fel.

Overview of Extents

Manuélisan is
felszabadithatunk.

= A database administrator (DBA) can deallocate unused extents using the following
SQL syntax:

ALTER TABLE table_name DEALLOCATE UNUSED; @

» Periodically, Oracle Database deallocates one or more extents of a rollback
segment if it has the OPTIMAL size specified.

When extents are freed, Oracle Database modifies the bitmap in the datafile (for locally
managed tablespaces) or updates the data dictionary (for dictionary managed
tablespaces) to reflect the regained extents as available space. Any data in the blocks of
freed extents becomes inaccessible.

This section includes the following topics:

= Extents in Nonclustered Tables

= Extents in Clustered Tables

= Extents in Materialized Views and Their Logs
= Extents in Indexes

= Extents in Temporary Segments

= Extents in Rollback Segments

See Also:
n Oracle Database Administrator’s Guide

» Oracle Database SQL Language Reference

Extents in Nonclustered Tables

As long as a nonclustered table exists or until you truncate the table, any data block
allocated to its data segment remains allocated for the table. Oracle Database inserts
new rows into a block if there is enough room. Even if you delete all rows of a table,
Oracle Database does not reclaim the data blocks for use by other objects in the
tablespace.

After you drop a nonclustered table, this space can be reclaimed when other extents
require free space. Oracle Database reclaims all the extents of the table's data and
index segments for the tablespaces that they were in and makes the extents available
for other schema objects in the same tablespace.

In dictionary managed tablespaces, when a segment requires an extent larger than the
available extents, Oracle Database identifies and combines contiguous reclaimed
extents to form a larger one. This is called coalescing extents. Coalescing extents is not
necessary in locally managed tablespaces, because all contiguous free space is
available for allocation to a new extent regardless of whether it was reclaimed from
one or more extents.

Extents in Clustered Tables

Clustered tables store information in the data segment created for the cluster.
Therefore, if you drop one table in a cluster, the data segment remains for the other
tables in the cluster, and no extents are deallocated. You can also truncate clusters
(except for hash clusters) to free extents.

2-12 Oracle Database Concepts

kiss
Sticky Note
A tábla növekedésekor az Oracle automatikusan újabb extenseket ad hozzá, ha szükség van rá. Mindezt manuálisan is kezdeményezhetjük, és a nem használt extenseket fel is szabadíthatjuk.

ALTER TABLE emp ALLOCATE EXTENT
(SIZE 200K DATAFILE '/big/oracle/oradata/oradb/users01.dbf');

ALTER TABLE emp DEALLOCATE UNUSED;

kiss
Highlight

kiss
Typewriter
Manuálisan is
felszabadíthatunk.

Overview of Segments

Extents in Materialized Views and Their Logs

Oracle Database deallocates the extents of materialized views and materialized view
logs in the same manner as for tables and clusters.

See Also: "Overview of Materialized Views" on page 5-18

Extents in Indexes

All extents allocated to an index segment remain allocated as long as the index exists.
When you drop the index or associated table or cluster, Oracle Database reclaims the
extents for other uses within the tablespace.

Extents in Temporary Segments

When Oracle Database completes the execution of a statement requiring a temporary
segment, Oracle Database automatically drops the temporary segment and returns the
extents allocated for that segment to the associated tablespace. A single sort allocates
its own temporary segment in a temporary tablespace of the user issuing the statement
and then returns the extents to the tablespaces.

Multiple sorts, however, can use sort segments in temporary tablespaces designated
exclusively for sorts. These sort segments are allocated only once for the instance, and
they are not returned after the sort, but remain available for other multiple sorts.

A temporary segment in a temporary table contains data for multiple statements of a
single transaction or session. Oracle Database drops the temporary segment at the end
of the transaction or session, returning the extents allocated for that segment to the
associated tablespace.

See Also:
s "Introduction to Temporary Segments" on page 2-14

s "Temporary Tables" on page 5-10

Extents in Rollback Segments

Oracle Database periodically checks the rollback segments of the database to see if
they have grown larger than their optimal size. If a rollback segment is larger than is
optimal (that is, it has too many extents), then Oracle Database automatically
deallocates one or more extents from the rollback segment.

Overview of Segments

A segment is a set of extents that contains all the data for a specific logical storage
structure within a tablespace. For example, for each table, Oracle Database allocates
one or more extents to form that table's data segment, and for each index, Oracle
Database allocates one or more extents to form its index segment.

This section contains the following topics:
s Introduction to Data Segments

» Introduction to Index Segments

» Introduction to Temporary Segments

» Introduction to Undo Segments and Automatic Undo Management

Data Blocks, Extents, and Segments 2-13

Overview of Segments

Introduction to Data Segments

A single data segment in an Oracle Database database holds all of the data for one of
the following:

= A table that is not partitioned or clustered
= A partition of a partitioned table
= A cluster of tables

Oracle Database creates this data segment when you create the table or cluster with the
CREATE statement.

The storage parameters for a table or cluster determine how its data segment's extents
are allocated. You can set these storage parameters directly with the appropriate
CREATE or ALTER statement. These storage parameters affect the efficiency of data
retrieval and storage for the data segment associated with the object.

Note: Oracle Database creates segments for materialized views and
materialized view logs in the same manner as for tables and clusters.

See Also:

» Oracle Database Advanced Replication for information on
materialized views and materialized view logs

» Oracle Database SQL Language Reference for syntax

Introduction to Index Segments

Every nonpartitioned index in an Oracle database has a single index segment to hold
all of its data. For a partitioned index, every partition has a single index segment to
hold its data.

Oracle Database creates the index segment for an index or an index partition when
you issue the CREATE INDEX statement. In this statement, you can specify storage
parameters for the extents of the index segment and a tablespace in which to create the
index segment. (The segments of a table and an index associated with it do not have to
occupy the same tablespace.) Setting the storage parameters directly affects the
efficiency of data retrieval and storage.

Introduction to Temporary Segments

When processing queries, Oracle Database often requires temporary workspace for
intermediate stages of SQL statement parsing and execution. Oracle Database
automatically allocates this disk space called a temporary segment. Typically, Oracle
Database requires a temporary segment as a database area for sorting. Oracle Database
does not create a segment if the sorting operation can be done in memory or if Oracle
Database finds some other way to perform the operation using indexes.

This section includes the following topics:
= Operations that Require Temporary Segments
= Segments in Temporary Tables and Their Indexes

s How Temporary Segments Are Allocated

2-14 Oracle Database Concepts

Overview of Segments

Operations that Require Temporary Segments
The following statements sometimes require the use of a temporary segment:

s CREATE INDEX

s SELECT ... ORDER BY
s SELECT DISTINCT

s SELECT ... GROUP BY
s SELECT...UNION

s SELECT ... INTERSECT
s SELECT ... MINUS

Some unindexed joins and correlated subqueries can require use of a temporary
segment. For example, if a query contains a DISTINCT clause, a GROUP BY, and an
ORDER BY, Oracle Database can require as many as two temporary segments.

Segments in Temporary Tables and Their Indexes

Oracle Database can also allocate temporary segments for temporary tables and
indexes created on temporary tables. Temporary tables hold data that exists only for
the duration of a transaction or session.

See Also: "Temporary Tables" on page 5-10

How Temporary Segments Are Allocated

Oracle Database allocates temporary segments differently for queries and temporary
tables.

This section includes the following topics:

= Allocation of Temporary Segments for Queries

= Allocation of Temporary Segments for Temporary Tables and Indexes

Allocation of Temporary Segments for Queries Oracle Database allocates temporary
segments as needed during a user session in one of the temporary tablespaces of the

user issuing the statement. Specify these tablespaces with a CREATE USER or an
ALTER USER statement using the TEMPORARY TABLESPACE clause.

Note: You cannot assign a permanent tablespace as a user's
temporary tablespace.

If no temporary tablespace is defined for the user, then the default temporary
tablespace is the SYSTEM tablespace. The default storage characteristics of the
containing tablespace determine those of the extents of the temporary segment. Oracle
Database drops temporary segments when the statement completes.

Because allocation and deallocation of temporary segments occur frequently, create at
least one special tablespace for temporary segments. By doing so, you can distribute
I/0 across disk devices, and you can avoid fragmentation of the SYSTEM and other
tablespaces that otherwise hold temporary segments.

Data Blocks, Extents, and Segments 2-15

Overview of Segments

Note: When the SYSTEM tablespace is locally managed, you must
define a default temporary tablespace when creating a database. A
locally managed SYSTEM tablespace cannot be used for default
temporary storage.

Entries for changes to temporary segments used for sort operations are not stored in
the redo log, except for space management operations on the temporary segment.

See Also:
= '"Bigfile Tablespaces" on page 3-5

» Chapter 20, "Database Security" for more information about
assigning a user's temporary segment tablespace

Allocation of Temporary Segments for Temporary Tables and Indexes Oracle Database
allocates segments for a temporary table when the first INSERT into that table is
issued. (This can be an internal insert operation issued by CREATE TABLE AS
SELECT.) The first INSERT into a temporary table allocates the segments for the table
and its indexes, creates the root page for the indexes, and allocates any LOB segments.

Segments for a temporary table are allocated in a temporary tablespace of the user
who created the temporary table.

Oracle Database drops segments for a transaction-specific temporary table at the end
of the transaction and drops segments for a session-specific temporary table at the end
of the session. If other transactions or sessions share the use of that temporary table,
the segments containing their data remain in the table.

See Also: "Temporary Tables" on page 5-10

Introduction to Undo Segments and Automatic Undo Management

Oracle Database maintains information to reverse changes made to the database. This
information consists of records of the actions of transactions, collectively known as
undo. Undo is stored in undo segments in an undo tablespace. Oracle Database uses
undo information to do the following;:

s Rollback an active transaction

s Recover a terminated transaction
= Provide read consistency

= Recovery from logical corruptions

When a ROLLBACK statement is issued, undo records are used to undo changes that
were made to the database by the uncommitted transaction. During database recovery,
undo records are used to undo any uncommitted changes applied from the redo log to
the datafiles. Undo records provide read consistency by maintaining the before image
of the data for users who are accessing the data at the same time that another user is
changing it. See "How Oracle Database Manages Data Concurrency and Consistency”
on page 13-3 for more information on read consistency.

Oracle Database provides a fully automated mechanism, referred to as automatic
undo management, for managing undo information and space. In this management
mode, for all current sessions, the server automatically manages undo segments and
space in the undo tablespace.

2-16 Oracle Database Concepts

Overview of Segments

Automatic undo management eliminates the complexities of managing rollback
segment space. In addition, the system automatically tunes itself to provide the best
possible retention of undo information to satisfy long-running queries that may
require this undo information. Automatic undo management is the default for new
installations of Oracle Database. The installation process automatically creates an undo
tablespace.

Oracle Database contains an Undo Advisor that provides advice on and helps
automate the establishment of your undo environment.

This section includes the following topics:
= Manual Undo Management
s Undo Quota

s Automatic Undo Retention

See Also: Oracle Database 2 Day DBA for information on the Undo
Advisor and on how to use advisors and see Oracle Database
Administrator’s Guide for more information on using automatic undo
management

Manual Undo Management

A database system can also run in manual undo management mode. In manual undo
management mode, undo space is managed through rollback segments, and no undo
tablespace is used.

Earlier releases of Oracle Database defaulted to manual undo management mode. To
change to automatic undo management, it was necessary to first create an undo
tablespace and then change an initialization parameter. If your Oracle Database is
release 9i or later and you want to change to automatic undo management, see Oracle
Database Upgrade Guide for instructions.

Note: Space management for rollback segments is complex. Oracle
strongly recommends using automatic undo management.

Undo Quota

In automatic undo management mode, the system controls exclusively the assignment
of transactions to undo segments, and controls space allocation for undo segments. An
ill-behaved transaction can potentially consume much of the undo space, thus
paralyzing the entire system. The Resource Manager directive UNDO_POOL is a more
explicit way to control large transactions. This lets database administrators group
users into consumer groups, with each group assigned a maximum undo space limit.
When the total undo space consumed by a group exceeds the limit, its users cannot
make further updates until undo space is freed up by other member transactions
ending.

The default value of UNDO_POOL is UNLIMITED, where users are allowed to consume
as much undo space as the undo tablespace has. Database administrators can limit a
particular user by using the UNDO_POOL directive.

Automatic Undo Retention

After a transaction is committed, undo data is no longer needed for rollback or
transaction recovery purposes. However, for consistent read purposes, long-running
queries may require this old undo information for producing older images of data

Data Blocks, Extents, and Segments 2-17

Overview of Segments

blocks. Furthermore, the success of several Oracle Flashback features can also depend
upon the availability of older undo information. For these reasons, it is desirable to
retain the old undo information for as long as possible. If the undo tablespace has
space available for new transactions, then old undo information can be retained. When
available space in the tablespace becomes short, the database begins to overwrite old
undo information for transactions that have been committed.

Oracle Database automatically tunes the system to provide the best possible undo
retention for the current undo tablespace. The database collects usage statistics and
tunes the undo retention period based on these statistics and the undo tablespace size.
If the undo tablespace is configured with the AUTOEXTEND option, with maximum size
not specified, undo retention tuning is slightly different. In this case, the database
tunes the undo retention period to be slightly longer than the longest-running query, if
space allows.

See Also: Oracle Database Administrator’s Guide for more details on
automatic tuning of undo retention

2-18 Oracle Database Concepts

3

Tablespaces, Datafiles, and Control Files

This chapter describes tablespaces, the primary logical database structures of any
Oracle database, and the physical datafiles that correspond to each tablespace.

This chapter contains the following topics:

= Introduction to Tablespaces, Datafiles, and Control Files
» Overview of Tablespaces

s Overview of Datafiles

m Overview of Control Files

Introduction to Tablespaces, Datafiles, and Control Files

Oracle Database stores data logically in tablespaces and physically in datafiles
associated with the corresponding tablespace. Figure 3-1 illustrates this relationship.

Figure 3—1 Datafiles and Tablespaces

Tablespace
(one or more datafiles)

>

Table Table Index

Index | Index | \I\ Index | | Index |
Index | Index | In

Datafiles Objects
(physical structures associated (stored in tablespaces-
with only one tablespace) may span several datafiles)

Tablespaces, Datafiles, and Control Files 3-1

Introduction to Tablespaces, Datafiles, and Control Files

Databases, tablespaces, and datafiles are closely related, but they have important
differences:

= An Oracle database consists of at least two logical storage units called tablespaces,
which collectively store all of the database's data. You must have the SYSTEM and
SYSAUX tablespaces and a third tablespace, called TEMP, is optional.

= Each tablespace in an Oracle database consists of one or more files called datafiles,
which are physical structures that conform to the operating system in which
Oracle Database is running.

= A database's data is collectively stored in the datafiles that constitute each
tablespace of the database. For example, the simplest Oracle database would have
one tablespace and one datafile. Another database can have three tablespaces, each
consisting of two datafiles (for a total of six datafiles).

This section includes the following topics:
= Oracle-Managed Files

= Allocate More Space for a Database

Oracle-Managed Files

Oracle-managed files eliminate the need for you, the DBA, to directly manage the
operating system files comprising an Oracle database. You specify operations in terms
of database objects rather than filenames. Oracle Database internally uses standard file
system interfaces to create and delete files as needed for the following database
structures:

n Tablespaces
= Redo log files
= Control files

Through initialization parameters, you specify the file system directory to be used for
a particular type of file. Oracle Database then ensures that a unique file, an
Oracle-managed file, is created and deleted when no longer needed.

See Also:
s Oracle Database Administrator’s Guide

= "Automatic Storage Management" on page 14-14

Allocate More Space for a Database

The size of a tablespace is the size of the datafiles that constitute the tablespace. The
size of a database is the collective size of the tablespaces that constitute the database.

You can enlarge a database in three ways:
= Add a datafile to a tablespace

= Add anew tablespace

= Increase the size of a datafile

When you add another datafile to an existing tablespace, you increase the amount of
disk space allocated for the corresponding tablespace. Figure 3-2 illustrates this kind
of space increase.

3-2 Oracle Database Concepts

Introduction to Tablespaces, Datafiles, and Control Files

Figure 3-2 Enlarging a Database by Adding a Datafile to a Tablespace

Database

|
| System Tablespace —1— Single Tablespace

I
I
I
| |DATA1.0RA DATA2.0RA DATA3.0RA
I
I
I

- Database size and
______________ I tablespace size increase
with the addition of
datafiles

ALTER TABLESPACE system
ADD DATAFILE 'DATA2.0RA'

ALTER TABLESPACE system
ADD DATAFILE 'DATA3.ORA'

Alternatively, you can create a new tablespace (which contains at least one additional
datafile) to increase the size of a database. Figure 3-3 illustrates this.

Figure 3-3 Enlarging a Database by Adding a New Tablespace

Two Tablespaces

Database /
|- - - - - - - = - - T\ - —--
I

System Tablespace |, USERS Tablespace |
[[
Oy L
[[
' DATA3.0RA '
[[
[[
[[

I
I I
I I
I I
| |DATA1.0RA DATA2.0RA I
I I
I I
I I

CREATE TABLESPACE users
DATAFILE 'DATA3.ORA'

The third option for enlarging a database is to change a datafile's size or let datafiles in
existing tablespaces grow dynamically as more space is needed. You accomplish this
by altering existing files or by adding files with dynamic extension properties.

Figure 34 illustrates this.

Tablespaces, Datafiles, and Control Files 3-3

Overview of Tablespaces

Figure 3—-4 Enlarging a Database by Dynamically Sizing Datafiles

Database

System Tablespace

DATA1.0RA DATA2.0RA

USERS Tablespace

Y
D

DATA3.0RA

N

—1— 20 M

—1— 20M

ALTER DATABASE
DATAFILE 'DATA3.O0ORA'
AUTOEXTEND ON NEXT 20M
MAXSIZE 1000M;

See Also: Oracle Database Administrator’s Guide for more information

about increasing the amount of space in your database

Overview of Tablespaces

A database is divided into one or more logical storage units called tablespaces.
Tablespaces are divided into logical units of storage called segments, which are further

divided into extents. Extents are a collection of contiguous blocks.

This section includes the following topics about tablespaces:

Bigfile Tablespaces

The SYSTEM Tablespace

The SYSAUX Tablespace

Undo Tablespaces

Default Temporary Tablespace
Using Multiple Tablespaces
Managing Space in Tablespaces
Multiple Block Sizes

Online and Offline Tablespaces
Read-Only Tablespaces

Temporary Tablespaces

3-4 Oracle Database Concepts

Overview of Tablespaces

s Transport of Tablespaces Between Databases

See Also:

» Chapter 2, "Data Blocks, Extents, and Segments" for more
information about segments and extents

» Oracle Database Administrator’s Guide for detailed information on
creating and configuring tablespaces

Bigfile Tablespaces

Oracle Database lets you create bigfile tablespaces. This allows Oracle Database to
contain tablespaces made up of single large files rather than numerous smaller ones.
This lets Oracle Database utilize the ability of 64-bit systems to create and manage
ultralarge files. The consequence of this is that Oracle Database can now scale up to 8
exabytes in size.

With Oracle-managed files, bigfile tablespaces make datafiles completely transparent
for users. In other words, you can perform operations on tablespaces, rather than the
underlying datafile. Bigfile tablespaces make the tablespace the main unit of the disk
space administration, backup and recovery, and so on. Bigfile tablespaces also simplify
datafile management with Oracle-managed files and Automatic Storage Management
by eliminating the need for adding new datafiles and dealing with multiple files.

The system default is to create a smallfile tablespace, which is the traditional type of
Oracle Database tablespace. The SYSTEM and SYSAUX tablespace types are always
created using the system default type.

Bigfile tablespaces are supported only for locally managed tablespaces with automatic
segment-space management. There are two exceptions: locally managed undo and
temporary tablespaces can be bigfile tablespaces, even though their segments are
manually managed.

An Oracle database can contain both bigfile and smallfile tablespaces. Tablespaces of
different types are indistinguishable in terms of execution of SQL statements that do
not explicitly refer to datafiles.

You can create a group of temporary tablespaces that let a user consume temporary
space from multiple tablespaces. A tablespace group can also be specified as the
default temporary tablespace for the database. This is useful with bigfile tablespaces,
where you could need a lot of temporary tablespace for sorts.

This section includes the following topics:
= Benefits of Bigfile Tablespaces

» Considerations with Bigfile Tablespaces

Benefits of Bigfile Tablespaces

= Bigfile tablespaces can significantly increase the storage capacity of an Oracle
database. Smallfile tablespaces can contain up to 1024 files, but bigfile tablespaces
contain only one file that can be 1024 times larger than a smallfile tablespace. The
total tablespace capacity is the same for smallfile tablespaces and bigfile
tablespaces. However, because there is limit of 64K datafiles for each database, a
database can contain 1024 times more bigfile tablespaces than smallfile
tablespaces, so bigfile tablespaces increase the total database capacity by 3 orders
of magnitude. In other words, 8 exabytes is the maximum size of the Oracle
database when bigfile tablespaces are used with the maximum block size (32 k).

Tablespaces, Datafiles, and Control Files 3-5

Overview of Tablespaces

= Bigfile tablespaces simplify management of datafiles in ultra large databases by
reducing the number of datafiles needed. You can also adjust parameters to reduce
the SGA space required for datafile information and the size of the control file.

s They simplify database management by providing datafile transparency.

Considerations with Bigfile Tablespaces

= Bigfile tablespaces are intended to be used with Automatic Storage Management
or other logical volume managers that support dynamically extensible logical
volumes and striping or RAID.

= Avoid creating bigfile tablespaces on a system that does not support striping
because of negative implications for parallel execution and RMAN backup
parallelization.

= Avoid using bigfile tablespaces if there could possibly be no free space available
on a disk group, and the only way to extend a tablespace is to add a new datafile
on a different disk group.

= Using bigfile tablespaces on platforms that do not support large file sizes is not
recommended and can limit tablespace capacity. Refer to your operating system
specific documentation for information about maximum supported file sizes.

s Performance of database opens, checkpoints, and DBWR processes should
improve if data is stored in bigfile tablespaces instead of traditional tablespaces.
However, increasing the datafile size might increase time to restore a corrupted file
or create a new datafile.

See Also: Oracle Database Administrator’s Guide for details on
creating, altering, and administering bigfile tablespaces

The SYSTEM Tablespace

Every Oracle database contains a tablespace named SYSTEM, which Oracle Database
creates automatically when the database is created. The SYSTEM tablespace is always
online when the database is open.

To take advantage of the benefits of locally managed tablespaces, you can create a
locally managed SYSTEM tablespace, or you can migrate an existing dictionary
managed SYSTEM tablespace to a locally managed format.

In a database with a locally managed SYSTEM tablespace, dictionary managed
tablespaces cannot be created. It is possible to plug in a dictionary managed tablespace
using the transportable feature, but it cannot be made writable.

This section includes the following topics:
s The Data Dictionary
s PL/SQL Program Units Description

The Data Dictionary

The SYSTEM tablespace always contains the data dictionary tables for the entire
database.

PL/SQL Program Units Description

All data stored on behalf of stored PL/SQL program units (that is, procedures,
functions, packages, and triggers) resides in the SYSTEM tablespace. If the database

3-6 Oracle Database Concepts

Overview of Tablespaces

contains many of these program units, then the database administrator must provide
the space the units need in the SYSTEM tablespace.

See Also:

s Oracle Database Administrator’s Guide for information about
creating or migrating to a locally managed SYSTEM tablespace

= "Online and Offline Tablespaces" on page 3-11 for information
about the permanent online condition of the SYSTEM tablespace

» Chapter 24, "SQL" and Chapter 22, "Triggers" for information
about the space requirements of PL/SQL program units

The SYSAUX Tablespace

The SYSAUX tablespace is an auxiliary tablespace to the SYSTEM tablespace. Many
database components use the SYSAUX tablespace as their default location to store data.
Therefore, the SYSAUX tablespace is always created during database creation or
database upgrade.

Note: If the SYSAUX tablespace is unavailable, such as due to a
media failure, then some database features may fail.

The SYSAUX tablespace provides a centralized location for database metadata that
does not reside in the SYSTEM tablespace. It reduces the number of tablespaces created
by default, both in the seed database and in user-defined databases.

During normal database operation, Oracle Database does not allow the SYSAUX
tablespace to be dropped or renamed. Transportable tablespaces for SYSAUX is not
supported.

See Also: Oracle Database Administrator’s Guide to learn about
database components that use the SYSAUX tablespace

Undo Tablespaces

Undo tablespaces are special tablespaces used solely for storing undo information. You
cannot create any other segment types (for example, tables or indexes) in undo
tablespaces. Undo tablespaces are used only when the database is in automatic undo
management mode (the default). A database can contain more than one undo
tablespace, but only one can be in use at any time. Undo data is managed within an
undo tablespace using undo segments that are automatically created and maintained
by the database.

When the first DML operation is run within a transaction, the transaction is bound
(assigned) to an undo segment (and therefore to a transaction table) in the current
undo tablespace. In rare circumstances, if the instance does not have a designated
undo tablespace, the transaction binds to the system undo segment.

Each undo tablespace is composed of a set of datafiles and is locally managed. Like
other types of tablespaces, undo blocks are grouped in extents and the status of each
extent is represented in the bitmap. At any point in time, an extent is either allocated to
(and used by) a transaction table, or it is free.

You can create a bigfile undo tablespace.

Tablespaces, Datafiles, and Control Files 3-7

Overview of Tablespaces

See Also:

n Oracle Database Administrator’s Guide for information on
managing the undo tablespace

= 'Bigfile Tablespaces" on page 3-5

Creation of Undo Tablespaces

An undo tablespace is automatically created with each new installation of Oracle
Database. Earlier versions of Oracle Database may not include an undo tablespace and
may instead use rollback segments. This is known as manual undo management
mode. When upgrading to Oracle Database 11g you can migrate to automatic undo
management by creating an undo tablespace and enabling automatic undo
management mode. See Oracle Database Upgrade Guide for details.

Default Temporary Tablespace

When the SYSTEN tablespace is locally managed, you must define at least one default
temporary tablespace when creating a database. A locally managed SYSTEM
tablespace cannot be used for default temporary storage.

If SYSTEM is dictionary managed and if you do not define a default temporary
tablespace when creating the database, then SYSTEM is still used for default temporary
storage. However, you will receive a warning in ALERT.LOG saying that a default
temporary tablespace is recommended and will be necessary in future releases.

How to Specify a Default Temporary Tablespace
Specify default temporary tablespaces when you create a database, using the DEFAULT
TEMPORARY TABLESPACE extension to the CREATE DATABASE statement.

You can create bigfile temporary tablespaces. A bigfile temporary tablespace, like all
temporary tablespaces, uses tempfiles instead of datafiles.

Note: You cannot make a default temporary tablespace permanent or
take it offline.

See Also:

» Oracle Database SQL Language Reference for information about
defining and altering default temporary tablespaces

= 'Bigfile Tablespaces" on page 3-5

Using Multiple Tablespaces

A very small database may need only the SYSTEM tablespace; however, Oracle
recommends that you create at least one additional tablespace to store user data
separate from data dictionary information. This gives you more flexibility in various
database administration operations and reduces contention among dictionary objects
and schema objects for the same datafiles.

You can use multiple tablespaces to perform the following tasks:
= Control disk space allocation for database data
= Assign specific space quotas for database users

= Control availability of data by taking individual tablespaces online or offline

3-8 Oracle Database Concepts

Overview of Tablespaces

s Perform partial database backup or recovery operations

= Allocate data storage across devices to improve performance

A database administrator can perform the following actions:

n Create new tablespaces

= Add datafiles to tablespaces

= Setand alter default segment storage settings for segments created in a tablespace
= Make a tablespace read only or read/write

= Make a tablespace temporary or permanent

= Rename tablespaces

= Drop tablespaces

= Transport tablespaces across databases and platforms

Managing Space in Tablespaces

Tablespaces allocate space in extents. Tablespaces can use two different methods to
keep track of their free and used space:

= Locally managed tablespaces: Extent management by the bitmaps
= Dictionary managed tablespaces: Extent management by the data dictionary

When you create a tablespace, you choose one of these methods of space management.
Later, you can change the management method with the DBMS_SPACE_ADMIN
PL/SQL package.

This section includes the following topics:
= Locally Managed Tablespaces
= Segment Space Management in Locally Managed Tablespaces

= Dictionary Managed Tablespaces

See Also: "Overview of Extents" on page 2-10

Locally Managed Tablespaces

A tablespace that manages its own extents maintains a bitmap in each datafile to keep
track of the free or used status of blocks in that datafile. Each bit in the bitmap
corresponds to a block or a group of blocks. When an extent is allocated or freed for
reuse, Oracle Database changes the bitmap values to show the new status of the
blocks.

Locally managed tablespaces have the following advantages over dictionary managed
tablespaces:

= Local management of extents automatically tracks adjacent free space, eliminating
the need to coalesce free extents.

= Local management of extents avoids recursive space management operations.
Such recursive operations can occur in dictionary managed tablespaces if
consuming or releasing space in an extent results in another operation that
consumes or releases space in a data dictionary table or rollback segment.

Tablespaces, Datafiles, and Control Files 3-9

Overview of Tablespaces

The sizes of extents that are managed locally are determined automatically by the
system. Alternatively, all extents can have the same size in a locally managed
tablespace and override object storage options.

The LOCAL clause of the CREATE TABLESPACE or CREATE TEMPORARY
TABLESPACE statement is specified to create locally managed permanent or
temporary tablespaces, respectively.

Segment Space Management in Locally Managed Tablespaces

When you create a locally managed tablespace using the CREATE TABLESPACE
statement, the SEGMENT SPACE MANAGEMENT clause lets you specify how free and
used space within a segment is to be managed. Your choices are:

s AUTO

This keyword tells Oracle Database that you want to use bitmaps to manage the
free space within segments. A bitmap, in this case, is a map that describes the
status of each data block within a segment with respect to the amount of space in
the block available for inserting rows. As more or less space becomes available in a
data block, its new state is reflected in the bitmap. Bitmaps enable Oracle Database
to manage free space more automatically; thus, this form of space management is
called automatic segment-space management.

Locally managed tablespaces using automatic segment-space management can be
created as smallfile (traditional) or bigfile tablespaces. AUTO is the default.

= MANUAL

This keyword tells Oracle Database that you want to use free lists for managing
free space within segments. Free lists are lists of data blocks that have space
available for inserting rows.

See Also:
» Oracle Database SQL Language Reference for syntax

» Oracle Database Administrator’s Guide for more information about
automatic segment space management

s "Determine the Number and Size of Extents" on page 2-10

s "Temporary Tablespaces" on page 3-12 for more information about
temporary tablespaces

Dictionary Managed Tablespaces

If you created your database with Oracle9i, you could be using dictionary managed
tablespaces. For a tablespace that uses the data dictionary to manage its extents, Oracle
Database updates the appropriate tables in the data dictionary whenever an extent is
allocated or freed for reuse. Oracle Database also stores rollback information about
each update of the dictionary tables. Because dictionary tables and rollback segments
are part of the database, the space that they occupy is subject to the same space
management operations as all other data.

Note: If you do not specify extent management when you create a
tablespace, then the default is locally managed.

3-10 Oracle Database Concepts

Overview of Tablespaces

Multiple Block Sizes

Oracle Database supports multiple block sizes in a database. The standard block size
is used for the SYSTEM tablespace. This is set when the database is created and can be
any valid size. You specify the standard block size by setting the initialization
parameter DB_BLOCK_SIZE. Legitimate values are from 2K to 32K.

In the initialization parameter file or server parameter file, you can configure
subcaches within the buffer cache for each of these block sizes. Subcaches can also be
configured while an instance is running. You can create tablespaces having any of
these block sizes. The standard block size is used for the system tablespace and most
other tablespaces.

Note: All partitions of a partitioned object must reside in tablespaces
of a single block size.

Multiple block sizes are useful primarily when transporting a tablespace from an
OLTP database to an enterprise data warehouse. This facilitates transport between
databases of different block sizes.

See Also:
s "Transport of Tablespaces Between Databases" on page 3-13

» Oracle Database Data Warehousing Guide for information about
transporting tablespaces in data warehousing environments

Online and Offline Tablespaces

A database administrator can bring any tablespace other than the SYSTEM tablespace
online (accessible) or offline (not accessible) whenever the database is open. The
SYSTEM tablespace is always online when the database is open because the data
dictionary must always be available to Oracle Database.

A tablespace is usually online so that the data contained within it is available to
database users. However, the database administrator can take a tablespace offline for
maintenance or backup and recovery purposes.

Bringing Tablespaces Offline

When a tablespace goes offline, Oracle Database does not permit any subsequent SQL
statements to reference objects contained in that tablespace. Active transactions with
completed statements that refer to data in that tablespace are not affected at the
transaction level. Oracle Database saves rollback data corresponding to those
completed statements in a deferred rollback segment in the SYSTEM tablespace. When
the tablespace is brought back online, Oracle Database applies the rollback data to the
tablespace, if needed.

When a tablespace goes offline or comes back online, this is recorded in the data
dictionary in the SYSTEM tablespace. If a tablespace is offline when you shut down a
database, the tablespace remains offline when the database is subsequently mounted
and reopened.

You can bring a tablespace online only in the database in which it was created because
the necessary data dictionary information is maintained in the SYSTEM tablespace of
that database. An offline tablespace cannot be read or edited by any utility other than
Oracle Database. Thus, offline tablespaces cannot be transposed to other databases.

Tablespaces, Datafiles, and Control Files 3-11

Overview of Tablespaces

Oracle Database automatically switches a tablespace from online to offline when
certain errors are encountered. For example, Oracle Database switches a tablespace
from online to offline when the database writer process, DBWn, fails in several
attempts to write to a datafile of the tablespace. Users trying to access tables in the
offline tablespace receive an error. If the problem that causes this disk I/O to fail is
media failure, you must recover the tablespace after you correct the problem.

See Also:

s "Transport of Tablespaces Between Databases" on page 3-13 for
more information about transferring online tablespaces between
databases

n Oracle Database Utilities for more information about tools for data
transfer

Read-Only Tablespaces

The primary purpose of read-only tablespaces is to eliminate the need to perform
backup and recovery of large, static portions of a database. Oracle Database never
updates the files of a read-only tablespace, and therefore the files can reside on
read-only media such as CD-ROMs or WORM drives.

Note: Because you can only bring a tablespace online in the database
in which it was created, read-only tablespaces are not meant to satisfy
archiving requirements.

Read-only tablespaces cannot be modified. To update a read-only tablespace, first
make the tablespace read /write. After updating the tablespace, you can then reset it to
be read only.

Because read-only tablespaces cannot be modified, and as long as they have not been
made read/write at any point, they do not need repeated backup. Also, if you must
recover your database, you do not need to recover any read-only tablespaces, because
they could not have been modified.

See Also:

n Oracle Database Administrator’s Guide for information about
changing a tablespace to read only or read /write mode

» Oracle Database SQL Language Reference for more information about
the ALTER TABLESPACE statement

» Oracle Database Backup and Recovery User’s Guide for more
information about recovery

Temporary Tablespaces

You can manage space for sort operations more efficiently by designating one or more
temporary tablespaces exclusively for sorts. Doing so effectively eliminates
serialization of space management operations involved in the allocation and
deallocation of sort space. A single SQL operation can use more than one temporary
tablespace for sorting. For example, you can create indexes on very large tables, and
the sort operation during index creation can be distributed across multiple tablespaces.

3-12 Oracle Database Concepts

Overview of Tablespaces

All operations that use sorts, including joins, index builds, ordering, computing
aggregates (GROUP BY), and collecting optimizer statistics, benefit from temporary
tablespaces. The performance gains are significant with Oracle Real Application
Clusters.

This section includes the following topics:
m Sort Segments

s Creation of Temporary Tablespaces

Sort Segments

One or more temporary tablespaces can be used only for sort segments. A temporary
tablespace is not the same as a tablespace that a user designates for temporary
segments, which can be any tablespace available to the user. No permanent schema
objects can reside in a temporary tablespace.

Sort segments are used when a segment is shared by multiple sort operations. One sort
segment exists for every instance that performs a sort operation in a given tablespace.

Temporary tablespaces provide performance improvements when you have multiple
sorts that are too large to fit into memory. The sort segment of a given temporary
tablespace is created at the time of the first sort operation. The sort segment expands
by allocating extents until the segment size is equal to or greater than the total storage
demands of all of the active sorts running on that instance.

See Also: Chapter 2, "Data Blocks, Extents, and Segments" for more
information about segments

Creation of Temporary Tablespaces

Create temporary tablespaces by using the CREATE TABLESPACE or CREATE
TEMPORARY TABLESPACE statement.

See Also:

= "Temporary Datafiles" on page 3-16 for information about
TEMPFILES

= "Managing Space in Tablespaces" on page 3-9 for information
about locally managed and dictionary managed tablespaces

» Oracle Database SQL Language Reference for syntax

» Oracle Database Performance Tuning Guide for information about
setting up temporary tablespaces for sorts and hash joins

Transport of Tablespaces Between Databases

A transportable tablespace lets you move a subset of an Oracle database from one
Oracle database to another, even across different platforms. You can clone a tablespace
and plug it into another database, copying the tablespace between databases, or you
can unplug a tablespace from one Oracle database and plug it into another Oracle
database, moving the tablespace between databases.

Moving data by transporting tablespaces can be orders of magnitude faster than either
export/import or unload/load of the same data, because transporting a tablespace
involves only copying datafiles and integrating the tablespace metadata. When you
transport tablespaces you can also move index data, so you do not have to rebuild the
indexes after importing or loading the table data.

Tablespaces, Datafiles, and Control Files 3-13

Overview of Tablespaces

You can transport tablespaces across platforms. (Many, but not all, platforms are
supported for cross-platform tablespace transport.) This can be used for the following;:

= Provide an easier and more efficient means for content providers to publish
structured data and distribute it to customers running Oracle Database on a
different platform

= Simplify the distribution of data from a data warehouse environment to data
marts which are often running on smaller platforms

= Enable the sharing of read only tablespaces across a heterogeneous cluster
= Allow a database to be migrated from one platform to another

This section includes the following topics:

= Tablespace Repository

= How to Move or Copy a Tablespace to Another Database

Tablespace Repository

A tablespace repository is a collection of tablespace sets. Tablespace repositories are
built on file group repositories, but tablespace repositories only contain the files
required to move or copy tablespaces between databases. Different tablespace sets
may be stored in a tablespace repository, and different versions of a particular
tablespace set also may be stored. A version of a tablespace set in a tablespace
repository consists of the following files:

s The Data Pump export dump file for the tablespace set
s The Data Pump log file for the export
s The datafiles that comprise the tablespace set

See Also: Oracle Streams Concepts and Administration

How to Move or Copy a Tablespace to Another Database

To move or copy a set of tablespaces, you must make the tablespaces read only, copy
the datafiles of these tablespaces, and use export/import to move the database
information (metadata) stored in the data dictionary. Both the datafiles and the
metadata export file must be copied to the target database. The transport of these files
can be done using any facility for copying flat files, such as the operating system
copying facility, ftp, or publishing on CDs.

After copying the datafiles and importing the metadata, you can optionally put the
tablespaces in read /write mode.

The first time a tablespace's datafiles are opened under Oracle Database with the
COMPATIBLE initialization parameter set to 10 or higher, each file identifies the
platform to which it belongs. These files have identical on disk formats for file header
blocks, which are used for file identification and verification. Read only and offline
files get the compatibility advanced after they are made read /write or are brought
online. This implies that tablespaces that are read only before Oracle Database 10g
must be made read /write at least once before they can use the cross platform
transportable feature.

3-14 Oracle Database Concepts

Overview of Datafiles

Note: In a database with a locally managed SYSTEM tablespace,
dictionary tablespaces cannot be created. It is possible to plug in a
dictionary managed tablespace using the transportable feature, but it
cannot be made writable.

See Also:

» Oracle Database Administrator’s Guide for details about how to
move or copy tablespaces to another database, including details
about transporting tablespaces across platforms

s Oracle Database Utilities for import/export information

» Oracle Database PL/SQL Packages and Types Reference for
information on the DBMS_FILE_TRANSFER package

» Oracle Streams Concepts and Administration for more information on
ways to copy or transport files

Overview of Datafiles

A tablespace in an Oracle database consists of one or more physical datafiles. A
datafile can be associated with only one tablespace and only one database.

Oracle Database creates a datafile for a tablespace by allocating the specified amount
of disk space plus the overhead required for the file header. When a datafile is created,
the operating system under which Oracle Database runs is responsible for clearing old
information and authorizations from a file before allocating it to Oracle Database. If
the file is large, this process can take a significant amount of time. The first tablespace
in any database is always the SYSTEM tablespace, so Oracle Database automatically
allocates the first datafiles of any database for the SYSTEM tablespace during database
creation.

This section includes the following topics:
= Datafile Contents
= Size of Datafiles
s Offline Datafiles
s Temporary Datafiles
See Also: Your Oracle Database operating system-specific

documentation for information about the amount of space required
for the file header of datafiles on your operating system

Datafile Contents

When a datafile is first created, the allocated disk space is formatted but does not
contain any user data. However, Oracle Database reserves the space to hold the data
for future segments of the associated tablespace—it is used exclusively by Oracle
Database. As the data grows in a tablespace, Oracle Database uses the free space in the
associated datafiles to allocate extents for the segment.

The data associated with schema objects in a tablespace is physically stored in one or
more of the datafiles that constitute the tablespace. Note that a schema object does not
correspond to a specific datafile; rather, a datafile is a repository for the data of any
schema object within a specific tablespace. Oracle Database allocates space for the data

Tablespaces, Datafiles, and Control Files 3-15

Overview of Datafiles

associated with a schema object in one or more datafiles of a tablespace. Therefore, a
schema object can span one or more datafiles. Unless table striping is used (where
data is spread across more than one disk), the database administrator and end users
cannot control which datafile stores a schema object.

See Also: Chapter 2, "Data Blocks, Extents, and Segments" for more
information about use of space

Size of Datafiles

You can alter the size of a datafile after its creation or you can specify that a datafile
should dynamically grow as schema objects in the tablespace grow. This functionality
enables you to have fewer datafiles for each tablespace and can simplify
administration of datafiles.

Note: You need sufficient space on the operating system for
expansion.

See Also: Oracle Database Administrator’s Guide for more information
about resizing datafiles

Offline Datafiles

You can take tablespaces offline or bring them online at any time, except for the
SYSTEM tablespace. All of the datafiles of a tablespace are taken offline or brought
online as a unit when you take the tablespace offline or bring it online, respectively.

You can take individual datafiles offline. However, this is usually done only during
some database recovery procedures.

Temporary Datafiles

Locally managed temporary tablespaces have temporary datafiles (tempfiles), which
are similar to ordinary datafiles, with the following exceptions:

» Tempfiles are always set to NOLOGGING mode.

= You cannot make a tempfile read only.

= You cannot create a tempfile with the ALTER DATABASE statement.

= Media recovery does not recognize tempfiles:
- BACKUP CONTROLFILE does not generate any information for tempfiles.
- CREATE CONTROLFILE cannot specify any information about tempfiles.

= When you create or resize tempfiles, they are not always guaranteed allocation of
disk space for the file size specified. On certain file systems (for example, UNIX)
disk blocks are allocated not at file creation or resizing, but before the blocks are
accessed.

Caution: This enables fast tempfile creation and resizing; however,
the disk could run out of space later when the tempfiles are accessed.

3-16 Oracle Database Concepts

Overview of Control Files

s Tempfile information is shown in the dictionary view DBA_TEMP_FILES and the
dynamic performance view VSTEMPFILE, but not in DBA_DATA_FILES or the
VSDATAFILE view.

See Also: "Managing Space in Tablespaces" on page 3-9 for more
information about locally managed tablespaces

Overview of Control Files

The database control file is a small binary file necessary for the database to start and
operate successfully. A control file is updated continuously by Oracle Database during
database use, so it must be available for writing whenever the database is open. If for
some reason the control file is not accessible, then the database cannot function

properly.

Each control file is associated with only one Oracle database.
This section includes the following topics:

s Control File Contents

= Multiplexed Control Files

Control File Contents

A control file contains information about the associated database that is required for
access by an instance, both at startup and during normal operation. Control file
information can be modified only by Oracle Database; no database administrator or
user can edit a control file.

Among other things, a control file contains information such as:
s The database name

s The timestamp of database creation

s The names and locations of associated datafiles and redo log files
= Tablespace information

= Datafile offline ranges

s The log history

= Archived log information

= Backup set and backup piece information

= Backup datafile and redo log information

= Datafile copy information

s The current log sequence number

s Checkpoint information

The database name and timestamp originate at database creation. The database name
is taken from either the name specified by the DB_NAME initialization parameter or the
name used in the CREATE DATABASE statement.

Each time that a datafile or a redo log file is added to, renamed in, or dropped from the
database, the control file is updated to reflect this physical structure change. These
changes are recorded so that:

Tablespaces, Datafiles, and Control Files 3-17

Overview of Control Files

s Oracle Database can identify the datafiles and redo log files to open during
database startup

= Oracle Database can identify files that are required or available in case database
recovery is necessary

Therefore, if you make a change to the physical structure of your database (using
ALTER DATABASE statements), then you should immediately make a backup of your
control file.

Control files also record information about checkpoints. Every three seconds, the
checkpoint process (CKPT) records information in the control file about the checkpoint
position in the redo log. This information is used during database recovery to tell
Oracle Database that all redo entries recorded before this point in the redo log group
are not necessary for database recovery; they were already written to the datafiles.

See Also: Oracle Database Backup and Recovery User’s Guide for
information about backing up a database's control file

Multiplexed Control Files

As with redo log files, Oracle Database enables multiple, identical control files to be
open concurrently and written for the same database. By storing multiple control files
for a single database on different disks, you can safeguard against a single point of
failure with respect to control files. If a single disk that contained a control file crashes,
then the current instance fails when Oracle Database attempts to access the damaged
control file. However, when other copies of the current control file are available on
different disks, an instance can be restarted without the need for database recovery.

If all control files of a database are permanently lost during operation, then the
instance is aborted and media recovery is required. Media recovery is not
straightforward if an older backup of a control file must be used because a current
copy is not available. It is strongly recommended that you adhere to the following:

= Use multiplexed control files with each database
= Store each copy on a different physical disk
= Use operating system mirroring

= Monitor backups

3-18 Oracle Database Concepts

4

Transaction Management

This chapter defines a transaction and describes how you can manage your work
using transactions.

This chapter contains the following topics:
s Introduction to Transactions
s Overview of Transaction Management

s Overview of Autonomous Transactions

Introduction to Transactions

A transaction is a logical unit of work that contains one or more SQL statements. A
transaction is an atomic unit. The effects of all the SQL statements in a transaction can
be either all committed (applied to the database) or all rolled back (undone from the
database).

A transaction begins with the first executable SQL statement. A transaction ends when
it is committed or rolled back, either explicitly with a COMMIT or ROLLBACK statement
or implicitly when a DDL statement is issued.

To illustrate the concept of a transaction, consider a banking database. When a bank
customer transfers money from a savings account to a checking account, the
transaction can consist of three separate operations:

= Decrement the savings account
s Increment the checking account
= Record the transaction in the transaction journal

Oracle Database must allow for two situations. If all three SQL statements can be
performed to maintain the accounts in proper balance, the effects of the transaction can
be applied to the database. However, if a problem such as insufficient funds, invalid
account number, or a hardware failure prevents one or two of the statements in the
transaction from completing, the entire transaction must be rolled back so that the
balance of all accounts is correct.

Figure 4-1 illustrates the banking transaction example.

Transaction Management 4-1

Introduction to Transactions

Figure 4-1 A Banking Transaction

Transaction Begins

) ——— Decrement Savings Account
UPDATE savings_accounts

SET balance = balance - 500
WHERE account = 3209;

. Increment Checking Account
UPDATE checking_accounts

SET balance = balance + 500
WHERE account = 3208;

. —— Record in Transaction Journal
INSERT INTO journal VALUES

(journal_seq.NEXTVAL, '1lB'
3209, 3208, 500);

——— End Transaction

COMMIT WORK;

Transaction Ends

This section includes the following topics:
m Statement Execution and Transaction Control
s Statement-Level Rollback

= Resumable Space Allocation

Statement Execution and Transaction Control

A SQL statement that runs successfully is different from a committed transaction.
Executing successfully means that a single statement was:

s Parsed
s Found to be a valid SQL construction

= Run without error as an atomic unit. For example, all rows of a multirow update
are changed.

However, until the transaction that contains the statement is committed, the
transaction can be rolled back, and all of the changes of the statement can be undone.
A statement, rather than a transaction, runs successfully.

Committing means that a user has explicitly or implicitly requested that the changes
in the transaction be made permanent. An explicit request occurs when the user issues
a COMMIT statement. An implicit request occurs after normal termination of an
application or completion of a data definition language (DDL) operation. The changes
made by the SQL statement(s) of a transaction become permanent and visible to other
users only after that transaction commits. Queries that are issued after the transaction
commits will see the committed changes.

4-2 Oracle Database Concepts

Introduction to Transactions

You can name a transaction using the SET TRANSACTION ... NAME statement before
you start the transaction. This makes it easier to monitor long-running transactions
and to resolve in-doubt distributed transactions.

See Also: "Transaction Naming" on page 4-7

Statement-Level Rollback

If at any time during execution a SQL statement causes an error, all effects of the
statement are rolled back. The effect of the rollback is as if that statement had never
been run. This operation is a statement-level rollback.

Errors discovered during SQL statement execution cause statement-level rollbacks. An
example of such an error is attempting to insert a duplicate value in a primary key.
Single SQL statements involved in a deadlock (competition for the same data) can also
cause a statement-level rollback. Errors discovered during SQL statement parsing,
such as a syntax error, have not yet been run, so they do not cause a statement-level
rollback.

A SQL statement that fails causes the loss only of any work it would have performed
itself. It does not cause the loss of any work that preceded it in the current transaction. If the
statement is a DDL statement, then the implicit commit that immediately preceded it is
not undone.

Note: Users cannot directly refer to implicit savepoints in rollback
statements.

See Also: "Deadlocks" on page 13-15

Resumable Space Allocation

Oracle Database provides a means for suspending, and later resuming, the execution
of large database operations in the event of space allocation failures. This enables an
administrator to take corrective action, instead of the Oracle database server returning
an error to the user. After the error condition is corrected, the suspended operation
automatically resumes.

A statement runs in a resumable mode only when the client explicitly enables
resumable semantics for the session using the ALTER SESSION statement.

Resumable space allocation is suspended when one of the following conditions occur:
= Out of space condition

= Maximum extents reached condition

= Space quota exceeded condition

For nonresumable space allocation, these conditions result in errors and the statement
is rolled back.

Suspending a statement automatically results in suspending the transaction. Thus all
transactional resources are held through a statement suspend and resume.

When the error condition disappears (for example, as a result of user intervention or
perhaps sort space released by other queries), the suspended statement automatically
resumes execution.

Transaction Management 4-3

Overview of Transaction Management

See Also: Oracle Database Administrator’s Guide for information
about enabling resumable space allocation, what conditions are
correctable, and what statements can be made resumable.

Overview of Transaction Management

A transaction in Oracle Database begins when the first executable SQL statement is
encountered. An executable SQL statement is a SQL statement that generates calls to
an instance, including DML and DDL statements.

When a transaction begins, Oracle Database assigns the transaction to an available
undo tablespace to record the rollback entries for the new transaction.

A transaction ends when any of the following occurs:
= A userissues a COMMIT or ROLLBACK statement without a SAVEPOINT clause.

m A user runs a DDL statement such as CREATE, DROP, RENAME, or ALTER. If the
current transaction contains any DML statements, Oracle Database first commits
the transaction, and then runs and commits the DDL statement as a new, single
statement transaction.

= A user disconnects from Oracle Database. The current transaction is committed.
= A user process terminates abnormally. The current transaction is rolled back.

After one transaction ends, the next executable SQL statement automatically starts the
following transaction.

This section includes the following topics:
s Commit Transactions

= Rollback of Transactions

= Savepoints In Transactions

s Transaction Naming

s The Two-Phase Commit Mechanism

Note: Applications should always explicitly commit or undo
transactions before program termination.

Commit Transactions

Committing a transaction means making permanent the changes performed by the
SQL statements within the transaction.

Before a transaction that modifies data is committed, the following has occurred:

s Oracle Database has generated undo information. The undo information contains
the old data values changed by the SQL statements of the transaction.

» Oracle Database has generated redo log entries in the redo log buffer of the SGA.
The redo log record contains the change to the data block and the change to the
rollback block. These changes may go to disk before a transaction is committed.

s The changes have been made to the database buffers of the SGA. These changes
may go to disk before a transaction is committed.

4-4 Oracle Database Concepts

Overview of Transaction Management

Note: The data changes for a committed transaction, stored in the
database buffers of the SGA, are not necessarily written immediately
to the datafiles by the database writer (DBWn) background process.
This writing takes place when it is most efficient for the database to do
so. It can happen before the transaction commits or, alternatively, it
can happen some time after the transaction commits.

When a transaction is committed, the following occurs:

1.

The internal transaction table for the associated undo tablespace records that the
transaction has committed, and the corresponding unique system change number
(SCN) of the transaction is assigned and recorded in the table.

The log writer process (LGWR) writes redo log entries in the SGA's redo log
buffers to the redo log file. It also writes the transaction's SCN to the redo log file.
This atomic event constitutes the commit of the transaction.

Oracle Database releases locks held on rows and tables.

Oracle Database marks the transaction complete.

Note: The default behavior is for LGWR to write redo to the online
redo log files synchronously and for transactions to wait for the redo
to go to disk before returning a commit to the user. However, for
lower transaction commit latency application developers can specify
that redo be written asynchronously and that transactions do not need
to wait for the redo to be on disk.

See Also:

» Oracle Database Advanced Application Developer’s Guide for more
information on asynchronous commit

s "Overview of Locking Mechanisms" on page 13-2

= "Overview of Oracle Database Processes" on page 9-3 for more
information about the background processes LGWR and DBWn

Rollback of Transactions

Rolling back means undoing any changes to data that have been performed by SQL
statements within an uncommitted transaction. Oracle Database uses undo tablespaces
(or rollback segments) to store old values. The redo log contains a record of changes.

Oracle Database lets you roll back an entire uncommitted transaction. Alternatively,
you can roll back the trailing portion of an uncommitted transaction to a marker called
a savepoint.

All types of rollbacks use the same procedures:

Statement-level rollback (due to statement or deadlock execution error)
Rollback to a savepoint

Rollback of a transaction due to user request

Rollback of a transaction due to abnormal process termination

Rollback of all outstanding transactions when an instance terminates abnormally

Transaction Management 4-5

Overview of Transaction Management

= Rollback of incomplete transactions during recovery

In rolling back an entire transaction, without referencing any savepoints, the
following occurs:

1. Oracle Database undoes all changes made by all the SQL statements in the
transaction by using the corresponding undo tablespace.

2. Oracle Database releases all the transaction's locks of data.

3. The transaction ends.

See Also:
= "Savepoints In Transactions" on page 4-6
s "Overview of Locking Mechanisms" on page 13-2

» Oracle Database Backup and Recovery User's Guide for information
about what happens to committed and uncommitted changes
during recovery

Savepoints In Transactions

You can declare intermediate markers called savepoints within the context of a
transaction. Savepoints divide a long transaction into smaller parts.

Using savepoints, you can arbitrarily mark your work at any point within a long
transaction. You then have the option later of rolling back work performed before the
current point in the transaction but after a declared savepoint within the transaction.
For example, you can use savepoints throughout a long complex series of updates, so
if you make an error, you do not need to resubmit every statement.

Savepoints are similarly useful in application programs. If a procedure contains
several functions, then you can create a savepoint before each function begins. Then, if
a function fails, it is easy to return the data to its state before the function began and
re-run the function with revised parameters or perform a recovery action.

After a rollback to a savepoint, Oracle Database releases the data locks obtained by
rolled back statements. Other transactions that were waiting for the previously locked
resources can proceed. Other transactions that want to update previously locked rows
can do so.

When a transaction is rolled back to a savepoint, the following occurs:
1. Oracle Database rolls back only the statements run after the savepoint.

2. Oracle Database preserves the specified savepoint, but all savepoints that were
established after the specified one are lost.

3. Oracle Database releases all table and row locks acquired since that savepoint but
retains all data locks acquired previous to the savepoint.

The transaction remains active and can be continued.

Whenever a session is waiting on a transaction, a rollback to savepoint does not free
row locks. To make sure a transaction does not hang if it cannot obtain a lock, use FOR
UPDATE ... NOWAIT before issuing UPDATE or DELETE statements. (This refers to locks
obtained before the savepoint to which has been rolled back. Row locks obtained after
this savepoint are released, as the statements executed after the savepoint have been
rolled back completely.)

4-6 Oracle Database Concepts

Overview of Transaction Management

Transaction Naming

You can name a transaction, using a simple and memorable text string. This name is a
reminder of what the transaction is about. Transaction names replace commit
comments for distributed transactions, with the following advantages:

= Itis easier to monitor long-running transactions and to resolve in-doubt
distributed transactions.

= You can view transaction names along with transaction IDs in applications. For
example, a database administrator can view transaction names in Enterprise
Manager when monitoring system activity.

s Transaction names are written to the transaction auditing redo record, if
compatibility is set to Oracle9i or higher.

s LogMiner can use transaction names to search for a specific transaction from
transaction auditing records in the redo log.

= You can use transaction names to find a specific transaction in data dictionary
views, such as V$TRANSACTION.

This section includes the following topics:
s How Transactions Are Named

s Commit Comment

How Transactions Are Named

Name a transaction using the SET TRANSACTION ... NAME statement before you start
the transaction.

When you name a transaction, you associate the transaction's name with its ID.
Transaction names do not have to be unique; different transactions can have the same
transaction name at the same time by the same owner. You can use any name that
enables you to distinguish the transaction.

Commit Comment

In previous releases, you could associate a comment with a transaction by using a
commit comment. However, a comment can be associated with a transaction only
when a transaction is being committed.

Commit comments are still supported for backward compatibility. However, Oracle
strongly recommends that you use transaction names. Commit comments are ignored
in named transactions.

Note: In a future release, commit comments will be deprecated.

See Also:

n Oracle Database Administrator’s Guide for more information about
distributed transactions

» Oracle Database SQL Language Reference for more information about
transaction naming syntax

Transaction Management 4-7

Overview of Autonomous Transactions

The Two-Phase Commit Mechanism

In a distributed database, Oracle Database must coordinate transaction control over a
network and maintain data consistency, even if a network or system failure occurs.

A distributed transaction is a transaction that includes one or more statements that
update data on two or more distinct nodes of a distributed database.

A two-phase commit mechanism guarantees that all database servers participating in
a distributed transaction either all commit or all undo the statements in the
transaction. A two-phase commit mechanism also protects implicit DML operations
performed by integrity constraints, remote procedure calls, and triggers.

The Oracle Database two-phase commit mechanism is completely transparent to users
who issue distributed transactions. In fact, users need not even know the transaction is
distributed. A COMMIT statement denoting the end of a transaction automatically
triggers the two-phase commit mechanism to commit the transaction. No coding or
complex statement syntax is required to include distributed transactions within the
body of a database application.

The recoverer (RECO) background process automatically resolves the outcome of
in-doubt distributed transactions—distributed transactions in which the commit was
interrupted by any type of system or network failure. After the failure is repaired and
communication is reestablished, the RECO process of each local Oracle database
automatically commits or rolls back any in-doubt distributed transactions consistently
on all involved nodes.

In the event of a long-term failure, Oracle Database allows each local administrator to
manually commit or undo any distributed transactions that are in doubt as a result of
the failure. This option enables the local database administrator to free any locked
resources that are held indefinitely as a result of the long-term failure.

If a database must be recovered to a point in the past, Oracle Database recovery
facilities enable database administrators at other sites to return their databases to the
earlier point in time also. This operation ensures that the global database remains
consistent.

See Also: Oracle Database Heterogeneous Connectivity Administrator’s
Guide

Overview of Autonomous Transactions

Autonomous transactions are independent transactions that can be called from within
another transaction. An autonomous transaction lets you leave the context of the
calling transaction, perform some SQL operations, commit or undo those operations,
and then return to the calling transaction's context and continue with that transaction.

Once invoked, an autonomous transaction is totally independent of the main
transaction that called it. It does not see any of the uncommitted changes made by the
main transaction and does not share any locks or resources with the main transaction.
Changes made by an autonomous transaction become visible to other transactions
upon commit of the autonomous transactions.

One autonomous transaction can call another. There are no limits, other than resource
limits, on how many levels of autonomous transactions can be called.

Deadlocks are possible between an autonomous transaction and its calling transaction.
Oracle Database detects such deadlocks and returns an error. The application
developer is responsible for avoiding deadlock situations.

4-8 Oracle Database Concepts

Overview of Autonomous Transactions

Autonomous transactions are useful for implementing actions that need to be
performed independently, regardless of whether the calling transaction commits or
rolls back, such as transaction logging and retry counters.

Autonomous PL/SQL Blocks

You can call autonomous transactions from within a PL/SQL block. Use the pragma
AUTONOMOUS_TRANSACTION. A pragma is a compiler directive. You can declare the
following kinds of PL/SQL blocks to be autonomous:

» Stored procedure or function
= Local procedure or function
= Package

s Type method

s Top-level anonymous block

When an autonomous PL/SQL block is entered, the transaction context of the caller is
suspended. This operation ensures that SQL operations performed in this block (or
other blocks called from it) have no dependence or effect on the state of the caller's
transaction context.

When an autonomous block invokes another autonomous block or itself, the called
block does not share any transaction context with the calling block. However, when an
autonomous block invokes a non-autonomous block (that is, one that is not declared to
be autonomous), the called block inherits the transaction context of the calling
autonomous block.

Transaction Control Statements in Autonomous Blocks

Transaction control statements in an autonomous PL/SQL block apply only to the
currently active autonomous transaction. Examples of such statements are:

SET TRANSACTION
COMMIT

ROLLBACK

SAVEPOINT

ROLLBACK TO SAVEPOINT

Similarly, transaction control statements in the main transaction apply only to that
transaction and not to any autonomous transaction that it calls. For example, rolling
back the main transaction to a savepoint taken before the beginning of an autonomous
transaction does not undo the autonomous transaction.

See Also: Oracle Database PL/SQL Language Reference

Transaction Management 4-9

Overview of Autonomous Transactions

4-10 Oracle Database Concepts

O

Schema Objects

This chapter discusses the different types of database objects contained in a user's
schema.

This chapter contains the following topics:

Introduction to Schema Objects
Overview of Tables

Overview of Views

Overview of Materialized Views
Overview of Dimensions

Overview of the Sequence Generator
Overview of Synonyms

Overview of Indexes

Overview of Index-Organized Tables
Overview of Application Domain Indexes
Overview of Clusters

Overview of Hash Clusters

Introduction to Schema Objects

A schema is a collection of logical structures of data, or schema objects. A schema is
owned by a database user and has the same name as that user. Each user owns a single
schema. Schema objects can be created and manipulated with SQL and include the
following types of objects:

Clusters

Constraints

Database links

Database triggers
Dimensions

External procedure libraries
Indexes and indextypes

Java classes, Java resources, and Java sources

Schema Objects 5-1

Introduction to Schema Objects

» Materialized views and materialized view logs
= Object tables, object types, and object views

s Operators

= Sequences

= Stored functions, procedures, and packages

= Synonyms

s Tables and index-organized tables

= Views

Other types of objects are also stored in the database and can be created and
manipulated with SQL but are not contained in a schema:

s Contexts

n Directories

» Parameter files (PFILEs) and server parameter files (SPFILEs)
= Profiles

= Roles

= Rollback segments

n Tablespaces

n Users

Schema objects are logical data storage structures. Schema objects do not have a
one-to-one correspondence to physical files on disk that store their information.
However, Oracle Database stores a schema object logically within a tablespace of the
database. The data of each object is physically contained in one or more of the
tablespace's datafiles. For some objects, such as tables, indexes, and clusters, you can
specify how much disk space Oracle Database allocates for the object within the
tablespace's datafiles.

There is no relationship between schemas and tablespaces: a tablespace can contain
objects from different schemas, and the objects for a schema can be contained in
different tablespaces.

Figure 5-1 illustrates the relationship among objects, tablespaces, and datafiles.

5-2 Oracle Database Concepts

Overview of Tables

Figure 5-1 Schema Objects, Tablespaces, and Datafiles

Database

: System Tablespace

AN

AN

I |
| I |
| I |
| _/ h _/ !

I |
I Iy |
| Table Index I | Cluster Index Index Index I
: Index | Index | I | Index || Index | | Index || Index | l

| |

Index | Index
| Tabl) I—I Table Table Table |
| able | Index | I Index v |
‘. DBFILE1 oo "+ DBFILE2 Co DBFILE3 -’ !
I L J L - e e = e m — — —_ = '_: ______ —z — —_ — J

See Also: Oracle Database Administrator’s Guide

Overview of Tables

Tables are the basic unit of data storage in an Oracle database. Data is stored in rows
and columns. You define a table with a table name (such as employees) and set of
columns. You give each column a column name (such as employee_id, last_name,
and job_id), a datatype (such as VARCHAR2, DATE, or NUMBER), and a width. The
width can be predetermined by the datatype, as in DATE. If columns are of the NUMBER
datatype, define precision and scale instead of width.

You can specify rules called integrity constraints for each column. An example is a
NOT NULL integrity constraint, which forces the column to have a value in every row.

A table can contain a virtual column, which unlike normal columns does not consume
space on disk. Rather, the database derives the values in a virtual column on demand
by computing a set of user-specified expressions or functions. Virtual columns can be
used in queries, DML, and DDL statements. You can index virtual columns, collect
statistics on them, and create integrity constraints. Thus, they can be treated much as
nonvirtual columns.

You can also specify table columns for which data is encrypted before being stored in
the datafile. Encryption prevents users from circumventing database access control
mechanisms by looking inside datafiles directly with operating system tools.

Schema Objects 5-3

Overview of Tables

After you create a table, insert rows of data using SQL statements. A row is a collection
of column information corresponding to a single record. Table data can then be
queried, deleted, or updated using SQL.

Figure 5-2 shows a sample table.

Figure 5-2 The EMP Table

Rows Columns Column names
| |
| ENAME | JOB | MGR | HIREDATE | SAL | COMM | DEPTNO -
- 7329 SMITH CLERK 7902 17-DEC-88 800.00 300.00 20

- 7499 ALLEN SALESMAN 7698 20-FEB-88 1600.00 300.00 30
7521 WARD SALESMAN 7698 22—-FEB-88 1250.00 500.00 30

7566 JONES MANAGER 7839 02-APR-88 2975.00 20
| |
|\ Column not L Column
allowing nulls allowing
nulls

This section includes the following topics:
= How Table Data Is Stored

» Table Compression

= Nulls Indicate Absence of Value

» Default Values for Columns

» Partitioned Tables

= Nested Tables

s Temporary Tables

s External Tables

See Also:

m Oracle Database Administrator’s Guide for information on
managing tables

» Oracle Database Advanced Security Administrator’s Guide for
information on transparent data encryption

» Oracle Database SQL Language Reference for reference
information about virtual columns

» Chapter 26, "Oracle Data Types"
» Chapter 21, "Data Integrity"

How Table Data Is Stored

When you create a table, Oracle Database automatically allocates a data segment in a
tablespace to hold the table's future data. You can control the allocation and use of
space for a table's data segment in the following ways:

= You can control the amount of space allocated to the data segment by setting the
storage parameters for the data segment.

5-4 Oracle Database Concepts

Overview of Tables

= You can control the use of the free space in the data blocks that constitute the data
segment's extents by setting the PCTFREE and PCTUSED parameters for the data
segment.

Oracle Database stores data for a clustered table in the data segment created for the
cluster instead of in a data segment in a tablespace. Storage parameters cannot be
specified when a clustered table is created or altered. The storage parameters set for
the cluster always control the storage of all tables in the cluster.

A table's data segment (or cluster data segment, when dealing with a clustered table)
is created in either the table owner's default tablespace or in a tablespace specifically
named in the CREATE TABLE statement.

See Also: "PCTFREE, PCTUSED, and Row Chaining" on page 2-6

This section includes the following topics:
= Row Format and Size
= Rowids of Row Pieces

s Column Order

Row Format and Size

In the following circumstances, the data for a row in a table may be too large to fit into
a single data block:

= The row is too large to fit into one data block when it is first inserted.

In row chaining, Oracle Database stores the data for the row in a chain of one or
more data blocks reserved for the segment. Row chaining most often occurs with
large rows. Examples include rows that contain a column of data type LONG or
LONG RAW, a VARCHAR2 (4000) column in a 2 KB block, or a row with a huge
number of columns. Row chaining in these cases is unavoidable.

= A row that originally fit into one data block is updated so that the overall row
length increases, but insufficient free space exists to hold the updated row.

In row migration, Oracle Database moves the entire row to a new data block,
assuming the row can fit in a new block. The original row piece of a migrated row
contains a pointer or "forwarding address" to the new block containing the
migrated row. The rowid of a migrated row does not change.

» A row has more than 255 columns.

Oracle Database can only store 255 columns in a row piece. Thus, if you insert a
row into a table that has 1000 columns, then the database creates 4 row pieces,
typically chained over multiple blocks.

When a row is chained or migrated, the amount of I/O necessary to retrieve the data
increases because Oracle Database must scan more than one data block to retrieve the
information for the row. For example, if the database performs one I/O to read an
index and one I/O to read a table for a nonmigrated row, then the database requires an
additional I/O to obtain the actual row data for a migrated row.

Each row piece, chained or unchained, contains a row header and data for all or some
of the row's columns. Individual columns can also span row pieces and, consequently,
data blocks. Figure 5-3 shows the format of a row piece.

Schema Objects 5-5

Overview of Tables

Figure 5-3 The Format of a Row Piece

Row Header Column Data

| < > | < > |

L[[|
A N\ NN A N

~
~ 1

el Row Piece in a Database Block '

- Row Overhead
|:| Number of Columns
[] Cluster Key ID (if clustered)

- ROWID of Chained Row Pieces (if any) ~ -
|:| Column Length Database
B column value Block

The row header precedes the data and contains information about:
= Row pieces

s Chaining (for chained row pieces only)

s Columns in the row piece

s Cluster keys (for clustered data only)

A row fully contained in one block has at least 3 bytes of row header. After the row
header information, each row contains column length and data. The column length
requires 1 byte for columns that store 250 bytes or less, or 3 bytes for columns that
store more than 250 bytes, and precedes the column data. Space required for column
data depends on the datatype. If the datatype of a column is variable length, then the
space required to hold a value can grow and shrink with updates to the data.

To conserve space, a null in a column only stores the column length (zero). Oracle
Database does not store data for the null column. Also, for trailing null columns,
Oracle Database does not even store the column length.

Note: Each row also uses 2 bytes in the data block header's row
directory.

Clustered rows contain the same information as nonclustered rows. In addition, they
contain information that references the cluster key to which they belong.

5-6 Oracle Database Concepts

Overview of Tables

See Also:

n Oracle Database Administrator’s Guide for more information about
clustered rows and tables

= "Overview of Clusters" on page 5-41

s "Row Chaining and Migrating" on page 2-5

= "Nulls Indicate Absence of Value" on page 5-8
= "Row Directory" on page 2-4

Rowids of Row Pieces

The rowid identifies each row piece by its location or address. After a rowid is
assigned to a row piece, the rowid can change in certain circumstances. For example, if
row movement is enabled, then the rowid can change because of partition key
updates, flashback table operations, shrink table operations, and so on. If row
movement is disabled, then a rowid can change if the row is exported and imported
using Oracle Database utilities.

See Also: "Physical Rowids" on page 26-14

Column Order

The column order is the same for all rows in a table. Columns are usually stored in the
order in which they were listed in the CREATE TABLE statement, but this order is not
guaranteed. For example, if a table has a column of datatype LONG, then Oracle
Database always stores this column last. Also, if a table is altered so that a new column
is added, then the new column becomes the last column stored.

In general, try to place columns that frequently contain nulls last so that rows take less
space. Note, though, that if the table you are creating includes a LONG column as well,
then the benefits of placing frequently null columns last are lost.

Table Compression

The Oracle Database table compression feature compresses data by eliminating
duplicate values in a database block. Compressed data stored in a database block (also
known as disk page) is self-contained. That is, all the information needed to re-create
the uncompressed data in a block is available within that block. Duplicate values in all
the rows and columns in a block are stored once at the beginning of the block, in what
is called a symbol table for that block. All occurrences of such values are replaced with
a short reference to the symbol table.

With the exception of a symbol table at the beginning, compressed database blocks
look very much like regular database blocks. All database features and functions that
work on regular database blocks also work on compressed database blocks. Database
objects that can be compressed include tables and materialized views. For partitioned
tables, you can choose to compress some or all partitions. Compression attributes can
be declared for a tablespace, a table, or a partition of a table. If declared at the
tablespace level, then all tables created in that tablespace are compressed by default.
You can alter the compression attribute for a table (or a partition or tablespace), and
the change only applies to new data going into that table. As a result, a single table or
partition may contain some compressed blocks and some regular blocks. This
guarantees that data size will not increase as a result of compression; in cases where
compression could increase the size of a block, it is not applied to that block.

Schema Objects 5-7

Overview of Tables

Using Table Compression

Compression can occur while data is being inserted, updated, bulk inserted, or bulk
loaded into a compressed table. These operations include:

s Direct path SQL*Loader

s CREATE TABLE and AS SELECT statements

» Parallel INSERT (or serial INSERT with an APPEND hint) statements
= Single-row or array inserts

= Single-row or array updates

Existing data in the database can also be compressed by moving it into compressed
form through ALTER TABLE and MOVE statements. This operation takes an exclusive
lock on the table, and therefore prevents any updates and loads until it completes. If
this is not acceptable, the Oracle Database online redefinition utility (the DBMS_
REDEFINITION PL/SQL package) can be used.

Data compression works for all datatypes except for all variants of LOBs and
datatypes derived from LOBs, such as varrays stored out of line or the XML datatype
stored in a CLOB.

Table compression is done as part of bulk loading data into the database or during
single-row or array inserts and updates. The overhead associated with compression is
most visible at that time. This overhead is the primary trade-off that must be taken into
account when considering compression.

Compressed tables or partitions can be modified the same as other Oracle Database
tables or partitions. Deleting compressed data is as fast as deleting uncompressed
data. Inserting new data is also as fast. Updating compressed data can be slower in
some cases. Because Oracle Database supports all DML operations (insert, update,
delete) on compressed tables, table compression is suitable for OLTP applications as
well as data warehousing applications. In both these environments, data should be
organized so that read only or infrequently changing portions of the data (for example,
historical data) are kept compressed.

Nulls Indicate Absence of Value

A null is the absence of a value in a column of a row. Nulls indicate missing,
unknown, or inapplicable data. A null should not be used to imply any other value,
such as zero. A column allows nulls unless a NOT NULL or PRIMARY KEY integrity
constraint has been defined for the column, in which case no row can be inserted
without a value for that column.

Nulls are stored in the database if they fall between columns with data values. In these
cases they require 1 byte to store the length of the column (zero).

Trailing nulls in a row require no storage because a new row header signals that the
remaining columns in the previous row are null. For example, if the last three columns
of a table are null, no information is stored for those columns. In tables with many
columns, the columns more likely to contain nulls should be defined last to conserve
disk space.

Most comparisons between nulls and other values are by definition neither true nor
false, but unknown. To identify nulls in SQL, use the IS NULL predicate. Use the SQL
function NVL to convert nulls to non-null values.

Nulls are not indexed, except when the cluster key column value is null or the index is
a bitmap index.

5-8 Oracle Database Concepts

Overview of Tables

See Also:

» Oracle Database SQL Language Reference for comparisons using
IS NULL and the NVL function

= "Indexes and Nulls" on page 5-25
= "Bitmap Indexes and Nulls" on page 5-35

Default Values for Columns

If a default value is not explicitly defined for a column, then the default for the column
is implicitly NULL. You can also assign a default value to a column of a table so that
when a new row is inserted and a value for the column is omitted or keyword
DEFAULT is supplied, a default value is supplied automatically.

Default column values work as though an INSERT statement actually specifies the
default value. The datatype of the default literal or expression must match or be
convertible to the column datatype.

Integrity constraint checking occurs after the row with a default value is inserted. For
example, in Figure 54, a row is inserted into the emp table that does not include a
value for the department number of the employee. Because no value is supplied for
the department number, Oracle Database inserts the deptno column's default value of
20. After inserting the default value, Oracle Database checks the FOREIGN KEY
integrity constraint defined on the deptno column.

Figure 5-4 DEFAULT Column Values

Parent Key
L Table DEPT
DEPTNO| DNAME | LOC
20 RESEARCH | DALLAS
30 SALES CHICAGO
Foreign Key
Table EMP
EMPNO | ENAME |JOB | MGR | HIREDATE |SAL |COMM | DEPTNO -
7329 SMITH CEO 17-DEC-85 | 9000.00 20
7499 ALLEN VP_SALES 7329 20-FEB-90 7500.00 100.00 30
7521 WARD MANAGER 7499 22-FEB-90 5000.00 200.00 30
7566 JONES SALESMAN | 7521 02—-APR-90 2975.00 400.00 30
7691 OSTER SALESMAN | 7521 06—APR-90 2975.00 400.00 20
|
Default Value
(if no value is given for
. . this column, the default
New row to be inserted, without value INSERT of 20 is used)
for DEPTNO column. INTO |
I
7691 OSTER SALESMAN 7521 06—-APR-90 2975.00 400.00

Schema Objects 5-9

Overview of Tables

For certain types of tables of column datatypes, when adding a column that has both a
NOT NULL constraint and a default value, the database can optimize the operation and
reduce the amount of time that the table is locked for DML.

See Also: Chapter 21, "Data Integrity" for more information about
integrity constraints

Partitioned Tables

Partitioned tables allow your data to be broken down into smaller, more manageable
pieces called partitions, or even subpartitions. Indexes can be partitioned in similar
fashion. Each partition can be managed individually, and can operate independently
of the other partitions, thus providing a structure that can be better tuned for
availability and performance.

Note: To reduce disk use and memory use (specifically, the buffer
cache), you can store tables and partitioned tables in a compressed
format inside the database. This often leads to a better scaleup for
read-only operations. Table compression can also speed up query
execution. There is, however, a slight cost in CPU overhead.

See Also:
s "Table Compression" on page 16-8

» Oracle Database VLDB and Partitioning Guide

Nested Tables

You can create a table with a column whose datatype is another table. That is, tables
can be nested within other tables as values in a column. The Oracle database server
stores nested table data out of line from the rows of the parent table, using a store
table that is associated with the nested table column. The parent row contains a
unique set identifier value associated with a nested table instance.

See Also:

» Oracle Database Object-Relational Developer’s Guide for further
information on nested tables

» Oracle Database Advanced Application Developer’s Guide

Temporary Tables

In addition to permanent tables, Oracle Database can create temporary tables to hold
session-private data that exists only for the duration of a transaction or session.

The CREATE GLOBAL TEMPORARY TABLE statement creates a temporary table that
can be transaction-specific or session-specific. For transaction-specific temporary
tables, data exists for the duration of the transaction. For session-specific temporary
tables, data exists for the duration of the session. Data in a temporary table is private
to the session. Each session can only see and modify its own data. DML locks are not
acquired on the data of the temporary tables. The LOCK statement has no effect on a
temporary table, because each session has its own private data.

A TRUNCATE statement issued on a session-specific temporary table truncates data in
its own session. It does not truncate the data of other sessions that are using the same
table.

5-10 Oracle Database Concepts

Overview of Tables

DML statements on temporary tables do not generate redo logs for the data changes.
However, undo logs for the data and redo logs for the undo logs are generated. Data
from the temporary table is automatically dropped in the case of session termination,
either when the user logs off or when the session terminates abnormally such as
during a session or instance failure.

You can create indexes for temporary tables using the CREATE INDEX statement.
Indexes created on temporary tables are also temporary, and the data in the index has
the same session or transaction scope as the data in the temporary table.

You can create views that access both temporary and permanent tables. You can also
create triggers on temporary tables.

Oracle Database utilities can export and import the definition of a temporary table.
However, no data rows are exported even if you use the ROWS clause. Similarly, you
can replicate the definition of a temporary table, but you cannot replicate its data.

This section includes the following topics:
s Segment Allocation

s Parent and Child Transactions

Segment Allocation

Temporary tables use temporary segments. Unlike permanent tables, temporary tables
and their indexes do not automatically allocate a segment when they are created.
Instead, segments are allocated when the first INSERT (or CREATE TABLE AS
SELECT) is performed. Consequently, if a SELECT, UPDATE, or DELETE is performed
before the first INSERT, then the table appears to be empty.

You can perform DDL statements (ALTER TABLE, DROP TABLE, CREATE INDEX, and
so on) on a temporary table only when no session is currently bound to it. A session
gets bound to a temporary table when an INSERT is performed on it. The session gets
unbound by a TRUNCATE, at session termination, or by doing a COMMIT or ROLLBACK
for a transaction-specific temporary table.

Temporary segments are deallocated at the end of the transaction for
transaction-specific temporary tables and at the end of the session for session-specific
temporary tables.

See Also: "Extents in Temporary Segments" on page 2-13

Parent and Child Transactions

Transaction-specific temporary tables are accessible by user transactions and their
child transactions. However, a given transaction-specific temporary table cannot be
used concurrently by two transactions in the same session, although it can be used by
transactions in different sessions.

If a user transaction does an INSERT into the temporary table, then none of its child
transactions can use the temporary table afterward.

If a child transaction does an INSERT into the temporary table, then at the end of the
child transaction, the data associated with the temporary table goes away. After that,
either the user transaction or any other child transaction can access the temporary
table.

Schema Objects 5-11

Overview of Tables

External Tables

External tables access data in external sources as if it were in a table in the database.
You can connect to the database and create metadata for the external table using DDL.
The DDL for an external table consists of two parts: one part that describes the Oracle
Database column types, and another part (the access parameters) that describes the
mapping of the external data to the Oracle Database data columns.

An external table does not describe any data that is stored in the database. Nor does it
describe how data is stored in the external source. Instead, it describes how the
external table layer must present the data to the server. It is the responsibility of the
access driver and the external table layer to do the necessary transformations required
on the data in the datafile so that it matches the external table definition.

External tables are read only; therefore, no DML operations are possible, and no index
can be created on them. Also, virtual columns are not supported.

This section includes the following topics:
s The Access Driver
s Data Loading with External Tables

s Parallel Access to External Tables

The Access Driver

When you create an external table, you specify its type. Each type of external table has
its own access driver that provides access parameters unique to that type of external
table. The access driver ensures that data from the data source is processed so that it
matches the definition of the external table.

In the context of external tables, loading data refers to the act of reading data from an
external table and loading it into a table in the database. Unloading data refers to the
act of reading data from a table in the database and inserting it into an external table.

The default type for external tables is ORACLE_LOADER, which lets you read table data
from an external table and load it into a database. Oracle Database also provides the
ORACLE_DATAPUMP type, which lets you unload data (that is, read data from a table in
the database and insert it into an external table) and then reload it into an Oracle
database.

The definition of an external table is kept separately from the description of the data in
the data source. This separation has the following implications:

m The source file can contain more or fewer fields than there are columns in the
external table.

s The datatypes for fields in the data source can be different from the columns in the
external table.

Data Loading with External Tables

The main use for external tables is to use them as a row source for loading data into an
actual table in the database. After you create an external table, you can then use a
CREATE TABLE AS SELECT or INSERT INTO ... AS SELECT statement, using the
external table as the source of the SELECT clause.

Note: You cannot insert data into external tables or update records in
them; external tables are read only.

5-12 Oracle Database Concepts

Overview of Views

When you access the external table through a SQL statement, the fields of the external
table can be used just like any other field in a regular table. In particular, you can use
the fields as arguments for any SQL built-in function, PL/SQL function, or Java
function. This lets you manipulate data from the external source. For data
warehousing, you can do more sophisticated transformations in this way than you can
with simple datatype conversions. You can also use this mechanism in data
warehousing to do data cleansing.

While external tables cannot contain a column object, constructor functions can be
used to build a column object from attributes in the external table

Parallel Access to External Tables

After the metadata for an external table is created, you can query the external data
directly and in parallel, using SQL. As a result, the external table acts as a view, which
lets you run any SQL query against external data without loading the external data
into the database.

The degree of parallel access to an external table is specified using standard parallel
hints and with the PARALLEL clause. Using parallelism on an external table allows for
concurrent access to the datafiles that comprise an external table. Whether a single file
is accessed concurrently is dependent upon the access driver implementation, and
attributes of the datafile(s) being accessed (for example, record formats).

See Also:

» Oracle Database Administrator’s Guide for information about
managing external tables, external connections, and directories

» Oracle Database Performance Tuning Guide for information about
tuning loads from external tables

» Oracle Database Utilities for information about external tables and
import and export

» Oracle Database SQL Language Reference for information about
creating and querying external tables

Overview of Views

A view is a tailored presentation of the data contained in one or more tables or other
views. A view takes the output of a query and treats it as a table. Therefore, a view can
be thought of as a stored query or a virtual table. You can use views in most places
where a table can be used.

For example, the employees table has several columns and numerous rows of
information. If you want users to see only five of these columns or only specific rows,
then you can create a view of that table for other users to access.

Figure 5-5 shows an example of a view called staff derived from the base table
employees. Notice that the view shows only five of the columns in the base table.

Schema Objects 5-13

Overview of Views

Figure 5-5 An Example of a View

Base

Table employees
employee_id | last_name | job_id | manager_id | hire_date | salary | department_id
203 marvis hr_rep 101 07-Jun—94 6500 40
204 baer pr_rep 101 07-Jun—94 10000 70
205 higgins ac_rep 101 07—Jun—94 12000 110
206 gietz ac_account | 205 07-Jun—94 8300 110

View staff
employee_id | last_name | job_id | manager_id | department_id
203 marvis hr_rep 101 40
204 baer pr_rep 101 70
205 higgins ac_rep 101 110
206 gietz ac_account | 205 110

Because views are derived from tables, they have many similarities. For example, you
can define views with up to 1000 columns, just like a table. You can query views, and
with some restrictions you can update, insert into, and delete from views. All
operations performed on a view actually affect data in some base table of the view and
are subject to the integrity constraints and triggers of the base tables.

You cannot explicitly define triggers on views, but you can define them for the
underlying base tables referenced by the view. Oracle Database does support
definition of logical constraints on views.

See Also: Oracle Database SQL Language Reference

This section includes the following topics:
= How Views are Stored

= How Views Are Used

= Mechanics of Views

= Dependencies and Views

= Updatable Join Views

= Object Views

s Inline Views

How Views are Stored

Unlike a table, a view is not allocated any storage space, nor does a view actually
contain data. Rather, a view is defined by a query that extracts or derives data from the
tables that the view references. These tables are called base tables. Base tables can in
turn be actual tables or can be views themselves (including materialized views).
Because a view is based on other objects, a view requires no storage other than storage
for the definition of the view (the stored query) in the data dictionary.

5-14 Oracle Database Concepts

Overview of Views

How Views Are Used

Views provide a means to present a different representation of the data that resides
within the base tables. Views are very powerful because they let you tailor the
presentation of data to different types of users. Views are often used to:

= Provide an additional level of table security by restricting access to a
predetermined set of rows or columns of a table

For example, Figure 5-5 shows how the STAFF view does not show the salary or
commission_pct columns of the base table employees.

= Hide data complexity

For example, a single view can be defined with a join, which is a collection of
related columns or rows in multiple tables. However, the view hides the fact that
this information actually originates from several tables.

= Simplify statements for the user

For example, views allow users to select information from multiple tables without
actually knowing how to perform a join.

= Present the data in a different perspective from that of the base table

For example, the columns of a view can be renamed without affecting the tables on
which the view is based.

= Isolate applications from changes in definitions of base tables

For example, if a view's defining query references three columns of a four column
table, and a fifth column is added to the table, then the view's definition is not
affected, and all applications using the view are not affected.

= Express a query that cannot be expressed without using a view

For example, a view can be defined that joins a GROUP BY view with a table, or a
view can be defined that joins a UNION view with a table.

= Save complex queries

For example, a query can perform extensive calculations with table information.
By saving this query as a view, you can perform the calculations each time the
view is queried.

See Also: Oracle Database SQL Language Reference for information
about the GROUP BY or UNION views

Mechanics of Views

Oracle Database stores a view's definition in the data dictionary as the text of the
query that defines the view. When you reference a view in a SQL statement, Oracle
Database:

1. Merges the statement that references the view with the query that defines the view
2. Parses the merged statement in a shared SQL area
3. Executes the statement

Oracle Database parses a statement that references a view in a new shared SQL area
only if no existing shared SQL area contains a similar statement. Therefore, you get the
benefit of reduced memory use associated with shared SQL when you use views.

This section includes the following topics:

Schema Objects 5-15

Overview of Views

s Globalization Support Parameters in Views

s Use of Indexes Against Views

Globalization Support Parameters in Views

When Oracle Database evaluates views containing string literals or SQL functions that
have globalization support parameters as arguments (such as TO_CHAR, TO_DATE,
and TO_NUMBER), Oracle Database takes default values for these parameters from the
globalization support parameters for the session. You can override these default values
by specifying globalization support parameters explicitly in the view definition.

See Also: Oracle Database Globalization Support Guide for information
about globalization support

Use of Indexes Against Views

Oracle Database determines whether to use indexes for a query against a view by
transforming the original query when merging it with the view's defining query.

Consider the following view:

CREATE VIEW employees_view AS
SELECT employee_id, last_name, salary, location_id
FROM employees JOIN departments USING (department_id)
WHERE departments.department_id = 10;

Now consider the following user-issued query:

SELECT last_name
FROM employees_view
WHERE employee_id = 9876;

The final query constructed by Oracle Database is:

SELECT last_name
FROM employees, departments
WHERE employees.department_id = departments.department_id AND
departments.department_id = 10 AND
employees.employee_id = 9876;

In all possible cases, Oracle Database merges a query against a view with the view's
defining query and those of any underlying views. Oracle Database optimizes the
merged query as if you issued the query without referencing the views. Therefore,
Oracle Database can use indexes on any referenced base table columns, whether the
columns are referenced in the view definition or in the user query against the view.

In some cases, Oracle Database cannot merge the view definition with the user-issued

query. In such cases, Oracle Database may not use all indexes on referenced columns.

See Also: Oracle Database Performance Tuning Guide for more
information about query optimization

Dependencies and Views

Because a view is defined by a query that references other objects (tables, materialized
views, or other views), a view depends on the referenced objects. Oracle Database
automatically handles the dependencies for views. For example, if you drop a base
table of a view and then create it again, Oracle Database determines whether the new
base table is acceptable to the existing definition of the view.

5-16 Oracle Database Concepts

Overview of Views

See Also: Chapter 6, "Schema Object Dependencies"

Updatable Join Views

Object Views

Inline Views

A join view is defined as a view that has more than one table or view in its FROM
clause (a join) and that does not use any of these clauses: DISTINCT, aggregation,
GROUP BY, START WITH, CONNECT BY, ROWNUM, and set operations (UNION ALL,
INTERSECT, and so on).

An updatable join view is a join view that involves two or more base tables or views,
where UPDATE, INSERT, and DELETE operations are permitted. The data dictionary
views ALL_UPDATABLE_COLUMNS, DBA_UPDATABLE_COLUMNS, and USER_
UPDATABLE_COLUMNS contain information that indicates which of the view columns
are updatable. In order to be inherently updatable, a view cannot contain any of the
following constructs:

= A set operator

= A DISTINCT operator

= Anaggregate or analytic function

= A GROUP BY, ORDER BY, CONNECT BY, or START WITH clause
= A collection expression in a SELECT list

= Asubquery in a SELECT list

= Joins (with some exceptions)

Views that are not updatable can be modified using INSTEAD OF triggers.

See Also:
s Oracle Database Administrator’s Guide

» Oracle Database SQL Language Reference for more information about
updatable views

= "INSTEAD OF Triggers" on page 22-8

In the Oracle object-relational database, an object view let you retrieve, update, insert,
and delete relational data as if it was stored as an object type. You can also define
views with columns that are object datatypes, such as objects, REFs, and collections
(nested tables and VARRAYS).

See Also:
» Oracle Database Object-Relational Developer’s Guide
» Oracle Database Advanced Application Developer’s Guide

An inline view is not a schema object. It is a subquery with an alias (correlation name)
that you can use like a view within a SQL statement.

Schema Objects 5-17

Overview of Materialized Views

See Also:

» Oracle Database SQL Language Reference for information about
subqueries

» Oracle Database Performance Tuning Guide for an example of an
inline query causing a view

Overview of Materialized Views

Materialized views are schema objects that can be used to summarize, compute,
replicate, and distribute data. They are suitable in various computing environments
such as data warehousing, decision support, and distributed or mobile computing:

In data warehouses, materialized views are used to compute and store aggregated
data such as sums and averages. Materialized views in these environments are
typically referred to as summaries because they store summarized data. They can
also be used to compute joins with or without aggregations. If compatibility is set
to Oracle9i or higher, then materialized views can be used for queries that include
filter selections.

The optimizer can use materialized views to improve query performance by
automatically recognizing when a materialized view can and should be used to
satisfy a request. The optimizer transparently rewrites the request to use the
materialized view. Queries are then directed to the materialized view and not to
the underlying detail tables or views.

In distributed environments, materialized views are used to replicate data at
distributed sites and synchronize updates done at several sites with conflict
resolution methods. The materialized views as replicas provide local access to data
that otherwise has to be accessed from remote sites.

In mobile computing environments, materialized views are used to download a
subset of data from central servers to mobile clients, with periodic refreshes from
the central servers and propagation of updates by clients back to the central
servers.

Materialized views are similar to indexes in several ways:

They consume storage space.
They must be refreshed when the data in their master tables changes.

They improve the performance of SQL execution when they are used for query
rewrites.

Their existence is transparent to SQL applications and users.

Unlike indexes, materialized views can be accessed directly using a SELECT statement.
Depending on the types of refresh that are required, they can also be accessed directly
in an INSERT, UPDATE, or DELETE statement.

A materialized view can be partitioned. You can define a materialized view on a
partitioned table and one or more indexes on the materialized view.

This section includes the following topics:

Define Constraints on Views
Refresh Materialized Views

Materialized View Logs

5-18 Oracle Database Concepts

Overview of Materialized Views

See Also:
s "Overview of Indexes" on page 5-23
» Oracle Database VLDB and Partitioning Guide

» Oracle Database Data Warehousing Guide for information about
materialized views in a data warehousing environment

Define Constraints on Views

Data warehousing applications recognize multidimensional data in the Oracle
database by identifying Referential Integrity (RI) constraints in the relational schema.
RI constraints represent primary and foreign key relationships among tables. By
querying the Oracle Database data dictionary, applications can recognize RI
constraints and therefore recognize the multidimensional data in the database. In some
environments, database administrators, for schema complexity or security reasons,
define views on fact and dimension tables. Oracle Database provides the ability to
constrain views. By allowing constraint definitions between views, database
administrators can propagate base table constraints to the views, thereby allowing
applications to recognize multidimensional data even in a restricted environment.

Only logical constraints, that is, constraints that are declarative and not enforced by
Oracle Database, can be defined on views. The purpose of these constraints is not to
enforce any business rules but to identify multidimensional data. The following
constraints can be defined on views:

= Primary key constraint
s Unique constraint
= Referential Integrity constraint

Given that view constraints are declarative, DISABLE, NOVALIDATE is the only valid
state for a view constraint. However, the RELY or NORELY state is also allowed,
because constraints on views may be used to enable more sophisticated query
rewrites; a view constraint in the RELY state allows query rewrites to occur when the
rewrite integrity level is set to trusted mode.

Note: Although view constraint definitions are declarative in nature,
operations on views are subject to the integrity constraints defined on
the underlying base tables, and constraints on views can be enforced
through constraints on base tables.

Refresh Materialized Views

Oracle Database maintains the data in materialized views by refreshing them after
changes are made to their master tables. The refresh method can be incremental (fast
refresh) or complete. For materialized views that use the fast refresh method, a
materialized view log or direct loader log keeps a record of changes to the master
tables.

Materialized views can be refreshed either on demand or at regular time intervals.
Alternatively, materialized views in the same database as their master tables can be
refreshed whenever a transaction commits its changes to the master tables.

Schema Objects 5-19

Overview of Dimensions

Materialized View Logs

A materialized view log is a schema object that records changes to a master table's
data so that a materialized view defined on the master table can be refreshed
incrementally.

Each materialized view log is associated with a single master table. The materialized
view log resides in the same database and schema as its master table.

See Also:

» Oracle Database Data Warehousing Guide for information about
materialized views and materialized view logs in a warehousing
environment

» Oracle Database Advanced Replication for information about
materialized views used for replication

Overview of Dimensions

A dimension defines hierarchical (parent/child) relationships between pairs of
columns or column sets. Each value at the child level is associated with one and only
one value at the parent level. A hierarchical relationship is a functional dependency
from one level of a hierarchy to the next level in the hierarchy. A dimension is a
container of logical relationships between columns, and it does not have any data
storage assigned to it.

The CREATE DIMENSION statement specifies:

= Multiple LEVEL clauses, each of which identifies a column or column set in the
dimension

= One or more HIERARCHY clauses that specify the parent/child relationships
between adjacent levels

= Optional ATTRIBUTE clauses, each of which identifies an additional column or
column set associated with an individual level

The columns in a dimension can come either from the same table (denormalized) or
from multiple tables (fully or partially normalized). To define a dimension over
columns from multiple tables, connect the tables using the JOIN clause of the
HIERARCHY clause.

For example, a normalized time dimension can include a date table, a month table, and
a year table, with join conditions that connect each date row to a month row, and each
month row to a year row. In a fully denormalized time dimension, the date, month,
and year columns are all in the same table. Whether normalized or denormalized, the
hierarchical relationships among the columns need to be specified in the CREATE
DIMENSION statement.

See Also:

» Oracle Database Data Warehousing Guide for information about how
dimensions are used in a warehousing environment

» Oracle Database SQL Language Reference for information about
creating dimensions

5-20 Oracle Database Concepts

Overview of the Sequence Generator

Overview of the Sequence Generator

The sequence generator provides a sequential series of numbers. The sequence
generator is especially useful in multiuser environments for generating unique
sequential numbers without the overhead of disk I/O or transaction locking. For
example, assume two users are simultaneously inserting new employee rows into the
employees table. By using a sequence to generate unique employee numbers for the
employee_id column, neither user has to wait for the other to enter the next
available employee number. The sequence automatically generates the correct values
for each user.

Therefore, the sequence generator reduces serialization where the statements of two
transactions must generate sequential numbers at the same time. By avoiding the
serialization that results when multiple users wait for each other to generate and use a
sequence number, the sequence generator improves transaction throughput, and a
user's wait is considerably shorter.

Sequence numbers are integers of up to 38 digits defined in the database. A sequence
definition indicates general information, such as the following:

= The name of the sequence
» Whether the sequence ascends or descends
s The interval between numbers

= Whether Oracle Database should cache sets of generated sequence numbers in
memory

Oracle Database stores the definitions of all sequences for a particular database as
rows in a single data dictionary table in the SYSTEM tablespace. Therefore, all sequence
definitions are always available, because the SYSTEM tablespace is always online.

Sequence numbers are used by SQL statements that reference the sequence. You can
issue a statement to generate a new sequence number or use the current sequence
number. After a statement in a user's session generates a sequence number, the
particular sequence number is available only to that session. Each user that references
a sequence has access to the current sequence number.

Sequence numbers are generated independently of tables. Therefore, the same
sequence generator can be used for more than one table. Sequence number generation
is useful to generate unique primary keys for your data automatically and to
coordinate keys across multiple rows or tables. Individual sequence numbers can be
skipped if they were generated and used in a transaction that was ultimately rolled
back. Applications can make provisions to catch and reuse these sequence numbers, if
desired.

Caution: If your application can never lose sequence numbers,
then you cannot use Oracle Database sequences, and you may
choose to store sequence numbers in database tables. Be careful
when implementing sequence generators using database tables.
Even in a single instance configuration, for a high rate of sequence
values generation, a performance overhead is associated with the
cost of locking the row that stores the sequence value.

Schema Objects 5-21

Overview of Synonyms

See Also:

» Oracle Database Advanced Application Developer’s Guide for
performance implications when using sequences

» Oracle Database SQL Language Reference for information about the
CREATE SEQUENCE statement

Overview of Synonyms

A synonym is an alias for any table, view, materialized view, sequence, procedure,
function, package, type, Java class schema object, user-defined object type, or another
synonym. Because a synonym is simply an alias, it requires no storage other than its
definition in the data dictionary.

Synonyms are often used for security and convenience. For example, they can do the
following:

= Mask the name and owner of an object
= Provide location transparency for remote objects of a distributed database
= Simplify SQL statements for database users

s Enable restricted access similar to specialized views when exercising fine-grained
access control

You can create both public and private synonyms. A public synonym is owned by the
special user group named PUBLIC and every user in a database can access it. A
private synonym is in the schema of a specific user who has control over its
availability to others.

Synonyms are very useful in both distributed and nondistributed database
environments because they hide the identity of the underlying object, including its
location in a distributed system. This is advantageous because if the underlying object
must be renamed or moved, then only the synonym must be redefined. Applications
based on the synonym continue to function without modification.

Synonyms can also simplify SQL statements for users in a distributed database system.
The following example shows how and why public synonyms are often created by a
database administrator to hide the identity of a base table and reduce the complexity
of SQL statements. Assume the following:

= A table called SALES_DATA is in the schema owned by the user JWARD.
s The SELECT privilege for the SALES_DATA table is granted to PUBLIC.

At this point, you must query the table SALES_DATA with a SQL statement similar to
the following:

SELECT * FROM jward.sales_data;
Notice how you must include both the schema that contains the table along with the
table name to perform the query.

Assume that the database administrator creates a public synonym with the following
SQL statement:

CREATE PUBLIC SYNONYM sales FOR jward.sales_data;

After the public synonym is created, you can query the table SALES_DATA with a
simple SQL statement:

SELECT * FROM sales;

5-22 Oracle Database Concepts

Overview of Indexes

Notice that the public synonym SALES hides the name of the table SALES_DATA and
the name of the schema that contains the table.

Overview of Indexes

Indexes are optional structures associated with tables and clusters. You can create
indexes on one or more columns of a table to speed SQL statement execution on that
table. Just as the index in this manual helps you locate information faster than if there
were no index, an Oracle Database index provides a faster access path to table data.
Indexes are the primary means of reducing disk I/O when properly used.

You can create many indexes for a table as long as the combination of columns differs
for each index. You can create more than one index using the same columns if you
specify distinctly different combinations of the columns. For example, the following
statements specify valid combinations:

CREATE INDEX employees_idxl ON employees (last_name, job_id);
CREATE INDEX employees_idx2 ON employees (job_id, last_name);

Oracle Database provides several indexing schemes, which provide complementary
performance functionality:

m B-tree indexes

m B-tree cluster indexes
» Hash cluster indexes
= Reverse key indexes
= Bitmap indexes

= Bitmap join indexes

Oracle Database also provides support for function-based indexes and domain indexes
specific to an application or cartridge.

The absence or presence of an index does not require a change in the wording of any
SQL statement. An index is merely a fast access path to the data. It affects only the
speed of execution. Given a data value that has been indexed, the index points directly
to the location of the rows containing that value.

Indexes are logically and physically independent of the data in the associated table.
You can create or drop an index at any time without affecting the base tables or other
indexes. If you drop an index, all applications continue to work. However, access of
previously indexed data can be slower. Indexes, as independent structures, require
storage space.

Oracle Database automatically maintains and uses indexes after they are created.
Oracle Database automatically reflects changes to data, such as adding new rows,
updating rows, or deleting rows, in all relevant indexes with no additional action by
users.

Retrieval performance of indexed data remains almost constant, even as new rows are
inserted. However, the presence of many indexes on a table decreases the performance
of updates, deletes, and inserts, because Oracle Database must also update the indexes
associated with the table.

The optimizer can use an existing index to build another index. This results in a much
faster index build.

This section includes the following topics:

Schema Objects 5-23

Overview of Indexes

s Unique and Nonunique Indexes
= Visible and Invisible Indexes
s Composite Indexes

= Indexes and Keys

s Indexes and Nulls

= Function-Based Indexes

= How Indexes Are Stored

s Index Unique Scan

= Index Range Scan

s Key Compression

= Reverse Key Indexes

= Bitmap Indexes

= Bitmap Join Indexes

Unique and Nonunique Indexes

Indexes can be unique or nonunique. Unique indexes guarantee that no two rows of a
table have duplicate values in the key column (or columns). Nonunique indexes do
not impose this restriction on the column values.

Oracle recommends that unique indexes be created explicitly, using CREATE UNIQUE
INDEX. Creating unique indexes through a primary key or unique constraint is not
guaranteed to create a new index, and the index they create is not guaranteed to be a
unique index.

See Also: Oracle Database Administrator’s Guide for information
about creating unique indexes explicitly

Visible and Invisible Indexes

Indexes can be visible or invisible. An invisible index is maintained by DML
operations and cannot be used by the optimizer.

Making an index invisible is an alternative to making it unusable or dropping it.

See Also:

» Oracle Database Administrator’s Guide for information about
creating invisible indexes

» Oracle Database Administrator’s Guide for information about
making indexes invisible

Composite Indexes

A composite index (also called a concatenated index) is an index that you create on
multiple columns in a table. Columns in a composite index can appear in any order
and need not be adjacent in the table.

Composite indexes can speed retrieval of data for SELECT statements in which the
WHERE clause references all or the leading portion of the columns in the composite

5-24 Oracle Database Concepts

Overview of Indexes

index. Therefore, the order of the columns used in the definition is important.
Generally, the most commonly accessed or most selective columns go first.

Figure 5-6 illustrates the VENDOR_PARTS table that has a composite index on the
VENDOR_ID and PART NO columns.

Figure 5-6 Composite Index Example

VENDOR_PARTS

VENDID | PART NO | UNIT COST
1012 10-440 .25
1012 10-441 .39
1012 457 4.95
1010 10-440 .27
1010 457 5.10
1220 08-300 1.33
1012 08-300 1.19
1|292 457 5.28

Concatenated Index
(index with multiple columns)

No more than 32 columns can form a regular composite index. For a bitmap index, the
maximum number columns is 30. A key value cannot exceed roughly half (minus
some overhead) the available data space in a data block.

See Also: Oracle Database Performance Tuning Guide for more
information about using composite indexes

Indexes and Keys

Although the terms are often used interchangeably, indexes and keys are different.
Indexes are structures actually stored in the database, which users create, alter, and
drop using SQL statements. You create an index to provide a fast access path to table
data. Keys are strictly a logical concept. Keys correspond to another feature of Oracle
Database called integrity constraints, which enforce the business rules of a database.

Because Oracle Database uses indexes to enforce some integrity constraints, the terms
key and index are often are used interchangeably. However, do not confuse them with
each other.

See Also: Chapter 21, "Data Integrity"

Indexes and Nulls

NULL values in indexes are considered to be distinct except when all the non-NULL
values in two or more rows of an index are identical, in which case the rows are
considered to be identical. Therefore, UNIQUE indexes prevent rows containing NULL
values from being treated as identical. This does not apply if there are no non-NULL
values—in other words, if the rows are entirely NULL.

Oracle Database does not index table rows in which all key columns are NULL, except
in the case of bitmap indexes or when the cluster key column value is NULL.

See Also: "Bitmap Indexes and Nulls" on page 5-35

Schema Objects 5-25

Overview of Indexes

Function-Based Indexes

You can create indexes on functions and expressions that involve one or more columns
in the table being indexed. A function-based index computes the value of the function
or expression and stores it in the index. You can create a function-based index as either
a B-tree or a bitmap index.

The function used for building the index can be an arithmetic expression or an
expression that contains a PL/SQL function, package function, C callout, or SQL
function. The expression cannot contain any aggregate functions, and it must be
DETERMINISTIC. For building an index on a column containing an object type, the
function can be a method of that object, such as a map method. However, you cannot
build a function-based index on a LOB column, REF, or nested table column, nor can
you build a function-based index if the object type contains a LOB, REF, or nested
table.

This section includes the following topics:
= Uses of Function-Based Indexes
= Optimization with Function-Based Indexes

= Dependencies of Function-Based Indexes

See Also:
= "Bitmap Indexes"

» Oracle Database Performance Tuning Guide for more information
about using function-based indexes

Uses of Function-Based Indexes

Function-based indexes provide an efficient mechanism for evaluating statements that
contain functions in their WHERE clauses. The value of the expression is computed and
stored in the index. When it processes INSERT and UPDATE statements, however,
Oracle Database must still evaluate the function to process the statement.

For example, if you create the following index:

CREATE INDEX idx ON table 1 (a + b * (c - 1), a, b);

Oracle Database can use it when processing queries such as this:

SELECT a FROM table 1 WHERE a + b * (c - 1) < 100;

Function-based indexes defined on UPPER (column_name) or LOWER (column_
name) can facilitate case-insensitive searches. For example, the following index:

CREATE INDEX uppercase_idx ON employees (UPPER(first_name));

can facilitate processing queries such as this:

SELECT * FROM employees WHERE UPPER(first_name) = 'RICHARD';

A function-based index can also be used for a globalization support sort index that
provides efficient linguistic collation in SQL statements.

See Also: Oracle Database Globalization Support Guide for information
about linguistic indexes

5-26 Oracle Database Concepts

Overview of Indexes

Optimization with Function-Based Indexes

You must gather statistics about function-based indexes for the optimizer. Otherwise,
the indexes cannot be used to process SQL statements.

The optimizer can use an index range scan on a function-based index for queries with
expressions in WHERE clause. For example, in this query:

SELECT * FROM t WHERE a + b < 10;

the optimizer can use index range scan if an index is built on a+b. The range scan
access path is especially beneficial when the predicate (WHERE clause) has low
selectivity. In addition, the optimizer can estimate the selectivity of predicates
involving expressions more accurately if the expressions are materialized in a
function-based index.

The optimizer performs expression matching by parsing the expression in a SQL
statement and then comparing the expression trees of the statement and the
function-based index. This comparison is case-insensitive and ignores blank spaces.

See Also: Oracle Database Performance Tuning Guide for more
information about gathering statistics

Dependencies of Function-Based Indexes

Function-based indexes depend on the function used in the expression that defines the
index. If the function is a PL/SQL function or package function, the index is disabled
by any changes to the function specification.

To create a function-based index, the user must be granted CREATE INDEX or CREATE
ANY INDEX.

To use a function-based index:
s The table must be analyzed after the index is created.

s The query must be guaranteed not to need any NULL values from the indexed
expression, because NULL values are not stored in indexes.

The following sections describe additional requirements.

DETERMINISTIC Functions Any user-written function used in a function-based index
must have been declared with the DETERMINISTIC keyword to indicate that the
function will always return the same output return value for any given set of input
argument values, now and in the future.

See Also: Oracle Database Performance Tuning Guide

Privileges on the Defining Function The index owner needs the EXECUTE privilege on the
function used to define a function-based index. If the EXECUTE privilege is revoked,
Oracle Database marks the index DISABLED. The index owner does not need the
EXECUTE WITH GRANT OPTION privilege on this function to grant SELECT
privileges on the underlying table.

Resolve Dependencies of Function-Based Indexes A function-based index depends on any
function that it is using. If the function or the specification of a package containing the
function is redefined (or if the index owner's EXECUTE privilege is revoked), then the
following conditions hold:

s The index is marked as DISABLED.

s Queries on a DISABLED index fail if the optimizer chooses to use the index.

Schema Objects 5-27

Overview of Indexes

s DML operations on a DISABLED index fail unless the index is also marked
UNUSABLE and the initialization parameter SKIP_UNUSABLE_INDEXES is set to
true.

To re-enable the index after a change to the function, use the ALTER INDEX ... ENABLE
statement.

How Indexes Are Stored

When you create an index, Oracle Database automatically allocates an index segment
to hold the index's data in a tablespace. You can control allocation of space for an
index's segment and use of this reserved space in the following ways:

= Set the storage parameters for the index segment to control the allocation of the
index segment's extents.

= Set the PCTFREE parameter for the index segment to control the free space in the
data blocks that constitute the index segment's extents.

The tablespace of an index's segment is either the owner's default tablespace or a
tablespace specifically named in the CREATE INDEX statement. You do not have to
place an index in the same tablespace as its associated table. Furthermore, you can
improve performance of queries that use an index by storing an index and its table in
different tablespaces located on different disk drives, because Oracle Database can
retrieve both index and table data in parallel.

See Also: "PCTFREE, PCTUSED, and Row Chaining" on page 2-6

This section includes the following topics:
= Format of Index Blocks

s The Internal Structure of Indexes

s Index Properties

= Advantages of B-tree Structure

Format of Index Blocks

Space available for index data is the Oracle Database block size minus block overhead,
entry overhead, rowid, and one length byte for each value indexed.

When you create an index, Oracle Database fetches and sorts the columns to be
indexed and stores the rowid along with the index value for each row. Then Oracle
Database loads the index from the bottom up. For example, consider the statement:

CREATE INDEX employees_last_name ON employees (last_name) ;

Oracle Database sorts the employees table on the 1ast_name column. It then loads
the index with the 1ast_name and corresponding rowid values in this sorted order.
When it uses the index, Oracle Database does a quick search through the sorted last_
name values and then uses the associated rowid values to locate the rows having the
sought last_name value.

The Internal Structure of Indexes

Oracle Database uses B-trees to store indexes to speed up data access. With no indexes,
you must do a sequential scan on the data to find a value. For n rows, the average
number of rows searched is n/2. This does not scale very well as data volumes
increase.

5-28 Oracle Database Concepts

Overview of Indexes

Consider an ordered list of the values divided into block-wide ranges (leaf blocks). The
end points of the ranges along with pointers to the blocks can be stored in a search tree
and a value in log(r) time for n entries could be found. This is the basic principle
behind Oracle Database indexes.

Figure 5-7 illustrates the structure of a B-tree index.

Figure 5-7 Internal Structure of a B-tree Index

Branch Blocks

| Di [Lu|Rh|

}

- 5 < El-|>
m|lo|O wlx|x Zla|xT w|h|o
LeafBIocksl l l l l
a a ala 2lal2|2|a alalala al2lale
S HEHINEEHEHEHEHINHEHHEINHEHEEINEEBEE
-’;%;0—’;%%3E—VOOOO%—Vooo%—V;OQ%O—’
olzlo|x o|2|2|8|8 ||z |g |||z J|E|Z ||
«C (2[5 8|2 2l ¢ o[B B Bl 2| e[l €l € 5| E £ 2| 2| 3|+
AKIEE SEEEE HEE RIS 3| 33| HEEIEE
YX|IX|X|a Jl=|=z|1=z|= zZ|Zz|Zz|Zz|z ola|a|a o|la|ac|ac|ac

The upper blocks (branch blocks) of a B-tree index contain index data that points to
lower-level index blocks. The lowest level index blocks (leaf blocks) contain every
indexed data value and a corresponding rowid used to locate the actual row. The leaf
blocks are doubly linked. Indexes in columns containing character data are based on
the binary values of the characters in the database character set.

For a unique index, one rowid exists for each data value. For a nonunique index, the
rowid is included in the key in sorted order, so nonunique indexes are sorted by the
index key and rowid. Key values containing all nulls are not indexed, except for
cluster indexes. Two rows can both contain all nulls without violating a unique index.

Index Properties
The two kinds of blocks:

= Branch blocks for searching

» Leaf blocks that store the values

Branch Blocks Branch blocks store the following:

s The minimum key prefix needed to make a branching decision between two keys
= The pointer to the child block containing the key

If the blocks have 1 keys then they have n+1 pointers. The number of keys and
pointers is limited by the block size.

Schema Objects 5-29

Overview of Indexes

Leaf Blocks All leaf blocks are at the same depth from the root branch block. Leaf
blocks store the following;:

s The complete key value for every row
= ROWIDs of the table rows

All key and ROWID pairs are linked to their left and right siblings. They are sorted by
(key, ROWID).

Advantages of B-tree Structure
The B-tree structure has the following advantages:

= All leaf blocks of the tree are at the same depth, so retrieval of any record from
anywhere in the index takes approximately the same amount of time.

= B-tree indexes automatically stay balanced.
= All blocks of the B-tree are three-quarters full on the average.

» B-trees provide excellent retrieval performance for a wide range of queries,
including exact match and range searches.

s Inserts, updates, and deletes are efficient, maintaining key order for fast retrieval.

= B-tree performance is good for both small and large tables and does not degrade as
the size of a table grows.

See Also: Computer science texts for more information about B-tree
indexes

Index Unique Scan

Index unique scan is one of the most efficient ways of accessing data. This access
method is used for returning the data from B-tree indexes. The optimizer chooses a
unique scan when all columns of a unique (B-tree) index are specified with equality
conditions.

Index Range Scan

Index range scan is a common operation for accessing selective data. It can be
bounded (bounded on both sides) or unbounded (on one or both sides). Data is
returned in the ascending order of index columns. Multiple rows with identical values
are sorted (in ascending order) by the ROWIDs.

Key Compression

Key compression lets you compress portions of the primary key column values in an
index or index-organized table, which reduces the storage overhead of repeated
values.

Generally, keys in an index have two pieces, a grouping piece and a unique piece. If
the key is not defined to have a unique piece, Oracle Database provides one in the
form of a rowid appended to the grouping piece. Key compression is a method of
breaking off the grouping piece and storing it so it can be shared by multiple unique
pieces.

This section includes the following topics:
= Prefix and Suffix Entries

» Performance and Storage Considerations

5-30 Oracle Database Concepts

Overview of Indexes

s Uses of Key Compression

Prefix and Suffix Entries

Key compression breaks the index key into a prefix entry (the grouping piece) and a
suffix entry (the unique piece). Compression is achieved by sharing the prefix entries
among the suffix entries in an index block. Only keys in the leaf blocks of a B-tree
index are compressed. In the branch blocks the key suffix can be truncated, but the key
is not compressed.

Key compression is done within an index block but not across multiple index blocks.
Suffix entries form the compressed version of index rows. Each suffix entry references
a prefix entry, which is stored in the same index block as the suffix entry.

By default, the prefix consists of all key columns excluding the last one. For example,

in a key made up of three columns (columnl, column2, column3) the default prefix is

(columnl, column2). For a list of values (1,2,3), (1,2,4), (1,2,7), (1,3,5), (1,3,4), (1,4,4) the
repeated occurrences of (1,2), (1,3) in the prefix are compressed.

Alternatively, you can specify the prefix length, which is the number of columns in the
prefix. For example, if you specify prefix length 1, then the prefix is columnl and the
suffix is (column2, column3). For the list of values (1,2,3), (1,2,4), (1,2,7), (1,3,5), (1,3,4),
(1,4,4) the repeated occurrences of 1 in the prefix are compressed.

The maximum prefix length for a nonunique index is the number of key columns, and
the maximum prefix length for a unique index is the number of key columns minus
one.

Prefix entries are written to the index block only if the index block does not already
contain a prefix entry whose value is equal to the present prefix entry. Prefix entries
are available for sharing immediately after being written to the index block and
remain available until the last deleted referencing suffix entry is cleaned out of the
index block.

Performance and Storage Considerations

Key compression can lead to a huge saving in space, letting you store more keys in
each index block, which can lead to less I/O and better performance.

Although key compression reduces the storage requirements of an index, it can
increase the CPU time required to reconstruct the key column values during an index
scan. It also incurs some additional storage overhead, because every prefix entry has
an overhead of 4 bytes associated with it.

Uses of Key Compression
Key compression is useful in many different scenarios, such as:

= Inanonunique regular index, Oracle Database stores duplicate keys with the
rowid appended to the key to break the duplicate rows. If key compression is
used, Oracle Database stores the duplicate key as a prefix entry on the index block
without the rowid. The rest of the rows are suffix entries that consist of only the
rowid.

» This same behavior can be seen in a unique index that has a key of the form (item,
time stamp), for example (stock_ticker, transaction_time). Thousands of
rows can have the same stock_ticker value, with transaction_ time
preserving uniqueness. On a particular index block a stock_ticker valueis
stored only once as a prefix entry. Other entries on the index block are
transaction_time values stored as suffix entries that reference the common
stock_ticker prefix entry.

Schema Objects 5-31

Overview of Indexes

s Inanindex-organized table that contains a VARRAY or NESTED TABLE datatype,
the object identifier is repeated for each element of the collection datatype. Key
compression lets you compress the repeating object identifier values.

In some cases, however, key compression cannot be used. For example, in a unique
index with a single attribute key, key compression is not possible, because even though
there is a unique piece, there are no grouping pieces to share.

See Also: "Overview of Index-Organized Tables" on page 5-36

Reverse Key Indexes

Creating a reverse key index, compared to a standard indeXx, reverses the bytes of each
column indexed (except the rowid) while keeping the column order. Such an
arrangement can help avoid performance degradation with Oracle Real Application
Clusters where modifications to the index are concentrated on a small set of leaf
blocks. By reversing the keys of the index, the insertions become distributed across all
leaf keys in the index.

Using the reverse key arrangement eliminates the ability to run an index range
scanning query on the index. Because lexically adjacent keys are not stored next to
each other in a reverse-key index, only fetch-by-key or full-index (table) scans can be
performed.

Sometimes, using a reverse-key index can make an OLTP Oracle Real Application
Clusters application faster. For example, keeping the index of mail messages in an
e-mail application: some users keep old messages, and the index must maintain
pointers to these as well as to the most recent.

The REVERSE keyword provides a simple mechanism for creating a reverse key index.
You can specify the keyword REVERSE along with the optional index specifications in
a CREATE INDEX statement:

CREATE INDEX i ON t (a,b,c) REVERSE;

You can specify the keyword NOREVERSE to REBUILD a reverse-key index into one
that is not reverse keyed:

ALTER INDEX i REBUILD NOREVERSE;

Rebuilding a reverse-key index without the NOREVERSE keyword produces a rebuilt,
reverse-key index.

Bitmap Indexes

The purpose of an index is to provide pointers to the rows in a table that contain a
given key value. In a regular index, this is achieved by storing a list of rowids for each
key corresponding to the rows with that key value. Oracle Database stores each key
value repeatedly with each stored rowid. In a bitmap index, a bitmap for each key
value is used instead of a list of rowids.

Each bit in the bitmap corresponds to a possible rowid. If the bit is set, then it means
that the row with the corresponding rowid contains the key value. A mapping
function converts the bit position to an actual rowid, so the bitmap index provides the
same functionality as a regular index even though it uses a different representation
internally. If the number of different key values is small, then bitmap indexes are very
space efficient.

5-32 Oracle Database Concepts

Overview of Indexes

Bitmap indexing efficiently merges indexes that correspond to several conditions in a
WHERE clause. Rows that satisfy some, but not all, conditions are filtered out before the
table itself is accessed. This improves response time, often dramatically.

This section includes the following topics:

= Benefits for Data Warehousing Applications
= Cardinality

= Bitmap Index Example

= Bitmap Indexes and Nulls

= Bitmap Indexes on Partitioned Tables

Benefits for Data Warehousing Applications

Bitmap indexing benefits data warehousing applications which have large amounts of
data and ad hoc queries but a low level of concurrent transactions. For such
applications, bitmap indexing provides:

= Reduced response time for large classes of ad hoc queries

= A substantial reduction of space use compared to other indexing techniques
= Dramatic performance gains even on very low end hardware

= Very efficient parallel DML and loads

Fully indexing a large table with a traditional B-tree index can be prohibitively
expensive in terms of space, because the index can be several times larger than the
data in the table. Bitmap indexes are typically only a fraction of the size of the indexed
data in the table.

Bitmap indexes are not suitable for OLTP applications with large numbers of
concurrent transactions modifying the data. These indexes are primarily intended for
decision support in data warehousing applications where users typically query the
data rather than update it.

Bitmap indexes are also not suitable for columns that are primarily queried with less
than or greater than comparisons. For example, a salary column that usually appears
in WHERE clauses in a comparison to a certain value is better served with a B-tree
index. Bitmapped indexes are only useful with equality queries, especially in
combination with AND, OR, and NOT operators.

Bitmap indexes are integrated with the Oracle Database optimizer and execution
engine. They can be used seamlessly in combination with other Oracle Database
execution methods. For example, the optimizer can decide to perform a hash join
between two tables using a bitmap index on one table and a regular B-tree index on
the other. The optimizer considers bitmap indexes and other available access methods,
such as regular B-tree indexes and full table scan, and chooses the most efficient
method, taking parallelism into account where appropriate.

Parallel query and parallel DML work with bitmap indexes as with traditional
indexes. Bitmap indexes on partitioned tables must be local indexes. Parallel create
index and concatenated indexes are also supported.

Cardinality

The advantages of using bitmap indexes are greatest for low cardinality columns: that
is, columns in which the number of distinct values is small compared to the number of
rows in the table. If the number of distinct values of a column is less than 1% of the
number of rows in the table, or if the values in a column are repeated more than 100

Schema Objects 5-33

Overview of Indexes

times, then the column is a candidate for a bitmap index. Even columns with a lower
number of repetitions and thus higher cardinality can be candidates if they tend to be
involved in complex conditions in the WHERE clauses of queries.

For example, on a table with 1 million rows, a column with 10,000 distinct values is a
candidate for a bitmap index. A bitmap index on this column can out-perform a B-tree
index, particularly when this column is often queried in conjunction with other
columns.

B-tree indexes are most effective for high-cardinality data: that is, data with many
possible values, such as CUSTOMER_NAME or PHONE_NUMBER. In some situations, a
B-tree index can be larger than the indexed data. Used appropriately, bitmap indexes
can be significantly smaller than a corresponding B-tree index.

In ad hoc queries and similar situations, bitmap indexes can dramatically improve
query performance. AND and OR conditions in the WHERE clause of a query can be
quickly resolved by performing the corresponding Boolean operations directly on the
bitmaps before converting the resulting bitmap to rowids. If the resulting number of
rows is small, the query can be answered very quickly without resorting to a full table
scan of the table.

Bitmap Index Example
Table 5-1 shows a portion of a company's customer data.

Table 5-1 Bitmap Index Example

MARITAL _ INCOME _

CUSTOMER # STATUS REGION GENDER LEVEL

101 single east male bracket_1
102 married central female bracket_4
103 married west female bracket_2
104 divorced west male bracket_4
105 single central female bracket_2
106 married central female bracket_3

MARITAL_STATUS, REGION, GENDER, and INCOME_LEVEL are all low-cardinality
columns. There are only three possible values for marital status and region, two
possible values for gender, and four for income level. Therefore, it is appropriate to
create bitmap indexes on these columns. A bitmap index should not be created on
CUSTOMER# because this is a high-cardinality column. Instead, use a unique B-tree
index on this column to provide the most efficient representation and retrieval.

Table 5-2 illustrates the bitmap index for the REGION column in this example. It
consists of three separate bitmaps, one for each region.

5-34 Oracle Database Concepts

Overview of Indexes

Table 5-2 Sample Bitmap

REGION="east" REGION='central’ REGION='west'
1 0 0
0 1 0
0 0 1
0 0 1
0 1 0
0 1 0

Each entry or bit in the bitmap corresponds to a single row of the CUSTOMER table. The
value of each bit depends upon the values of the corresponding row in the table. For
instance, the bitmap REGION="east ' contains a one as its first bit. This is because the
region is east in the first row of the CUSTOMER table. The bitmap REGION='east'
has a zero for its other bits because none of the other rows of the table contain east as
their value for REGION.

An analyst investigating demographic trends of the company's customers can ask,
"How many of our married customers live in the central or west regions?" This
corresponds to the following SQL query:

SELECT COUNT (*) FROM CUSTOMER
WHERE MARITAL_STATUS = 'married' AND REGION IN ('central', 'west');

Bitmap indexes can process this query with great efficiency by counting the number of
ones in the resulting bitmap, as illustrated in Figure 5-8. To identify the specific
customers who satisfy the criteria, the resulting bitmap can be used to access the table.

Figure 5-8 Running a Query Using Bitmap Indexes

status = region = region =

'married’ ‘central’ ‘west'

0 0 0 0 0 0
1 1 0 1 1 1
T amo (9 or = T anp ! - 1
0 0 1 0 1 0
0 1 0 0 1 0
1 1 0 1 1 1

Bitmap Indexes and Nulls

Bitmap indexes can include rows that have NULL values, unlike most other types of
indexes. Indexing of nulls can be useful for some types of SQL statements, such as
queries with the aggregate function COUNT.

Bitmap Indexes on Partitioned Tables

Like other indexes, you can create bitmap indexes on partitioned tables. The only
restriction is that bitmap indexes must be local to the partitioned table—they cannot be
global indexes. Global bitmap indexes are supported only on nonpartitioned tables.

Schema Objects 5-35

Overview of Index-Organized Tables

See Also:

» Oracle Database VLDB and Partitioning Guide for information about
partitioned tables and descriptions of local and global indexes

» Oracle Database VLDB and Partitioning Guide

» Oracle Database Performance Tuning Guide for more information
about using bitmap indexes, including an example of indexing
null values

Bitmap Join Indexes

In addition to a bitmap index on a single table, you can create a bitmap join index,
which is a bitmap index for the join of two or more tables. A bitmap join index is a
space efficient way of reducing the volume of data that must be joined by performing
restrictions in advance. For each value in a column of a table, a bitmap join index
stores the rowids of corresponding rows in one or more other tables. In a data
warehousing environment, the join condition is an equi-inner join between the
primary key column or columns of the dimension tables and the foreign key column
or columns in the fact table.

Bitmap join indexes are much more efficient in storage than materialized join views, an
alternative for materializing joins in advance. This is because the materialized join
views do not compress the rowids of the fact tables.

See Also: Oracle Database Data Warehousing Guide for more
information on bitmap join indexes

Overview of Index-Organized Tables

An index-organized table has a storage organization that is a variant of a primary
B-tree. Unlike an ordinary (heap-organized) table whose data is stored as an
unordered collection (heap), data for an index-organized table is stored in a B-tree
index structure in a primary key sorted manner. Besides storing the primary key
column values of an index-organized table row, each index entry in the B-tree stores
the nonkey column values as well.

As shown in Figure 5-9, the index-organized table is somewhat similar to a
configuration consisting of an ordinary table and an index on one or more of the table
columns, but instead of maintaining two separate storage structures, one for the table
and one for the B-tree index, the database system maintains only a single B-tree index.
Also, rather than having a row's rowid stored in the index entry, the nonkey column
values are stored. Thus, each B-tree index entry contains <primary_key_value,
non_primary_key_ column_values>.

Figure 5-9 Structure of a Regular Table Compared with an Index-Organized Table

Regular Table and Index Index-Organized Table
Table Index
Index Finance 5543
Finance ROWID P Finance | 5543 Invest 6879
Invest ROWID » Invest 6879

Table Data Stored
in Index

5-36 Oracle Database Concepts

Overview of Index-Organized Tables

Applications manipulate the index-organized table just like an ordinary table, using
SQL statements. However, the database system performs all operations by
manipulating the corresponding B-tree index.

Table 5-3 summarizes the differences between index-organized tables and ordinary
tables.

Table 5-3 Comparison of Index-Organized Tables with Ordinary Tables

Ordinary Table Index-Organized Table

Rowid uniquely identifies a row. Primary key =~ Primary key uniquely identifies a row.

can be optionally specified Primary key must be specified

Physical rowid in ROWID pseudocolumn Logical rowid in ROWID pseudocolumn allows
allows building secondary indexes building secondary indexes

Access is based on rowid Access is based on logical rowid

Sequential scan returns all rows Full-index scan returns all rows

Can be stored in a cluster with other tables Cannot be stored in a cluster

Can contain a column of the LONG datatype Can contain LOB columns but not LONG
and columns of LOB datatypes columns

Can contain virtual columns (only relational =~ Cannot contain virtual columns
heap tables are supported)

This section includes the following topics:

= Benefits of Index-Organized Tables

s Index-Organized Tables with Row Overflow Area

= Secondary Indexes on Index-Organized Tables

= Bitmap Indexes on Index-Organized Tables

= Partitioned Index-Organized Tables

s B-tree Indexes on UROWID Columns for Heap- and Index-Organized Tables
s Index-Organized Table Applications

Benefits of Index-Organized Tables

Index-organized tables provide faster access to table rows by the primary key or any
key that is a valid prefix of the primary key. Presence of nonkey columns of a row in
the B-tree leaf block itself avoids an additional block access. Also, because rows are
stored in primary key order, range access by the primary key (or a valid prefix)
involves minimum block accesses.

In order to allow even faster access to frequently accessed columns, you can use a row
overflow segment (as described later) to push out infrequently accessed nonkey
columns from the B-tree leaf block to an optional (heap-organized) overflow segment.
This allows limiting the size and content of the portion of a row that is actually stored
in the B-tree leaf block, which may lead to a higher number of rows in each leaf block
and a smaller B-tree.

Unlike a configuration of heap-organized table with a primary key index where
primary key columns are stored both in the table and in the indeXx, there is no such
duplication here because primary key column values are stored only in the B-tree
index.

Schema Objects 5-37

Overview of Index-Organized Tables

Because rows are stored in primary key order, a significant amount of additional
storage space savings can be obtained through the use of key compression.

Use of primary-key based logical rowids, as opposed to physical rowids, in secondary
indexes on index-organized tables allows high availability. This is because, due to the
logical nature of the rowids, secondary indexes do not become unusable even after a
table reorganization operation that causes movement of the base table rows. At the
same time, through the use of physical guess in the logical rowid, it is possible to get
secondary index based index-organized table access performance that is comparable to
performance for secondary index based access to an ordinary table.

See Also:
= "Key Compression" on page 5-30
= "Secondary Indexes on Index-Organized Tables" on page 5-38

s Oracle Database Administrator’s Guide for information about
creating and maintaining index-organized tables

Index-Organized Tables with Row Overflow Area

B-tree index entries are usually quite small, because they only consist of the key value

and a ROWID. In index-organized tables, however, the B-tree index entries can be large,
because they consist of the entire row. This may destroy the dense clustering property

of the B-tree index.

Oracle Database provides the OVERFLOW clause to handle this problem. You can
specify an overflow tablespace so that, if necessary, a row can be divided into the
following two parts that are then stored in the index and in the overflow storage area
segment, respectively:

= The index entry, containing column values for all the primary key columns, a
physical rowid that points to the overflow part of the row, and optionally a few of
the nonkey columns

s The overflow part, containing column values for the remaining nonkey columns

With OVERFLOW, you can use two clauses, PCTTHRESHOLD and INCLUDING, to control
how Oracle Database determines whether a row should be stored in two parts and if
so, at which nonkey column to break the row. Using PCTTHRESHOLD, you can specify
a threshold value as a percentage of the block size. If all the nonkey column values can
be accommodated within the specified size limit, the row will not be broken into two
parts. Otherwise, starting with the first nonkey column that cannot be accommodated,
the rest of the nonkey columns are all stored in the row overflow segment for the table.

The INCLUDING clause lets you specify a column name so that any nonkey column,
appearing in the CREATE TABLE statement after that specified column, is stored in the
row overflow segment. Note that additional nonkey columns may sometimes need to
be stored in the overflow due to PCTTHRESHOLD-based limits.

See Also: Oracle Database Administrator’s Guide for examples of
using the OVERFLOW clause

Secondary Indexes on Index-Organized Tables

Secondary index support on index-organized tables provides efficient access to
index-organized table using columns that are not the primary key nor a prefix of the
primary key.

5-38 Oracle Database Concepts

Overview of Index-Organized Tables

Oracle Database constructs secondary indexes on index-organized tables using logical
row identifiers (logical rowids) that are based on the table's primary key. A logical
rowid includes a physical guess, which identifies the block location of the row. Oracle
Database can use these physical guesses to probe directly into the leaf block of the
index-organized table, bypassing the primary key search. Because rows in
index-organized tables do not have permanent physical addresses, the physical
guesses can become stale when rows are moved to new blocks.

For an ordinary table, access by a secondary index involves a scan of the secondary
index and an additional I/O to fetch the data block containing the row. For
index-organized tables, access by a secondary index varies, depending on the use and
accuracy of physical guesses:

= Without physical guesses, access involves two index scans: a secondary index scan
followed by a scan of the primary key index.

= With accurate physical guesses, access involves a secondary index scan and an
additional I/O to fetch the data block containing the row.

= With inaccurate physical guesses, access involves a secondary index scan and an
I/0O to fetch the wrong data block (as indicated by the physical guess), followed by
a scan of the primary key index.

See Also: "Logical Rowids" on page 26-17

Bitmap Indexes on Index-Organized Tables

Oracle Database supports bitmap indexes on partitioned and nonpartitioned
index-organized tables. A mapping table is required for creating bitmap indexes on an
index-organized table.

Mapping Table

The mapping table is a heap-organized table that stores logical rowids of the
index-organized table. Specifically, each mapping table row stores one logical rowid
for the corresponding index-organized table row. Thus, the mapping table provides
one-to-one mapping between logical rowids of the index-organized table rows and
physical rowids of the mapping table rows.

A bitmap index on an index-organized table is similar to that on a heap-organized
table except that the rowids used in the bitmap index on an index-organized table are
those of the mapping table as opposed to the base table. There is one mapping table for
each index-organized table and it is used by all the bitmap indexes created on that
index-organized table.

In both heap-organized and index-organized base tables, a bitmap index is accessed
using a search key. If the key is found, the bitmap entry is converted to a physical
rowid. In the case of heap-organized tables, this physical rowid is then used to access
the base table. However, in the case of index-organized tables, the physical rowid is
then used to access the mapping table. The access to the mapping table yields a logical
rowid. This logical rowid is used to access the index-organized table.

Though a bitmap index on an index-organized table does not store logical rowids, it is
still logical in nature.

Schema Objects 5-39

Overview of Application Domain Indexes

Note: Movement of rows in an index-organized table does not leave
the bitmap indexes built on that index-organized table unusable.
Movement of rows in the index-organized table does invalidate the
physical guess in some of the mapping table's logical rowid entries.
However, the index-organized table can still be accessed using the
primary key.

Partitioned Index-Organized Tables

You can partition an index-organized table by RANGE, HASH, or LIST on column
values. The partitioning columns must form a subset of the primary key columns. Just
like ordinary tables, local partitioned (prefixed and non-prefixed) index as well as
global partitioned (prefixed) indexes are supported for partitioned index-organized
tables.

B-tree Indexes on UROWID Columns for Heap- and Index-Organized Tables

UROWID datatype columns can hold logical primary key-based rowids identifying
rows of index-organized tables. Oracle Database supports indexes on UROWID
datatypes of a heap- or index-organized table. The index supports equality predicates
on UROWID columns. For predicates other than equality or for ordering on UROWID
datatype columns, the index is not used.

Index-Organized Table Applications

The superior query performance for primary key based access, high availability
aspects, and reduced storage requirements make index-organized tables ideal for the
following kinds of applications:

s Online transaction processing (OLTP)

= Internet (for example, search engines and portals)

» E-commerce (for example, electronic stores and catalogs)
= Data warehousing

= Analytic functions

Overview of Application Domain Indexes

Oracle Database provides extensible indexing to accommodate indexes on
customized complex datatypes such as documents, spatial data, images, and video
clips and to make use of specialized indexing techniques. With extensible indexing,
you can encapsulate application-specific index management routines as an indextype
schema object and define a domain index (an application-specific index) on table
columns or attributes of an object type. Extensible indexing also provides efficient
processing of application-specific operators.

The application software, called the cartridge, controls the structure and content of a
domain index. The Oracle database server interacts with the application to build,
maintain, and search the domain index. The index structure itself can be stored in the
Oracle database as an index-organized table or externally as a file.

See Also: Oracle Database Data Cartridge Developer’s Guide for
information about using data cartridges within the Oracle database
extensibility architecture

5-40 Oracle Database Concepts

Overview of Clusters

Overview of Clusters

Clusters are an optional method of storing table data. A cluster is a group of tables
that share the same data blocks because they share common columns and are often
used together. For example, the employees and departments table share the
department_id column. When you cluster the employees and departments
tables, Oracle Database physically stores all rows for each department from both the
employees and departments tables in the same data blocks.

Figure 5-10 shows what happens when you cluster the employees and

departments tables:

Figure 5-10 Clustered Table Data

Clustered Key
department_id

20 department_name location_id
marketing 1800
employee_id last_name
201 Hartstein
202 Fay

110 | department_name location_id
accounting 1700
employee_id last_name
205 Higgins
206 Gietz

Clustered Tables

Related data stored
together, more

efficiently

employees

employee_id last_name | department_id
201 Hartstein 20

202 Fay 20

203 Mavris 40

204 Baer 70

205 Higgins 110

206 Gietz 110

departments

department_id

department_name | location_id

20
110

Marketing

Accounting

1800
1700

Unclustered Tables

related data stored
apart, taking up

more space

Because clusters store related rows of different tables together in the same data blocks,
properly used clusters offers these benefits:

s DiskI/O is reduced for joins of clustered tables.

= Access time improves for joins of clustered tables.

Schema Objects 5-41

Overview of Hash Clusters

= Ina cluster, a cluster key value is the value of the cluster key columns for a
particular row. Each cluster key value is stored only once each in the cluster and
the cluster index, no matter how many rows of different tables contain the value.
Therefore, less storage is required to store related table and index data in a cluster
than is necessary in nonclustered table format. For example, in Figure 5-10, notice
how each cluster key (each department_id) is stored just once for many rows
that contain the same value in both the employees and departments tables.

See Also: Oracle Database Administrator’s Guide for information
about creating and managing clusters

Overview of Hash Clusters

Hash clusters group table data in a manner similar to regular index clusters (clusters
keyed with an index rather than a hash function). However, a row is stored in a hash
cluster based on the result of applying a hash function to the row's cluster key value.
All rows with the same key value are stored together on disk.

Hash clusters are a better choice than using an indexed table or index cluster when a
table is queried frequently with equality queries (for example, return all rows for
department 10). For such queries, the specified cluster key value is hashed. The
resulting hash key value points directly to the area on disk that stores the rows.

Hashing is an optional way of storing table data to improve the performance of data
retrieval. To use hashing, create a hash cluster and load tables into the cluster. Oracle
Database physically stores the rows of a table in a hash cluster and retrieves them
according to the results of a hash function.

Sorted hash clusters allow faster retrieval of data for applications where data is
consumed in the order in which it was inserted.

Oracle Database uses a hash function to generate a distribution of numeric values,
called hash values, which are based on specific cluster key values. The key of a hash
cluster, like the key of an index cluster, can be a single column or composite key
(multiple column key). To find or store a row in a hash cluster, Oracle Database applies
the hash function to the row's cluster key value. The resulting hash value corresponds
to a data block in the cluster, which Oracle Database then reads or writes on behalf of
the issued statement.

A hash cluster is an alternative to a nonclustered table with an index or an index
cluster. With an indexed table or index cluster, Oracle Database locates the rows in a
table using key values that Oracle Database stores in a separate index. To find or store
a row in an indexed table or cluster, at least two I/Os must be performed:

= One or more I/Os to find or store the key value in the index

s Another I/O to read or write the row in the table or cluster

See Also: Oracle Database Administrator’s Guide for information
about creating and managing hash clusters

5-42 Oracle Database Concepts

6

Schema Object Dependencies

If the definition of object A references object B, then A depends on B. This chapter
explains dependencies among schema objects, and how Oracle Database automatically
tracks and manages these dependencies. Because of this automatic dependency
management, A never uses an obsolete version of B, and you almost never have to
explicitly recompile A after you change B.

Topics:

s Overview of Schema Object Dependencies
= Querying Object Dependencies

» Object Status

» Invalidation of Dependent Objects

s Guidelines for Reducing Invalidation

= Object Revalidation

= Name Resolution in Schema Scope

s Local Dependency Management

= Remote Dependency Management

= Remote Procedure Call (RPC) Dependency Management
s Shared SQL Dependency Management

Overview of Schema Object Dependencies

Some types of schema objects can reference other objects in their definitions. For
example, a view is defined by a query that references tables or other views, and the
body of a subprogram can include SQL statements that reference other objects. If the
definition of object A references object B, then A is a dependent object (with respect to
B) and B is a referenced object (with respect to A).

The following query shows which object types in your database are dependent on
other objects:

SELECT DISTINCT TYPE
FROM DBA_DEPENDENCIES
[ORDER BY TYPE]

The following query shows which object types in your database are referenced by
other objects:

SELECT DISTINCT REFERENCED_TYPE

Schema Object Dependencies 6-1

Overview of Schema Object Dependencies

FROM DBA_DEPENDENCIES
[ORDER BY REFERENCED_TYPE]

The SQL*Plus script in Example 6-1 shows output from the preceding two queries.

Example 6-1 Displaying Dependent and Referenced Object Types

SQL> SELECT DISTINCT TYPE
2 FROM DBA_DEPENDENCIES
3 ORDER BY TYPE;

DIMENSION
EVALUATION CONTXT
FUNCTION
INDEX
INDEXTYPE
JAVA CLASS
JAVA DATA
MATERIALIZED VIEW
OPERATOR
PACKAGE
PACKAGE BODY
PROCEDURE
RULE

RULE SET
SYNONYM
TABLE
TRIGGER

TYPE

TYPE BODY
UNDEFINED
VIEW

XML SCHEMA

22 rows selected.

SQL> SELECT DISTINCT REFERENCED_TYPE
2 FROM DBA_DEPENDENCIES
3 ORDER BY REFERENCED_TYPE;

REFERENCED_TYPE
EVALUATION CONTXT
FUNCTION
INDEXTYPE

JAVA CLASS
LIBRARY
NON-EXISTENT
OPERATOR
PACKAGE
PROCEDURE
SEQUENCE
SYNONYM

TABLE

TYPE

VIEW

XML SCHEMA

6-2 Oracle Database Concepts

Overview of Schema Object Dependencies

15 rows selected.
SQL>

If you alter the definition of a referenced object, dependent objects might or might not
continue to function without error, depending on the type of alteration. For example, if
you drop a table, no view based on the dropped table is usable.

As an example of a schema object change that invalidates some dependents but not
others, consider the two views in Example 6-2, which are based on the
HR.EMPLOYEES table.

Suppose you determine that the EMAIL column in the EMPLOYEES table must be
lengthened. You alter the table as follows:

ALTER TABLE employees MODIFY email VARCHAR2 (100);
Because the COMMISSIONED view does not include EMATIL in its select list, it is not

invalidated. However, because the SIXFIGURES view selects all columns in the table,
it is invalidated.

select object_name, status from user_objects where object_type = 'VIEW';
OBJECT_NAME STATUS

COMMISSIONED VALID

SIXFIGURES INVALID

Example 6-2 Schema Object Change that Invalidates Some Dependents

CREATE VIEW commissioned AS
SELECT first_name, last_name, commission_pct FROM employees
WHERE commission_pct > 0.00;

CREATE VIEW sixfigures AS
SELECT * FROM employees
WHERE salary >= 100000;

select object_name, status from user_objects where object_type = 'VIEW';
OBJECT_NAME STATUS
COMMISSIONED VALID
SIXFIGURES VALID

A view depends on every object referenced in its query. The view in Example 6-3, oc_
inventories, depends on the object type inventory_typ, the function
warehouse_typ, and the tables inventories and warehouse.

Example 6-3 View that Depends on Multiple Objects

CREATE TYPE inventory_typ
OID '82A4AF6A4CDA656DE034080020E0EE3D!

AS OBJECT
(product_id NUMBER (6)
, warehouse warehouse_typ

, quantity_on_hand NUMBER (8)
)
/
CREATE OR REPLACE VIEW oc_inventories OF inventory typ
WITH OBJECT OID (product_id)

Schema Object Dependencies 6-3

Querying Object Dependencies

AS SELECT i.product_id,
warehouse_typ (w.warehouse_id, w.warehouse_name, w.location_id),
i.quantity_on_hand
FROM inventories i, warehouses w
WHERE i.warehouse_id=w.warehouse_id;

Notes:
= CREATE statements automatically update all dependencies.

s Dynamic SQL statements do not create dependencies. For
example, the following statement does not create a dependency on
tabl:

EXECUTE IMMEDIATE 'SELECT * FROM tabl ...'

Querying Object Dependencies

The static data dictionary views USER_DEPENDENCIES, ALL_DEPENDENCIES, and
DBA_DEPENDENCIES describe dependencies between database objects.

The utldtree.sgl SQL script creates the view DEPTREE, which contains
information on the object dependency tree, and the view IDEPTREE, a presorted,
pretty-print version of DEPTREE.

See Also: Oracle Database Reference for more information about the
DEPTREE, IDEPTREE, and utldtree. sql script

Object Status

Every database object has one of the status values described in Table 6-1.

Table 6-1 Database Object Status

Status Meaning

Valid The object was successfully compiled, using the current definition in
the data dictionary.

Compiled with errors ~ The most recent attempt to compile the object produced errors.

Invalid The object is marked invalid because an object that it references has
changed. (Only a dependent object can be invalid.)

Unauthorized An access privilege on a referenced object was revoked. (Only a
dependent object can be unauthorized.)

Note: The static data dictionary views USER_OBJECTS, ALL_
OBJECTS, and DBA_OBJECTS do not distinguish between "Compiled
with errors," "Invalid," and "Unauthorized"—they describe all of these
as INVALID.

Invalidation of Dependent Objects

If object A depends on object B, which depends on object C, then A is a direct
dependent of B, B is a direct dependent of C, and A is an indirect dependent of C.

Direct dependents are invalidated only by changes to the referenced object that affect
them (changes to the signature of the referenced object).

6-4 Oracle Database Concepts

Invalidation of Dependent Objects

Indirect dependents can be invalidated by changes to the reference object that do not
affect them: If a change to C invalidates B, it invalidates A (and all other direct and
indirect dependents of B). This is called cascading invalidation.

Table 6-2 shows how objects are affected by changes to other objects on which they
depend.

Table 6-2 Operations that Affect Object Status

Operation Resulting Status of Dependent Objects

ALTER TABLE table ADD column INVALID when:

= Dependent object (except a view) uses
SELECT * on table.

= Dependent object uses
table%rowtype.

= Dependent object performs INSERT on
table without specifying column list.

= Dependent object references tablein
query that contains a SQL join.

= Dependent object references tablein
query that references a PL/SQL
variable.

Otherwise, no change.

ALTER TABLE table INVALID when:
{MODIFY|RENAME | DROP | SET UNUSED}

column = Dependent object directly references

column.
ALTER TABLE table DROP CONSTRAINT not_

null constraint = Dependent object uses SELECT * on

table.

= Dependent object uses
table%rowtype.

= Dependent object performs INSERT on
table without specifying column list.

Otherwise, no change.

Schema Object Dependencies 6-5

Invalidation of Dependent Objects

Table 6-2 (Cont.) Operations that Affect Object Status

Operation Resulting Status of Dependent Objects
CREATE OR REPLACE VIEW view INVALID when column lists of new and old
Online Table Redefinition (DBMS_ ?;ﬁg‘vi’tilﬁnsisd:gf; and at least one of the
REDEFINITION) & ’

= Dependent object references column
that is modified or dropped in new
view or table definition.

= Dependent object uses view¥rowtype
or table%rowtype.

= Dependent object performs INSERT on
view or table without specifying
column list.

s New view definition introduces new
columns, and dependent object
references view or table in query that
contains a SQL join.

s New view definition introduces new
columns, and dependent object
references view or table in query that
references a PL/SQL variable.

= Dependent object references view or
table in RELIES ON clause.

Otherwise, no change.

CREATE OR REPLACE SYNONYM synonym INVALID when:

= New and old synonym targets differ,
and one is not a table.

= Both old and new synonym targets are
tables, and the tables have different
column lists or different privilege
grants.

= Both old and new synonym targets are
tables, and dependent object is a view
that references a column that
participates in a unique index on the
old target but not in a unique index on
the new target.

Otherwise, no change.

RENAME INVALID

{TABLE | VIEW | SEQUENCE | SYNONYM}

DROP INDEX A dependent of the table on which the
index is built becomes INVALID when:

s The index is a function-based index
and the dependent object is a trigger.

» The index is a unique index, the
dependent object is a view, and the
view references a column participating
in the unique index.

DROP object INVALID

6-6 Oracle Database Concepts

Invalidation of Dependent Objects

Table 6-2 (Cont.) Operations that Affect Object Status

Operation

Resulting Status of Dependent Objects

CREATE OR REPLACE
{ PROCEDURE | FUNCTION}

INVALID if the call signature changes. The
call signature is the parameter list (order,
names, and types of parameters), return
type, purityl, determinism, parallelism,
pipelining, and (if the procedure or
function is implemented in C or Java)
implementation properties.

Valid for other changes, including changes
to the procedure or function body:.

CREATE OR REPLACE PACKAGE

INVALID when:

= Dependent object references a dropped
or renamed package item.

= Dependent object references a package
procedure or function whose call
signature or entry-point number?,
changed.

If referenced procedure or function has
multiple overload candidates,
dependent object is invalidated if any
overload candidate's call signature or
entry point number changed, or if a
candidate was added or dropped.

= Dependent object references a package
cursor whose call signature, rowtype,
or entry point number changed.

= Dependent object references a package
type or subtype whose definition
changed.

= Dependent object references a package
variable or constant whose name,
datatype, initial value, or offset
number changed.

s Package purity’ changed.

Otherwise, no change.

CREATE OR REPLACE PACKAGE BODY

No change.

FROM user

REVOKE DML-object-privil ege3 ON object

All objects of user that depend on object
are INVALID.*

FROM PUBLIC

REVOKE DML-object-privil ege3 ON object

All objects in database that depend on
object are INVALID.

1 Purity refers to a set of rules for preventing side effects (such as unexpected data changes) when invoking
PL/SQL functions within SQL queries. Package purity refers to the purity of the code in the package

initialization block.

2 The entry-point number of a procedure or function is determined by its location in the PL/SQL package
code. A procedure or function added to the end of a PL/SQL package is given a new entry-point number.

3 DML object privileges are SELECT, INSERT, UPDATE, DELETE, and EXECUTE.
* Revalidation does not require recompilation. For explanation, see "Fast Revalidation of Invalid PL/SQL

Objects" on page 6-9.

Topics:

= Session State and Referenced Packages

= Security Authorization

Schema Object Dependencies 6-7

Guidelines for Reducing Invalidation

Session State and Referenced Packages

Each session that references a package construct has its own instantiation of that
package, including a persistent state of any public and private variables, cursors, and
constants. All of a session's package instantiations, including state, can be lost if any of
the session's instantiated packages are subsequently invalidated and revalidated.

Security Authorization

Oracle Database notices when a DML object or system privilege is granted to or
revoked from a user or PUBLIC and automatically invalidates all the owner's
dependent objects. Oracle Database invalidates the dependent objects to verify that an
owner of a dependent object continues to have the necessary privileges for all
referenced objects.

Guidelines for Reducing Invalidation

To reduce invalidation of dependent objects, follow these guidelines:
= Add New Items to End of Package
= Reference Each Table Through a View

Add New ltems to End of Package

When adding new items to a package, add them to the end of the package. This
preserves the entrypoint numbers of existing top-level package items, preventing their
invalidation.

For example, consider the following package:

CREATE OR REPLACE PACKAGE pkgl IS
FUNCTION get_var RETURN VARCHAR2;
END;

Adding an item to the end of pkgl, as follows, does not invalidate dependents that
reference the get_var function:

CREATE OR REPLACE PACKAGE pkgl IS
FUNCTION get_var RETURN VARCHAR2;
PROCEDURE set_var (v VARCHAR2);

END;

Inserting an item between the get_var function and the set_var procedure, as
follows, invalidates dependents that reference the set_var function:

CREATE OR REPLACE PACKAGE pkgl IS
FUNCTION get_var RETURN VARCHAR2;
PROCEDURE assert_var (v VARCHAR2);
PROCEDURE set_var (v VARCHAR2);

END;

Reference Each Table Through a View

Reference tables indirectly, using views. This enables you to do the following:

= Add columns to the table without invalidating dependent views or dependent
PL/SQL objects

= Modify or delete columns not referenced by the view without invalidating
dependent objects

6-8 Oracle Database Concepts

Object Revalidation

The statement CREATE OR REPLACE VIEW does not invalidate an existing view or its
dependents if the new ROWTYPE matches the old ROWTYPE.

Object Revalidation

An object that is not valid when it is referenced must be validated before it can be
used. Validation occurs automatically when an object is referenced; it does not require
explicit user action.

If an object is not valid, its status is either compiled with errors, unauthorized, or
invalid. For definitions of these terms, see Table 6-1.

Topics:

= Revalidation of Objects that Compiled with Errors

= Revalidation of Unauthorized Objects

= Revalidation of Invalid SQL Objects

= Revalidation of Invalid PL/SQL Objects

= Fast Revalidation of Invalid PL/SQL Objects

Revalidation of Objects that Compiled with Errors

The compiler cannot automatically revalidate an object that compiled with errors. The
compiler recompiles the object, and if it recompiles without errors, it is revalidated;
otherwise, it remains invalid.

Revalidation of Unauthorized Objects

The compiler checks whether the unauthorized object has access privileges to all of its
referenced objects. If so, the compiler revalidates the unauthorized object without
recompiling it. If not, the compiler issues appropriate error messages.

Revalidation of Invalid SQL Objects

The SQL compiler recompiles the invalid object. If the object recompiles without
errors, it is revalidated; otherwise, it remains invalid.

Revalidation of Invalid PL/SQL Objects

For an invalid PL/SQL program unit (procedure, function, or package), the PL/SQL
compiler checks whether any referenced object changed in a way that affects the
invalid object. If so, the compiler recompiles the invalid object. If the object recompiles
without errors, it is revalidated; otherwise, it remains invalid. If not, the compiler
revalidates the invalid object without recompiling it—see "Fast Revalidation of Invalid
PL/SQL Objects".

Fast Revalidation of Invalid PL/SQL Objects

For an invalid PL/SQL program unit (procedure, function, or package), the PL/SQL
compiler checks whether any referenced object changed in a way that affects the
invalid object. If not, the compiler revalidates the invalid object without recompiling it.
Fast revalidation is usually performed on objects that were invalidated due to
cascading invalidation.

For example, consider the following table, package, and procedure:

CREATE TABLE tabl(n NUMBER) ;

CREATE OR REPLACE PACKAGE pkgl IS

Schema Object Dependencies 6-9

Name Resolution in Schema Scope

TYPE recl IS tabl%ROWTYPE; -- pkgl depends on tabl
PROCEDURE p (n NUMBER) ;
END pkgl;

CREATE OR REPLACE PROCEDURE procl IS
BEGIN

pkgl.p(5); -- procl depends on pkgl
END procl;

The following statement invalidates pkgl (which depends on tabl), and this
invalidation cascades to procl (which depends on pkgl):
ALTER TABLE tabl ADD(v VARCHAR2(20));

However, because the signature of pkgl . p has not changed, the PL/SQL compiler can
revalidate proc1 without recompiling it.

Name Resolution in Schema Scope

Object names referenced in SQL statements have one or more pieces. Pieces are
separated by periods—for example, hr . employees.department_id.

Oracle Database uses the following procedure to try to resolve an object name:
1. Try to qualify the first piece of the object name.

If the object name has only one piece, then that piece is the first piece. Otherwise,
the first piece is the piece to the left of the leftmost period; for example, in
hr.employees.department_id, hr is the first piece.

The procedure for trying to qualify the first piece is:

a. If the object name is a table name that appears in the FROM clause of a SELECT
statement, and the object name has more than one piece, go to step d.
Otherwise, go to step b.

b. Search the current schema for an object whose name matches the first piece.
If found, go to step 2. Otherwise, go to step c.

c. Search for a public synonym that matches the first piece.
If found, go to step 2. Otherwise, go to step d.

d. Search for a schema whose name matches the first piece.

If found, and if the object name has a second piece, go to step e. Otherwise,
return an error—the object name cannot be qualified.

e. Search the schema found at step d for a built-in function whose name matches
the second piece of the object name.

If found, the schema redefined that built-in function. The object name resolves
to the original built-in function, not to the schema-defined function of the
same name. Go to step 2.

If not found, return an error—the object name cannot be qualified.

2. A schema object has been qualified. Any remaining pieces of the object name must
match a valid part of this schema object.

For example, if the object name is hr . employees.department_id, hr is
qualified as a schema. If employees is qualified as a table, department_id must
correspond to a column of that table. If employees is qualified as a package,

6-10 Oracle Database Concepts

Remote Dependency Management

department_id must correspond to a public constant, variable, procedure, or
function of that package.

Because of how Oracle Database resolves references, an object can depend on the
nonexistence of other objects. This situation occurs when the dependent object uses a
reference that would be interpreted differently if another object were present.

See Also: Oracle Database Administrator’s Guide for more details

Local Dependency Management

Local dependency management occurs when Oracle Database manages dependencies
among the objects in a single database. For example, a statement in a procedure can
reference a table in the same database.

Remote Dependency Management

Remote dependency management occurs when Oracle Database manages
dependencies in distributed environments across a network. For example, an Oracle
Forms trigger can depend on a schema object in the database. In a distributed
database, a local view's defining query can reference a remote table.

Oracle Database also manages distributed database dependencies. For example, an
Oracle Forms application might contain a trigger that references a table. The database
system must account for dependencies among such objects. Oracle Database uses
different mechanisms to manage remote dependencies, depending on the objects
involved.

Topics:
= Dependencies Among Local and Remote Database Procedures
s Dependencies Among Other Remote Objects

= Dependencies of Applications

Dependencies Among Local and Remote Database Procedures

Dependencies among stored procedures (including functions, packages, and triggers)
in a distributed database system are managed using either time-stamp checking or
signature checking (see "Time-Stamp Checking" on page 6-12 and "Signature
Checking" on page 6-14).

The dynamic initialization parameter REMOTE_DEPENDENCIES_MODE determines

whether time stamps or signatures govern remote dependencies.

See Also: Oracle Database PL/SQL Language Reference

Dependencies Among Other Remote Objects

Oracle Database does not manage dependencies among remote schema objects other
than local-procedure-to-remote-procedure dependencies.

For example, assume that a local view is created and defined by a query that
references a remote table. Also assume that a local procedure includes a SQL statement
that references the same remote table. Later, the definition of the table is altered.

As a result, the local view and procedure are never invalidated, even if the view or
procedure is used after the table is altered, and even if the view or procedure now
returns errors when used. In this case, the view or procedure must be altered manually

Schema Object Dependencies 6-11

Remote Procedure Call (RPC) Dependency Management

so that errors are not returned. In such cases, lack of dependency management is
preferable to unnecessary recompilations of dependent objects.

Dependencies of Applications

Code in database applications can reference objects in the connected database. For
example, OCI and precompiler applications can submit anonymous PL/SQL blocks.
Triggers in Oracle Forms applications can reference a schema object.

Such applications are dependent on the schema objects they reference. Dependency
management techniques vary, depending on the development environment. Oracle
Database does not automatically track application dependencies.

See Also: Manuals for your application development tools and your
operating system for more information about managing the remote
dependencies within database applications

Remote Procedure Call (RPC) Dependency Management

Remote procedure call (RPC) dependency management occurs when a local stored
procedure calls a remote procedure in a distributed database system.

Topics:
s Time-Stamp Checking
s Signature Checking

= Controlling Remote Dependencies

Time-Stamp Checking

In the time-stamp checking dependency model, whenever a procedure is compiled or
recompiled, its time stamp (the time it is created, altered, or replaced) is recorded in
the data dictionary. The time stamp is a record of the time the procedure is created,
altered, or replaced. Additionally, the compiled version of the procedure contains
information about each remote procedure that it references, including the remote
procedure's schema, package name, procedure name, and time stamp.

When a dependent procedure is used, Oracle Database compares the remote time
stamps recorded at compile time with the current time stamps of the remotely
referenced procedures. Depending on the result of this comparison, two situations can
occur:

s The local and remote procedures run without compilation if the time stamps
match.

s The local procedure is invalidated if any time stamps of remotely referenced
procedures do not match, and an error is returned to the calling environment.
Furthermore, all other local procedures that depend on the remote procedure with
the new time stamp are also invalidated. For example, assume several local
procedures call a remote procedure, and the remote procedure is recompiled.
When one of the local procedures is run and notices the different time stamp of the
remote procedure, every local procedure that depends on the remote procedure is
invalidated.

Actual time stamp comparison occurs when a statement in the body of a local
procedure runs a remote procedure. Only at this moment are the time stamps
compared using the distributed database's communications link. Therefore, all
statements in a local procedure that precede an invalid procedure call might run

6-12 Oracle Database Concepts

Remote Procedure Call (RPC) Dependency Management

successfully. Statements subsequent to an invalid procedure call do not run at all.
Compilation is required.

Depending on how the invalid procedure is called, DML statements run before the
invalid procedure call are rolled back. For example, in the following, the UPDATE
results are rolled back as the complete PL/SQL block changes are rolled back.

BEGIN

UPDATE table set ...
invalid_proc;
COMMIT;

END;

However, with the following, the UPDATE results are final. Only the PROC call is rolled
back.

UPDATE table set ...
EXECUTE invalid_proc;
COMMIT;

If time stamps are used to handle dependencies among PL/SQL program units, then
whenever you alter a program unit or a relevant schema object, all of its dependent
units are marked as invalid and must be recompiled before they can be run.

Each program unit carries a time stamp that is set by the server when the unit is
created or recompiled. Figure 6-1 demonstrates this graphically. Procedures P1 and P2
call stored procedure P3. Stored procedure P3 references table T1. In this example,
each of the procedures is dependent on table T1. P3 depends upon T1 directly, while
P1 and P2 depend upon T1 indirectly.

Figure 6—-1 Dependency Relationships

@—Q0—0

If P3 is altered, then P1 and P2 are marked as invalid immediately, if they are on the
same server as P3. The compiled states of P1 and P2 contain records of the time stamp
of P3. Therefore, if the procedure P3 is altered and recompiled, then the time stamp on
P3 no longer matches the value that was recorded for P3 during the compilation of P1
and P2.

If P1 and P2 are on a client system, or on another Oracle Database instance in a
distributed environment, then the time stamp information is used to mark them as
invalid at run time.

The disadvantage of this dependency model is that it is unnecessarily restrictive.
Recompilation of dependent objects across the network are often performed when not
strictly necessary, leading to performance degradation.

Furthermore, on the client side, the time stamp model can lead to situations that block
an application from running at all, if the client-side application is built using PL/SQL
version 2. Earlier releases of tools, such as Oracle Forms, that used PL/SQL version 1
on the client side did not use this dependency model, because PL/SQL version 1 had
no support for stored procedures.

For releases of Oracle Forms that are integrated with PL/SQL version 2 on the client
side, the time stamp model can present problems. For example, during the installation

Schema Object Dependencies 6-13

Remote Procedure Call (RPC) Dependency Management

of the application, the application is rendered invalid unless the client-side PL/SQL
procedures that it uses are recompiled at the client site. Also, if a client-side procedure
depends on a server procedure, and if the server procedure is changed or
automatically recompiled, then the client-side PL/SQL procedure must then be
recompiled. Yet in many application environments (such as Forms run-time
applications), there is no PL/SQL compiler available on the client. This blocks the
application from running at all. The client application developer must then
redistribute new versions of the application to all customers.

Signature Checking

Oracle Database provides the additional capability of remote dependencies using RPC
signatures. The RPC signature capability affects only remote dependencies. Local
dependencies are not affected, as recompilation is always possible in this environment.

The RPC signature of a procedure contains information about the following items:
= Name of the package, procedure, or function
= Base types of the parameters

= Modes of the parameters (IN, OUT, and IN OUT)

Note: Only the types and modes of parameters are significant. The
name of the parameter does not affect the RPC signature.

If the RPC signature dependency model is in effect, a dependency on a remote
program unit causes an invalidation of the dependent unit if the dependent unit
contains a call to a procedure in the parent unit, and the RPC signature of this
procedure has been changed in an incompatible manner. A program unit can be a
package, stored procedure, stored function, or trigger.

To alleviate some of the problems with the time-stamp-only dependency model,
Oracle Database provides the additional capability of remote dependencies using RPC
signatures. The RPC signature capability affects only remote dependencies. Local
(same server) dependencies are not affected, as recompilation is always possible in this
environment.

An RPC signature is associated with each compiled stored program unit. It identifies
the unit using the following criteria:

= The name of the unit (the package, procedure, or function name).
» The types of each of the parameters of the subprogram.

= The modes of the parameters (IN, OUT, IN OUT).

s The number of parameters.

s The type of the return value for a function.

The user has control over whether RPC signatures or time stamps govern remote
dependencies.

See Also: "Controlling Remote Dependencies” on page 6-18

When the RPC signature dependency model is used, a dependency on a remote
program unit causes an invalidation of the dependent unit if the dependent unit
contains a call to a subprogram in the parent unit, and if the RPC signature of this
subprogram has been changed in an incompatible manner.

6-14 Oracle Database Concepts

Remote Procedure Call (RPC) Dependency Management

For example, consider a procedure get_emp_name stored on a server in Boston
(BOSTON_SERVER). The procedure is defined as the following:

CREATE OR REPLACE PROCEDURE get_emp_name (
emp_number IN NUMBER,
hire_date OUT VARCHAR2,
emp_name OUT VARCHAR2) AS
BEGIN
SELECT ename, to_char (hiredate, 'DD-MON-YY')
INTO emp_name, hire_date
FROM emp
WHERE empno = emp_number;
END;

When get_emp_name is compiled on BOSTON_SERVER, its RPC signature, as well as
its time stamp, is recorded.

Suppose that on another server in California, some PL/SQL code calls get_emp_name
identifying it using a DBlink called BOSTON_SERVER, as follows:

CREATE OR REPLACE PROCEDURE print_ename (emp_number IN NUMBER) AS
hire_date VARCHAR2 (12) ;
ename VARCHAR2 (10) ;

BEGIN
get_emp_name@BOSTON_SERVER (emp_number, hire_date, ename);
dbms_output.put_line(ename);
dbms_output.put_line(hire_date);

END;

When this California server code is compiled, the following actions take place:

= A connection is made to the Boston server.

» The RPC signature of get_emp_name is transferred to the California server.
s The RPC signature is recorded in the compiled state of print_ename.

At run time, during the remote procedure call from the California server to the Boston
server, the recorded RPC signature of get_emp_name that was saved in the compiled
state of print_ename gets sent to the Boston server, regardless of whether or not
there were any changes.

If the timestamp dependency mode is in effect, then a mismatch in time stamps causes
an error status to be returned to the calling procedure.

However, if the RPC signature mode is in effect, then any mismatch in time stamps is
ignored, and the recorded RPC signature of get_emp_name in the compiled state of
Print_ename on the California server is compared with the current RPC signature of
get_emp_name on the Boston server. If they match, then the call succeeds. If they do
not match, then an error status is returned to the print_name procedure.

The get_emp_name procedure on the Boston server could have changed, or its time
stamp could be different from that recorded in the print_name procedure on the
California server, possibly due to the installation of a new release of the server. As long
as the RPC signature remote dependency mode is in effect on the California server, a
time stamp mismatch does not cause an error when get_emp_name is called.

Schema Object Dependencies 6-15

Remote Procedure Call (RPC) Dependency Management

Note: DETERMINISTIC, PARALLEL_ENABLE, and purity
information do not show in the RPC signature mode. Optimizations
based on these settings are not automatically reconsidered if a
function on a remote system is redefined with different settings. This
might lead to incorrect query results when calls to the remote function
occur, even indirectly, in a SQL statement, or if the remote function is
used, even indirectly, in a function-based index.

Topics:
= Switching Datatype Classes

= Examples of Changing Procedure Signatures

Switching Datatype Classes

A RPC signature changes when you switch from one datatype class to another. A
datatype class can include several datatypes. Changing a parameter datatype to
another datatype in a class does not change the RPC signature.

Table 6-3 lists the datatype classes and the datatypes that comprise them. Datatypes
that are not listed in Table 6-3, such as NCHAR or TIMESTAMP, are not part of any class;
changing their type always causes a RPC signature mismatch.

Table 6-3 Datatype Classes

Datatype Class Datatypes in Class

Character CHAR
CHARACTER

VARCHAR VARCHAR
VARCHAR2
STRING
LONG
ROWID

Raw RAW
LONG RAW

Integer BINARY_INTEGER
PLS_INTEGER
SIMPLE_INTEGER
BOOLEAN
NATURAL
NATURALN
POSITIVE
POSITIVEN

Number NUMBER
INT
INTEGER
SMALLINT
DEC
DECIMAL
REAL
FLOAT
NUMERIC
DOUBLE PRECISION

6-16 Oracle Database Concepts

Remote Procedure Call (RPC) Dependency Management

Table 6-3 (Cont.) Datatype Classes

Datatype Class Datatypes in Class

Date DATE
TIMESTAMP
TIMESTAMP WITH TIME ZONE
TIMESTAMP WITH LOCAL TIME ZONE
INTERVAL YEAR TO MONTH
INTERVAL DAY TO SECOND

Modes Changing to or from an explicit specification of the default parameter mode IN
does not change the RPC signature of a subprogram. For example, changing between:

PROCEDURE P1 (Paraml NUMBER) ;
PROCEDURE P1 (Paraml IN NUMBER) ;

does not change the RPC signature. Any other change of parameter mode does change
the RPC signature.

Default Parameter Values Changing the specification of a default parameter value does
not change the RPC signature. For example, procedure P1 has the same RPC signature
in the following two examples:

PROCEDURE P1 (Paraml IN NUMBER := 100);
PROCEDURE P1 (Paraml IN NUMBER := 200);

An application developer who requires that callers get the new default value must
recompile the called procedure, but no RPC signature-based invalidation occurs when
a default parameter value assignment is changed.

Examples of Changing Procedure Signatures

Using the Get_emp_names procedure shown previously in this chapter, if the
procedure body is changed to the following;:

DECLARE
Emp_number NUMBER;
Hire_date DATE;

BEGIN

-- date format model changes

SELECT Ename, To_char (Hiredate, 'DD/MON/YYYY')
INTO Emp_name, Hire_date
FROM Emp_tab
WHERE Empno = Emp_number;
END;

The specification of the procedure has not changed, so its RPC signature has not
changed.
But if the procedure specification is changed to the following:

CREATE OR REPLACE PROCEDURE Get_emp_name (
Emp_number IN NUMBER,
Hire_date OUT DATE,
Emp_name OUT VARCHAR2) AS

And if the body is changed accordingly, then the RPC signature changes, because the
parameter Hire_date has a different datatype.

Schema Object Dependencies 6-17

Remote Procedure Call (RPC) Dependency Management

However, if the name of that parameter changes to When_hired, and the datatype
remains VARCHAR2, and the mode remains OUT, the RPC signature does not change.
Changing the name of a formal parameter does not change the RPC signature of the
unit.

Consider the following example:

CREATE OR REPLACE PACKAGE Emp_package AS
TYPE Emp_data_type IS RECORD (
Emp_number NUMBER,
Hire_date VARCHAR2(12),
Emp_name VARCHAR2 (10)) ;
PROCEDURE Get_emp_data
(Emp_data IN OUT Emp_data_type);
END;

CREATE OR REPLACE PACKAGE BODY Emp_package AS
PROCEDURE Get_emp_data
(Emp_data IN OUT Emp_data_type) IS
BEGIN
SELECT Empno, Ename, TO_CHAR (Hiredate, 'DD/MON/YY')
INTO Emp_data
FROM Emp_tab
WHERE Empno = Emp_data.Emp_number;
END;
END;
If the package specification is changed so that the record's field names are changed,
but the types remain the same, then this does not affect the RPC signature. For
example, the following package specification has the same RPC signature as the
previous package specification example:

CREATE OR REPLACE PACKAGE Emp_package AS
TYPE Emp_data_type IS RECORD (
Emp_num NUMBER, -- was Emp_number
Hire_dat VARCHAR2 (12), -- was Hire_date
Empname VARCHAR2 (10)); -- was Emp_name
PROCEDURE Get_emp_data
(Emp_data IN OUT Emp_data_type);
END;

Changing the name of the type of a parameter does not cause a change in the RPC
signature if the type remains the same as before. For example, the following package
specification for Emp_package is the same as the first one:

CREATE OR REPLACE PACKAGE Emp_package AS
TYPE Emp_data_record type IS RECORD (
Emp_number NUMBER,
Hire_date VARCHAR2(12),
Emp_name VARCHAR2 (10)) ;
PROCEDURE Get_emp_data
(Emp_data IN OUT Emp_data_record type) ;
END;

Controlling Remote Dependencies

The dynamic initialization parameter REMOTE_DEPENDENCIES_MODE controls
whether the time stamp or the RPC signature dependency model is in effect.

s If the initialization parameter file contains the following specification:

REMOTE_DEPENDENCIES_MODE = TIMESTAMP

6-18 Oracle Database Concepts

Remote Procedure Call (RPC) Dependency Management

Then only time stamps are used to resolve dependencies (if this is not explicitly
overridden dynamically).

» If the initialization parameter file contains the following parameter specification:

REMOTE_DEPENDENCIES_MODE = SIGNATURE

Then RPC signatures are used to resolve dependencies (if this not explicitly
overridden dynamically).

= You can alter the mode dynamically by using the DDL statements. For example,
this example alters the dependency model for the current session:

ALTER SESSION SET REMOTE_DEPENDENCIES_MODE =

{SIGNATURE | TIMESTAMP}
Thise example alters the dependency model systemwide after startup:
ALTER SYSTEM SET REMOTE_DEPENDENCIES_ MODE =

{SIGNATURE | TIMESTAMP}

If the REMOTE_DEPENDENCIES_MODE parameter is not specified, either in the
init.ora parameter file or using the ALTER SESSION or ALTER SYSTEM DDL
statements, TIMESTAMP is the default value. Therefore, unless you explicitly use the
REMOTE_DEPENDENCIES_MODE parameter, or the appropriate DDL statement, your
server is operating using the time-stamp dependency model.

When you use REMOTE_DEPENDENCIES_MODE=SIGNATURE:

= If you change the default value of a parameter of a remote procedure, then the
local procedure calling the remote procedure is not invalidated. If the call to the
remote procedure does not supply the parameter, then the default value is used. In
this case, because invalidation/recompilation does not automatically occur, the old
default value is used. If you want to see the new default values, then you must
recompile the calling procedure manually.

= If you add a new overloaded procedure in a package (a new procedure with the
same name as an existing one), then local procedures that call the remote
procedure are not invalidated. If it turns out that this overloading results in a
rebinding of existing calls from the local procedure under the time-stamp mode,
then this rebinding does not happen under the RPC signature mode, because the
local procedure does not get invalidated. You must recompile the local procedure
manually to achieve the new rebinding.

» If the types of parameters of an existing packaged procedure are changed so that
the new types have the same shape as the old ones, then the local calling
procedure is not invalidated or recompiled automatically. You must recompile the
calling procedure manually to get the semantics of the new type.

Topics:
= Dependency Resolution

= Suggestions for Managing Dependencies

Dependency Resolution

When REMOTE_DEPENDENCIES_MODE = TIMESTAMP (the default value),
dependencies among program units are handled by comparing time stamps at run
time. If the time stamp of a called remote procedure does not match the time stamp of
the called procedure, then the calling (dependent) unit is invalidated and must be
recompiled. In this case, if there is no local PL/SQL compiler, then the calling
application cannot proceed.

Schema Object Dependencies 6-19

Shared SQL Dependency Management

In the time-stamp dependency mode, RPC signatures are not compared. If there is a
local PL/SQL compiler, then recompilation happens automatically when the calling
procedure is run.

When REMOTE_DEPENDENCIES_MODE = SIGNATURE, the recorded time stamp in
the calling unit is first compared to the current time stamp in the called remote unit. If
they match, then the call proceeds. If the time stamps do not match, then the RPC
signature of the called remote subprogram, as recorded in the calling subprogram, is
compared with the current RPC signature of the called subprogram. If they do not
match (using the criteria described in the section "Switching Datatype Classes" on
page 6-16), then an error is returned to the calling session.

Suggestions for Managing Dependencies
Follow these guidelines for setting the REMOTE_DEPENDENCIES_MODE parameter:

» Server-side PL/SQL users can set the parameter to TIMESTAMP (or let it default to
that) to get the time-stamp dependency mode.

= Server-side PL/SQL users can choose to use the RPC signature dependency mode
if they have a distributed system and they want to avoid possible unnecessary
recompilations.

s Client-side PL/SQL users must set the parameter to SIGNATURE. This allows:

- Installation of new applications at client sites, without the need to recompile
procedures.

- Ability to upgrade the server, without encountering time stamp mismatches.

= When using RPC signature mode on the server side, add new procedures to the
end of the procedure (or function) declarations in a package specification. Adding
a new procedure in the middle of the list of declarations can cause unnecessary
invalidation and recompilation of dependent procedures.

Shared SQL Dependency Management

In addition to managing dependencies among schema objects, Oracle Database also
manages dependencies of each shared SQL area in the shared pool. If a table, view,
synonym, or sequence is created, altered, or dropped, or a procedure or package
specification is recompiled, all dependent shared SQL areas are invalidated. At a
subsequent execution of the cursor that corresponds to an invalidated shared SQL
area, Oracle Database reparses the SQL statement to regenerate the shared SQL area.

6-20 Oracle Database Concepts

7

The Data Dictionary

This chapter describes the central set of read-only reference tables and views of each
Oracle database, known collectively as the data dictionary.

This chapter contains the following topics:
= Introduction to the Data Dictionary

= How the Data Dictionary Is Used

= Dynamic Performance Tables

= Database Object Metadata

Introduction to the Data Dictionary

One of the most important parts of an Oracle database is its data dictionary, which is a
read-only set of tables that provides information about the database. A data dictionary
contains:

» The definitions of all schema objects in the database (tables, views, indexes,
clusters, synonyms, sequences, procedures, functions, packages, triggers, and so
on)

= How much space has been allocated for, and is currently used by, the
schema objects

» Default values for columns

s Integrity constraint information

s The names of Oracle Database users

» Privileges and roles each user has been granted

= Auditing information, such as who has accessed or updated various schema
objects

» Other general database information

The data dictionary is structured in tables and views, just like other database data. All
the data dictionary tables and views for a given database are stored in that database's
SYSTEM tablespace.

Not only is the data dictionary central to every Oracle database, it is an important tool
for all users, from end users to application designers and database administrators. Use
SQL statements to access the data dictionary. Because the data dictionary is read only,
you can issue only queries (SELECT statements) against it's tables and views.

The Data Dictionary 7-1

How the Data Dictionary Is Used

See Also: "Bigfile Tablespaces" on page 3-5 for more information
about SYSTEM tablespaces

This section includes the following topics:
= Structure of the Data Dictionary

= SYS, Owner of the Data Dictionary

Structure of the Data Dictionary

The data dictionary consists of the following:

Base Tables: The underlying tables that store information about the associated
database. Only Oracle Database should write to and read these tables. Users rarely
access them directly because they are normalized, and most of the data is stored in a
cryptic format.

User-Accessible Views: The views that summarize and display the information stored
in the base tables of the data dictionary. These views decode the base table data into
useful information, such as user or table names, using joins and WHERE clauses to
simplify the information. Most users are given access to the views rather than the base
tables.

SYS, Owner of the Data Dictionary

The Oracle Database user SYS owns all base tables and user-accessible views of the
data dictionary. No Oracle Database user should ever alter (UPDATE, DELETE, or
INSERT) any rows or schema objects contained in the SYS schema, because such
activity can compromise data integrity. The security administrator must keep strict
control of this central account.

Caution: Altering or manipulating the data in data dictionary
tables can permanently and detrimentally affect the operation of a
database.

How the Data Dictionary Is Used
The data dictionary has three primary uses:

s Oracle Database accesses the data dictionary to find information about users,
schema objects, and storage structures.

s Oracle Database modifies the data dictionary every time that a data definition
language (DDL) statement is issued.

= Any Oracle Database user can use the data dictionary as a read-only reference for
information about the database.

This section includes the following topics:
= How Oracle Database Uses the Data Dictionary
» How to Use the Data Dictionary

How Oracle Database Uses the Data Dictionary

Data in the base tables of the data dictionary is necessary for Oracle Database to function.
Therefore, only Oracle Database should write or change data dictionary information.

7-2 Oracle Database Concepts

How the Data Dictionary Is Used

Oracle Database provides scripts to modify the data dictionary tables when a database
is upgraded or downgraded.

Caution: No data in any data dictionary table should be altered or
deleted by any user.

During database operation, Oracle Database reads the data dictionary to ascertain that
schema objects exist and that users have proper access to them. Oracle Database also
updates the data dictionary continuously to reflect changes in database structures,
auditing, grants, and data.

For example, if user Kathy creates a table named parts, then new rows are added to
the data dictionary that reflect the new table, columns, segment, extents, and the
privileges that Kathy has on the table. This new information is then visible the next
time the dictionary views are queried.

This section includes the following topics:

= Public Synonyms for Data Dictionary Views
s Cache the Data Dictionary for Fast Access

s Other Programs and the Data Dictionary

Public Synonyms for Data Dictionary Views

Oracle Database creates public synonyms for many data dictionary views so users can
access them conveniently. The security administrator can also create additional public
synonyms for schema objects that are used systemwide. Users should avoid naming
their own schema objects with the same names as those used for public synonyms.

Cache the Data Dictionary for Fast Access

Much of the data dictionary information is kept in the SGA in the dictionary cache,
because Oracle Database constantly accesses the data dictionary during database
operation to validate user access and to verify the state of schema objects. All
information is stored in memory using the least recently used (LRU) algorithm.

Parsing information is typically kept in the caches. The COMMENTS columns describing
the tables and their columns are not cached unless they are accessed frequently.

Other Programs and the Data Dictionary

Other Oracle Database products can reference existing views and create additional
data dictionary tables or views of their own. Application developers who write
programs that refer to the data dictionary should refer to the public synonyms rather
than the underlying tables: the synonyms are less likely to change between software
releases.

How to Use the Data Dictionary

The views of the data dictionary serve as a reference for all database users. Access the
data dictionary views with SQL statements. Some views are accessible to all Oracle
Database users, and others are intended for database administrators only.

The data dictionary is always available when the database is open. It resides in the
SYSTEM tablespace, which is always online.

The Data Dictionary 7-3

How the Data Dictionary Is Used

The data dictionary consists of sets of views. In many cases, a set consists of three
views containing similar information and distinguished from each other by their
prefixes, as shown in Table 7-1.

Table 7-1 Data Dictionary View Prefixes

Prefix Scope

USER User's view (what is in the user's schema)

ALL Expanded user's view (what the user can access)

DBA Database administrator's view (what is in all users' schemas)

The set of columns is identical across views, with these exceptions:

= Views with the prefix USER usually exclude the column OWNER. This column is
implied in the USER views to be the user issuing the query.

= Some DBA views have additional columns containing information useful to the

administrator.

See Also: Oracle Database Reference for a complete list of data
dictionary views and their columns

This section includes the following topics:

= Views with the Prefix USER

= Views with the Prefix ALL

= Views with the Prefix DBA

s The DUAL Table

Views with the Prefix USER

The views most likely to be of interest to typical database users are those with the
prefix USER. These views:

= Refer to the user's own private environment in the database, including
information about schema objects created by the user, grants made by the user,
and so on

= Display only rows pertinent to the user

= Have columns identical to the other views, except that the column OWNER is
implied

= Return a subset of the information in the ALL views
= Can have abbreviated PUBLIC synonyms for convenience
For example, the following query returns all the objects contained in your schema:

SELECT object_name, object_type FROM USER_OBJECTS;

Views with the Prefix ALL

Views with the prefix ALL refer to the user's overall perspective of the database. These
views return information about schema objects to which the user has access through
public or explicit grants of privileges and roles, in addition to schema objects that the
user owns. For example, the following query returns information about all the objects
to which you have access:

7-4 Oracle Database Concepts

Database Object Metadata

SELECT owner, object_name, object_type FROM ALL_OBJECTS;

Views with the Prefix DBA

Views with the prefix DBA show a global view of the entire database. Synonyms are
not created for these views, because DBA views should be queried only by
administrators. Therefore, to query the DBA views, administrators must prefix the view
name with its owner, SYS, as in the following:

SELECT owner, object_name, object_type FROM SYS.DBA_OBJECTS;

Oracle recommends that you implement data dictionary protection to prevent users
having the ANY system privileges from using such privileges on the data dictionary. If
you enable dictionary protection (O7_DICTIONARY_ACCESSIBILITY is false), then
access to objects in the SYS schema (dictionary objects) is restricted to users with the
SYS schema. These users are SYS and those who connect as SYSDBA.

See Also: Oracle Database Administrator’s Guide for detailed
information on system privileges restrictions

The DUAL Table

The table named DUAL is a small table in the data dictionary that Oracle Database and
user-written programs can reference to guarantee a known result. This table has one
column called DUMMY and one row containing the value X.

See Also: Oracle Database SQL Language Reference for more
information about the DUAL table

Dynamic Performance Tables

Throughout its operation, Oracle Database maintains a set of virtual tables that record
current database activity. These tables are called dynamic performance tables.

Dynamic performance tables are not true tables, and they should not be accessed by
most users. However, database administrators can query and create views on the
tables and grant access to those views to other users. These views are sometimes called
fixed views because they cannot be altered or removed by the database administrator.

SYS owns the dynamic performance tables; their names all begin with V_s. Views are
created on these tables, and then public synonyms are created for the views. The
synonym names begin with v$. For example, the VSDATAFILE view contains
information about the database's datafiles, and the VSFIXED_TABLE view contains
information about all of the dynamic performance tables and views in the database.

See Also: Oracle Database Reference for a complete list of the
dynamic performance views' synonyms and their columns

Database Object Metadata

The DBMS_METADATA package provides interfaces for extracting complete definitions
of database objects. The definitions can be expressed either as XML or as SQL DDL.
Two styles of interface are provided:

= A flexible, sophisticated interface for programmatic control

= A simplified interface for ad hoc querying

The Data Dictionary 7-5

Database Object Metadata

See Also: Oracle Database PL/SQL Packages and Types Reference for
more information about DBMS_ METADATA

7-6 Oracle Database Concepts

8

Memory Architecture

This chapter discusses the memory architecture of an Oracle Database instance. It
contains the following topics:

Introduction to Oracle Database Memory Structures
Overview of the System Global Area

Overview of the Program Global Area

Overview of Memory Management Methods

About Software Code Areas

See Also: Oracle Database Administrator’s Guide for instructions for
configuring and managing memory

Introduction to Oracle Database Memory Structures

Oracle Database uses memory to store information such as the following;:

Program code
Information about a connected session, even if it is not currently active

Information needed during program execution (for example, the current state of a
query from which rows are being fetched)

Information that is shared and communicated among Oracle Database processes
(for example, locking information)

Cached data (for example, data blocks and redo log entries) that is also
permanently stored on storage devices

Basic Memory Structures

The basic memory structures associated with Oracle Database include:

Software code areas

Software code areas are portions of memory used to store code that is being run or
can be run. Oracle Database code is stored in a software area that is typically at a
different location from users' programs—a more exclusive or protected location.

System global area (SGA)

The SGA is a group of shared memory structures, known as SGA components, that
contain data and control information for one Oracle Database instance. The SGA is
shared by all server and background processes. Examples of data stored in the
SGA include cached data blocks and shared SQL areas.

Memory Architecture 8-1

Overview of the System Global Area

= Program global area (PGA)

A PGA is a memory region that contains data and control information for a server
process. It is nonshared memory created by Oracle Database when a server
process is started. Access to the PGA is exclusive to the server process. There is
one PGA for each server process. Background processes also allocate their own
PGAs. The total memory used by all individual PGAs is known as the total
instance PGA memory, and the collection of individual PGAs is referred to as the
total instance PGA, or just instance PGA. You use database initialization
parameters to set the size of the instance PGA, not individual PGAs.

Figure 8-1 illustrates the relationships among these memory structures.

Figure 8—1 Oracle Database Memory Structures

Server Server Background
Process | <= | PGA Process | <=9 | PGA Pro%ess <—p | PGA
1 2

! ! !

System Global Area

Java Buffer Redo
Pool Cache Buffer

Shared Streams Large Other
Pool Pool Pool Components

! !

Server Background
Process | 4= | PGA Pro%ess < | PGA
3
See Also:

s "Overview of the System Global Area" on page 8-2
= "Overview of the Program Global Area" on page 8-9
= "About Software Code Areas" on page 8-14

= "Overview of Oracle Database Processes" on page 9-3

Overview of the System Global Area

The System Global Area (SGA) and the set of database processes constitute an Oracle
Database instance. Oracle Database automatically allocates memory for an SGA when
you start an instance, and the operating system reclaims the memory when you shut
down the instance. Each instance has its own SGA.

The SGA is read /write. All database background processes and all server processes
that execute on behalf of users can read information contained within the instance's
SGA, and several processes write to the SGA during database operation.

Part of the SGA contains general information about the state of the database and the
instance, which the background processes need to access. This is called the fixed SGA.
No user data is stored here. The SGA also includes information communicated
between processes, such as locking information.

8-2 Oracle Database Concepts

Overview of the System Global Area

If the system uses shared server architecture, then the request and response queues
and some contents of the PGA are in the SGA.

As shown in Figure 8-1 on page 8-2, the SGA consists of a number of memory
components, which are pools of memory used to satisfy a particular class of memory
allocation requests.

The most important SGA components are the following:
= Database Buffer Cache

= Redo Log Buffer

= Shared Pool

= Large Pool

= Java Pool

s Streams Pool

See Also:

= "Introduction to an Oracle Instance" on page 12-1 for more
information about an Oracle Database instance

= "Overview of the Program Global Area" on page 8-9

= "Dispatcher Request and Response Queues" on page 9-13

Database Buffer Cache

The database buffer cache is the portion of the SGA that holds copies of data blocks
read from datafiles. All users concurrently connected to the instance share access to the
database buffer cache.

This section includes the following topics:
= Organization of the Database Buffer Cache
s The LRU Algorithm and Full Table Scans

Organization of the Database Buffer Cache

The buffers in the cache are organized in two lists: the write list and the least recently
used (LRU) list. The write list holds dirty buffers, which contain data that has been
modified but has not yet been written to disk. The LRU list holds free buffers, pinned
buffers, and dirty buffers that have not yet been moved to the write list. Free buffers
do not contain any useful data and are available for use. Pinned buffers are currently
being accessed.

When an Oracle Database process accesses a buffer, the process moves the buffer to the
most recently used (MRU) end of the LRU list. As more buffers are continually moved
to the MRU end of the LRU list, dirty buffers age toward the LRU end of the LRU list.

The first time an Oracle Database user process requires a particular piece of data, it
searches for the data in the database buffer cache. If the process finds the data already
in the cache (a cache hit), it can read the data directly from memory. If the process
cannot find the data in the cache (a cache miss), it must copy the data block from a
datafile on disk into a buffer in the cache before accessing the data. Accessing data
through a cache hit is faster than data access through a cache miss.

Before reading a data block into the cache, the process must first find a free buffer. The
process searches the LRU list, starting at the least recently used end of the list. The

Memory Architecture 8-3

Overview of the System Global Area

process searches either until it finds a free buffer or until it has searched the threshold
limit of buffers.

If the user process finds a dirty buffer as it searches the LRU list, it moves that buffer
to the write list and continues to search. When the process finds a free buffer, it reads
the data block from disk into the buffer and moves the buffer to the MRU end of the
LRU list.

If an Oracle Database user process searches the threshold limit of buffers without
finding a free buffer, the process stops searching the LRU list and signals the DBWO0
background process to write some of the dirty buffers to disk.

See Also: "Database Writer Process (DBWn)" on page 9-6 for more
information about DBWn processes

The LRU Algorithm and Full Table Scans

When the user process is performing a full table scan, it reads the blocks of the table
into buffers and puts them on the LRU end (instead of the MRU end) of the LRU list.
This is because a fully scanned table usually is needed only briefly, so the blocks
should be moved out quickly to leave more frequently used blocks in the cache.

You can control this default behavior of blocks involved in table scans on a
table-by-table basis. To specify that blocks of the table are to be placed at the MRU end
of the list during a full table scan, use the CACHE clause when creating or altering a
table or cluster. You can specify this behavior for small lookup tables or large static
historical tables to avoid I/O on subsequent accesses of the table.

See Also: Oracle Database SQL Language Reference for information
about the CACHE clause

Redo Log Buffer

The redo log buffer is a circular buffer in the SGA that holds information about
changes made to the database. This information is stored in redo entries. Redo entries
contain the information necessary to reconstruct, or redo, changes made to the
database by INSERT, UPDATE, DELETE, CREATE, ALTER, or DROP operations. Redo
entries are used for database recovery, if necessary.

Redo entries are copied by Oracle Database processes from the user's memory space to
the redo log buffer in the SGA. The redo entries take up continuous, sequential space
in the buffer. The background process LGWR writes the redo log buffer to the active
redo log file (or group of files) on disk.

See Also:

= "Log Writer Process (LGWR)" on page 9-8 for more information
about how the redo log buffer is written to disk

» Oracle Database Backup and Recovery User’s Guide for information
about redo log files and groups

Shared Pool

The shared pool portion of the SGA contains the library cache, the dictionary cache,
the result cache, buffers for parallel execution messages, and control structures.

This section includes the following topics:

s Library Cache

8-4 Oracle Database Concepts

Overview of the System Global Area

= Dictionary Cache

s Result Cache

Library Cache

The library cache includes the shared SQL areas, private SQL areas (in the case of a
shared server configuration), PL/SQL procedures and packages, and control
structures such as locks and library cache handles.

Shared SQL areas are accessible to all users, so the library cache is contained in the
shared pool within the SGA.

Shared SQL Areas and Private SQL Areas Oracle Database represents each SQL statement
it runs with a shared SQL area and a private SQL area. Oracle Database recognizes
when two users are executing the same SQL statement and reuses the shared SQL area
for those users. However, each user must have a separate copy of the statement's
private SQL area.

A shared SQL area contains the parse tree and execution plan for a given SQL
statement. Oracle Database saves memory by using one shared SQL area for SQL
statements run multiple times, which often happens when many users run the same
application.

Oracle Database allocates memory from the shared pool when a new SQL statement is
parsed, to store in the shared SQL area. The size of this memory depends on the
complexity of the statement. If the entire shared pool has already been allocated,
Oracle Database can deallocate items from the pool using a modified LRU (least
recently used) algorithm until there is enough free space for the new statement's
shared SQL area. If Oracle Database deallocates a shared SQL area, the associated SQL
statement must be reparsed and reassigned to another shared SQL area at its next
execution.

See Also:
s "Private SQL Area" on page 8-10

» Oracle Database Performance Tuning Guide

PL/SQL Program Units and the Shared Pool Oracle Database processes PL/SQL program
units (procedures, functions, packages, anonymous blocks, and database triggers)
much the same way it processes individual SQL statements. Oracle Database allocates
a shared area to hold the parsed, compiled form of a program unit. Oracle Database
allocates a private area to hold values specific to the session that runs the program
unit, including local, global, and package variables (also known as package
instantiation) and buffers for executing SQL. If more than one user runs the same
program unit, then a single, shared area is used by all users, while each user maintains
a separate copy of his or her private SQL area, holding values specific to his or her
session.

Individual SQL statements contained within a PL/SQL program unit are processed as
described in the previous sections. Despite their origins within a PL/SQL program
unit, these SQL statements use a shared area to hold their parsed representations and a
private area for each session that runs the statement.

Allocation and Reuse of Memory in the Shared Pool In general, any item (shared SQL area or
dictionary row) in the shared pool remains until it is flushed according to a modified
LRU algorithm. The memory for items that are not being used regularly is freed if
space is required for new items that must be allocated some space in the shared pool.

Memory Architecture 8-5

Overview of the System Global Area

A modified LRU algorithm allows shared pool items that are used by many sessions to
remain in memory as long as they are useful, even if the process that originally created
the item terminates. As a result, the overhead and processing of SQL statements
associated with a multiuser Oracle Database system is minimized.

When a SQL statement is submitted to Oracle Database for execution, Oracle Database
automatically performs the following memory allocation steps:

1. Oracle Database checks the shared pool to see if a shared SQL area already exists
for an identical statement. If so, that shared SQL area is used for the execution of
the subsequent new instances of the statement. Alternatively, if there is no shared
SQL area for a statement, Oracle Database allocates a new shared SQL area in the
shared pool. In either case, the user's private SQL area is associated with the
shared SQL area that contains the statement.

Note: A shared SQL area can be flushed from the shared pool, even
if the shared SQL area corresponds to an open cursor that has not been
used for some time. If the open cursor is subsequently used to run its
statement, Oracle Database reparses the statement, and a new shared
SQL area is allocated in the shared pool.

2. Oracle Database allocates a private SQL area on behalf of the session. The location
of the private SQL area depends on the type of connection established for the
session.

Oracle Database also flushes a shared SQL area from the shared pool in these
circumstances:

= When the ANALYZE statement is used to update or delete the statistics of a table,
cluster, or index, all shared SQL areas that contain statements referencing the
analyzed schema object are flushed from the shared pool. The next time a flushed
statement is run, the statement is parsed in a new shared SQL area to reflect the
new statistics for the schema object.

= If a schema object is referenced in a SQL statement and that object is later modified
in any way, the shared SQL area is invalidated (marked invalid), and the
statement must be reparsed the next time it is run.

= If you change a database's global database name, all information is flushed from
the shared pool.

s The administrator can manually flush all information in the shared pool to assess
the performance (with respect to the shared pool, not the data buffer cache) that
can be expected after instance startup without shutting down the current instance.
The statement ALTER SYSTEM FLUSH SHARED_POOL is used to do this.

See Also:

= "Shared SQL Areas and Private SQL Areas" on page 8-5 for more
information about the location of the private SQL area

n Chapter 6, "Schema Object Dependencies" for more information
about the invalidation of SQL statements and dependency issues

» Oracle Database SQL Language Reference for information about
using ALTER SYSTEM FLUSH SHARED_POOL

» Oracle Database Reference for information about V$SQL and
V$SQLAREA dynamic views

8-6 Oracle Database Concepts

Overview of the System Global Area

Dictionary Cache

The data dictionary is a collection of database tables and views containing reference
information about the database, its structures, and its users. Oracle Database accesses
the data dictionary frequently during SQL statement parsing. This access is essential to
the continuing operation of Oracle Database.

The data dictionary is accessed so often by Oracle Database that two special locations
in memory are designated to hold dictionary data. One area is called the data
dictionary cache, also known as the row cache because it holds data as rows instead of
buffers (which hold entire blocks of data). The other area in memory to hold dictionary
data is the library cache. All Oracle Database user processes share these two caches for
access to data dictionary information.

See Also: Chapter 7, "The Data Dictionary"

Result Cache

The result cache is composed of the SQL query result cache and PL/SQL function
result cache, which share the same infrastructure.

The DBMS_RESULT_CACHE package provides administration subprograms, which, for
example, flush all cached results and turn result-caching on or off systemwide. The
dynamic performance views VSRESULT_CACHE_ * allow the developer and DBA to
determine, for example, the cache-hit success for a certain SQL query or PL/SQL
function.

Similar to the result cache, the client result cache also caches results, except that the
caching is done on the client side.

See Also:

» Oracle Database Administrator’s Guide for information about sizing
the result cache

» Oracle Database PL/SQL Packages and Types Reference for
information about the DBMS_RESULT_CACHE package

» Oracle Database Reference for information about dynamic
performance ($V) views

» Oracle Call Interface Programmer’s Guide for more information
about the client result cache

SQL Query Result Cache

Results of queries and query fragments can be cached in memory in the SQL query
result cache. The database can then use cached results to answer future executions of
these queries and query fragments. Because retrieving results from the SQL query
result cache is faster than rerunning a query, frequently run queries experience a
significant performance improvement when their results are cached. Users can
annotate a query or query fragment with a result cache hint to indicate that results are
to be stored in the SQL query result cache.

You can set the RESULT_CACHE_MODE initialization parameter to control whether the
SQL query result cache is used for all queries (when possible), or only for queries that
are annotated.

The database automatically invalidates a cached result whenever a transaction
modifies the data or metadata of any of the database objects used to construct that
cached result.

Memory Architecture 8-7

Overview of the System Global Area

See Also: Oracle Database Performance Tuning Guide for information
about the RESULT_CACHE_MODE initialization parameter

PL/SQL Function Result Cache

A PL/SQL function is sometimes used to return the result of a computation whose
inputs are one or several parameterized queries issued by the function. In some cases,
these queries access data (for example, the catalog of wares in a shopping application)
that changes very infrequently compared to the frequency of calling the function. You
can include syntax in the source text of a PL/SQL function to request that its results be
cached and, to ensure correctness, that the cache be purged when any of a list of tables
experiences DML. The look-up key for the cache is the combination of actual
arguments with which the function is invoked. When a particular invocation of the
result-cached function is a cache hit, then the function body is not executed; instead,
the cached value is returned immediately.

See Also: Oracle Database PL/SQL Language Reference for more
information about the PL/SQL function result cache

Large Pool

The database administrator can configure an optional memory area called the large
pool to provide large memory allocations for:

= Session memory for the shared server and the Oracle XA interface (used where
transactions interact with more than one database)

n I/O server processes
s Oracle Database backup and restore operations

By allocating session memory from the large pool for shared server, Oracle XA, or
parallel query buffers, Oracle Database can use the shared pool primarily for caching
shared SQL and avoid the performance overhead caused by shrinking the shared SQL
cache.

In addition, the memory for Oracle Database backup and restore operations, for I/O
server processes, and for parallel buffers is allocated in buffers of a few hundred
kilobytes. The large pool is better able to satisfy such large memory requests than the
shared pool.

The large pool does not have an LRU list. It is different from reserved space in the
shared pool, which uses the same LRU list as other memory allocated from the shared
pool.

See Also:

= "Shared Server Architecture" on page 9-12 for information about
allocating session memory from the large pool for the shared
server

» Oracle Database Advanced Application Developer’s Guide for
information about Oracle XA

» Oracle Database Performance Tuning Guide for more information
about the large pool, reserve space in the shared pool, and I/O
server processes

= "Overview of Parallel Execution" on page 16-10 for information
about allocating memory for parallel execution

8-8 Oracle Database Concepts

Overview of the Program Global Area

Java Pool

Java pool memory is used in server memory for all session-specific Java code and data
within the JVM. Java pool memory is used in different ways, depending on the mode
in which Oracle Database is running.

The Java Pool Advisor statistics provide information about library cache memory used
for Java and predict how changes in the size of the Java pool can affect the parse rate.
The Java Pool Advisor is internally turned on when statistics_level is set to
TYPICAL or higher. These statistics reset when the advisor is turned off.

See Also: Oracle Database Java Developer’s Guide

Streams Pool

The streams pool is used exclusively by Oracle Streams. The Streams pool stores
buffered queue messages, and it provides memory for Oracle Streams capture
processes and apply processes.

Unless you specifically configure it, the size of the Streams pool starts at zero. The pool
size grows dynamically as needed when Oracle Streams is used.

See Also: Oracle Streams Concepts and Administration

Overview of the Program Global Area

Oracle Database allocates a program global area (PGA) for each server process. The
PGA is used to process SQL statements and to hold logon and other session
information. For the purposes of memory management, the collection of all PGAs is
known as the instance PGA. Using an initialization parameter, you set the size of the
instance PGA, and the database distributes memory to individual PGAs as needed.

Note: Background processes also allocate their own PGAs. This
discussion focuses on server process PGAs only.

This section contains the following topics:
= Content of the PGA
= PGA Memory Use in Dedicated and Shared Server Modes

See Also: "Connections and Sessions" on page 9-3 for information
about sessions

Content of the PGA

The content of the PGA memory varies, depending on whether or not the instance is
running the shared server option. Generally speaking, the PGA memory is divided
into the following areas:

= Session Memory

s Private SQL Area

Session Memory

Session memory is the memory allocated to hold a session's variables (logon
information) and other information related to the session. For a shared server, the
session memory is shared and not private.

Memory Architecture 8-9

Overview of the Program Global Area

See Also:

s "Connections and Sessions" on page 9-3 for more information
about sessions

m Oracle Database Net Services Administrator’s Guide

Private SQL Area

The private SQL area contains data such as bind variable values, query execution state
information, and query execution work areas. Each session that issues a SQL statement
has a private SQL area. Each user that submits the same SQL statement has his or her
own private SQL area that uses a single shared SQL area. Thus, many private SQL
areas can be associated with the same shared SQL area.

The location of a private SQL area depends on the type of connection established for a
session. If a session is connected through a dedicated server, private SQL areas are
located in the server process's PGA. However, if a session is connected through a
shared server, part of the private SQL area is kept in the SGA.

This section includes the following topics:
s Cursors and SQL Areas

m Private SQL Area Components

s SQL Work Areas

See Also: "Shared SQL Areas and Private SQL Areas" on page 8-5

Cursors and SQL Areas The application developer of an Oracle Database precompiler
program or OCI program can explicitly open cursors, or handles to specific private
SQL areas, and use them as a named resource throughout the execution of the
program. Recursive cursors that Oracle Database issues implicitly for some SQL
statements also use shared SQL areas.

The management of private SQL areas is the responsibility of the user process. The
allocation and deallocation of private SQL areas depends largely on which application
tool you are using, although the number of private SQL areas that a user process can
allocate is always limited by the initialization parameter OPEN_CURSORS. The default
value of this parameter is 50.

A private SQL area continues to exist until the corresponding cursor is closed or the
statement handle is freed. Although Oracle Database frees the run-time area after the
statement completes, the persistent area remains waiting. Application developers close
all open cursors that will not be used again to free the persistent area and to minimize
the amount of memory required for users of the application.

See Also: "Cursors" on page 24-5
Private SQL Area Components The private SQL area of a cursor is itself divided into two
areas whose lifetimes are different:

» The persistent area—This area contains bind variable values. It is freed only when
the cursor is closed.

s The runtime area—Oracle Database creates this area as the first step of an execute
request. It contains the following structures:

- Query execution state information

8-10 Oracle Database Concepts

Overview of the Program Global Area

For example, for a full table scan, this area contains information on the
progress of the scan

— SQL work areas

These areas are allocated as needed for memory-intensive operations like
sorting or hash-joins. More detail is provided later in this section.

For DML, the run-time area is freed when the statement finishes running. For
queries, it is freed after all rows are fetched or the query is canceled.

SQL Work Areas SQL work areas are allocated to support memory-intensive operators
such as the following:

= Sort-based operators (order by, group-by, rollup, window function)
= Hash-join

= Bitmap merge

= Bitmap create

For example, a sort operator uses a work area (sometimes called the sort area) to
perform the in-memory sort of a set of rows. Similarly, a hash-join operator uses a
work area (also called the hash area) to build a hash table from its left input. If the
amount of data to be processed by these two operators does not fit into a work area,
the input data is divided into smaller pieces. This enables some data pieces to be
processed in memory while the rest are spilled to temporary disk storage to be
processed later. Although bitmap operators do not spill to disk when their associated
work area is too small, their complexity is inversely proportional to the size of their
work area. Thus, these operators run faster with larger work area.

The size of a work area can be controlled and tuned. The database automatically tunes
work area sizes when automatic PGA memory management is enabled. See "Overview
of Memory Management Methods" on page 8-12 for more information.

Generally, bigger work areas can significantly improve the performance of a particular
operator at the cost of higher memory consumption. Optimally, the size of a work area
is big enough to accommodate the input data and auxiliary memory structures
allocated by its associated SQL operator. If not, response time increases, because part
of the input data must be spilled to temporary disk storage. In the extreme case, if the
size of a work area is far too small compared to the input data size, multiple passes
over the data pieces must be performed. This can dramatically increase the response
time of the operator.

PGA Memory Use in Dedicated and Shared Server Modes

PGA memory allocation depends, in some specifics, on whether the system uses
dedicated or shared server architecture. Table 8-1 shows the differences.

Table 8—1 Differences in Memory Allocation Between Dedicated and Shared Servers
Dedicated Shared

Memory Area Server Server
Nature of session memory Private Shared
Location of the persistent area PGA SGA
Location of part of the run-time area for SELECT statements PGA PGA
Location of the run-time area for DML /DDL statements PGA PGA

Memory Architecture 8-11

Overview of Memory Management Methods

Overview of Memory Management Methods

Memory management involves maintaining optimal sizes for the Oracle database
instance memory structures as demands on the database change. The memory that
must be managed is the system global area (SGA) memory and the instance program
global area (instance PGA) memory. The instance PGA memory is the collection of
memory allocations for all individual PGAs.

Oracle Database supports various memory management methods, which are chosen
by initialization parameter settings. Oracle recommends that you enable the automatic
memory management method.

Automatic Memory Management — For Both the SGA and Instance PGA

Beginning with Oracle Database 11g, Oracle Database can manage the SGA memory
and instance PGA memory completely automatically. You designate only the total
memory size to be used by the instance, and Oracle Database dynamically exchanges
memory between the SGA and the instance PGA as needed to meet processing
demands. This capability is referred to as automatic memory management. With this
memory management method, the database also dynamically tunes the sizes of the
individual SGA components and the sizes of the individual PGAs.

Automatic Shared Memory Management — For the SGA

If you want to exercise more direct control over the size of the SGA, you can disable
automatic memory management and enable automatic shared memory management. With
automatic shared memory management, you set target and maximum sizes for the
SGA. The database then tunes the total size of the SGA to your designated target, and
dynamically tunes the sizes of all SGA components.

Manual Shared Memory Management — For the SGA

If you want complete control of individual SGA component sizes, you can disable both
automatic memory management and automatic shared memory management. This
effectively enables manual shared memory management. In this mode, you set the sizes of
several individual SGA components, thereby determining the overall SGA size. You
then manually tune these individual SGA components on an ongoing basis.

Automatic PGA Memory Management — For the Instance PGA

When you disable automatic memory management and enable automatic shared
memory management or manual shared memory management, you also implicitly
enable automatic PGA memory management. With automatic PGA memory management,
you set a target size for the instance PGA. The database then tunes the size of the
instance PGA to your target, and dynamically tunes the sizes of individual PGAs.
Because automatic PGA memory management is the default method for the instance
PGA, if you do not explicitly set a target size, the database automatically computes
and configures a reasonable default.

Manual PGA Memory Management — For the Instance PGA

Previous releases of Oracle Database required the DBA to manually specify the
maximum work area size for each type of SQL operator (such as sort or hash-join).
This proved to be very difficult, because the workload is always changing. Although
the current release of Oracle Database supports this manual PGA memory
management method, Oracle strongly recommends that you leave automatic PGA
memory management enabled.

8-12 Oracle Database Concepts

Overview of Memory Management Methods

Summary of Memory Management Methods

Table 8-2 summarizes the various memory management methods. If you do not enable
automatic memory management, you must separately configure one memory
management method for the SGA and one for the PGA.

Note: When automatic memory management is not enabled, the
default method for the instance PGA is automatic PGA memory
management.

Table 8-2 Oracle Database Memory Management Modes

Oracle Database

Memory Management Mode For | You Set Automatically Tunes
Automatic memory management SGA |= Total memory targetsize |m Total SGA size
and for the Oracle instance

PGA = SGA component sizes

» (Optional) Maximum = Instance PGA size
memory size for the

Oracle instance s Individual PGA sizes
Automatic shared memory management SGA |= SGA target size SGA component sizes
(Automatic memory management disabled) = (Optional) SGA

maximum size
Manual shared memory management SGA |= Shared pool size -
(Automatic memory management and = Buffer cache size
automatic shared memory management Java pool size
disabled) = p

= Large pool size

Automatic PGA memory management PGA | Instance PGA target size Individual PGA sizes
Manual PGA memory management PGA | Maximum work area size for | -

each type of SQL operator

(not recommended)

See Also: Oracle Database Administrator’s Guide because automatic
memory management is not available on all platforms

Memory Management Options and Defaults for Database Installation

If you create your database with Database Configuration Assistant (DBCA) and choose
the basic installation option, automatic memory management is enabled by default. If
you choose advanced installation, Database Configuration Assistant (DBCA) enables
you to select from the following three memory management configurations:

= Automatic memory management
= Automatic shared memory management + automatic PGA memory management
= Manual shared memory management + automatic PGA memory management

If you create the database with a CREATE DATABASE SQL statement and do not
choose the memory management mode by specifying the required memory
initialization parameters, manual shared memory management and automatic PGA
memory management are configured by default.

See also: Oracle Database Administrator’s Guide for more information
about memory management and about memory management
initialization parameters.

Memory Architecture 8-13

About Software Code Areas

About Software Code Areas

Software code areas are portions of memory used to store code that is being run or can
be run. Oracle Database code is stored in a software area that is typically at a different
location from users' programs—a more exclusive or protected location.

Software areas are usually static in size, changing only when software is updated or
reinstalled. The required size of these areas varies by operating system.

Software areas are read only and can be installed shared or nonshared. When possible,
Oracle Database code is shared so that all users can access it without having multiple
copies in memory. This results in a saving of real main memory and improves overall
performance.

User programs can be shared or nonshared. Some Oracle tools and utilities (such as
Oracle Forms and SQL*Plus) can be installed shared, but some cannot. Multiple
instances of Oracle Database can use the same Oracle Database code area with
different databases if running on the same computer.

Note: The option of installing software shared is not available for all
operating systems (for example, on PCs operating Windows).

See your Oracle Database operating system-specific documentation
for more information.

8-14 Oracle Database Concepts

9

Process Architecture

This chapter discusses the processes in an Oracle database system and the different
configurations available for an Oracle database system.

This chapter contains the following topics:

Introduction to Processes

Overview of User Processes

Overview of Oracle Database Processes
Shared Server Architecture

Dedicated Server Configuration
Database Resident Connection Pooling

The Program Interface

Introduction to Processes

All connected Oracle Database users must run two modules of code to access an
Oracle Database instance.

Application or Oracle tool: A database user runs a database application (such as a
precompiler program) or an Oracle tool (such as SQL*Plus), which issues SQL
statements to an Oracle database.

Oracle database server code: Each user has some Oracle database code executing
on his or her behalf, which interprets and processes the application's SQL
statements.

These code modules are run by processes. A process is a "thread of control" or a
mechanism in an operating system that can run a series of steps. (Some operating
systems use the terms job or task.) A process normally has its own private memory
area in which it runs.

This section includes the following topics:

Multiple-Process Oracle Systems

Types of Processes

Multiple-Process Oracle Systems

Multiple-process Oracle (also called multiuser Oracle) uses several processes to run
different parts of the Oracle code and additional processes for the users—either one
process for each connected user or one or more processes shared by multiple users.

Process Architecture 9-1

Introduction to Processes

Most database systems are multiuser, because one of the primary benefits of a
database is managing data needed by multiple users at the same time.

Each process in an Oracle Database instance performs a specific job. By dividing the
work of Oracle Database and database applications into several processes, multiple
users and applications can connect to a single database instance simultaneously while
the system maintains excellent performance.

Types of Processes

The processes in an Oracle Database system can be categorized into two major groups:
= User processes run the application or Oracle tool code.

s Oracle Database processes run the Oracle database server code. They include
server processes and background processes.

The process structure varies for different Oracle Database configurations, depending
on the operating system and the choice of Oracle Database options. The code for
connected users can be configured as a dedicated server or a shared server.

With dedicated server, for each user, the database application is run by a different
process (a user process) than the one that runs the Oracle database server code (a
dedicated server process).

With shared server, the database application is run by a different process (a user
process) than the one that runs the Oracle database server code. Each server process
that runs Oracle database server code (a shared server process) can serve multiple
user processes.

Figure 9-1 illustrates a dedicated server configuration. Each connected user has a
separate user process, and several background processes run Oracle Database.

Figure 9—1 An Oracle Database Instance

User User User User -——— = - ;—So?::esses
System Global Area
(SGA)
. Oracle
Recoverer Process System Database Log Archiver Processes
(RECO) Monitor Monitor Writer Writer (ARCO) (background
(PMON) (SMON) (DBWO) (LGWR) processes)

Figure 9-1 can represent multiple concurrent users running an application on the same
computer as Oracle Database. This particular configuration usually runs on a
mainframe or minicomputer.

9-2 Oracle Database Concepts

Overview of Oracle Database Processes

See Also:

= "Overview of User Processes" on page 9-3

= "Overview of Oracle Database Processes" on page 9-3
s "Dedicated Server Configuration" on page 9-16

» "Shared Server Architecture" on page 9-12

= Your Oracle Database operating system-specific documentation
for more details on configuration choices

Overview of User Processes

When a user runs an application program (such as a Pro*C program) or an Oracle tool
(such as Oracle Enterprise Manager or SQL*Plus), Oracle Database creates a user
process to run the user's application.

Connections and Sessions

Connection and session are closely related to user process but are very different in
meaning.

A connection is a communication pathway between a user process and an Oracle
Database instance. A communication pathway is established using available
interprocess communication mechanisms (on a computer that runs both the user
process and Oracle Database) or network software (when different computers run the
database application and Oracle Database, and communicate through a network).

A session is a specific connection of a user to an Oracle Database instance through a
user process. For example, when a user starts SQL*Plus, the user must provide a valid
user name and password, and then a session is established for that user. A session lasts
from the time the user connects until the time the user disconnects or exits the
database application.

Multiple sessions can be created and exist concurrently for a single Oracle Database
user using the same user name. For example, a user with the user name/password of
SCOTT/TIGER can connect to the same Oracle Database instance several times.

In configurations without the shared server, Oracle Database creates a server process
on behalf of each user session. However, with the shared server, many user sessions
can share a single server process.

See Also: "Shared Server Architecture” on page 9-12

Overview of Oracle Database Processes

This section describes the two types of processes that run the Oracle database server
code (server processes and background processes). It also describes the trace files and
alert logs, which record database events for the Oracle Database processes.

This section includes the following topics:
s Oracle Database Server Processes
s Oracle Database Background Processes

s Oracle Database Trace Files and the Alert Log

Process Architecture 9-3

Overview of Oracle Database Processes

Oracle Database Server Processes

Oracle Database creates server processes to handle the requests of user processes
connected to the instance. In some situations when the application and Oracle
Database operate on the same computer, it is possible to combine the user process and
corresponding server process into a single process to reduce system overhead.
However, when the application and Oracle Database operate on different computers, a
user process always communicates with Oracle Database through a separate server
process.

Server processes (or the server portion of combined user/server processes) created on
behalf of each user's application can perform one or more of the following:

s Parse and run SQL statements issued through the application

= Read necessary data blocks from datafiles on disk into the shared database buffers
of the SGA, if the blocks are not already present in the SGA

= Return results in such a way that the application can process the information

Oracle Database Background Processes

To maximize performance and accommodate many users, a multiprocess Oracle
Database system uses some additional Oracle Database processes called background
processes.

An Oracle Database instance can have many background processes; not all are always
present. There are numerous background processes. See the V$BGPROCESS view for
more information on the background processes. The background processes in an
Oracle Database instance can include the following:

s Archiver Processes (ARCn)

s Checkpoint Process (CKPT)

» Database Writer Process (DBWn)

= Job Queue Processes

= Log Writer Process (LGWR)

s Process Monitor Process (PMON)

s Queue Monitor Processes (QMNn)

s Recoverer Process (RECO)

= System Monitor Process (SMON)

s Other Oracle Database Background Processes

On many operating systems, background processes are created automatically when an
instance is started.

Figure 9-2 illustrates how each background process interacts with the different parts of
an Oracle database, and the rest of this section describes each process.

9-4 Oracle Database Concepts

Overview of Oracle Database Processes

See Also:

» Oracle Real Application Clusters Administration and Deployment
Guide and Oracle Clusterware Administration and Deployment
Guide for more information. Oracle Real Application Clusters is
not illustrated in Figure 9-2

= Your operating system-specific documentation for details on
how these processes are created

Figure 9-2 Background Processes of a Multiple-Process Oracle Database Instance

RECO

PMON

SMON

System Global Area

Database Redo Log
Buffer Cache Buffer
4 4
I I
User Shared Dedicated
Process Server Server
Process Process
User Processes
A A A
ARCO
CKPT \
D000
v v
DBWO
LGWR
I.l_
v
Legend: User
Process
RECO Recoverer process
PMON Process monitor
SMON System monitor
CKPT Checkpoint vy
ARCO Archiver -
DBWO Database writer <
LGWR Log writer
D000 Dispatcher Process

Archiver Processes (ARCn)

The archiver processes (ARCn) copy redo log files to a designated storage device after
a log switch has occurred. In addition, they can collect transaction redo data and

>
‘ Datafiles

Offline
Storage
Device

Process Architecture 9-5

Overview of Oracle Database Processes

transmit that data to standby destinations. ARC#n processes are present only when the
database is in ARCHIVELOG mode, and automatic archiving is enabled.

If you anticipate a heavy workload for archiving, such as during bulk loading of data,
you can increase the maximum number of archiver processes with the LOG_ARCHIVE_
MAX_PROCESSES initialization parameter. The ALTER SYSTEM statement can change
the value of this parameter dynamically to increase or decrease the number of ARCn
processes.

See Also:
= "Oracle Database Trace Files and the Alert Log" on page 9-11
» Oracle Database Backup and Recovery User's Guide

= Your operating system-specific documentation for details about
using the ARCn processes

Checkpoint Process (CKPT)

When a checkpoint occurs, Oracle Database must update the headers of all datafiles to
record the details of the checkpoint. This is done by the CKPT process. The CKPT
process does not write blocks to disk; DBWn always performs that work.

The statistic DBWR checkpoints displayed by the System_Statistics monitor in
Oracle Enterprise Manager indicates the number of checkpoint requests completed.

See Also: Oracle Real Application Clusters Administration and
Deployment Guide for information about CKPT with Oracle Real
Application Clustersc

Database Writer Process (DBWn)

The database writer process (DBWn) writes the contents of buffers to datafiles. The
DBWn processes are responsible for writing modified (dirty) buffers in the database
buffer cache to disk. Although one database writer process (DBW0) is adequate for
most systems, you can configure additional processes (DBW1 through DBW9 and
DBWa through DBWj) to improve write performance if your system modifies data
heavily. These additional DBWn processes are not useful on uniprocessor systems.

When a buffer in the database buffer cache is modified, it is marked dirty. A cold
buffer is a buffer that has not been recently used according to the least recently used
(LRU) algorithm. The DBWn process writes cold, dirty buffers to disk so that user
processes are able to find cold, clean buffers that can be used to read new blocks into
the cache. As buffers are dirtied by user processes, the number of free buffers
diminishes. If the number of free buffers drops too low, user processes that must read
blocks from disk into the cache are not able to find free buffers. DBW#n manages the
buffer cache so that user processes can always find free buffers.

By writing cold, dirty buffers to disk, DBW# improves the performance of finding free
buffers while keeping recently used buffers resident in memory. For example, blocks
that are part of frequently accessed small tables or indexes are kept in the cache so that
they do not need to be read in again from disk. The LRU algorithm keeps more
frequently accessed blocks in the buffer cache so that when a buffer is written to disk,
it is unlikely to contain data that will be useful soon.

The initialization parameter DB_WRITER_PROCESSES specifies the number of DBWn
processes. The maximum number of DBWn processes is 20. If it is not specified by the
user during startup, Oracle Database determines how to set DB_WRITER_PROCESSES
based on the number of CPUs and processor groups.

9-6 Oracle Database Concepts

Overview of Oracle Database Processes

The DBWn process writes dirty buffers to disk under the following conditions:

= When a server process cannot find a clean reusable buffer after scanning a
threshold number of buffers, it signals DBWn to write. DBWn writes dirty buffers
to disk asynchronously while performing other processing.

s DBWn periodically writes buffers to advance the checkpoint, which is the position
in the redo thread (log) from which instance recovery begins. This log position is
determined by the oldest dirty buffer in the buffer cache.

In all cases, DBWn performs batched (multiblock) writes to improve efficiency. The
number of blocks written in a multiblock write varies by operating system.

See Also:
= "Database Buffer Cache" on page 8-3

» Oracle Database Performance Tuning Guide for advice on setting DB_
WRITER_PROCESSES and for information about how to monitor
and tune the performance of a single DBWO process or multiple
DBWn processes

» Oracle Database Backup and Recovery User's Guide

Job Queue Processes

Job queue processes are used for batch processing. They run user jobs. They can be
viewed as a scheduler service that can be used to schedule jobs as PL/SQL statements
or procedures on an Oracle Database instance. Given a start date and an interval, the
job queue processes try to run the job at the next occurrence of the interval.

Job queue processes are managed dynamically. This allows job queue clients to use
more job queue processes when required. The resources used by the new processes are
released when they are idle.

Dynamic job queue processes can run a large number of jobs concurrently at a given
interval. The job queue processes run user jobs as they are assigned by the CJQ
process. Here's what happens:

1. The coordinator process, named CJQO, periodically selects jobs that need to be run
from the system JOB$ table. New jobs selected are ordered by time.

2. The CJQO process dynamically spawns job queue slave processes (J000...J999) to
run the jobs.

3. Thejob queue process runs one of the jobs that was selected by the CJQ process for
execution. The processes run one job at a time.

4. After the process finishes execution of a single job, it polls for more jobs. If no jobs
are scheduled for execution, then it enters a sleep state, from which it wakes up at
periodic intervals and polls for more jobs. If the process does not find any new
jobs, then it aborts after a preset interval.

The initialization parameter JOB_QUEUE_PROCESSES represents the maximum
number of job queue processes that can concurrently run on an instance. However,
clients should not assume that all job queue processes are available for job execution.

Note: The coordinator process is not started if the initialization
parameter JOB_QUEUE_PROCESSES is set to 0.

Process Architecture 9-7

Overview of Oracle Database Processes

See Also: Oracle Database Administrator’s Guide for more information
about job queues

Log Writer Process (LGWR)

The log writer process (LGWR) is responsible for redo log buffer
management—writing the redo log buffer to a redo log file on disk. LGWR writes all
redo entries that have been copied into the buffer since the last time it wrote.

The redo log buffer is a circular buffer. When LGWR writes redo entries from the redo
log buffer to a redo log file, server processes can then copy new entries over the entries
in the redo log buffer that have been written to disk. LGWR normally writes fast
enough to ensure that space is always available in the buffer for new entries, even
when access to the redo log is heavy.

LGWR writes one contiguous portion of the buffer to disk. LGWR writes:
= A commit record when a user process commits a transaction
= Redo log buffers

- Every three seconds

— When the redo log buffer is one-third full

— When a DBWn process writes modified buffers to disk, if necessary

Note: Before DBWn can write a modified buffer, all redo records
associated with the changes to the buffer must be written to disk (the
write-ahead protocol). If DBWn finds that some redo records have not
been written, it signals LGWR to write the redo records to disk and
waits for LGWR to complete writing the redo log buffer before it can
write out the data buffers.

LGWR writes synchronously to the active mirrored group of redo log files. If one of
the files in the group is damaged or unavailable, LGWR continues writing to other
files in the group and logs an error in the LGWR trace file and in the system alert log.
If all files in a group are damaged, or the group is unavailable because it has not been
archived, LGWR cannot continue to function.

When a user issues a COMMIT statement, LGWR puts a commit record in the redo log
buffer and writes it to disk immediately, along with the transaction's redo entries. The
corresponding changes to data blocks are deferred until it is more efficient to write
them. This is called a fast commit mechanism. The atomic write of the redo entry
containing the transaction's commit record is the single event that determines the
transaction has committed. Oracle Database returns a success code to the committing
transaction, although the data buffers have not yet been written to disk.

Note: Sometimes, if more buffer space is needed, LGWR writes redo
log entries before a transaction is committed. These entries become
permanent only if the transaction is later committed.

When a user commits a transaction, the transaction is assigned a system change
number (SCN), which Oracle Database records along with the transaction's redo
entries in the redo log. SCNs are recorded in the redo log so that recovery operations
can be synchronized in Real Application Clusters and distributed databases.

9-8 Oracle Database Concepts

Overview of Oracle Database Processes

In times of high activity, LGWR can write to the redo log file using group commits. For
example, assume that a user commits a transaction. LGWR must write the
transaction's redo entries to disk, and as this happens, other users issue COMMIT
statements. However, LGWR cannot write to the redo log file to commit these
transactions until it has completed its previous write operation. After the first
transaction's entries are written to the redo log file, the entire list of redo entries of
waiting transactions (not yet committed) can be written to disk in one operation,
requiring less I/O than do transaction entries handled individually. Therefore, Oracle
Database minimizes disk I/O and maximizes performance of LGWR. If requests to
commit continue at a high rate, then every write (by LGWR) from the redo log buffer
can contain multiple commit records.

See Also:
= Redo Log Buffer on page 8-4
= "Oracle Database Trace Files and the Alert Log" on page 9-11

» Oracle Real Application Clusters Administration and Deployment
Guide for more information about SCNs and how they are used

s Oracle Database Administrator’s Guide for more information about
SCNs and how they are used

» Oracle Database Performance Tuning Guide for information about
how to monitor and tune the performance of LGWR

Process Monitor Process (PMON)

The process monitor (PMON) performs process recovery when a user process fails.
PMON is responsible for cleaning up the database buffer cache and freeing resources
that the user process was using. For example, it resets the status of the active
transaction table, releases locks, and removes the process ID from the list of active
processes.

PMON periodically checks the status of dispatcher and server processes, and restarts
any that have stopped running (but not any that Oracle Database has terminated
intentionally). PMON also registers information about the instance and dispatcher
processes with the network listener.

Like SMON, PMON checks regularly to see whether it is needed and can be called if
another process detects the need for it.

Queue Monitor Processes (QMNn)

The queue monitor process is an optional background process for Oracle Streams
Advanced Queuing, which monitors the message queues. You can configure up to 10
queue monitor processes. These processes, like the job queue processes, are different
from other Oracle Database background processes in that process failure does not
cause the instance to fail.

See Also:
» "Oracle Streams Advanced Queuing" on page 23-8

» Oracle Streams Advanced Queuing User’s Guide

Recoverer Process (RECO)

The recoverer process (RECO) is a background process used with the distributed
database configuration that automatically resolves failures involving distributed
transactions. The RECO process of a node automatically connects to other databases

Process Architecture 9-9

Overview of Oracle Database Processes

involved in an in-doubt distributed transaction. When the RECO process reestablishes
a connection between involved database servers, it automatically resolves all in-doubt
transactions, removing from each database's pending transaction table any rows that
correspond to the resolved in-doubt transactions.

If the RECO process fails to connect with a remote server, RECO automatically tries to
connect again after a timed interval. However, RECO waits an increasing amount of
time (growing exponentially) before it attempts another connection. The RECO process
is present only if the instance permits distributed transactions. The number of
concurrent distributed transactions is not limited.

See Also: Oracle Database Administrator’s Guide for more information
about distributed transaction recovery

System Monitor Process (SMON)

The system monitor process (SMON) performs recovery, if necessary, at instance
startup. SMON is also responsible for cleaning up temporary segments that are no
longer in use and for coalescing contiguous free extents within dictionary managed
tablespaces. If any terminated transactions were skipped during instance recovery
because of file-read or offline errors, SMON recovers them when the tablespace or file
is brought back online. SMON checks regularly to see whether it is needed. Other
processes can call SMON if they detect a need for it.

With Real Application Clusters, the SMON process of one instance can perform
instance recovery for a failed CPU or instance.

See Also: Oracle Real Application Clusters Administration and
Deployment Guide for more information about SMON

Other Oracle Database Background Processes

There are several other background processes that might be running. You can view the
background processes running on your system by issuing the following SQL query:

SELECT * FROM V$SBGPROCESS
WHERE PADDR != '00'
ORDER BY NAME;

These background processes can include the following:

= ACMS (atomic control file to memory service) per-instance process is an agent that
contributes to ensuring a distributed SGA memory update is either globally
committed on success or globally aborted in the event of a failure in an Oracle
RAC environment.

= DBRM (database resource manager) process is responsible for setting resource

plans and other resource manager related tasks.

See Also: "Overview of the Database Resource Manager" on
page 14-18 for more information about the database resource manager

= DIAOQ (diagnosability process 0) (only 0 is currently being used) is responsible for
hang detection and deadlock resolution.

= DIAG (diagnosability) process performs diagnostic dumps and executes global
oradebug commands.

= EMNC (event monitor coordinator) is the background server process used for
database event management and notifications.

9-10 Oracle Database Concepts

Overview of Oracle Database Processes

s FBDA (flashback data archiver process) archives the historical rows of tracked
tables into flashback data archives. Tracked tables are tables which are enabled for
flashback archive. When a transaction containing DML on a tracked table
commits, this process stores the pre-image of the rows into the flashback archive. It
also keeps metadata on the current rows.

FBDA is also responsible for automatically managing the flashback data archive
for space, organization, and retention and keeps track of how far the archiving of
tracked transactions has occurred.

s GTXO0-j (global transaction) processes provide transparent support for XA global
transactions in an Oracle RAC environment. The database autotunes the number
of these processes based on the workload of XA global transactions. Global
transaction processes are only seen in an Oracle RAC environment.

» MMAN is used for internal database tasks.

= MMNL performs frequent and light-weight manageability-related tasks, such as
session history capture and metrics computation.

= MMON performs various manageability-related background tasks, for example:
— Issuing alerts whenever a given metrics violates its threshold value
- Taking snapshots by spawning additional process (MMON slaves)
- Capturing statistics value for SQL objects which have been recently modified

= ARBn performs the actual rebalance data extent movements in an Automatic
Storage Management instance. There can be many of these at a time, called ARBO,
ARB1, and so forth.

= PSPO (process spawner) spawns Oracle processes.

= RBAL coordinates rebalance activity for disk groups in an Automatic Storage
Management instance. It performs a global open on Automatic Storage
Management disks.

s SMCO (space management coordinator) process coordinates the execution of
various space management related tasks, such as proactive space allocation and
space reclamation. It dynamically spawns slave processes (Wnnn) to implement
the task.

s VKTM (virtual keeper of time) is responsible for providing a wall-clock time
(updated every second) and reference-time counter (updated every 20 ms and
available only when running at elevated priority).

See Also:

» Oracle Clusterware Administration and Deployment Guide for more
information about Oracle Clusterware background processes

» Oracle Real Application Clusters Administration and Deployment
Guide for more information about Oracle Real Application
Clusters background processes

» Oracle Database Storage Administrator’s Guide to learn about the
ASM background processes

Oracle Database Trace Files and the Alert Log

Beginning with Oracle Database 11g, an advanced fault diagnosability infrastructure is
included for preventing, detecting, diagnosing, and resolving problems. The problems

Process Architecture 9-11

Shared Server Architecture

that are targeted in particular are critical errors such as those caused by database code
bugs, metadata corruption, and customer data corruption.

When a critical error occurs, it is assigned an incident number, and diagnostic data for
the error (such as trace files) are immediately captured and tagged with this number.
The data is then stored in the Automatic Diagnostic Repository (ADR)—a file based
repository outside the database—where it can later be retrieved by incident number
and analyzed.

Each server and background process can write to an associated trace file. When a
process detects an internal error, it dumps information about the error to its trace file.
If an internal error occurs and information is written to a trace file, the administrator
should contact Oracle Support Services.

All filenames of trace files associated with a background process contain the name of
the process that generated the trace file. The one exception to this is trace files
generated by job queue processes (Jnnn).

Additional information in trace files can provide guidance for tuning applications or
an instance. Background processes always write this information to a trace file when
appropriate.

Each database also has an alert.log. The alert log of a database is a chronological
log of messages and errors, including the following:

= Allinternal errors (ORA-600), block corruption errors (ORA-1578), and deadlock
errors (ORA-60) that occur

= Administrative operations, such as the SQL statements CREATE/ALTER/DROP
DATABASE/TABLESPACE and the Oracle Enterprise Manager or SQL*Plus
statements STARTUP, SHUTDOWN, ARCHIVE LOG, and RECOVER

= Several messages and errors relating to the functions of shared server and
dispatcher processes

s Errors during the automatic refresh of a materialized view

Oracle Database uses the alert log to keep a record of these events as an alternative to
displaying the information on an operator's console. (Many systems also display this
information on the console.) If an administrative operation is successful, a message is
written in the alert log as "completed” along with a time stamp.

See Also:

» Oracle Database Performance Tuning Guide for information about
enabling the SQL trace facility

» Oracle Database Error Messages for information about error
messages

Shared Server Architecture

Shared server architecture eliminates the need for a dedicated server process for each
connection. A dispatcher directs multiple incoming network session requests to a pool
of shared server processes. An idle shared server process from a shared pool of server
processes picks up a request from a common queue, which means a small number of
shared servers can perform the same amount of processing as many dedicated servers.
Also, because the amount of memory required for each user is relatively small, less
memory and process management are required, and more users can be supported.

A number of different processes are needed in a shared server system:

9-12 Oracle Database Concepts

Shared Server Architecture

= A network listener process that connects the user processes to dispatchers or
dedicated servers (the listener process is part of Oracle Net Services, not Oracle
Database).

= One or more dispatcher processes
= One or more shared server processes

Shared server processes require Oracle Net Services or SQL*Net version 2.

Note: To use shared servers, a user process must connect through
Oracle Net Services or SQL*Net version 2, even if the process runs on
the same computer as the Oracle Database instance.

When an instance starts, the network listener process opens and establishes a
communication pathway through which users connect to Oracle Database. Then, each
dispatcher process gives the listener process an address at which the dispatcher listens
for connection requests. At least one dispatcher process must be configured and
started for each network protocol that the database clients will use.

When a user process makes a connection request, the listener examines the request and
determines whether the user process can use a shared server process. If so, the listener
returns the address of the dispatcher process that has the lightest load, and the user
process connects to the dispatcher directly.

Some user processes cannot communicate with the dispatcher, so the network listener
process cannot connect them to a dispatcher. In this case, or if the user process requests
a dedicated server, the listener creates a dedicated server and establishes an
appropriate connection.

The Oracle Database shared server architecture increases the scalability of applications
and the number of clients simultaneously connected to the database. It can enable
existing applications to scale up without making any changes to the application itself.

See Also:

» "Restricted Operations of the Shared Server" on page 9-16

» Oracle Database Net Services Administrator’s Guide for more

information about the network listener

This section includes the following topics:
= Dispatcher Request and Response Queues

= Restricted Operations of the Shared Server

Dispatcher Request and Response Queues

A request from a user is a single program interface call that is part of the user's SQL
statement. When a user makes a call, its dispatcher places the request on the request
queue, where it is picked up by the next available shared server process.

The request queue is in the SGA and is common to all dispatcher processes of an
instance. The shared server processes check the common request queue for new
requests, picking up new requests on a first-in-first-out basis. One shared server
process picks up one request in the queue and makes all necessary calls to the database
to complete that request.

Process Architecture 9-13

Shared Server Architecture

When the server completes the request, it places the response on the calling
dispatcher's response queue. Each dispatcher has its own response queue in the SGA.
The dispatcher then returns the completed request to the appropriate user process.

For example, in an order entry system each clerk's user process connects to a
dispatcher and each request made by the clerk is sent to that dispatcher, which places
the request in the request queue. The next available shared server process picks up the
request, services it, and puts the response in the response queue. When a clerk's
request is completed, the clerk remains connected to the dispatcher, but the shared
server process that processed the request is released and available for other requests.
While one clerk is talking to a customer, another clerk can use the same shared server
process.

Figure 9-3 illustrates how user processes communicate with the dispatcher across the
program interface and how the dispatcher communicates users' requests to shared
server processes.

Figure 9-3 The Shared Server Configuration and Processes

User
Process

Application

Code

Client Workstation

Database Server

Dispatcher Processes <

Shared
Server
Processes

Oracle
Server Code

- TN
v System Global Area

Request Response

Queues Queues

9-14 Oracle Database Concepts

Shared Server Architecture

This section includes the following topics:
» Dispatcher Processes (Dnnn)

» Shared Server Processes (Snnn)

Dispatcher Processes (Dnnn)

The dispatcher processes support shared server configuration by allowing user
processes to share a limited number of server processes. With the shared server, fewer
shared server processes are required for the same number of users, Therefore, the
shared server can support a greater number of users, particularly in client/server
environments where the client application and server operate on different computers.

You can create multiple dispatcher processes for a single database instance. At least
one dispatcher must be created for each network protocol used with Oracle Database.
The database administrator starts an optimal number of dispatcher processes
depending on the operating system limitation and the number of connections for each
process, and can add and remove dispatcher processes while the instance runs.

Note: Each user process that connects to a dispatcher must do so
through Oracle Net Services or SQL*Net version 2, even if both
processes are running on the same computer.

In a shared server configuration, a network listener process waits for connection
requests from client applications and routes each to a dispatcher process. If it cannot
connect a client application to a dispatcher, the listener process starts a dedicated
server process, and connects the client application to the dedicated server. The listener
process is not part of an Oracle Database instance; rather, it is part of the networking
processes that work with Oracle Database.

See Also:
= "Shared Server Architecture" on page 9-12

m Oracle Database Net Services Administrator’s Guide for more
information about the network listener

Shared Server Processes (Snnn)

Each shared server process serves multiple client requests in the shared server
configuration. Shared server processes and dedicated server processes provide the
same functionality, except shared server processes are not associated with a specific
user process. Instead, a shared server process serves any client request in the shared
server configuration.

The PGA of a shared server process does not contain user-related data (which must be
accessible to all shared server processes). The PGA of a shared server process contains
only stack space and process-specific variables.

All session-related information is contained in the SGA. Each shared server process
must be able to access all sessions' data spaces so that any server can handle requests
from any session. Space is allocated in the SGA for each session's data space. You can
limit the amount of space that a session can allocate by setting the resource limit
PRIVATE_SGA to the desired amount of space in the user's profile.

Oracle Database dynamically adjusts the number of shared server processes based on
the length of the request queue. The number of shared server processes that can be

Process Architecture 9-15

Dedicated Server Configuration

created ranges between the values of the initialization parameters SHARED_SERVERS
and MAX_ SHARED_SERVERS.

See Also:

= "Overview of the Program Global Area" on page 8-9 for more
information about the content of a PGA in different types of
instance configurations

s Chapter 20, "Database Security"for more information about
resource limits and profiles

Restricted Operations of the Shared Server

Certain administrative activities cannot be performed while connected to a dispatcher
process, including shutting down or starting an instance and media recovery. An error
message is issued if you attempt to perform these activities while connected to a
dispatcher process.

These activities are typically performed when connected with administrator privileges.
When you want to connect with administrator privileges in a system configured with
shared servers, you must state in your connect string that you want to use a dedicated
server process (SERVER=DEDICATED) instead of a dispatcher process.

See Also:
= Your operating system-specific documentation

» Oracle Database Net Services Administrator’s Guide for the proper
connect string syntax

Dedicated Server Configuration

Figure 9—4 illustrates Oracle Database running on two computers using the dedicated
server architecture. In this configuration, a user process runs the database application
on one computer, and a server process runs the associated Oracle database server on
another computer.

9-16 Oracle Database Concepts

Dedicated Server Configuration

Figure 9-4 Oracle Database Using Dedicated Server Processes

User User
Process Process

Application Application
Code Code

Client Workstation

Database Server

Dedicated
Server
Process

Oracle
Server Code

Oracle
Server Code

Program
Interface

System Global Area

The user and server processes are separate, distinct processes. The separate server
process created on behalf of each user process is called a dedicated server process (or
shadow process), because this server process acts only on behalf of the associated user
process.

This configuration maintains a one-to-one ratio between the number of user processes
and server processes. Even when the user is not actively making a database request,
the dedicated server process remains (though it is inactive and can be paged out on
some operating systems).

Figure 9—4 shows user and server processes running on separate computers connected
across a network. However, the dedicated server architecture is also used if the same
computer runs both the client application and the Oracle database server code but the
host operating system could not maintain the separation of the two programs if they
were run in a single process. UNIX is a common example of such an operating system.

In the dedicated server configuration, the user and server processes communicate
using different mechanisms:

s If the system is configured so that the user process and the dedicated server
process run on the same computer, the program interface uses the host operating
system's interprocess communication mechanism to perform its job.

= If the user process and the dedicated server process run on different computers,
the program interface provides the communication mechanisms (such as the
network software and Oracle Net Services) between the programs.

= Dedicated server architecture can sometimes result in inefficiency. Consider an
order entry system with dedicated server processes. A customer places an order as
a clerk enters the order into the database. For most of the transaction, the clerk is

Process Architecture 9-17

Database Resident Connection Pooling

talking to the customer while the server process dedicated to the clerk's user
process remains idle. The server process is not needed during most of the
transaction, and the system is slower for other clerks entering orders. For
applications of this kind, the shared server architecture may be preferable.

See Also:
= Your operating system-specific documentation
s Oracle Database Net Services Administrator's Guide

for more information about communication links

Database Resident Connection Pooling

Database Resident Connection Pooling (DRCP) provides a connection pool in the
database server for typical Web application usage scenarios. DRCP pools dedicated
servers, which comprise of a server foreground combined with a database session, to
create pooled servers.

A Web application typically acquires a database connection, uses the connection for a
short period, and then releases the connection. DRCP enables multiple Web
application threads and processes to share the pooled servers for their connection
needs.

DRCP complements middle-tier connection pools that share connections between
threads in a middle-tier process. DRCP also enables you to share database connections
across multiple middle-tier processes. These middle-tier processes may belong to the
same or different middle-tier host.

DRCP enables a significant reduction in key database resources that are required to
support a large number of client connections. DRCP reduces the amount of memory
required for the database server and boosts the scalability of both the database server
and the middle-tier. The pool of readily available servers also reduces the cost of
re-creating client connections.

DRCP is especially useful for architectures with multi-process, single-threaded
application servers, such as PHP and Apache servers, that cannot do middle-tier
connection pooling. The database can scale to tens of thousands of simultaneous
connections with DRCP.

See Also:

= "About Database Resident Connection Pooling" in the Oracle
Database Administrator’s Guide

» Oracle Call Interface Programmer’s Guide

The pooled server model closely follows the dedicated model, which is used to
connect to Oracle by default. The pooled server model does away with the overhead of
dedicating a server for every connection that requires the server for a short period.
DRCP allows a connection to acquire, and then voluntarily release the pooled server
for use by other similar connections. On being acquired by a connection, a pooled
server essentially transforms into a dedicated server for that connection until it is
released back into the pool. Clients getting connections out of the database resident
connection pool connect to an Oracle background process known as the connection
broker. The connection broker implements the pool functionality and multiplexes
pooled servers among inbound connections from client processes.

9-18 Oracle Database Concepts

Database Resident Connection Pooling

When a client must perform some back-end database work, the connection broker
picks up a pooled server from the pool and assigns it to the client. Subsequently, the
client is directly connected to the pooled server until the request is served. After the
server has finished processing the client request, the server goes back into the pool and
the connection from the client is restored to the connection broker process. Figure 9-5
illustrates database resident connection pooling.

Figure 9-5 Pool of Dedicated Server Processes Handling Connections Through the Connection Broker

Process

Middle Tier Middle Tier

After Handoff-
Direct
connection

After Handoff- Persistent
Direct connections to
connection Connection Broker

Persistent
connections to
Connection Broker

Pooled Servers

Connection
Broker

Connection

S Broker

N\

Handoff
- Connection

—

Broker

RAC Instance 1 RAC Instance 2

Pooled Servers

. Physical -
Store

Using Database Resident Connection Pooling

Database resident connection pooling enables you to freely scale your middle-tier
hardware without worrying about running out of memory on the database side. This
is because a smaller pool of dedicated server processes can serve a larger number of
middle-tier processes.

The default connection pool is called, SYS_ DEFAULT_CONNECTION_POOL. To use
database resident connection pooling, the database administrator must explicitly start
the pool. The following example illustrates this:

Log into SQL*Plus as SYSDBA
Run the following command:

SQL> EXECUTE DBMS_CONNECTION_POOL.START_POOL('SYS_DEFAULT_CONNECTION_POOL') ;

Process Architecture 9-19

Database Resident Connection Pooling

Note: Currently, only the default connection pool is supported.

See Also: "Enabling Database Resident Connection Pooling" in the
Oracle Database Administrator’s Guide

To connect to the shared pool, the server type should be set to POOLED in the database
connection string. For example:

ServerPool = (DESCRIPTION=(ADDRESS=(PROTOCOL=tcp) (HOST=somehost)
(PORT=1521)) (CONNECT_DATA= (SERVICE_NAME=testdb) (SERVER=POOLED)))
You can also connect to the shared pool using the easy connect naming method. You

must use the keyword POOLED with the database service name. For example:

CONNECT joeuser@myhost.example.com:1521/mydb:POOLED
Enter password: password

Note: For simplicity in demonstrating this feature, this example does
not perform the password management techniques that a deployed
system normally uses. In a production environment, follow the Oracle
Database password management guidelines, and disable any sample
accounts. See Oracle Database Security Guide for password management
guidelines and other security recommendations.

This section includes the following topics:
= Connection Classes

m Session Purity

Connection Classes

A connection class defines a logical name for the type of connection required by the
application. Two different users cannot share connections, or sessions, among
themselves. For example, a session first created for user HR is only given out to
subsequent requests on behalf of the user HR. A connection class enables further
separation between the sessions of a given user. The connection class lets different
applications, connecting as the same database user, identify their sessions using a
logical name that corresponds to the application. DRCP then ensures that sessions
belonging to a particular connection class are not shared outside the connection class.

Session Purity

Session purity specifies whether the application requires a brand new session
(PURITY=NEW), or whether the application logic is set up to reuse a pooled session
(PURITY=SELF). If the application can reuse a pooled session, then a free session with
the requested connection class is allotted to the application.

Connection classes and session purity are specified by the client as attributes of a
DRCP connection. The default connection class value is username . SHARED. By
default, sessions with the same username are shared when purity is SELF.

9-20 Oracle Database Concepts

The Program Interface

The default value for purity is NEW. The defaults can differ for different application
scenarios. Please see the respective application manuals for details on using DRCP
with your application.

See Also: Oracle Call Interface Programmer’s Guide for details on using
connection classes and session purity

The Program Interface

The program interface is the software layer between a database application and Oracle
Database. The program interface:

= Provides a security barrier, preventing destructive access to the SGA by client user
processes

= Acts as a communication mechanism, formatting information requests, passing
data, and trapping and returning errors

s Converts and translates data, particularly between different types of computers or
to external user program datatypes

The Oracle code acts as a server, performing database tasks on behalf of an
application (a client), such as fetching rows from data blocks. It consists of several
parts, provided by both Oracle Database software and operating system-specific
software.

This section includes the following topics:
s Program Interface Structure
s Program Interface Drivers

s Communications Software for the Operating System

Program Interface Structure

The program interface consists of the following pieces:

s Oracle call interface (OCI) or the Oracle run-time library (SQLLIB)

s The client or user side of the program interface

= Various Oracle Net Services drivers (protocol-specific communications software)
= Operating system communications software

s The server or Oracle Database side of the program interface (also called the OPI)

Both the user and Oracle Database sides of the program interface run Oracle software,
as do the drivers.

Oracle Net Services is the portion of the program interface that allows the client
application program and the Oracle database server to reside on separate computers in
your communication network.

Program Interface Drivers

Drivers are pieces of software that transport data, usually across a network. They
perform operations such as connect, disconnect, signal errors, and test for errors.
Drivers are specific to a communications protocol, and there is always a default driver.

You can install multiple drivers (such as the asynchronous or DECnet drivers) and
select one as the default driver, but allow an individual user to use other drivers by

Process Architecture 9-21

The Program Interface

specifying the desired driver at the time of connection. Different processes can use
different drivers. A single process can have concurrent connections to a single
database or to multiple databases (either local or remote) using different Oracle Net
Services drivers.

See Also:

= Your system installation and configuration guide for details about
choosing, installing, and adding drivers

= Your system Oracle Net Services documentation for information
about selecting a driver at run time while accessing Oracle
Database

m Oracle Database Net Services Administrator’s Guide

Communications Software for the Operating System

The lowest-level software connecting the user side to the Oracle Database side of the
program interface is the communications software, which is provided by the host
operating system. DECnet, TCP/IP, LU6.2, and ASYNC are examples. The
communication software can be supplied by Oracle, but it is usually purchased
separately from the hardware vendor or a third-party software supplier.

See Also: Your Oracle Database operating system-specific

documentation for more information about the communication
software of your system

9-22 Oracle Database Concepts

10

Application Architecture

This chapter defines application architecture and describes how the Oracle database
server and database applications work in a distributed processing environment. This
material applies to almost every type of Oracle Database system environment.

This chapter contains the following topics:
s Introduction to Client/Server Architecture
s Overview of Multitier Architecture

s Overview of Oracle Net Services

Introduction to Client/Server Architecture

In the Oracle Database system environment, the database application and the database
are separated into two parts: a front-end or client portion, and a back-end or server
portion—hence the term client/server architecture. The client runs the database
application that accesses database information and interacts with a user through the
keyboard, screen, and pointing device, such as a mouse. The server runs the Oracle
Database software and handles the functions required for concurrent, shared data
access to an Oracle database.

Although the client application and Oracle Database can be run on the same computer,
greater efficiency can often be achieved when the client portions and server portion are
run by different computers connected through a network. The following sections
discuss possible variations in the Oracle Database client/server architecture.

Distributed processing is the use of more than one processor, located in different
systems, to perform the processing for an individual task. Examples of distributed
processing in Oracle Database systems appear in Figure 10-1.

= InPart A of the figure, the client and server are located on different computers,
and these computers are connected through a network. The server and clients of
an Oracle Database system communicate through Oracle Net Services, Oracle's
network interface.

= In Part B of the figure, a single computer has more than one processor, and
different processors separate the execution of the client application from Oracle
Database.

Note: This chapter applies to environments with one database on
one server. In a distributed database, one server (Oracle Database)
may need to access a database on another server.

Application Architecture 10-1

Introduction to Client/Server Architecture

Figure 10-1 The Client/Server Architecture and Distributed Processing

Database Server

Client Client
Database Server
I | S | —
==
[| I 1 I 1 |
client
client

Oracle Database client/server architecture in a distributed processing environment
provides the following benefits:

Client applications are not responsible for performing any data processing. Rather,
they request input from users, request data from the server, and then analyze and
present this data using the display capabilities of the client workstation or the
terminal (for example, using graphics or spreadsheets).

Client applications are not dependent on the physical location of the data. Even if
the data is moved or distributed to other database servers, the application
continues to function with little or no modification.

Oracle Database exploits the multitasking and shared-memory facilities of its
underlying operating system. As a result, it delivers the highest possible degree of
concurrency, data integrity, and performance to its client applications.

Client workstations or terminals can be optimized for the presentation of data (for
example, by providing graphics and mouse support), and the server can be
optimized for the processing and storage of data (for example, by having large
amounts of memory and disk space).

In networked environments, you can use inexpensive client workstations to access
the remote data of the server effectively.

10-2 Oracle Database Concepts

Overview of Multitier Architecture

= If necessary, Oracle Database can be scaled as your system grows. You can add
multiple servers to distribute the database processing load throughout the
network (horizontally scaled), or you can move Oracle Database to a
minicomputer or mainframe, to take advantage of a larger system's performance
(vertically scaled). In either case, all data and applications are maintained with
little or no modification, because Oracle Database is portable between systems.

s In networked environments, shared data is stored on the servers rather than on all
computers in the system. This makes it easier and more efficient to manage
concurrent access.

s Innetworked environments, client applications submit database requests to the
server using SQL statements. After it is received, the SQL statement is processed
by the server, and the results are returned to the client application. Network traffic
is kept to a minimum, because only the requests and the results are shipped over
the network.

See Also:

= "Overview of Oracle Net Services" on page 10-5 for more
information about Oracle Net Services

s Oracle Database Administrator’s Guide for more information about
clients and servers in distributed databases

Overview of Multitier Architecture

In a traditional multitier architecture environment, an application server provides data
for clients and serves as an interface between clients and database servers. This
architecture is particularly important because of the prevalence of Internet use.

This architecture enables use of an application server to:

s Validate the credentials of a client, such as a Web browser
= Connect to a database server

s Perform the requested operation

An example of a multitier architecture appears in Figure 10-2.

Application Architecture 10-3

Overview of Multitier Architecture

Clients

Figure 10-2 A Multitier Architecture Environment Example

Database Server Database Server Database Server

e
Thin Client

v | Query 4 v
|:. Application |« Application |« Application
4| Server1 Server 2 Server n

éa Y
Thin Client

B] 3 3

v

v

| ——]
Thin Client;O'\

Database Server Database Server Database Server

|

This section includes the following topics:
» Clients
= Application Servers

s Database Servers

A client initiates a request for an operation to be performed on the database server.
The client can be a Web browser or other end-user process. In a multitier architecture,
the client connects to the database server through one or more application servers.

Application Servers

An application server provides access to the data for the client. It serves as an interface
between the client and one or more database servers, which provides an additional
level of security. It can also perform some of the query processing for the client, thus
removing some of the load from the database server.

The application server assumes the identity of the client when it is performing
operations on the database server for that client. The application server's privileges are
restricted to prevent it from performing unneeded and unwanted operations during a
client operation.

Database Servers

A database server provides the data requested by an application server on behalf of a
client. The database server does all of the remaining query processing.

The Oracle database server can audit operations performed by the application server
on behalf of individual clients as well as operations performed by the application

10-4 Oracle Database Concepts

Overview of Oracle Net Services

server on its own behalf. For example, a client operation can be a request for
information to be displayed on the client, whereas an application server operation can
be a request for a connection to the database server.

See Also: Chapter 20, "Database Security"

Oracle Database as a Web Service Provider

Beginning in Oracle Database 11g, Oracle Database can serve as a Web service
provider in traditional multitier or service oriented architecture (SOA) environments.
SOA is a multitier architecture in which application functionality is encapsulated in
services. Services are designed to support interoperable machine-to-machine
interaction over a network. They can be dynamically discovered, and can be queried
on available functions and calling sequences.

SOA services are usually implemented as Web services. Web services can be accessed
with the HTTP protocol and are based on a set of XML-based open standards, such as
WSDL and SOAP.

The Oracle Database Web service capability, which is implemented as part of XML DB,
must be specifically enabled by the DBA. Applications can then accomplish the
following through database Web services:

= Submit SQL or XQuery queries and receive results as XML.
s Invoke standalone PL/SQL functions and receive results.
» Invoke PL/SQL package functions and receive results.

In a multitier environment, both clients and application servers can invoke database
Web services.

Note: Database Web services provide a simple way to add Web
services to your application environment without the need for an
application server. However, invoking Web services through
application servers such as Oracle Fusion Middleware offers more in
the way of security, scalability, UDDI registration, and reliable
messaging in an SOA environment. Nevertheless, because database
Web services integrate easily with Oracle Fusion Middleware, they
may be an appropriate way to help optimize SOA solutions. See the
Oracle Fusion Middleware documentation for more information on
SOA and Web services.

See Also: Oracle XML DB Developer’s Guide for information on
enabling and using database Web services.

Overview of Oracle Net Services

Oracle Net Services provides enterprise-wide connectivity solutions in distributed,
heterogeneous computing environments. Oracle Net Services enables a network
session from a client application to an Oracle database.

Oracle Net Services uses the communication protocols or application programmatic
interfaces (APIs) supported by a wide range of networks to provide a distributed
database and distributed processing for Oracle Database.

Application Architecture 10-5

Overview of Oracle Net Services

= A communication protocol is a set of rules that determine how applications access
the network and how data is subdivided into packets for transmission across the
network.

= An APl is a set of subroutines that provide, in the case of networks, a means to
establish remote process-to-process communication through a communication
protocol.

After a network session is established, Oracle Net Services acts as a data courier for the
client application and the database server. It is responsible for establishing and
maintaining the connection between the client application and database server, as well
as exchanging messages between them. Oracle Net Services is able to perform these
jobs because it is located on each computer in the network.

Oracle Net Services provides location transparency, centralized configuration and
management, and quick out-of-the-box installation and configuration. It also lets you
maximize system resources and improve performance. The Oracle Database shared
server architecture increases the scalability of applications and the number of clients
simultaneously connected to the database.The Virtual Interface (VI) protocol places
most of the messaging burden on high-speed network hardware, freeing the CPU for
more important tasks.

See Also: Oracle Database Net Services Administrator’s Guide for more
information about these features

This section includes the following topics:

s How Oracle Net Services Works

s The Listener

How Oracle Net Services Works

The Listener

Oracle's support of industry network protocols provides an interface between Oracle
Database processes running on the database server and the user processes of Oracle
Database applications running on other computers of the network.

The Oracle Database protocols take SQL statements from the interface of the Oracle
applications and package them for transmission to Oracle Database through one of the
supported industry-standard higher level protocols or programmatic interfaces. The
protocols also take replies from Oracle Database and package them for transmission to
the applications through the same higher level communications mechanism. This is all
done independently of the network operating system.

Depending on the operation system that runs Oracle Database, the Oracle Net Services
software of the database server could include the driver software and start an
additional Oracle Database background process.

See Also: Oracle Database Net Services Administrator’s Guide for
more information about how Oracle Net Services works

When an instance starts, a listener process establishes a communication pathway to
Oracle Database. When a user process makes a connection request, the listener
determines whether it should use a shared server dispatcher process or a dedicated
server process and establishes an appropriate connection.

The listener also establishes a communication pathway between databases. When
multiple databases or instances run on one computer, as in Oracle Real Application

10-6 Oracle Database Concepts

Overview of Oracle Net Services

Clusters, service names enable instances to register automatically with other listeners
on the same computer. A service name can identify multiple instances, and an instance
can belong to multiple services. Clients connecting to a service do not have to specify
which instance they require.

Service Information Registration

Dynamic service registration reduces the administrative overhead for multiple
databases or instances. Information about the services to which the listener forwards
client requests is registered with the listener. Service information can be dynamically
registered with the listener through a feature called service registration or statically
configured in the 1istener.ora file.

Service registration relies on the PMON process—an instance background process—to
register instance information with a listener, as well as the current state and load of the
instance and shared server dispatchers. The registered information enables the listener
to forward client connection requests to the appropriate service handler. Service
registration does not require configuration in the 1istener.ora file.

The initialization parameter SERVICE_NAMES identifies which database services an
instance belongs to. On startup, each instance registers with the listeners of other
instances belonging to the same services. During database operations, the instances of
each service pass information about CPU use and current connection counts to all of
the listeners in the same services. This enables dynamic load balancing and connection
failover.

See Also:

= "Shared Server Architecture" on page 9-12

s "Dedicated Server Configuration" on page 9-16 for more
information about server processes

m Oracle Database Net Services Administrator’s Guide for more
information about the listener

= Your platform-specific Oracle Real Application Clusters
installation guide and Oracle Real Application Clusters
Administration and Deployment Guide for information about
instance registration and client/service connections in Oracle Real
Application Clusters

Application Architecture 10-7

Overview of Oracle Net Services

10-8 Oracle Database Concepts

11

Oracle Database Utilities

This chapter describes Oracle Database utilities for data transfer, data maintenance,
and database administration.

This chapter contains the following topics:

= Introduction to Oracle Database Utilities
s Overview of Data Pump Export and Import
s Overview of the Data Pump API

s Overview of the Metadata API

s Overview of SQL*Loader

s Overview of External Tables

= Overview of LogMiner

s Overview of DBVERIFY Utility

s Overview of DBNEWID Utility

= ADRCI: ADR Command Interpreter

Introduction to Oracle Database Utilities
Oracle Database utilities let you perform the following tasks:

= High-speed movement of data and metadata from one database to another using
Data Pump Export and Import

s Extract and manipulate complete representations of the metadata for database
objects, using the Metadata API

= Move all or part of the data and metadata for a site from one database to another,
using the Data Pump API

s Load data into Oracle Database tables from operating system files using
SQL*Loader or from external sources using external tables

= Manage Oracle Database diagnostic data using the ADR Command Interpreter
(ADRCI).

s Query redo log files through a SQL interface with LogMiner

s Perform physical data structure integrity checks on an offline (for example,
backup) database or datafile with DBVERIFY.

= Maintain the internal database identifier (DBID) and the database name
(DBNAMIE) for an operational database, using the DBNEWID utility

Oracle Database Utilities 11-1

Overview of Data Pump Export and Import

See Also: Oracle Database Utilities for more information on all of the
utilities described in this chapter

Overview of Data Pump Export and Import

Oracle Data Pump technology enables very high-speed movement of data and
metadata from one database to another. This technology is the basis for Oracle
Database data movement utilities, Data Pump Export and Data Pump Import.

Data Pump enables you to specify whether a job should move a subset of the data and
metadata. This is done using data filters and metadata filters, which are implemented
through Export and Import parameters.

This section includes the following topics:
s Data Pump Export
s Data Pump Import

Data Pump Export

Data Pump Export (hereinafter referred to as Export for ease of reading) is a utility for
unloading data and metadata into a set of operating system files called a dump file set.
The dump file set can be moved to another system and loaded by the Data Pump
Import utility.

The dump file set is made up of one or more disk files that contain table data, database
object metadata, and control information. The files are written in a proprietary, binary
format, which can be read only by Data Pump Import. During an import operation,
the Data Pump Import utility uses these files to locate each database object in the
dump file set.

Data Pump Import

Data Pump Import (hereinafter referred to as Import for ease of reading) is a utility for
loading an export dump file set into a target system. The dump file set is made up of
one or more disk files that contain table data, database object metadata, and control
information. The files are written in a proprietary, binary format.

Import can also be used to load a target database directly from a source database with
no intervening files, which allows export and import operations to run concurrently,
minimizing total elapsed time. This is known as network import.

Import also enables you to see all of the SQL DDL that the Import job will be
executing, without actually executing the SQL. This is implemented through the
Import SQLFILE parameter.

Overview of the Data Pump API

The Data Pump API provides a high-speed mechanism to move all or part of the data
and metadata for a site from one database to another. To use the Data Pump API, you
use the procedures provided in the DBMS_DATAPUMP PL/SQL package. The Data
Pump Export and Data Pump Import utilities are based on the Data Pump APL

11-2 Oracle Database Concepts

Overview of SQL*Loader

See Also:

m Oracle Database Utilities for information about how the Data
Pump API works

» Oracle Database PL/SQL Packages and Types Reference for a
description of the DBMS_DATAPUMP package

Overview of the Metadata API

The Metadata application programming interface (API), provides a means for you to
do the following;:

= Retrieve an object's metadata as XML
s Transform the XML in a variety of ways, including transforming it into SQL DDL
= Submit the XML to re-create the object extracted by the retrieval

To use the Metadata API, you use the procedures provided in the DBMS_METADATA
PL/SQL package. For the purposes of the Metadata API, every entity in the database is
modeled as an object that belongs to an object type. For example, the table scott . emp
is an object and its object type is TABLE. When you fetch an object's metadata you
must specify the object type.

See Also:

n Oracle Database Utilities for information about how to use the
Metadata API

» Oracle Database PL/SQL Packages and Types Reference for a
description of the DBMS_METADATA package

Overview of SQL*Loader

SQL*Loader loads data from external files into tables of an Oracle database. It has a
powerful data parsing engine that puts little limitation on the format of the data in the
datafile. You can use SQL*Loader to do the following:

= Load data from multiple datafiles during the same load session.

» Load data into multiple tables during the same load session.

= Specify the character set of the data.

= Selectively load data (you can load records based on the records' values).
= Manipulate the data before loading it, using SQL functions.

= Generate unique sequential key values in specified columns.

= Use the operating system's file system to access the datafiles.

» Load data from disk, tape, or named pipe.

= Generate sophisticated error reports, which greatly aids troubleshooting.
s Load arbitrarily complex object-relational data.

= Use secondary datafiles for loading LOBs and collections.

» Use either conventional or direct path loading. While conventional path loading is
very flexible, direct path loading provides superior loading performance.

Oracle Database Utilities 11-3

Overview of External Tables

A typical SQL*Loader session takes as input a control file, which controls the behavior
of SQL*Loader, and one or more datafiles. The output of SQL*Loader is an Oracle
database (where the data is loaded), a log file, a bad file, and potentially, a discard file.

See Also: Oracle Database Utilities to learn more about LogMiner

Overview of External Tables

The external tables feature is a complement to existing SQL*Loader functionality. It
lets you access data in external sources as if it were in a table in the database. External
tables can be written to using the ORACLE_DATAPUMP access driver. Neither data
manipulation language (DML) operations nor index creation are allowed on an
external table. Therefore, SQL*Loader may be the better choice in data loading
situations that require additional indexing of the staging table.

To use the external tables feature, you must have some knowledge of the file format
and record format of the datafiles on your platform. You must also know enough
about SQL to be able to create an external table and perform queries against it.

See Also: "External Tables" on page 5-12

Overview of LogMiner

Oracle LogMiner enables you to query redo log files through a SQL interface. All
changes made to user data or to the database dictionary are recorded in the Oracle
Database redo log files. Therefore, redo log files contain all the necessary information
to perform recovery operations.

LogMiner functionality is available through a command-line interface or through the
Oracle LogMiner Viewer graphical user interface (GUI). The LogMiner Viewer is a part
of Oracle Enterprise Manager.

The following are some of the potential uses for data contained in redo log files:

= Pinpointing when a logical corruption to a database, such as errors made at the
application level, may have begun. This enables you to restore the database to the
state it was in just before corruption.

s Detecting and whenever possible, correcting user error, which is a more likely
scenario than logical corruption. User errors include deleting the wrong rows
because of incorrect values in a WHERE clause, updating rows with incorrect
values, dropping the wrong index, and so forth.

s Determining what actions you would have to take to perform fine-grained
recovery at the transaction level. If you fully understand and consider existing
dependencies, it may be possible to perform a table-based undo operation to roll
back a set of changes.

= Performance tuning and capacity planning through trend analysis. You can
determine which tables get the most updates and inserts. That information
provides a historical perspective on disk access statistics, which can be used for
tuning purposes.

s Performing post-auditing. The redo log files contain all the information necessary
to track any DML and DDL statements run on the database, the order in which
they were run, and who executed them.

11-4 Oracle Database Concepts

ADRCI: ADR Command Interpreter

Overview of DBVERIFY Utility

DBVERIFY is an external command-line utility that performs a physical data structure
integrity check. It can be used on offline or online databases, as well on backup files.
You use DBVERIFY primarily when you must ensure that a backup database (or
datafile) is valid before it is restored or as a diagnostic aid when you have encountered
data corruption problems.

Because DBVERIFY can be run against an offline database, integrity checks are
significantly faster.

DBVERIFY checks are limited to cache-managed blocks (that is, data blocks). Because
DBVERIFY is only for use with datafiles, it will not work against control files or redo
logs.

There are two command-line interfaces to DBVERIFY. With the first interface, you
specify disk blocks of a single datafile for checking. With the second interface, you
specify a segment for checking.

Overview of DBNEWID Utility

DBNEWID is a database utility that can change the internal, unique database identifier
(DBID) and the database name (DBNAME) for an operational database. The
DBNEWID utility lets you change any of the following:

= Only the DBID of a database
= Only the DBNAME of a database
= Both the DBNAME and DBID of a database

Therefore, you can manually create a copy of a database and give it a new DBNAME
and DBID by re-creating the control file, and you can register a seed database and a
manually copied database together in the same RMAN repository.

ADRCI: ADR Command Interpreter

ADRCI is a command-line tool that is part of the fault diagnosability infrastructure
introduced in Oracle Database 11g. ADRCI enables you to:

= View diagnostic data within the Automatic Diagnostic Repository (ADR)

= Package incident and problem information into a zip file for transmission to
Oracle Support

Diagnostic data includes incident and problem descriptions, trace files, dumps, health
monitor reports, alert log entries, and more.

ADRCI has a rich command set, and can be used in interactive mode or within scripts.
In addition, ADRCI can execute scripts of ADRCI commands in the same way that
SQL*Plus executes scripts of SQL and PL/SQL commands.

See Also: Oracle Database Utilities for more information on ADRCI

Oracle Database Utilities 11-5

ADRCI: ADR Command Interpreter

11-6 Oracle Database Concepts

12

Database and Instance Startup and
Shutdown

This chapter explains the procedures involved in starting and stopping an Oracle
database instance and database.

This chapter contains the following topics:
s Introduction to an Oracle Instance
= Overview of Instance and Database Startup

s Overview of Database and Instance Shutdown

Introduction to an Oracle Instance

Every running Oracle Database is associated with an Oracle database instance. When a
database is started on a database server (regardless of the type of computer), Oracle
Database allocates a memory area called the System Global Area (SGA) and starts one
or more Oracle Database processes. This combination of the SGA and the Oracle
Database processes is called an Oracle instance. The memory and processes of an
instance manage the associated database's data efficiently and serve the one or
multiple users of the database.

Figure 12-1 shows an Oracle database instance.

Figure 12-1 An Oracle Instance

- TN
System Global Area (SGA)

Context Areas

1 1 Database Buffer
Cache Redo Log
|| Buffer

N— _

!

Oracle Processes

Database and Instance Startup and Shutdown 12-1

Introduction to an Oracle Instance

See Also:
s Chapter 8, "Memory Architecture"

s Chapter 9, "Process Architecture"

This section includes the following topics:
s The Instance and the Database
s Connection with Administrator Privileges

» Initialization Parameter Files and Server Parameter Files

The Instance and the Database

After starting an instance, Oracle Database associates the instance with the specified
database. This is a mounted database. The database is then ready to be opened, which
makes it accessible to authorized users.

Multiple instances can run concurrently on the same computer, each accessing its own
physical database. In large-scale cluster systems, Oracle Real Application Clusters
enables multiple instances to mount a single database.

Only the database administrator can start up an instance and open the database. If a
database is open, then the database administrator can shut down the database so that
it is closed. When a database is closed, users cannot access the data that it contains.

Security for database startup and shutdown is controlled through connections to
Oracle Database with administrator privileges. Normal users do not have control over
the current status of an Oracle database.

Connection with Administrator Privileges

Database startup and shutdown are powerful administrative options and are restricted
to users who connect to Oracle Database with administrator privileges. Depending on
the operating system, one of the following conditions establishes administrator
privileges for a user:

» The user's operating system privileges allow him or her to connect using
administrator privileges.

» The user is granted the SYSDBA or SYSOPER privileges and the database uses
password files to authenticate database administrators.

When you connect with SYSDBA privileges, you are in the schema owned by SYS.
When you connect as SYSOPER, you are in the public schema. SYSOPER privileges are
a subset of SYSDBA privileges.

See Also:

= Your operating system-specific Oracle Database documentation
for more information about how administrator privileges work on
your operating system

s Chapter 20, "Database Security" for more information about
password files and authentication schemes for database
administrators

12-2 Oracle Database Concepts

Introduction to an Oracle Instance

Initialization Parameter Files and Server Parameter Files

To start an instance, Oracle Database must read either an initialization parameter file
or a server parameter file. These files contain a list of configuration parameters for
that instance and database. Oracle Database traditionally stored initialization
parameters in a text initialization parameter file. You can also choose to maintain
initialization parameters in a server-side binary server parameter file (SPFILE).

Initialization parameters stored in a server parameter file are persistent, in that any
changes made to the parameters while an instance is running can persist across
instance shutdown and startup.

Initialization parameters are divided into two groups: basic and advanced. In the
majority of cases, it is necessary to set and tune only the basic parameters to get
reasonable performance. In rare situations, modification to the advanced parameters
may be needed for optimal performance.

Most initialization parameters belong to one of the following groups:
= Parameters that name things, such as files
s Parameters that set limits, such as maximums

= Parameters that affect capacity, such as the size of the SGA, which are called
variable parameters

Among other things, the initialization parameters tell Oracle Database:
= The name of the database for which to start up an instance

= How much memory to use for memory structures in the SGA

= What to do with filled redo log files

= The names and locations of the database control files

= The names of undo tablespaces in the database

See Also: Oracle Database Administrator’s Guide

This section includes the following topics:
s Server Parameter Files and Hardware Assisted Resilient Data

m Initialization Parameter Files and Server Parameter Files

Server Parameter Files and Hardware Assisted Resilient Data

The Oracle Hardware Assisted Resilient Data (HARD) initiative is a comprehensive
program designed to prevent data corruptions before they happen. By implementing
the Oracle data validation algorithms inside storage devices, Oracle Database can
prevent corrupted data from being written to permanent storage. Starting in Oracle
Database 11g, you can create a server parameter file in a new format that is usable on a
HARD-compliant storage system. The database can read and write server parameter
files in both the old and new format.

See Also: Oracle Database Administrator’s Guide to learn how to create
and manage a server parameter file

How Parameter Values Are Changed

The database administrator can adjust variable parameters to improve the
performance of a database system. Exactly which parameters most affect a system
depends on numerous database characteristics and variables.

Database and Instance Startup and Shutdown 12-3

Overview of Instance and Database Startup

Some parameters can be changed dynamically with the ALTER SESSION or ALTER
SYSTEM statement while the instance is running. Unless you are using a server
parameter file (SPFILE), changes made using the ALTER SYSTEM statement are only
in effect for the current instance. You must manually update the text initialization
parameter file for the changes to be known the next time you start up an instance.

When you use a server parameter file, you can use the ALTER SYSTEM SET statement
to change parameter values in memory, disk, or both. The database prints the new
value and the old value (if it exists) to the alert log. As a preventative measure, the
database performs validation steps when you change a basic parameter to prevent
illegal values from being written to the server parameter file.

Oracle Database provides values in the starter initialization parameter file provided
with your database software, or as created for you by the Database Configuration
Assistant. You can edit these Oracle-supplied initialization parameters and add others,
depending upon your configuration and options and how you plan to tune the
database. For any relevant initialization parameters not specifically included in the
initialization parameter file, Oracle Database supplies defaults. If you are creating a
database for the first time, it is suggested that you minimize the number of parameter
values that you alter.

See Also:

s Oracle Database Administrator’s Guide for a discussion of
initialization parameters and the use of a server parameter file

» Oracle Database Reference for descriptions of all initialization
parameters

Overview of Instance and Database Startup

The three steps to starting an Oracle database and making it available for systemwide
use are:

1. Start an instance.
2. Mount the database.
3. Open the database.

A database administrator can perform these steps using the SQL*Plus STARTUP
statement or Enterprise Manager.

See Also: Oracle Database 2 Day DBA

This section includes the following topics:
s How an Instance Is Started
s How a Database Is Mounted

= What Happens When You Open a Database

How an Instance Is Started

When Oracle Database starts an instance, it reads the server parameter file (SPFILE) or
initialization parameter file to determine the values of initialization parameters. Then,
it allocates an SGA, which is a shared area of memory used for database information,
and creates background processes. At this point, no database is associated with these
memory structures and processes.

12-4 Oracle Database Concepts

Overview of Instance and Database Startup

When the instance starts, the database writes all explicit parameter settings to the alert
log in valid parameter syntax. If necessary, you can copy and paste this text into a new
parameter file and restart the instance.

See Also:
s Chapter 8, "Memory Architecture” for information about the SGA

s Chapter 9, "Process Architecture" for information about
background processes

This section includes the following topics:
= Restricted Mode of Instance Startup

s Forced Startup in Abnormal Situations

Restricted Mode of Instance Startup

You can start an instance in restricted mode (or later alter an existing instance to be in
restricted mode). This restricts connections to only those users who have been granted
the RESTRICTED SESSION system privilege.

Forced Startup in Abnormal Situations

In unusual circumstances, a previous instance might not have been shut down cleanly.
For example, one of the instance's processes might not have terminated properly. In
such situations, the database can return an error during normal instance startup. To
resolve this problem, you must terminate all remnant Oracle Database processes of the
previous instance before starting the new instance.

How a Database Is Mounted

The instance mounts a database to associate the database with that instance. To mount
the database, the instance finds the database control files and opens them. Control files
are specified in the CONTROL_FILES initialization parameter in the parameter file
used to start the instance. Oracle Database then reads the control files to get the names
of the database's datafiles and redo log files.

At this point, the database is still closed and is accessible only to the database
administrator. The database administrator can keep the database closed while
completing specific maintenance operations. However, the database is not yet
available for normal operations.

This section includes the following topics:
» How a Database Is Mounted with Oracle Real Application Clusters

s How a Clone Database Is Mounted

How a Database Is Mounted with Oracle Real Application Clusters

If Oracle Database allows multiple instances to mount the same database concurrently,
the database administrator can use the CLUSTER_DATABASE initialization parameter
to make the database available to multiple instances. The default value of the
CLUSTER_DATABASE parameter is false. Versions of Oracle Database that do not
support Oracle RAC only allow CLUSTER_DATABASE to be false.

If CLUSTER_DATABASE is false for the first instance that mounts a database, then
only that instance can mount the database. If CLUSTER_DATABASE is set to true on
the first instance, then other instances can mount the database if their CLUSTER_

Database and Instance Startup and Shutdown 12-5

Overview of Instance and Database Startup

DATABASE parameters are set to true. The number of instances that can mount the
database is subject to a predetermined maximum, which you can specify when
creating the database.

See Also:

» Oracle Real Application Clusters Installation and Configuration
Guide

» Oracle Real Application Clusters Administration and Deployment
Guide

for more information about the use of multiple instances with a
single database

How a Clone Database Is Mounted

A clone database is a specialized copy of a database that can be used for tablespace
point-in-time recovery. When you perform tablespace point-in-time recovery, you
mount the clone database and recover the tablespaces to the desired time, then export
metadata from the clone to the primary database and copy the datafiles from the
recovered tablespaces.

See Also: Oracle Database Backup and Recovery User’s Guide for
information about clone databases and tablespace point-in-time
recovery

What Happens When You Open a Database

Opening a mounted database makes it available for normal database operations. Any
valid user can connect to an open database and access its information. Usually, a
database administrator opens the database to make it available for general use.

When you open the database, Oracle Database opens the online datafiles and redo log
files. If a tablespace was offline when the database was previously shut down, the
tablespace and its corresponding datafiles will still be offline when you reopen the
database.

If any of the datafiles or redo log files are not present when you attempt to open the
database, then Oracle Database returns an error. You must perform recovery on a
backup of any damaged or missing files before you can open the database.

See Also: "Online and Offline Tablespaces" on page 3-11 for
information about opening an offline tablespace

This section includes the following topics:

s Crash and Instance Recovery

= Undo Space Acquisition and Management

= Resolution of In-Doubt Distributed Transaction

= Open a Database in Read-Only Mode

Crash and Instance Recovery

Database buffers in the buffer cache in the SGA are written to disk only when
necessary, using a least-recently-used (LRU) algorithm. Because of the way that the
database writer process uses this algorithm to write database buffers to datafiles,

12-6 Oracle Database Concepts

Overview of Instance and Database Startup

datafiles could contain some data blocks modified by uncommitted transactions and
some data blocks missing changes from committed transactions.

Two potential problems can result if an instance failure occurs:

= Data blocks modified by a transaction might not be written to the datafiles at
commit time and might only appear in the redo log. Therefore, the redo log
contains changes that must be reapplied to the database during recovery.

= After the roll forward phase, the datafiles could contain changes that had not been
committed at the time of the failure. These uncommitted changes must be rolled
back to ensure transactional consistency. These changes were either saved to the
datafiles before the failure, or introduced during the roll forward phase.

If the database was last closed abnormally, either because the database administrator
terminated its instance or because of a power failure, Oracle Database automatically
performs instance or crash recovery when the database is reopened.

Crash recovery is used to recover from a failure either when a single-instance database
fails or all instances of an Oracle Real Application Clusters database fail. Instance
recovery refers to the case where a surviving instance recovers a failed instance in an
Oracle Real Application Clusters database.

The goal of crash and instance recovery is to restore the data block changes located in
the cache of the terminated instance and to close the redo thread that was left open.
Instance and crash recovery use only online redo log files and current online datafiles.
Oracle Database recovers the redo threads of the terminated instances together.

When recovering a database with encrypted tablespaces (for example after a
SHUTDOWN ABORT or a catastrophic error that brings down the database instance),
you must open the Oracle Wallet after database mount and before database open, so
the recovery process can decrypt data blocks and redo.

Crash and instance recovery involve two distinct operations: rolling forward the
current, online datafiles by applying both committed and uncommitted transactions
contained in online redo records, and then rolling back changes made in uncommitted
transactions to their original state.

Crash and instance recovery have the following shared characteristics:

= Redo the changes using the current online datafiles (as left on disk after the failure
or SHUTDOWN ABORT)

= Use only the online redo logs and never require the use of the archived logs

= Have arecovery time governed by the number of terminated instances, amount of
redo generated in each terminated redo thread since the last checkpoint, and by
user-configurable factors such as the number and size of redo log files, checkpoint
frequency, and the parallel recovery setting

Oracle Database performs this recovery automatically on two occasions:

= At the first database open after the failure of a single-instance database or all
instances of an Oracle RAC database (crash recovery).

= When some but not all instances of an Oracle RAC configuration fail (instance
recovery). The recovery is performed automatically by a surviving instance in the
configuration.

The important point is that in both crash and instance recovery, Oracle Database
applies the redo automatically: no user intervention is required to supply redo logs.
Nevertheless, you can set parameters in the database server that can tune the duration

Database and Instance Startup and Shutdown 12-7

Overview of Instance and Database Startup

of instance and crash recovery performance. Also, you can tune the rolling forward
and rolling back phases of instance recovery separately.

To solve this dilemma, two separate steps are generally used by Oracle Database for a
successful recovery of a system failure: rolling forward with the redo log (cache
recovery) and rolling back with the rollback or undo segments (transaction recovery).

This section includes the following topics:
s Cache Recovery

s Transaction Recovery

Cache Recovery To solve this dilemma, two separate steps are generally used by Oracle
Database for a successful recovery of a system failure: rolling forward with the redo
log (cache recovery) and rolling back with the rollback or undo segments (transaction
recovery).

The online redo log is a set of operating system files that record all changes made to
any database block, including data, index, and rollback segments, whether the changes
are committed or uncommitted. All changes to Oracle Database blocks are recorded in the
online redo log.

The first step of recovery from an instance or media failure is called cache recovery or
rolling forward, and involves reapplying all of the changes recorded in the redo log to
the datafiles. Because rollback data is also recorded in the redo log, rolling forward
also regenerates the corresponding rollback segments.

Rolling forward proceeds through as many redo log files as necessary to bring the
database forward in time. Rolling forward usually includes online redo log files
(instance recovery or media recovery) and could include archived redo log files (media
recovery only).

After rolling forward, the data blocks contain all committed changes. They could also
contain uncommitted changes that were either saved to the datafiles before the failure,
or were recorded in the redo log and introduced during cache recovery.

Transaction Recovery After the roll forward, any changes that were not committed must
be undone. Oracle Database applies undo blocks to roll back uncommitted changes in
data blocks that were either written before the failure or introduced by redo
application during cache recovery. This process is called rolling back or transaction
recovery.

Figure 12-2 illustrates rolling forward and rolling back, the two steps necessary to
recover from any type of system failure.

12-8 Oracle Database Concepts

Overview of Instance and Database Startup

Figure 12-2 Basic Recovery Steps: Rolling Forward and Rolling Back

Log . A\ - -
Database > Database p | Database
B ma | m

Redo Logs AN Undo blocks

applied applied
Backup of Database with Database with
Database committed and just committed
that needs uncommitted transactions
recovery transactions

. Committed

A\ Uncommitted

Oracle Database can roll back multiple transactions simultaneously as needed. All
transactions that were active at the time of failure are marked as terminated. Instead of
waiting for SMON to roll back terminated transactions, new transactions can recover
blocking transactions themselves to get the row locks they need.

See Also:

» Oracle Database Performance Tuning Guide for a discussion of
instance recovery mechanics and instructions for tuning
instance and crash recovery

s "Introduction to Undo Segments and Automatic Undo
Management" on page 2-16 for more information about undo

Undo Space Acquisition and Management

When you open the database, the instance attempts to acquire an undo tablespace. If
more than one undo tablespace exists, the UNDO_TABLESPACE initialization parameter
designates the undo tablespace to use. If this parameter is blank, the first available
undo tablespace in the database is chosen.

See Also: "Introduction to Undo Segments and Automatic Undo
Management" on page 2-16 for more information about undo
tablespaces.

Resolution of In-Doubt Distributed Transaction

Occasionally a database closes abnormally with one or more distributed transactions
in doubt (neither committed nor rolled back). When you reopen the database and
recovery is complete, the RECO background process automatically, immediately, and
consistently resolves any in-doubt distributed transactions.

See Also: Oracle Database Administrator’s Guide for information
about recovery from distributed transaction failures

Open a Database in Read-Only Mode

You can open any database in read-only mode to prevent its data from being modified
by user transactions. Read-only mode restricts database access to read-only
transactions, which cannot write to the datafiles or to the redo log files.

Database and Instance Startup and Shutdown 12-9

Overview of Database and Instance Shutdown

Disk writes to other files, such as control files, operating system audit trails, trace files,
and alert logs, can continue in read-only mode. Temporary tablespaces for sort
operations are not affected by the database being open in read-only mode. However,
you cannot take permanent tablespaces offline while a database is open in read-only
mode. Also, job queues are not available in read-only mode.

Read-only mode does not restrict database recovery or operations that change the
database's state without generating redo data. For example, in read-only mode:

= Datafiles can be taken offline and online
s Offline datafiles and tablespaces can be recovered
= The control file remains available for updates about the state of the database

One useful application of read-only mode is that standby databases can function as
temporary reporting databases.

See Also: Oracle Database Administrator’s Guide for information
about how to open a database in read-only mode

Limitations of a Read-only Database

= An application must not write database objects while executing against a
read-only database. For example, an application writes database objects when it
inserts, deletes, updates, or merges rows in a database table, including a global
temporary table. An application writes database objects when it manipulates a
database sequence. An application writes database objects when it locks rows,
when it runs EXPLAIN PLAN, or when it executes DDL. Many of the functions
and procedures in Oracle-supplied PL/SQL packages, such as DBMS_SCHEDULER,
write database objects. If your application calls any of these functions and
procedures, or if it performs any of the preceding operations, your application
writes database objects and hence is not read-only.

= When executing on a read-only database, you must commit or roll back any
in-progress transaction that involves one database link before you use another
database link. This is true even if you execute a generic SELECT statement on the
first database link and the transaction is currently read-only.

= You cannot compile or recompile PL/SQL stored procedures on a read-only
database. To minimize PL/SQL invalidation because of remote procedure calls,
use REMOTE_DEPENDENCIES_MODE=SIGNATURE in any session that does remote
procedure calls on a read-only database.

= You cannot invoke a remote procedure (even a read-only remote procedure) from
a read-only database if the remote procedure has never been called on the
database. This limitation applies to remote procedure calls in anonymous PL/SQL
blocks and in SQL statements. You can either put the remote procedure call in a
stored procedure, or you can invoke the remote procedure in the database prior to
it becoming read only.

Overview of Database and Instance Shutdown
The three steps to shutting down a database and its associated instance are:
1. Close the database.
2, Unmount the database.

3. Shut down the instance.

12-10 Oracle Database Concepts

Overview of Database and Instance Shutdown

A database administrator can perform these steps using Enterprise Manager. Oracle
Database automatically performs all three steps whenever an instance is shut down.

See Also: Oracle Database 2 Day DBA

This section includes the following topics:
s Close a Database
= Unmount a Database

s Shut Down an Instance

Close a Database

When you close a database, Oracle Database writes all database data and recovery
data in the SGA to the datafiles and redo log files, respectively. Next, Oracle Database
closes all online datafiles and redo log files. (Any offline datafiles of any offline
tablespaces have been closed already. If you subsequently reopen the database, any
tablespace that was offline and its datafiles remain offline and closed, respectively.) At
this point, the database is closed and inaccessible for normal operations. The control
files remain open after a database is closed but still mounted.

Close the Database by Terminating the Instance

In rare emergency situations, you can terminate the instance of an open database to
close and completely shut down the database instantaneously. This process is fast,
because the operation of writing all data in the buffers of the SGA to the datafiles and
redo log files is skipped. The subsequent reopening of the database requires recovery,
which Oracle Database performs automatically.

Note: If a system or power failure occurs while the database is open,
then the instance is, in effect, terminated, and recovery is performed
when the database is reopened.

Unmount a Database

After the database is closed, Oracle Database unmounts the database to disassociate it
from the instance. At this point, the instance remains in the memory of your computer.

After a database is unmounted, Oracle Database closes the control files of the database.

Shut Down an Instance

The final step in database shutdown is shutting down the instance. When you shut
down an instance, the SGA is removed from memory and the background processes
are terminated.

Abnormal Instance Shutdown

In unusual circumstances, shutdown of an instance might not occur cleanly; all
memory structures might not be removed from memory or one of the background
processes might not be terminated. When remnants of a previous instance exist, a
subsequent instance startup most likely will fail. In such situations, the database
administrator can force the new instance to start up by first removing the remnants of
the previous instance and then starting a new instance, or by issuing a SHUTDOWN
ABORT statement in SQL*Plus or using Enterprise Manager.

Database and Instance Startup and Shutdown 12-11

Overview of Database and Instance Shutdown

See Also: Oracle Database Administrator’s Guide for more detailed
information about instance and database startup and shutdown

12-12 Oracle Database Concepts

Part lli

Oracle Database Features

Part III describes the core feature areas in the Oracle Database.

Part I1I contains the following chapters:

Chapter 13, "Data Concurrency and Consistency"
Chapter 14, "Manageability"

Chapter 15, "Backup and Recovery"

Chapter 16, "Business Intelligence"

Chapter 17, "High Availability"

Chapter 18, "Very Large Databases (VLDB)"
Chapter 19, "Content Management"

Chapter 20, "Database Security"

Chapter 21, "Data Integrity"

Chapter 22, "Triggers"

Chapter 23, "Information Integration"

13

Data Concurrency and Consistency

This chapter explains how Oracle Database maintains consistent data in a multiuser
database environment.

This chapter contains the following topics:

s Introduction to Data Concurrency and Consistency in a Multiuser Environment
s How Oracle Database Manages Data Concurrency and Consistency

» How Oracle Database Locks Data

s Overview of Oracle Flashback Query

Introduction to Data Concurrency and Consistency in a Multiuser
Environment

In a single-user database, the user can modify data in the database without concern for
other users modifying the same data at the same time. However, in a multiuser
database, the statements within multiple simultaneous transactions can update the
same data. Transactions executing at the same time need to produce meaningful and
consistent results. Therefore, control of data concurrency and data consistency is vital
in a multiuser database.

= Data concurrency means that many users can access data at the same time.

= Data consistency means that each user sees a consistent view of the data,
including visible changes made by the user's own transactions and transactions of
other users.

To describe consistent transaction behavior when transactions run at the same time,
database researchers have defined a transaction isolation model called serializability.
The serializable mode of transaction behavior tries to ensure that transactions run in
such a way that they appear to be executed one at a time, or serially, rather than
concurrently.

While this degree of isolation between transactions is generally desirable, running
many applications in this mode can seriously compromise application throughput.
Complete isolation of concurrently running transactions could mean that one
transaction cannot perform an insert into a table being queried by another transaction.
In short, real-world considerations usually require a compromise between perfect
transaction isolation and performance.

Oracle Database offers two isolation levels, providing application developers with
operational modes that preserve consistency and provide high performance.

Data Concurrency and Consistency 13-1

Introduction to Data Concurrency and Consistency in a Multiuser Environment

See Also: Chapter 21, "Data Integrity" for information about data
integrity, which enforces business rules associated with a database

This section includes the following topics:
m Preventable Phenomena and Transaction Isolation Levels

s Overview of Locking Mechanisms

Preventable Phenomena and Transaction Isolation Levels

The ANSI/ISO SQL standard (SQL92) defines four levels of transaction isolation with
differing degrees of impact on transaction processing throughput. These isolation
levels are defined in terms of three phenomena that must be prevented between
concurrently executing transactions.

The three preventable phenomena are:

= Dirty reads: A transaction reads data that has been written by another transaction
that has not been committed yet.

= Nonrepeatable (fuzzy) reads: A transaction rereads data it has previously read and
finds that another committed transaction has modified or deleted the data.

= Phantom reads (or phantoms): A transaction re-runs a query returning a set of
rows that satisfies a search condition and finds that another committed transaction
has inserted additional rows that satisfy the condition.

SQLI2 defines four levels of isolation in terms of the phenomena a transaction running
at a particular isolation level is permitted to experience. They are shown in Table 13-1.

Table 13-1 Preventable Read Phenomena by Isolation Level

Isolation Level Dirty Read Nonrepeatable Read Phantom Read
Read uncommitted Possible Possible Possible

Read committed Not possible Possible Possible
Repeatable read Not possible Not possible Possible
Serializable Not possible Not possible Not possible

Oracle Database offers the read committed and serializable isolation levels, as well as a
read-only mode that is not part of SQL92. Read committed is the default.

See Also: "How Oracle Database Manages Data Concurrency and
Consistency" on page 13-3 for a full discussion of read committed and
serializable isolation levels

Overview of Locking Mechanisms

In general, multiuser databases use some form of data locking to solve the problems
associated with data concurrency, consistency, and integrity. Locks are mechanisms
that prevent destructive interaction between transactions accessing the same resource.

Resources include two general types of objects:
= User objects, such as tables and rows (structures and data)

= System objects not visible to users, such as shared data structures in the memory
and data dictionary rows

13-2 Oracle Database Concepts

How Oracle Database Manages Data Concurrency and Consistency

See Also: "How Oracle Database Locks Data" on page 13-13 for
more information about locks

How Oracle Database Manages Data Concurrency and Consistency

Oracle Database maintains data consistency in a multiuser environment by using a
multiversion consistency model and various types of locks and transactions. The
following topics are discussed in this section:

= Multiversion Concurrency Control

= Statement-Level Read Consistency

s Transaction-Level Read Consistency

= Read Consistency with Oracle Real Application Clusters

= Oracle Database Isolation Levels

s Comparison of Read Committed and Serializable Isolation

s Choice of Isolation Level

Multiversion Concurrency Control

Oracle Database automatically provides read consistency to a query so that all the data
that the query sees comes from a single point in time (statement-level read
consistency). Oracle Database can also provide read consistency to all of the queries in
a transaction (transaction-level read consistency).

Oracle Database uses the information maintained in its rollback segments to provide
these consistent views. The rollback segments contain the old values of data that have
been changed by uncommitted or recently committed transactions. Figure 13-1 shows
how Oracle Database provides statement-level read consistency using data in rollback
segments.

Data Concurrency and Consistency 13-3

How Oracle Database Manages Data Concurrency and Consistency

Figure 13-1 Transactions and Read Consistency

SELECT...
(SCN 10023)
10021
Data Blocks Rollback Segment
10008
10021
10011
10021
WV Scan Path

As a query enters the execution stage, the current system change number (SCN) is
determined. In Figure 131, this system change number is 10023. As data blocks are
read on behalf of the query, only blocks written with the observed SCN are used.
Blocks with changed data (more recent SCNs) are reconstructed from data in the
rollback segments, and the reconstructed data is returned for the query. Therefore,
each query returns all committed data with respect to the SCN recorded at the time
that query execution began. Changes of other transactions that occur during a query's
execution are not observed, guaranteeing that consistent data is returned for each

query.

Statement-Level Read Consistency

Oracle Database always enforces statement-level read consistency. This guarantees
that all the data returned by a single query comes from a single point in time—the time
that the query began. Therefore, a query never sees dirty data or any of the changes
made by transactions that commit during query execution. As query execution
proceeds, only data committed before the query began is visible to the query. The
query does not see changes committed after statement execution begins.

A consistent result set is provided for every query, guaranteeing data consistency, with
no action on the user's part. The SQL statements SELECT, INSERT with a subquery,
UPDATE, and DELETE all query data, either explicitly or implicitly, and all return
consistent data. Each of these statements uses a query to determine which data it will
affect (SELECT, INSERT, UPDATE, or DELETE, respectively).

A SELECT statement is an explicit query and can have nested queries or a join
operation. An INSERT statement can use nested queries. UPDATE and DELETE
statements can use WHERE clauses or subqueries to affect only some rows in a table
rather than all rows.

Queries used in INSERT, UPDATE, and DELETE statements are guaranteed a consistent
set of results. However, they do not see the changes made by the DML statement itself.

13-4 Oracle Database Concepts

How Oracle Database Manages Data Concurrency and Consistency

In other words, the query in these operations sees data as it existed before the
operation began to make changes.

Note: If a SELECT list contains a function, then the database applies
statement-level read consistency at the statement level for SQL run
within the PL/SQL function code, rather than at the parent SQL level.
For example, a function could access a table whose data is changed
and committed by another user. For each execution of the SELECT in
the function, a new read consistent snapshot is established.

Transaction-Level Read Consistency

Oracle Database also offers the option of enforcing transaction-level read consistency.
When a transaction runs in serializable mode, all data accesses reflect the state of the
database as of the time the transaction began. Thus, the data seen by all queries within
the same transaction is consistent with respect to a single point in time, except that
queries made by a serializable transaction do see changes made by the transaction
itself. Transaction-level read consistency produces repeatable reads and does not
expose a query to phantoms.

Read Consistency with Oracle Real Application Clusters

Oracle Real Application Clusters (Oracle RAC)s uses a cache-to-cache block transfer
mechanism known as Cache Fusion to transfer read-consistent images of blocks from
one instance to another. Oracle RAC does this using high speed, low latency
interconnects to satisfy remote requests for data blocks.

See Also: Oracle Real Application Clusters Administration and
Deployment Guide

Oracle Database Isolation Levels

Oracle Database provides the transaction isolation levels shown in Table 13-2.

Table 13-2 Transaction Isolation Levels

Isolation Level Description

Read committed This is the default transaction isolation level. Each query
executed by a transaction sees only data that was committed
before the query (not the transaction) began. An Oracle Database
query never reads dirty (uncommitted) data.

Because Oracle Database does not prevent other transactions
from modifying the data read by a query, that data can be
changed by other transactions between two executions of the
query. Thus, a transaction that runs a given query twice can
experience both nonrepeatable read and phantoms.

Serializable Serializable transactions see only those changes that were
committed at the time the transaction began, plus those changes
made by the transaction itself through INSERT, UPDATE, and
DELETE statements. Serializable transactions do not experience
nonrepeatable reads or phantoms.

Read-only Read-only transactions see only those changes that were
committed at the time the transaction began and do not allow
INSERT, UPDATE, and DELETE statements.

This section includes the following topics:

Data Concurrency and Consistency 13-5

How Oracle Database Manages Data Concurrency and Consistency

m Set the Isolation Level
s Read Committed Isolation

s Serializable Isolation

Set the Isolation Level

Application designers, application developers, and database administrators can
choose appropriate isolation levels for different transactions, depending on the
application and workload. You can set the isolation level of a transaction by using one
of these statements at the beginning of a transaction:

SET TRANSACTION ISOLATION LEVEL READ COMMITTED;
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;
SET TRANSACTION READ ONLY;

To save the networking and processing cost of beginning each transaction with a SET
TRANSACTION statement, you can use the ALTER SESSION statement to set the
transaction isolation level for all subsequent transactions:

ALTER SESSION SET ISOLATION_LEVEL = SERIALIZABLE;
ALTER SESSION SET ISOLATION_LEVEL = READ COMMITTED;

See Also: Oracle Database SQL Language Reference for detailed
information on any of these SQL statements

Read Committed Isolation

The default isolation level for Oracle Database is read committed. This degree of
isolation is appropriate for environments where few transactions are likely to conflict.
Oracle Database causes each query to run with respect to its own materialized view
time, thereby permitting nonrepeatable reads and phantoms for multiple executions of
a query, but providing higher potential throughput. Read committed isolation is the
appropriate level of isolation for environments where few transactions are likely to
conflict.

Serializable Isolation
Serializable isolation is suitable for environments:

= With large databases and short transactions that update only a few rows

= Where the chance that two concurrent transactions will modify the same rows is
relatively low

= Where relatively long-running transactions are primarily read only

Serializable isolation permits concurrent transactions to make only those database
changes they could have made if the transactions had been scheduled to run one after
another. Specifically, Oracle Database permits a serializable transaction to modify a
data row only if it can determine that prior changes to the row were made by
transactions that had committed when the serializable transaction began.

To make this determination efficiently, Oracle Database uses control information
stored in the data block that indicates which rows in the block contain committed and
uncommitted changes. In a sense, the block contains a recent history of transactions
that affected each row in the block. The amount of history that is retained is controlled
by the INITRANS parameter of CREATE TABLE and ALTER TABLE.

13-6 Oracle Database Concepts

How Oracle Database Manages Data Concurrency and Consistency

Under some circumstances, Oracle Database can have insufficient history information
to determine whether a row has been updated by a too recent transaction. This can
occur when many transactions concurrently modify the same data block, or dosoin a
very short period. You can avoid this situation by setting higher values of

INITRANS for tables that will experience many transactions updating the same blocks.
Doing so enables Oracle Database to allocate sufficient storage in each block to record
the history of recent transactions that accessed the block.

Oracle Database generates an error when a serializable transaction tries to update or
delete data modified by a transaction that commits after the serializable transaction
began:

ORA-08177: Cannot serialize access for this transaction

When a serializable transaction fails with the Cannot serialize access error, the
application can take any of several actions:

s Commit the work executed to that point

= Execute additional (but different) statements (perhaps after rolling back to a
savepoint established earlier in the transaction)

s Undo the entire transaction

Figure 13-2 shows an example of an application that rolls back and retries the
transaction after it fails with the Cannot serialize access error:

Figure 13-2 Serializable Transaction Failure

SET TRANSACTION ISOLATION
Repeated query sees the same LEVEL SERIALIZABLE €
data, even if it was changed by
another concurrent user

SELECT...

SELECT...

Fails if attempting to update a
row changed and committed by >

another transaction since this UPDATE. . .
transaction began

IF 7can’t Serialize Access”
THEN ROLLBACK;
LOOP and retry

Comparison of Read Committed and Serializable Isolation

Oracle Database gives the application developer a choice of two transaction isolation
levels with different characteristics. Both the read committed and serializable isolation
levels provide a high degree of consistency and concurrency. Both levels provide the
contention-reducing benefits of the Oracle Database read consistency multiversion
concurrency control model and exclusive row-level locking implementation and are
designed for real-world application deployment.

This section includes the following topics:
s Transaction Set Consistency

= Row-Level Locking

Data Concurrency and Consistency 13-7

How Oracle Database Manages Data Concurrency and Consistency

= Referential Integrity

s Distributed Transactions

Transaction Set Consistency

A useful way to view the read committed and serializable isolation levels in Oracle
Database is to consider the following scenario: Assume you have a collection of
database tables (or any set of data), a particular sequence of reads of rows in those
tables, and the set of transactions committed at any particular time. An operation (a
query or a transaction) is transaction set consistent if all its reads return data written
by the same set of committed transactions. An operation is not transaction set
consistent if some reads reflect the changes of one set of transactions and other reads
reflect changes made by other transactions. An operation that is not transaction set
consistent in effect sees the database in a state that reflects no single set of committed
transactions.

Oracle Database provides transactions executing in read committed mode with
transaction set consistency for each statement. Serializable mode provides transaction
set consistency for each transaction.

Table 13-3 summarizes key differences between read committed and serializable
transactions in Oracle Database.

Table 13-3 Read Committed and Serializable Transactions

Behavior Read Committed Serializable
Dirty write Not possible Not possible
Dirty read Not possible Not possible
Nonrepeatable read Possible Not possible
Phantoms Possible Not possible
Compliant with ANSI/ISO SQL 92 Yes Yes

Read materialized view time Statement Transaction
Transaction set consistency Statement level Transaction level
Row-level locking Yes Yes

Readers block writers No No

Writers block readers No No
Different-row writers block writers No No
Same-row writers block writers Yes Yes

Waits for blocking transaction Yes Yes

Subject to cannot serialize access No Yes

Error after blocking transaction terminates No No

Error after blocking transaction commits No Yes

Row-Level Locking

Both read committed and serializable transactions use row-level locking, and both will
wait if they try to change a row updated by an uncommitted concurrent transaction.
The second transaction that tries to update a given row waits for the other transaction
to commit or undo and release its lock. If that other transaction rolls back, the waiting

13-8 Oracle Database Concepts

How Oracle Database Manages Data Concurrency and Consistency

transaction, regardless of its isolation mode, can proceed to change the previously
locked row as if the other transaction had not existed.

However, if the other blocking transaction commits and releases its locks, a read
committed transaction proceeds with its intended update. A serializable transaction,
however, fails with the error Cannot serialize access error, because the other
transaction has committed a change that was made since the serializable transaction
began.

Referential Integrity

Because Oracle Database does not use read locks in either read-consistent or
serializable transactions, data read by one transaction can be overwritten by another.
Transactions that perform database consistency checks at the application level cannot
assume that the data they read will remain unchanged during the execution of the
transaction even though such changes are not visible to the transaction. Database
inconsistencies can result unless such application-level consistency checks are coded
with this in mind, even when using serializable transactions.

See Also: Oracle Database Advanced Application Developer’s Guide
for more information about referential integrity and serializable
transactions

Note: You can use both read committed and serializable
transaction isolation levels with Oracle Real Application Clusters.

Distributed Transactions

In a distributed database environment, a given transaction updates data in multiple
physical databases protected by two-phase commit to ensure all nodes or none
commit. In such an environment, all servers, whether Oracle or non-Oracle, that
participate in a serializable transaction are required to support serializable isolation
mode.

If a serializable transaction tries to update data in a database managed by a server that
does not support serializable transactions, the transaction receives an error. The
transaction can undo and retry only when the remote server does support serializable
transactions.

In contrast, read committed transactions can perform distributed transactions with
servers that do not support serializable transactions.

See Also: Oracle Database Administrator’s Guide

Choice of Isolation Level

Application designers and developers should choose an isolation level based on
application performance and consistency needs as well as application coding
requirements.

For environments with many concurrent users rapidly submitting transactions,
designers must assess transaction performance requirements in terms of the expected
transaction arrival rate and response time demands. Frequently, for high-performance
environments, the choice of isolation levels involves a trade-off between consistency
and concurrency.

Application logic that checks database consistency must take into account the fact that
reads do not block writes in either mode.

Data Concurrency and Consistency 13-9

How Oracle Database Manages Data Concurrency and Consistency

Oracle Database isolation modes provide high levels of consistency, concurrency, and
performance through the combination of row-level locking and the Oracle Database
multiversion concurrency control system. Readers and writers do not block one
another in Oracle Database. Therefore, while queries still see consistent data, both read
committed and serializable isolation provide a high level of concurrency for high
performance, without the need for reading uncommitted data.

This section includes the following topics:
s Read Committed Isolation
» Serializable Isolation

s Quiesce Database

Read Committed Isolation

For many applications, read committed is the most appropriate isolation level. Read
committed isolation can provide considerably more concurrency with a somewhat
increased risk of inconsistent results due to phantoms and non-repeatable reads for
some transactions.

Many high-performance environments with high transaction arrival rates require more
throughput and faster response times than can be achieved with serializable isolation.
Other environments that supports users with a very low transaction arrival rate also
face very low risk of incorrect results due to phantoms and nonrepeatable reads. Read
committed isolation is suitable for both of these environments.

Oracle Database read committed isolation provides transaction set consistency for
every query. That is, every query sees data in a consistent state. Therefore, read
committed isolation will suffice for many applications that might require a higher
degree of isolation if run on other database management systems that do not use
multiversion concurrency control.

Read committed isolation mode does not require application logic to trap the Cannot
serialize access error and loop back to restart a transaction. In most applications,
few transactions have a functional need to issue the same query twice, so for many
applications protection against phantoms and non-repeatable reads is not important.
Therefore many developers choose read committed to avoid the need to write such
error checking and retry code in each transaction.

Serializable Isolation

The Oracle Database serializable isolation is suitable for environments where there is a
relatively low chance that two concurrent transactions will modify the same rows and
the long-running transactions are primarily read only. It is most suitable for
environments with large databases and short transactions that update only a few rows.

Serializable isolation mode provides somewhat more consistency by protecting against
phantoms and nonrepeatable reads and can be important where a read/write
transaction runs a query more than once.

Unlike other implementations of serializable isolation, which lock blocks for read as
well as write, Oracle Database provides nonblocking queries and the fine granularity
of row-level locking, both of which reduce read /write contention. For applications
that experience mostly read /write contention, Oracle Database serializable isolation
can provide significantly more throughput than other systems. Therefore, some
applications might be suitable for serializable isolation on Oracle Database but not on
other systems.

13-10 Oracle Database Concepts

How Oracle Database Manages Data Concurrency and Consistency

All queries in an Oracle Database serializable transaction see the database as of a
single point in time, so this isolation level is suitable where multiple consistent queries
must be issued in a read /write transaction. A report-writing application that generates
summary data and stores it in the database might use serializable mode because it
provides the consistency that a READ ONLY transaction provides, but also allows
INSERT, UPDATE, and DELETE.

Note: Transactions containing DML statements with subqueries
should use serializable isolation to guarantee consistent read.

Coding serializable transactions requires extra work by the application developer to
check for the Cannot serialize access error and to undo and retry the
transaction. Similar extra coding is needed in other database management systems to
manage deadlocks. For adherence to corporate standards or for applications that are
run on multiple database management systems, it may be necessary to design
transactions for serializable mode. Transactions that check for serializability failures
and retry can be used with Oracle Database read committed mode, which does not
generate serializability errors.

Serializable mode is probably not the best choice in an environment with relatively
long transactions that must update the same rows accessed by a high volume of short
update transactions. Because a longer running transaction is unlikely to be the first to
modify a given row, it will repeatedly need to roll back, wasting work. Note that a
conventional read-locking, pessimistic implementation of serializable mode would not
be suitable for this environment either, because long-running transactions—even read
transactions—would block the progress of short update transactions and vice versa.

Application developers should consider the cost of rolling back and retrying
transactions when using serializable mode. As with read-locking systems, where
deadlocks occur frequently, use of serializable mode requires rolling back the work
done by terminated transactions and retrying them. In a high contention environment,
this activity can use significant resources.

In most environments, a transaction that restarts after receiving the Cannot
serialize access error is unlikely to encounter a second conflict with another
transaction. For this reason, it can help to run those statements most likely to contend
with other transactions as early as possible in a serializable transaction. However,
there is no guarantee that the transaction will complete successfully, so the application
should be coded to limit the number of retries.

Although Oracle Database serializable mode is compatible with SQL92 and offers
many benefits compared with read-locking implementations, it does not provide
semantics identical to such systems. Application designers must consider the fact that
reads in Oracle Database do not block writes as they do in other systems. Transactions
that check for database consistency at the application level can require coding
techniques such as the use of SELECT FOR UPDATE. This issue should be considered
when applications using serializable mode are ported to Oracle Database from other
environments.

Quiesce Database

You can put the system into quiesced state. The system is in quiesced state if there are
no active sessions, other than SYS and SYSTEM. An active session is defined as a
session that is currently inside a transaction, a query, a fetch or a PL/SQL procedure,
or a session that is currently holding any shared resources (for example,
enqueues--enqueues are shared memory structures that serialize access to database

Data Concurrency and Consistency 13-11

How Oracle Database Manages Data Concurrency and Consistency

resources and are associated with a session or transaction). Database administrators
are the only users who can proceed when the system is in quiesced state.

Database administrators can perform certain actions in the quiesced state that cannot
be safely done when the system is not quiesced. These actions include:

= Actions that might fail if there are concurrent user transactions or queries. For
example, changing the schema of a database table will fail if a concurrent
transaction is accessing the same table.

s Actions whose intermediate effect could be detrimental to concurrent user
transactions or queries. For example, suppose there is a big table T and a PL/SQL
package that operates on it. You can split table T into two tables T1 and T2, and
change the PL/SQL package to make it refer to the new tables T1 and T2, instead
of the old table T.

When the database is in quiesced state, you can do the following:

CREATE TABLE T1 AS SELECT ... FROM T;
CREATE TABLE T2 AS SELECT ... FROM T;
DROP TABLE T;

You can then drop the old PL/SQL package and re-create it.

For systems that must operate continuously, the ability to perform such actions
without shutting down the database is critical.

The Database Resource Manager blocks all actions that were initiated by a user other
than SYS or SYSTEM while the system is quiesced. Such actions are allowed to proceed
when the system goes back to normal (unquiesced) state. Users do not get any
additional error messages from the quiesced state.

How a Database Is Quiesced The database administrator uses the ALTER SYSTEM
QUIESCE RESTRICTED statement to quiesce the database. Only users SYS and
SYSTEM can issue the ALTER SYSTEM QUIESCE RESTRICTED statement. For all
instances with the database open, issuing this statement has the following effect:

» Oracle Database instructs the Database Resource Manager in all instances to
prevent all inactive sessions (other than SYS and SYSTEM) from becoming active.
No user other than SYS and SYSTEM can start a new transaction, a new query, a
new fetch, or a new PL/SQL operation.

» Oracle Database waits for all existing transactions in all instances that were
initiated by a user other than SYS or SYSTEM to finish (either commit or
terminate). Oracle Database also waits for all running queries, fetches, and
PL/SQL procedures in all instances that were initiated by users other than SYS or
SYSTEM and that are not inside transactions to finish. If a query is carried out by
multiple successive OCI fetches, Oracle Database does not wait for all fetches to
finish. It waits for the current fetch to finish and then blocks the next fetch. Oracle
Database also waits for all sessions (other than those of SYS or SYSTEM) that hold
any shared resources (such as enqueues) to release those resources. After all these
operations finish, Oracle Database places the database into quiesced state and
finishes executing the QUIESCE RESTRICTED statement.

= If an instance is running in shared server mode, Oracle Database instructs the
Database Resource Manager to block logins (other than SYS or SYSTEM) on that
instance. If an instance is running in non-shared-server mode, Oracle Database
does not impose any restrictions on user logins in that instance.

During the quiesced state, you cannot change the Resource Manager plan in any
instance.

13-12 Oracle Database Concepts

How Oracle Database Locks Data

The ALTER SYSTEM UNQUIESCE statement puts all running instances back into normal
mode, so that all blocked actions can proceed. An administrator can determine which
sessions are blocking a quiesce from completing by querying the
vSblocking_quiesce view.

See Also:

» Oracle Database SQL Language Reference

s Oracle Database Administrator’s Guide

How Oracle Database Locks Data

Locks are mechanisms that prevent destructive interaction between transactions
accessing the same resource—either user objects such as tables and rows or system
objects not visible to users, such as shared data structures in memory and data
dictionary rows.

In all cases, Oracle Database automatically obtains necessary locks when executing
SQL statements, so users need not be concerned with such details. Oracle Database
automatically uses the lowest applicable level of restrictiveness to provide the highest
degree of data concurrency yet also provide fail-safe data integrity. Oracle Database
also allows the user to lock data manually.

See Also: "Types of Locks" on page 13-16

This section includes the following topics:
s Transactions and Data Concurrency

s Deadlocks

= Types of Locks

= DML Locks

= DDL Locks

= Latches and Internal Locks

= Explicit (Manual) Data Locking

s Oracle Database Lock Management Services

Transactions and Data Concurrency

Oracle Database provides data concurrency and integrity between transactions using
its locking mechanisms. Because the locking mechanisms of Oracle Database are tied
closely to transaction control, application designers need only define transactions
properly, and Oracle Database automatically manages locking.

Keep in mind that Oracle Database locking is fully automatic and requires no user
action. Implicit locking occurs for all SQL statements so that database users never need
to lock any resource explicitly. The Oracle Database default locking mechanisms lock
data at the lowest level of restrictiveness to guarantee data integrity while allowing the
highest degree of data concurrency.

See Also: "Explicit (Manual) Data Locking" on page 13-25

This section includes the following topics:

= Modes of Locking

Data Concurrency and Consistency 13-13

How Oracle Database Locks Data

s Lock Duration

s Data Lock Conversion Versus Lock Escalation

Modes of Locking

Oracle Database uses two modes of locking in a multiuser database:

s Exclusive lock mode prevents the associated resource from being shared. This lock
mode is obtained to modify data. The first transaction to lock a resource
exclusively is the only transaction that can alter the resource until the exclusive
lock is released.

= Share lock mode allows the associated resource to be shared, depending on the
operations involved. Multiple users reading data can share the data, holding share
locks to prevent concurrent access by a writer (who needs an exclusive lock).
Several transactions can acquire share locks on the same resource.

Lock Duration

Alllocks acquired by statements within a transaction are held for the duration of the
transaction, preventing destructive interference including dirty reads, lost updates,
and destructive DDL operations from concurrent transactions. The changes made by
the SQL statements of one transaction become visible only to other transactions that
start after the first transaction is committed.

Oracle Database releases all locks acquired by the statements within a transaction
when you either commit or undo the transaction. Oracle Database also releases locks
acquired after a savepoint when rolling back to the savepoint. However, only
transactions not waiting for the previously locked resources can acquire locks on the
now available resources. Waiting transactions will continue to wait until after the
original transaction commits or rolls back completely.

Data Lock Conversion Versus Lock Escalation

A transaction holds exclusive row locks for all rows inserted, updated, or deleted
within the transaction. Because row locks are acquired at the highest degree of
restrictiveness, no lock conversion is required or performed.

Oracle Database automatically converts a table lock of lower restrictiveness to one of
higher restrictiveness as appropriate. For example, assume that a transaction uses a
SELECT statement with the FOR UPDATE clause to lock rows of a table. As a result, it
acquires the exclusive row locks and a row share table lock for the table. If the
transaction later updates one or more of the locked rows, the row share table lock is
automatically converted to a row exclusive table lock.

Lock escalation occurs when numerous locks are held at one level of granularity (for
example, rows) and a database raises the locks to a higher level of granularity (for
example, table). For example, if a single user locks many rows in a table, some
databases automatically escalate the user's row locks to a single table. The number of
locks is reduced, but the restrictiveness of what is being locked is increased.

Oracle Database never escalates locks. Lock escalation greatly increases the likelihood of
deadlocks. Imagine the situation where the system is trying to escalate locks on behalf
of transaction T1 but cannot because of the locks held by transaction T2. A deadlock is
created if transaction T2 also requires lock escalation of the same data before it can
proceed.

See Also: "Table Locks (TM)" on page 13-17

13-14 Oracle Database Concepts

How Oracle Database Locks Data

Deadlocks

A deadlock can occur when two or more users are waiting for data locked by each
other. Deadlocks prevent some transactions from continuing to work. Figure 13-3 is a
hypothetical illustration of two transactions in a deadlock.
In Figure 13-3, no problem exists at time point A, as each transaction has a row lock on
the row it attempts to update. Each transaction proceeds without being terminated.
However, each tries next to update the row currently held by the other transaction.
Therefore, a deadlock results at time point B, because neither transaction can obtain
the resource it must proceed or terminate. It is a deadlock because no matter how long
each transaction waits, the conflicting locks are held.
Figure 13-3 Two Transactions in a Deadlock
Transaction 1 (T1) Time Transaction 2 (T2)
‘a TN ' TN
UPDATE emp A UPDATE emp
SET sal = sal*l.1 SET mgr = 1342
WHERE empno = 1000; WHERE empno = 2000;
N — — —
‘a TN ' TN
UPDATE emp e UPDATE emp
SET sal = sal*l.1 SET mgr = 1342
WHERE empno = 2000; WHERE empno = 1000;
S— — S— —
' TN
ORA-00060: c
deadlock detected while
waiting for resource
N —

This section includes the following topics:
s Deadlock Detection
= Avoid Deadlocks

Deadlock Detection

Oracle Database automatically detects deadlock situations and resolves them by
rolling back one of the statements involved in the deadlock, thereby releasing one set
of the conflicting row locks. A corresponding message also is returned to the
transaction that undergoes statement-level rollback. The statement rolled back is the
one belonging to the transaction that detects the deadlock. Usually, the signalled
transaction should be rolled back explicitly, but it can retry the rolled-back statement
after waiting.

Note: In distributed transactions, local deadlocks are detected

by analyzing wait data, and global deadlocks are detected by a time
out. Once detected, nondistributed and distributed deadlocks are
handled by the database and application in the same way.

Deadlocks most often occur when transactions explicitly override the default locking
of Oracle Database. Because Oracle Database itself does no lock escalation and does

Data Concurrency and Consistency 13-15

How Oracle Database Locks Data

not use read locks for queries, but does use row-level locking (rather than page-level
locking), deadlocks occur infrequently in Oracle Database.

See Also: "Explicit (Manual) Data Locking" on page 13-25 for
more information about manually acquiring locks

Avoid Deadlocks

Multitable deadlocks can usually be avoided if transactions accessing the same tables
lock those tables in the same order, either through implicit or explicit locks. For
example, all application developers might follow the rule that when both a master and
detail table are updated, the master table is locked first and then the detail table. If
such rules are properly designed and then followed in all applications, deadlocks are
very unlikely to occur.

When you know you will require a sequence of locks for one transaction, consider
acquiring the most exclusive (least compatible) lock first.

Types of Locks

DML Locks

Oracle Database automatically uses different types of locks to control concurrent
access to data and to prevent destructive interaction between users. Oracle Database
automatically locks a resource on behalf of a transaction to prevent other transactions
from doing something also requiring exclusive access to the same resource. The lock is
released automatically when some event occurs so that the transaction no longer
requires the resource.

Throughout its operation, Oracle Database automatically acquires different types of
locks at different levels of restrictiveness depending on the resource being locked and
the operation being performed.

Oracle Database locks fall into one of three general categories shown in Table 13—4.

Table 13-4 Types of Locks

Lock Description

DML locks (data locks) DML locks protect data. For example, table locks lock entire
tables, row locks lock selected rows.

DDL locks (dictionary locks) DDL locks protect the structure of schema objects—for example,
the definitions of tables and views.

Internal locks and latches Internal locks and latches protect internal database structures
such as datafiles. Internal locks and latches are entirely
automatic.

The following sections discuss DML locks, DDL locks, and internal locks.

The purpose of a DML lock (data lock) is to guarantee the integrity of data being
accessed concurrently by multiple users. DML locks prevent destructive interference
of simultaneous conflicting DML or DDL operations. DML statements automatically
acquire both table-level locks and row-level locks.

13-16 Oracle Database Concepts

How Oracle Database Locks Data

Note: The acronym in parentheses after each type of lock or lock
mode is the abbreviation used in the Locks Monitor of Enterprise
Manager. Enterprise Manager might display TM for any table lock,
rather than indicate the mode of table lock (such as RS or SRX).

This section includes the following topics:

s Row Locks (TX)

» Table Locks (TM)

= DML Locks Automatically Acquired for DML Statements

Row Locks (TX)

Row-level locks are primarily used to prevent two transactions from modifying the
same row. When a transaction must modify a row, a row lock is acquired.

There is no limit to the number of row locks held by a statement or transaction, and
Oracle Database does not escalate locks from the row level to a coarser granularity.
Row locking provides the finest grain locking possible and so provides the best
possible concurrency and throughput.

The combination of multiversion concurrency control and row-level locking means
that users contend for data only when accessing the same rows, specifically:

s Readers of data do not wait for writers of the same data rows.

m Writers of data do not wait for readers of the same data rows unless SELECT ...
FOR UPDATE is used, which specifically requests a lock for the reader.

= Writers only wait for other writers if they attempt to update the same rows at the
same time.

Note: Readers of data may have to wait for writers of the same data
blocks in some very special cases of pending distributed transactions.

A transaction acquires an exclusive row lock for each individual row modified by one
of the following statements: INSERT, UPDATE, DELETE, and SELECT with the FOR
UPDATE clause.

A modified row is always locked exclusively so that other transactions cannot modify
the row until the transaction holding the lock is committed or rolled back. However, if
the transaction dies due to instance failure, block-level recovery makes a row available
before the entire transaction is recovered. Row locks are always acquired automatically
by Oracle Database as a result of the statements listed previously.

If a transaction obtains a row lock for a row, the transaction also acquires a table lock
for the corresponding table. The table lock prevents conflicting DDL operations that
would override data changes in a current transaction.

See Also: "DDL Locks" on page 13-22

Table Locks (TM)

Table-level locks are primarily used to do concurrency control with concurrent DDL
operations, such as preventing a table from being dropped in the middle of a DML
operation. When a DDL or DML statement is on a table, a table lock is acquired. Table

Data Concurrency and Consistency 13-17

How Oracle Database Locks Data

locks do not affect concurrency of DML operations. For partitioned tables, table locks
can be acquired at both the table and the subpartition level.

A transaction acquires a table lock when a table is modified in the following DML
statements: INSERT, UPDATE, DELETE, SELECT with the FOR UPDATE clause, and
LOCK TABLE. These DML operations require table locks for two purposes: to reserve
DML access to the table on behalf of a transaction and to prevent DDL operations that
would conflict with the transaction. Any table lock prevents the acquisition of an
exclusive DDL lock on the same table and thereby prevents DDL operations that
require such locks. For example, a table cannot be altered or dropped if an
uncommitted transaction holds a table lock for it.

A table lock can be held in any of several modes: row share (RS), row exclusive (RX),
share (S), share row exclusive (SRX), and exclusive (X). The restrictiveness of a table
lock's mode determines the modes in which other table locks on the same table can be
obtained and held.

Table 13-5 shows the table lock modes that statements acquire. The last five columns
of the table show operations that the table locks permit (Y) and prohibit (N).

Table 13-5 Summary of Table Locks

Table Lock
SQL Statement Mode RS RX S SRX X
SELECT...FROM table... none Y Y Y Y Y
INSERT INTO table ... RX Y Y N N N
UPDATE table ... RX Y* Y* N N N
DELETE FROM table ... RX Y* Y* N N N
SELECT ... FROM table RX Y* Y* N N N
FOR UPDATE OF ...
LOCK TABLE table IN RS Y Y Y Y N
ROW SHARE MODE
LOCK TABLE table IN RX Y Y N N N
ROW EXCLUSIVE MODE
LOCK TABLE table IN S Y N Y N N
SHARE MODE
LOCK TABLE table IN SRX Y N N N N
SHARE ROW EXCLUSIVE
MODE
LOCK TABLE table IN X N N N N N

EXCLUSIVE MODE

RS: row share

RX: row exclusive

S: share

SRX: share row exclusive
X: exclusive

*Yes, if no conflicting row locks are held by another transaction. Otherwise, waits
occur.

The following sections explain each mode of table lock, from least restrictive to most
restrictive. They also describe the actions that cause the transaction to acquire a table

13-18 Oracle Database Concepts

How Oracle Database Locks Data

lock in that mode and which actions are permitted and prohibited in other transactions
by alock in that mode.

See Also: "Explicit (Manual) Data Locking" on page 13-25

This section includes the following topics:

s Row Share Table Locks (RS)

s Row Exclusive Table Locks (RX)

ns Share Table Locks (S)

s Share Row Exclusive Table Locks (SRX)

s Exclusive Table Locks (X)

Row Share Table Locks (RS) A row share table lock (also sometimes called a subshare
table lock, SS) indicates that the transaction holding the lock on the table has locked

rows in the table and intends to update them. A row share table lock is automatically
acquired for a table when the following SQL statement is run:

LOCK TABLE table IN ROW SHARE MODE;
A row share table lock is the least restrictive mode of table lock, offering the highest
degree of concurrency for a table.

Permitted Operations: A row share table lock held by a transaction allows other
transactions to query, insert, update, delete, or lock rows concurrently in the same
table. Therefore, other transactions can obtain simultaneous row share, row exclusive,
share, and share row exclusive table locks for the same table.

Prohibited Operations: A row share table lock held by a transaction prevents other
transactions from exclusive write access to the same table using only the following
statement:

LOCK TABLE table IN EXCLUSIVE MODE;

Row Exclusive Table Locks (RX) A row exclusive table lock (also called a subexclusive
table lock, SX) generally indicates that the transaction holding the lock has made one
or more updates to rows in the table or issued SELECT ... FOR UPDATE. A row

exclusive table lock is acquired automatically for a table modified by the following
types of statements:

SELECT ... FROM table ... FOR UPDATE OF ...;
INSERT INTO table ... ;

UPDATE table ... ;

DELETE FROM table ... ;

LOCK TABLE table IN ROW EXCLUSIVE MODE;

A row exclusive table lock is slightly more restrictive than a row share table lock.

Permitted Operations: A row exclusive table lock held by a transaction allows other
transactions to query, insert, update, delete, or lock rows concurrently in the same
table. Therefore, row exclusive table locks allow multiple transactions to obtain
simultaneous row exclusive and row share table locks for the same table.

Data Concurrency and Consistency 13-19

How Oracle Database Locks Data

Prohibited Operations: A row exclusive table lock held by a transaction prevents other
transactions from manually locking the table for exclusive reading or writing.
Therefore, other transactions cannot concurrently lock the table using the following
statements:

LOCK TABLE table IN SHARE MODE;
LOCK TABLE table IN SHARE ROW EXCLUSIVE MODE;

LOCK TABLE table IN EXCLUSIVE MODE;

Share Table Locks (S) A share table lock is acquired automatically for the table specified
in the following statement:

LOCK TABLE table IN SHARE MODE;

Permitted Operations: A share table lock held by a transaction allows other transactions
only to query the table (without using SELECT ... FOR UPDATE) or to run LOCK
TABLE ... IN SHARE MODE statements successfully. No updates are allowed by other
transactions. Multiple transactions can hold share table locks for the same table
concurrently. In this case, no transaction can update the table. Therefore, a transaction
that has a share table lock can update the table only if no other transactions also have a
share table lock on the same table.

Prohibited Operations: A share table lock held by a transaction prevents other
transactions from modifying the same table and from executing the following
statements:

LOCK TABLE table IN SHARE ROW EXCLUSIVE MODE;
LOCK TABLE table IN EXCLUSIVE MODE;

LOCK TABLE table IN ROW EXCLUSIVE MODE;

Share Row Exclusive Table Locks (SRX) A share row exclusive table lock (also sometimes
called a share-subexclusive table lock, SSX) is more restrictive than a share table lock.
A share row exclusive table lock is acquired for a table as follows:

LOCK TABLE table IN SHARE ROW EXCLUSIVE MODE;
Permitted Operations: Only one transaction at a time can acquire a share row exclusive
table lock on a given table. A share row exclusive table lock held by a transaction

allows other transactions to query the table (without using SELECT ... FOR
UPDATE) but not update the table.

Prohibited Operations: A share row exclusive table lock held by a transaction prevents
other transactions from obtaining row exclusive table locks and modifying the same
table. A share row exclusive table lock also prohibits other transactions from obtaining
share, share row exclusive, and exclusive table locks, which prevents other
transactions from executing the following statements:

LOCK TABLE table IN SHARE MODE;
LOCK TABLE table IN SHARE ROW EXCLUSIVE MODE;
LOCK TABLE table IN ROW EXCLUSIVE MODE;

LOCK TABLE table IN EXCLUSIVE MODE;

13-20 Oracle Database Concepts

How Oracle Database Locks Data

Exclusive Table Locks (X) An exclusive table lock is the most restrictive mode of table
lock, allowing the transaction that holds the lock exclusive write access to the table. An
exclusive table lock is acquired for a table as follows:

LOCK TABLE table IN EXCLUSIVE MODE;
Permitted Operations: Only one transaction can obtain an exclusive table lock for a table.
An exclusive table lock permits other transactions only to query the table.

Prohibited Operations: An exclusive table lock held by a transaction prohibits other
transactions from performing any type of DML statement or placing any type of lock
on the table.

DML Locks Automatically Acquired for DML Statements

The previous sections explained the different types of data locks, the modes in which
they can be held, when they can be obtained, when they are obtained, and what they

prohibit. The following sections summarize how Oracle Database automatically locks
data on behalf of different DML operations.

Table 13—-6 summarizes the information in the following sections.

Table 13-6 Locks Obtained By DML Statements

DML Statement Row Locks? Mode of Table Lock

SELECT ... FROM table

INSERT INTO table ... X RX

UPDATE table ... X RX

DELETE FROM table ... X RX

SELECT ... FROM table ... X RX
FOR UPDATE OF ...

LOCK TABLE table IN ...
ROW SHARE MODE RS
ROW EXCLUSIVE MODE RX
SHARE MODE S
SHARE EXCLUSIVE MODE SRX
EXCLUSIVE MODE X

X: exclusive

RX: row exclusive

RS: row share

S: share

SRX: share row exclusive

This section includes the following topics:

» Default Locking for Queries

s Default Locking for INSERT, UPDATE, DELETE, and SELECT ... FOR UPDATE

Default Locking for Queries Queries are the SQL statements least likely to interfere with
other SQL statements because they only read data. INSERT, UPDATE, and DELETE

Data Concurrency and Consistency 13-21

How Oracle Database Locks Data

statements can have implicit queries as part of the statement. Queries include the
following kinds of statements:

SELECT

INSERT ... SELECT ... ;

UPDATE ... ;

DELETE ... ;

They do not include the following statement:

SELECT ... FOR UPDATE OF ... ;

The following characteristics are true of all queries that do not use the FOR UPDATE
clause:

A query acquires no data locks. Therefore, other transactions can query and
update a table being queried, including the specific rows being queried. Because
queries lacking FOR UPDATE clauses do not acquire any data locks to block other
operations, such queries are often referred to in Oracle Database as nonblocking
queries.

A query does not have to wait for any data locks to be released; it can always
proceed. (Queries may have to wait for data locks in some very specific cases of
pending distributed transactions.)

Default Locking for INSERT, UPDATE, DELETE, and SELECT ... FOR UPDATE The locking
characteristics of INSERT, UPDATE, DELETE, and SELECT ... FOR UPDATE statements
are as follows:

DDL Locks

The transaction that contains a DML statement acquires exclusive row locks on the
rows modified by the statement. Other transactions cannot update or delete the
locked rows until the locking transaction either commits or rolls back.

The transaction that contains a DML statement does not need to acquire row locks
on any rows selected by a subquery or an implicit query, such as a query in a
WHERE clause. A subquery or implicit query in a DML statement is guaranteed to
be consistent as of the start of the query and does not see the effects of the DML
statement it is part of.

A query in a transaction can see the changes made by previous DML statements in
the same transaction, but cannot see the changes of other transactions begun after
its own transaction.

In addition to the necessary exclusive row locks, a transaction that contains a DML
statement acquires at least a row exclusive table lock on the table that contains the
affected rows. If the containing transaction already holds a share, share row
exclusive, or exclusive table lock for that table, the row exclusive table lock is not
acquired. If the containing transaction already holds a row share table lock, Oracle
Database automatically converts this lock to a row exclusive table lock.

A data dictionary lock (DDL) protects the definition of a schema object while that
object is acted upon or referred to by an ongoing DDL operation. Recall that a DDL
statement implicitly commits its transaction. For example, assume that a user creates a
procedure. On behalf of the user's single-statement transaction, Oracle Database
automatically acquires DDL locks for all schema objects referenced in the procedure

13-22 Oracle Database Concepts

How Oracle Database Locks Data

definition. The DDL locks prevent objects referenced in the procedure from being
altered or dropped before the procedure compilation is complete.

Oracle Database acquires a dictionary lock automatically on behalf of any DDL
transaction requiring it. Users cannot explicitly request DDL locks. Only individual
schema objects that are modified or referenced are locked during DDL operations. The
whole data dictionary is never locked.

DDL locks fall into three categories: exclusive DDL locks, share DDL locks, and
breakable parse locks.

This section includes the following topics:
» Exclusive DDL Locks

s Share DDL Locks

» Breakable Parse Locks

= Duration of DDL Locks

s DDL Locks and Clusters

Exclusive DDL Locks

Most DDL operations, except for those listed in the section, "Share DDL Locks" on
page 13-23 require exclusive DDL locks for a resource to prevent destructive
interference with other DDL operations that might modify or reference the same
schema object. For example, a DROP TABLE operation is not allowed to drop a table
while an ALTER TABLE operation is adding a column to it, and vice versa.

During the acquisition of an exclusive DDL lock, if another DDL lock is already held
on the schema object by another operation, the acquisition waits until the older DDL
lock is released and then proceeds.

DDL operations also acquire DML locks (data locks) on the schema object to be
modified.

Share DDL Locks

Some DDL operations require share DDL locks for a resource to prevent destructive
interference with conflicting DDL operations, but allow data concurrency for similar
DDL operations. For example, when a CREATE PROCEDURE statement is run, the
containing transaction acquires share DDL locks for all referenced tables. Other
transactions can concurrently create procedures that reference the same tables and
therefore acquire concurrent share DDL locks on the same tables, but no transaction
can acquire an exclusive DDL lock on any referenced table. No transaction can alter or
drop a referenced table. As a result, a transaction that holds a share DDL lock is
guaranteed that the definition of the referenced schema object will remain constant for
the duration of the transaction.

A share DDL lock is acquired on a schema object for DDL statements that include the
following statements: AUDIT, NOAUDIT, COMMENT, CREATE [OR REPLACE] VIEW/
PROCEDURE/PACKAGE / PACKAGE BODY/FUNCTION/ TRIGGER, CREATE SYNONYM,
and CREATE TABLE (when the CLUSTER parameter is not included).

Breakable Parse Locks

A SQL statement (or PL/SQL program unit) in the shared pool holds a parse lock for
each schema object it references. Parse locks are acquired so that the associated shared
SQL area can be invalidated if a referenced object is altered or dropped. A parse lock

Data Concurrency and Consistency 13-23

How Oracle Database Locks Data

does not disallow any DDL operation and can be broken to allow conflicting DDL
operations, hence the name breakable parse lock.

A parse lock is acquired during the parse phase of SQL statement execution and held
as long as the shared SQL area for that statement remains in the shared pool.

See Also: Chapter 6, "Schema Object Dependencies"

Duration of DDL Locks

The duration of a DDL lock depends on its type. Exclusive and share DDL locks last
for the duration of DDL statement execution and automatic commit. A parse lock
persists as long as the associated SQL statement remains in the shared pool.

DDL Locks and Clusters

A DDL operation on a cluster acquires exclusive DDL locks on the cluster and on all
tables and materialized views in the cluster. A DDL operation on a table or
materialized view in a cluster acquires a share lock on the cluster, in addition to a
share or exclusive DDL lock on the table or materialized view. The share DDL lock on
the cluster prevents another operation from dropping the cluster while the first
operation proceeds.

Latches and Internal Locks

Latches and internal locks protect internal database and memory structures. Both are
inaccessible to users, because users have no need to control over their occurrence or
duration. The following section helps to interpret the Enterprise Manager LOCKS and
LATCHES monitors.

This section includes the following topics:
= Latches

s Internal Locks

Latches

Latches are simple, low-level serialization mechanisms to protect shared data
structures in the system global area (SGA). For example, latches protect the list of users
currently accessing the database and protect the data structures describing the blocks
in the buffer cache. A server or background process acquires a latch for a very short
time while manipulating or looking at one of these structures. The implementation of
latches is operating system dependent, particularly in regard to whether and how long
a process will wait for a latch.

Internal Locks

Internal locks are higher-level, more complex mechanisms than latches and serve a
variety of purposes.

This section includes the following topics:

= Dictionary Cache Locks

» File and Log Management Locks

= Tablespace and Rollback Segment Locks

13-24 Oracle Database Concepts

How Oracle Database Locks Data

Dictionary Cache Locks These locks are of very short duration and are held on entries in
dictionary caches while the entries are being modified or used. They guarantee that
statements being parsed do not see inconsistent object definitions.

Dictionary cache locks can be shared or exclusive. Shared locks are released when the
parse is complete. Exclusive locks are released when the DDL operation is complete.

File and Log Management Locks These locks protect various files. For example, one lock
protects the control file so that only one process at a time can change it. Another lock
coordinates the use and archiving of the redo log files. Datafiles are locked to ensure
that multiple instances mount a database in shared mode or that one instance mounts
it in exclusive mode. Because file and log locks indicate the status of files, these locks
are necessarily held for a long time.

Tablespace and Rollback Segment Locks These locks protect tablespaces and rollback
segments. For example, all instances accessing a database must agree on whether a
tablespace is online or offline. Rollback segments are locked so that only one instance
can write to a segment.

Explicit (Manual) Data Locking

Oracle Database always performs locking automatically to ensure data concurrency,
data integrity, and statement-level read consistency. However, you can override the
Oracle Database default locking mechanisms. Overriding the default locking is useful
in situations such as these:

= Applications require transaction-level read consistency or repeatable reads. In
other words, queries in them must produce consistent data for the duration of the
transaction, not reflecting changes by other transactions. You can achieve
transaction-level read consistency by using explicit locking, read-only transactions,
serializable transactions, or by overriding default locking.

= Applications require that a transaction have exclusive access to a resource so that
the transaction does not have to wait for other transactions to complete.

Oracle Database automatic locking can be overridden at the transaction level or the
session level.

At the transaction level, transactions that include the following SQL statements
override Oracle Database default locking;:

s The SET TRANSACTION ISOLATION LEVEL statement

s The LOCK TABLE statement (which locks either a table or, when used with views,
the underlying base tables)

s The SELECT ... FOR UPDATE statement

Locks acquired by these statements are released after the transaction commits or rolls
back.

At the session level, a session can set the required transaction isolation level with the
ALTER SESSION statement.

Data Concurrency and Consistency 13-25

Overview of Oracle Flashback Query

Note: If Oracle Database default locking is overridden at any level,
the database administrator or application developer should ensure
that the overriding locking procedures operate correctly. The locking
procedures must satisfy the following criteria: data integrity is
guaranteed, data concurrency is acceptable, and deadlocks are not
possible or are appropriately handled.

See Also: Oracle Database SQL Language Reference for detailed
descriptions of the SQL statements LOCK TABLE and SELECT ...
FOR UPDATE

Oracle Database Lock Management Services

With Oracle Database Lock Management services, an application developer can
include statements in PL/SQL blocks that:

= Request a lock of a specific type

= Give the lock a unique name recognizable in another procedure in the same or in
another instance

= Change the lock type
= Release the lock

Because a reserved user lock is the same as an Oracle Database lock, it has all the
Oracle Database lock functionality including deadlock detection. User locks never
conflict with Oracle Database locks, because they are identified with the prefix UL.

The Oracle Database Lock Management services are available through procedures in
the DBMS_LOCK package.

See Also:

» Oracle Database Advanced Application Developer’s Guide for more
information about Oracle Database Lock Management services

» Oracle Database PL/SQL Packages and Types Reference for
information about DBMS_ LOCK

Overview of Oracle Flashback Query

Oracle Flashback Query lets you view and repair historical data. You can perform
queries on the database as of a certain wall clock time or user-specified system change
number (SCN).

Flashback Query uses the Oracle Database multiversion read-consistency capabilities
to restore data by applying undo as needed. Oracle Database 11g automatically tunes a
parameter called the undo retention period. The undo retention period indicates the
amount of time that must pass before old undo information—that is, undo information
for committed transactions—can be overwritten. The database collects usage statistics
and tunes the undo retention period based on these statistics and on undo tablespace
size.

Using Flashback Query, you can query the database as it existed this morning,
yesterday, or last week. The speed of this operation depends only on the amount of
data being queried and the number of changes to the data that need to be backed out.

13-26 Oracle Database Concepts

Overview of Oracle Flashback Query

You can query the history of a given row or a transaction. Using undo data stored in
the database, you can view all versions of a row and revert to a previous version of
that row. Flashback Transaction Query history lets you examine changes to the
database at the transaction level.

You can audit the rows of a table and get information about the transactions that
changed the rows and the times when it was changed. With the transaction ID, you
can do transaction mining through LogMiner to get complete information about the
transaction.

See Also:

s Oracle Database Administrator’s Guide for more information on the
automatic tuning of undo retention and on LogMiner

= "Automatic Undo Retention" on page 2-17

You set the date and time you want to view. Then, any SQL query you run operates on
data as it existed at that time. If you are an authorized user, then you can correct errors
and back out the restored data without needing the intervention of an administrator.

With the AS OF SQL clause, you can choose different snapshots for each table in the
query. Associating a snapshot with a table is known as table decoration. If you do not
decorate a table with a snapshot, then a default snapshot is used for it. All tables
without a specified snapshot get the same default snapshot.

For example, suppose you want to write a query to find all the new customer accounts
created in the past hour. You could do set operations on two instances of the same
table decorated with different AS OF clauses.

DML and DDL operations can use table decoration to choose snapshots within
subqueries. Operations such as INSERT TABLE AS SELECT and CREATE TABLE AS
SELECT can be used with table decoration in the subqueries to repair tables from
which rows have been mistakenly deleted. Table decoration can be any arbitrary
expression: a bind variable, a constant, a string, date operations, and so on. You can
open a cursor and dynamically bind a snapshot value (a timestamp or an SCN) to
decorate a table with.

See Also:

= "Overview of High Availability Features" on page 1-22 for an
overview of all Oracle Flashback features

» Oracle Database SQL Language Reference for information on the AS
OF clause
This section includes the following topics:
s Flashback Query Benefits
= Some Uses of Flashback Query

Flashback Query Benefits

This section lists some of the benefits of using Flashback Query.
= Application Transparency

Packaged applications, like report generation tools that only do queries, can run in
Flashback Query mode by using logon triggers. Applications can run
transparently without requiring changes to code. All the constraints that the

Data Concurrency and Consistency 13-27

Overview of Oracle Flashback Query

application must be satisfied are guaranteed to hold good, because there is a
consistent version of the database as of the Flashback Query time.

Application Performance

If an application requires recovery actions, it can do so by saving SCNs and
flashing back to those SCNs. This is a lot easier and faster than saving data sets
and restoring them later, which would be required if the application were to do
explicit versioning. Using Flashback Query, there are no costs for logging that
would be incurred by explicit versioning.

Online Operation

Flashback Query is an online operation. Concurrent DMLs and queries from other
sessions are allowed while an object is queried inside Flashback Query.The speed
of these operations is unaffected. Moreover, different sessions can flash back to
different Flashback times or SCNs on the same object concurrently. The speed of
the Flashback Query itself depends on the amount of undo that must be applied,
which is proportional to how far back in time the query goes.

Easy Manageability

There is no additional management on the part of the user, except setting the
appropriate retention interval, having the right privileges, and so on. No
additional logging has to be turned on, because past versions are constructed
automatically, as needed.

Note:

» Flashback Query does not undo anything. It is only a query
mechanism. You can take the output from a Flashback Query and
perform an undo yourself in many circumstances.

» Flashback Query does not tell you what changed. LogMiner does
that.

» Flashback Query can undo changes and can be very efficient if
you know the rows that need to be moved back in time. You can
use it to move a full table back in time, but this is very expensive if
the table is large since it involves a full table copy.

» Flashback Query does not work through DDL operations that
modify columns, or drop or truncate tables.

= In general, LogMiner is very good for getting change history, but
it gives you changes in terms of deltas (insert, update, delete) and
not in terms of the before and after image of a row. The SQL
ALTER DATABASE ADD SUPPLEMENTAL LOG DATA statement
only adds minimal supplemental logging and does not log all
columns for a modified row.

Some Uses of Flashback Query

This section lists some ways to use Flashback Query.

Self-Service Repair

Perhaps you accidentally deleted some important rows from a table and wanted to
recover the deleted rows. To do the repair, you can move backward in time and see
the missing rows and re-insert the deleted row into the current table.

13-28 Oracle Database Concepts

Overview of Oracle Flashback Query

s E-mail or Voice Mail Applications

You might have deleted mail in the past. Using Flashback Query, you can restore
the deleted mail by moving back in time and re-inserting the deleted message into
the current message box.

= Account Balances
You can view account prior account balances as of a certain day in the month.
» Packaged Applications

Packaged applications (like report generation tools) can make use of Flashback
Query without any changes to application logic. Any constraints that the
application expects are guaranteed to be satisfied, because users see a consistent
version of the Database as of the given time or SCN.

In addition, Flashback Query could be used after examination of audit information to
see the before-image of the data. In DSS environments, it could be used for extraction
of data as of a consistent point in time from OLTP systems.

See Also:

» Oracle Database Advanced Application Developer’s Guide for more
information about using Oracle Flashback Query

» Oracle Database PL/SQL Packages and Types Reference for a
description of the DBMS_FLASHBACK package

» Oracle Database Administrator’s Guide for information about undo
tablespaces and setting retention period

Data Concurrency and Consistency 13-29

Overview of Oracle Flashback Query

13-30 Oracle Database Concepts

14

Manageability

Oracle Database 11g represents a major milestone in Oracle's drive toward
self-managing databases. It automates many routine administrative tasks, and
considerably simplifies key DBA functions, such as performance diagnostics, SQL
tuning, and space and memory management. It also provides several advisors that
guide DBAs in managing key components of the database by giving specific
recommendations along with potential benefit. Furthermore, Oracle Database 11g
proactively sends alerts when a problem is anticipated, thus facilitating proactive
rather than reactive database management.

This chapter contains the following topics:

» Installing Oracle Database 11g and Getting Started
= Intelligent Infrastructure

s Performance Diagnostics and Troubleshooting
= Application and SQL Tuning

= Memory Management

= Space Management

= Automatic Storage Management

= Backup and Recovery

= Configuration Management

s Workload Management

» Oracle Scheduler

Installing Oracle Database 11g and Getting Started

The Oracle Universal Installer is a GUI tool for installing Oracle software. It automates
all installation tasks, performs comprehensive prerequisite checks (such as operating
system version, software patches, and capacity), installs selected software components,
and performs all postinstall configuration.

The installation process is self-contained to automatically set up the required
infrastructure for routine monitoring and administration. The Oracle Enterprise
Manager Database Management Console is automatically configured to let you to get
started with database administrative tasks without any manual configuration. The
Oracle Enterprise Manager Database Console provides all essential functionality for
managing a single database, including alert notification, job scheduling, and software
management. In addition, all Oracle Database server components such as the database,

Manageability 14-1

Installing Oracle Database 11g and Getting Started

listener, management framework, and so on, are configured for automated startup and
shutdown.

See Also: "Configuration Management" on page 14-17 for more
information about Oracle Enterprise Manager

This section includes the following topics:

= Simplified Database Creation

s Instant Client

= Automated Upgrades

= Basic Initialization Parameters

» Data Loading, Transfer, and Archiving

Simplified Database Creation

Instant Client

The Database Creation Assistant (DBCA) is a GUI tool for database creation. It lets you
create all possible configurations of the database, be it a standalone database, an
Oracle Real Application Clusters database, or a standby database. During the database
creation process, the DBCA guides you in setting up an automated disk-based backup
and registering the database with a LDAP server, if available. A database created using
the DBCA is fully setup and ready to use in all respects.

The Instant Client is the simplest way to deploy a full Oracle Client application built
with OCI, OCCI, JDBC-OCI, or ODBC drivers. It provides the necessary Oracle Client
libraries in a small set of files. Installation is as easy as copying a few shared libraries
to a directory on the client computer. If this directory is accessible through the
operating system library path variable (for instance, LD_LIBRARY_PATH or PATH)
then the application will operate in the Instant Client mode. Instant Client deployment
does not require the ORACLE_HOME environment, nor does it require the large number
of code and data files provided in a full Oracle Client install, thereby significantly
reducing the client application disk space needs. There is no loss in functionality or
performance for an application deployed using Instant Client when compared to the
same application running in a full ORACLE_HOME environment.

See Also:

s Chapter 24, "SQL" and Chapter 25, "Supported Application
Development Languages" for more information about JDBC, OCI,
and OCCI

» Oracle Call Interface Programmer's Guide for more information
about Instant Client

Automated Upgrades

With the Database Upgrade Assistant (DBUA), you can upgrade any database
configuration, including Oracle Real Application Clusters (Oracle RAC) and standby,
just by answering a few simple questions. It automatically checks that adequate
resources are available, ensures adherence to the best practices — such as backing up
the database before beginning the upgrade process, replacing the obsolete and
deprecate initialization parameters, and so on — and, verifies the successful completion
of the operation.

14-2 Oracle Database Concepts

Intelligent Infrastructure

The upgrade process is restartable, allowing it to automatically resume from the point
of interruption. You can also get a time estimation of how long the upgrade process is
likely to take.

Basic Initialization Parameters

The Oracle Database provides a number of initialization parameters to optimize its
operation in diverse environments. Only a few of these parameters need to be
explicitly set, because the default values are adequate in the majority of cases.

There are approximately 30 basic parameters. The remainder of the parameters are
preserved to allow expert DBAs to adapt the behavior of the Oracle Database to meet
unique requirements without overwhelming those who have no such requirements.

See Also: Oracle Database Administrator’s Guide

Data Loading, Transfer, and Archiving

Data Pump enables very high-speed data and metadata loading and unloading to and
from the Oracle Database. It automatically manages and schedules multiple, parallel
streams of load or unload for maximum throughput.

The transportable tablespace feature lets you quickly move a tablespace across Oracle
databases. This can be much faster than performing either an export/import or
unload/load of the same data, because transporting a tablespace only requires the
copying of datafiles and integrating the tablespace structural information. You can also
use transportable tablespaces to move index data, thereby avoiding the index rebuilds
you would have to perform when importing or loading table data.

Data Pump functionality together with cross-platform transportable tablespace feature
provides powerful, easy to use, and high performance tools for moving data in and
out of the database.

See Also:
= "Overview of Data Pump Export and Import" on page 11-2

s "Transport of Tablespaces Between Databases" on page 3-13

Intelligent Infrastructure

Oracle Database has a sophisticated self-management infrastructure that allows the
database to learn about itself and use this information to adapt to workload variations
or to automatically remedy any potential problem. The self-management
infrastructure includes the following:

= Automatic Workload Repository

= Automatic Maintenance Tasks

= Fault Diagnosability Infrastructure
= Server-Generated Alerts

= Advisor Framework

= Hang Manager

Manageability 14-3

Intelligent Infrastructure

Automatic Workload Repository

The Automatic Workload Repository (AWR) is a built-in repository that contains
performance statistics used by Oracle Database for problem detection and self-tuning
purposes. At regular intervals, Oracle Database makes a snapshot of vital statistics and
workload information and stores them in the AWR. The data contained in the
snapshots is then analyzed by the Automatic Database Diagnostic Monitor (ADDM).
The difference between snapshots is compared to determine which SQL statements to
capture based on the effect on the system load. This reduces the number of SQL
statements that need to be captured over time. By default, the snapshots are taken once
every hour and retained in the AWR for 8 days, after which they are automatically
purged. You can change both the frequency and the retention period of snapshots.

Snapshots from specific time periods can be preserved in a baseline for comparison
with other similar workload periods. The snapshots contained in a baseline are
excluded from the automatic AWR purging process and are retained indefinitely.
There are several types of available baselines in Oracle Database: fixed baselines,
moving window baselines, and baseline templates. A fixed baseline corresponds to a
fixed, contiguous time period in the past. Fixed baselines captured when the system is
operating at an optimal level can be compared with other baselines or snapshots
captured during periods of poor performance to analyze performance degradation
over time. A moving window baseline corresponds to all AWR data that exists within
the AWR retention period. This is useful when using adaptive thresholds because the
AWR data in the entire AWR retention period can be used to compute metric threshold
values. Baseline templates can be used to create baselines for contiguous time periods
in the future. There are two types of baseline templates: single and repeating. A single
baseline template can be used to create a baseline for a single contiguous time period
in the future. This is useful if you know beforehand of a time period that you want to
capture in the future. A repeating baseline template can be used to create and drop
baselines based on a repeating time schedule. This is useful if you want Oracle
Database to automatically capture a contiguous time period on an ongoing basis.

AWR forms the foundation for all self-management functionality of Oracle Database. It
is the source of information that gives Oracle Database a historical perspective on how
the database is being used, and enables ADDM to accurately diagnose and resolve
potential performance problems.

See Also: Oracle Database Performance Tuning Guide for information
about the Automatic Workload Repository

Automatic Maintenance Tasks

By analyzing the information stored in AWR, the database can identify the need to
perform routine maintenance tasks. The automated maintenance tasks infrastructure
(known as AutoTask) enables Oracle Database to automatically schedule such
operations. AutoTask schedules automatic maintenance tasks to run in a set of Oracle
Scheduler windows known as maintenance windows. Maintenance windows are those
windows that are members of the Oracle Scheduler window group
MAINTENANCE_WINDOW_GROUP.

By default, MAINTENANCE_WINDOW_GROUP contains one window for each day of the
week. Weekday windows (Monday through Friday) are configured to be open (active)
for 4 hours starting at 10:00 p.m. Weekend windows (Saturday and Sunday) begin at
6:00 a.m. and remain open for 20 hours. You can customize all attributes of these
maintenance windows, including start and end time, frequency, days of the week, and
so on. You can also add and remove maintenance windows from the group.

14-4 Oracle Database Concepts

Intelligent Infrastructure

The following are the tasks that AutoTask automatically schedules in these
maintenance windows:

s Optimizer statistics gathering
= Automatic Segment Advisor
= SQL Tuning Advisor

Using Oracle Enterprise Manager or PL/SQL package procedures, you can adjust
which of these tasks run in which maintenance windows.

Limiting Automatic Maintenance Task Resource Allocation

The impact of automated maintenance tasks on normal database operations is limited
by the default Database Resource Manager resource plan. You can modify the default
plan, or create your own resource plans and activate them either at the systemwide
level or at the individual maintenance window level. AutoTask runs all automatic
maintenance tasks as Oracle Scheduler jobs that belong to particular resource
consumer groups. Resource plans then limit CPU resources that are allocated to these
resource consumer groups. Because your user applications can be assigned to resource
consumer groups, you can adjust the resource allocation for maintenance tasks not
only relative to other maintenance tasks, but also relative to your applications.

See Also:

» Oracle Database Administrator’'s Guide and Oracle Database 2 Day
DBA for instructions for managing automatic maintenance tasks

» "Oracle Scheduler" on page 14-22
= "Overview of the Database Resource Manager" on page 14-18

m Oracle Database Administrator’s Guide for information about
Automatic Segment Advisor

» Oracle Database Performance Tuning Guide for information about
SQL Tuning Advisor

Fault Diagnosability Infrastructure

Oracle Database includes an advanced fault diagnosability infrastructure for
preventing, detecting, diagnosing, and resolving problems. The problems that are
targeted are critical errors such as those caused by database code bugs, metadata
corruption, and customer data corruption. The goals of the advanced fault
diagnosability infrastructure are the following:

s Detecting problems proactively

» Limiting damage and interruptions after a problem is detected
= Reducing problem diagnostic time

= Reducing problem resolution time

s Simplifying customer interaction with Oracle Support

The keys to achieving these goals are the following technologies:

s The Health Monitor, which performs deeper analysis of a critical error upon
detection, creates health check reports and adds these reports to the diagnostic
data collected for the error. The DBA can also manually invoke health checks and
obtain reports.

Manageability 14-5

Intelligent Infrastructure

» First-failure data capture, which captures comprehensive diagnostic data upon the
first occurrence of a critical error

» Standardized trace and dump formats for easier analysis

= Incident packaging service, which enables the DBA to automatically package all
diagnostic information surrounding a critical error into an archive suitable for
transmission to Oracle Support.

= Data Recovery Advisor, which displays data corruption problems, assesses the
extent of the problems, and recommends repair options

= SQL Test Case Builder, which helps Oracle Support reproduce customer problems
that are related to SQL failures

= Support Workbench, which is a guided workflow that assists you with capturing
critical error diagnostic information, transmitting it to Oracle Support, and filing a
service request

See Also: Oracle Database Administrator’s Guide for more information
on the fault diagnosability infrastructure and on the Support
Workbench

This section further discusses two components of this new infrastructure:
= Automatic Diagnostic Repository

= Incident Packaging Service

Automatic Diagnostic Repository

The Automatic Diagnostic Repository (ADR) is a file-based repository for database
diagnostic data such as traces, the alert log, health monitor reports, and more. It has a
unified directory structure across multiple instances and multiple products. Beginning
with Oracle Database 11g, the database, Automatic Storage Management (ASM), and
other Oracle products or components store all diagnostic data in the ADR. Each
instance of each product stores diagnostic data underneath its own ADR home
directory. For example, in an Oracle Real Application Clusters environment with
shared storage and ASM, each database instance and each ASM instance has a home
directory within the ADR. ADR's unified directory structure, consistent diagnostic
data formats across products and instances, and a unified set of tools enable customers
and Oracle Support to correlate and analyze diagnostic data across multiple instances.

Incident Packaging Service

A DBA can automatically and easily gather all diagnostic data (traces, health check
reports, SQL test cases, and more) pertaining to a critical error and package the data
into a zip file suitable for transmission to Oracle Support. Because all diagnostic data
relating to a critical error are tagged with that error's incident number, the DBA does
not have to search through trace files and other files to determine the files that are
required for analysis; the incident packaging service identifies all required files
automatically and adds them to the package.

See Also:

m Oracle Database Administrator’s Guide for more information about
these components

» Oracle Database Net Services Administrator's Guide and Oracle
Database Net Services Reference for information on ADR usage

14-6 Oracle Database Concepts

Intelligent Infrastructure

Server-Generated Alerts

For problems that cannot be resolved automatically and require administrators to be
notified, such as running out of space, the Oracle Database provides server-generated
alerts. Oracle Database can monitor itself and send out alerts to notify you of any
problem in an efficient and timely manner.

Monitoring activities take place as the database performs its regular operation. This
ensures that the database is aware of problems the moment they arise. The alerts
produced by Oracle Database not only notify the problem, they also provide
recommendations on how the reported problem can be resolved. This ensures quick
problem resolution and helps prevent potential failures.

Advisor Framework

Oracle Database includes a number of advisors for different sub-systems in the
database to automatically determine how the operation of the corresponding
subcomponents could be further optimized. The SQL Tuning Advisor and the SQL
Access Advisor, for example, provide recommendations for running SQL statements
faster. Memory advisors help size the various memory components without resorting
to trial-and-error techniques. The Segment Advisor handles space-related issues, such
as recommending wasted-space reclamation and analyzing growth trends, while the
Undo Advisor guides you in sizing the undo tablespace correctly. The various advisors
are discussed more throughout this chapter.

To ensure the consistency and uniformity in the way advisors function and allow them
to interact with each other seamlessly, Oracle Database includes an advisor
framework. The advisor framework provides a consistent manner in which advisors
are invoked and results are reported. Although these advisors are primarily used by
the database to optimize its own performance, they can be invoked by administrators
to get more insight into the functioning of a particular subcomponent.

See Also: Oracle Database 2 Day DBA for more information about
using advisors

Hang Manager

Active entities that attempt to obtain restrictive access to shared resources or request
services from other Oracle Database processes, sessions, and transactions are in danger
of hanging. A hang chain is a chain of processes with each one waiting on a resource
held by the next, with a single process serving as the root of the hang.

Hangs in Oracle Database can cost a great deal in terms of system unavailability.
Specifically, hangs lead to the following problems:

= Extended system outages. These outages may occur frequently before a fix is
found, which adds to the total downtime.

= Analyzing the hang to determine where the problem lies can be lengthy, complex,
and prone to error.

The Hang Manager is an Oracle Database infrastructure that can detect hangs, analyze
them, and then obtain the required diagnostic data from Oracle. The Hang Manager is
enabled by default in Oracle RAC databases and Automatic Storage Management
(ASM) instances. Hang manager data is output to trace files.

Manageability 14-7

Performance Diagnostics and Troubleshooting

Performance Diagnostics and Troubleshooting

Building upon the data captured in AWR, the Automatic Database Diagnostic Monitor
(ADDM) lets Oracle Database diagnose its own performance and determine how
identified problems could be resolved. ADDM runs automatically after each AWR
statistics capture, making the performance diagnostic data readily available.

ADDM examines data captured in AWR and performs analysis to determine the major
issues on the system on a proactive basis. In many cases, it recommends solutions and
quantifies expected benefits. ADDM takes a holistic approach to the performance of
the system, using time as a common currency between components. ADDM identifies
those areas of the system that are consuming the most time. ADDM drills down to
identify the root cause of problems, rather than just the symptoms, and reports the
impact that the problem is having on the system overall. If a recommendation is made,
it reports the benefits that can be expected in terms of time. The use of time throughout
allows the impact of several problems or recommendations to be compared.

ADDM focuses on activities that the database is spending most time on and then drills
down through a sophisticated problem classification tree. Some common problems
detected by ADDM include the following:

= CPU bottlenecks

= Poor connection management
m Excessive parsing

= Lock contention

s I/O capacity

s Undersizing of Oracle Database memory structures; for example, PGA, buffer
cache, log buffer

= High load SQL statements
= High PL/SQL and Java time

= High checkpoint load and cause; for example, small log files, aggressive MTTR
setting

= Oracle RAC-specific issues

Besides reporting potential performance issues, ADDM also documents non-problem
areas of the system. The subcomponents, such as I/O and memory, that are not
significantly impacting system performance are pruned from the classification tree at
an early stage and are listed so that you can quickly see that there is little to be gained
by performing actions in those areas.

You no longer need to first collect huge volumes of diagnostic data and spend hours
analyzing them in order to find out answers to performance issues. You can simply
follow the recommendation made by ADDM with just a few mouse clicks.

Application and SQL Tuning

Oracle Database completely automates the SQL tuning process. ADDM identifies SQL
statements consuming unusually high system resources and therefore causing
performance problems. In addition, the top SQL statements in terms of CPU and
shared memory consumption are automatically captured in AWR. Thus, the
identification of high load SQL statements happens automatically in Oracle Database
and requires no intervention.

14-8 Oracle Database Concepts

Application and SQL Tuning

After identifying the top resource-consuming SQL statements, Oracle Database can
automatically analyze them and recommend solutions using the Automatic SQL
Tuning Advisor. Automatic SQL Tuning is exposed with an advisor, called the SQL
Tuning Advisor. The SQL Tuning Advisor takes one or more SQL statements as input
and produces well-tuned plans along with tuning advice. You do not need to do
anything other than invoke the SQL Tuning Advisor.

The solution comes right from the optimizer and not from external tools using
pre-defined heuristics. This provides several advantages: a) the tuning is done by the
system component that is ultimately responsible for the execution plans and SQL
performance, b) the tuning process is fully cost-based, and it naturally accounts for
any changes and enhancements done to the query optimizer, c) the tuning process
considers the past execution statistics of a SQL statement and customizes the optimizer
settings for that statement, and d) it collects auxiliary information in conjunction with
the regular statistics based on what is considered useful by the query optimizer.

The recommendation of the Automatic SQL Tuning Advisor can fall into one of the
following categories

= Statistics Analysis: The Automatic SQL Tuning Advisor checks each query object
for missing or stale statistics and makes recommendations to gather relevant
statistics. It also collects auxiliary information to supply missing statistics or
correct stale statistics in case recommendations are not implemented. Because
Oracle Database automatically gathers optimizer statistics, this should not be the
problem unless the automatic statistics gathering functionality has been disabled.

= SQL Profiling: The Automatic SQL Tuning Advisor verifies its own estimates and
collects auxiliary information to remove estimation errors. It also collects auxiliary
information in the form of customized optimizer settings (for example, first rows
or all rows) based on past execution history of the SQL statement. It builds a SQL
profile using the auxiliary information and makes a recommendation to create it. It
then enables the query optimizer (under normal mode) to generate a well-tuned
plan. The most powerful aspect of SQL profiles is that they enable tuning of
queries without requiring any syntactical changes and thereby proving a unique
database —resident solution to tune the SQL statements embedded in packaged
applications.

= Access Path Analysis: The Automatic SQL Tuning Advisor considers whether a
new index can be used to significantly improve access to each table in the query
and when appropriate makes recommendations to create such indexes.

= SQL Structure Analysis: The Automatic SQL Tuning Advisor tries to identify SQL
statements that lend themselves to bad plans and makes relevant suggestions to
restructure them. The suggested restructuring can be syntactic as well as semantic
changes to the SQL code.

Both access path and SQL structure analysis can be useful in tuning the performance
of an application under development or a homegrown production application where
the administrators and developers have access to application code.

The SQL Access Advisor can automatically analyze the schema design for a given
workload and recommend indexes, function-based indexes, partitions, and
materialized views to create, retain, or drop as appropriate for the workload. For
single statement scenarios, the advisor only recommends adjustments that affect the
current statement. For complete business workloads, the advisor makes
recommendations after considering the impact on the entire workload.

While generating recommendations, the SQL Access Advisor considers the impact of
adding new indexes, partitions, and materialized views on data manipulation
activities, such as insert, update, and delete, in addition to the performance

Manageability 14-9

Memory Management

improvement they are likely to provide for queries. After the SQL Access Advisor has
filtered the workload, but while it is still identifying all possible solutions, you can
asynchronously interrupt the process to get the best solution up to that point in time.

The SQL Access Advisor provides an easy to use interface and requires very little
system knowledge. It can be run without affecting production systems, because the
data can be gathered from the production system and taken to another computer
where the SQL Access Advisor can be run.

See Also: Oracle Database Performance Tuning Guide for more
information about the SQL Tuning Advisor and the SQL Access
Advisor

Memory Management

Oracle Database memory management allows for dynamic resizing of system global
area (SGA) and program global area (PGA) memory components, either automatically
or manually.

Automatic Memory Management

By default, new database installations are configured to automatically tune the various
components of the SGA and PGA. You can make simple high-level adjustments to
memory allocation by changing one database parameter: MEMORY_TARGET. As you
allocate more system memory to the database with this parameter, the database
automatically adjusts various component sizes for optimal database performance.

The performance of each component is monitored by the Oracle database instance. The
instance uses internal views and statistics to determine how to optimally distribute
memory among the automatically-sized components. Thus, as the workload changes,
memory is redistributed to ensure optimal performance with the new workload. The
database arrives at optimal distribution by taking into consideration long term and
short terms trends.

You can exercise some control over the size of the auto-tuned components by
specifying minimum values for each component. This can be useful in cases where you
know that an application needs a minimum amount of memory in certain components
to function properly.

The sizes of the automatically-tuned components are remembered across shutdowns if
a server parameter file (SPFILE) is used. Thus, the system picks up where it left off
from the last shutdown.

Manual Memory Management and Memory Advisors

If you want to exercise more precise control over allocation for multiple memory
components, you can enable manual memory management. You can then take
advantage of a set of memory advisors, which graphically display current component
sizes and the estimated affect of changing these sizes.

The Shared Pool Advisor determines the optimal shared pool size by tracking its use
by the library cache. The amount of memory available for the library cache can
drastically affect the parse rate of an Oracle database instance. The shared pool advisor
statistics provide information about library cache memory, letting you predict how
changes in the size of the shared pool can affect aging out of objects in the shared pool.

The Buffer Cache Advisor determines the optimal size of the buffer cache. When
manually configuring memory for a new instance, it is difficult to know the correct
size for the buffer cache. Typically, you make a first estimate for the cache size, run a
representative workload on the instance, and then examine the relevant statistics to see

14-10 Oracle Database Concepts

Space Management

whether the cache is under- or over-configured. A number of statistics can be used to
examine buffer cache activity. These include the V$DB_CACHE_ADVICE view and the
buffer cache hit ratio.

The Java Pool Advisor provides information about library cache memory used for
Java, and predicts how changes in the size of the Java pool can affect the parse rate.

The Streams Pool Advisor determines the optimal size of the Streams pool. The view
V$STREAMS_POOL_ADVICE gives estimates of the amount of bytes spilled and
unspilled for the different values of the STREAMS_ POOL_SIZE parameter. You can use
this to tune the STREAMS_ POOL_SIZE parameter for Streams and for logical standby.
AWR reports on the VS STREAMS_ POOL_ADVICE view and CPU usage to help you
tune Streams performance.

The Program Global Area (PGA) Advisor helps you determine an appropriate setting
for PGA_AGGREGATE_TARGET, which is the total amount of memory to allocate for all
PGAs for server and background processes.

See Also:
s Chapter 8, "Memory Architecture"

» Oracle Database Performance Tuning Guide for more information
about memory advisors

s Oracle Database Administrator’s Guide for information about the
various initialization parameters for manual and automatic
memory management, and for information about server
parameter files

Space Management

Oracle Database automatically manages its space consumption, sends alerts on
potential space problems, and recommends possible solutions. Oracle Database
features that help you to easily manage space include the following:

s Automatic Undo Management
s Oracle-Managed Files

s Free Space Management

s Proactive Space Management
s Intelligent Capacity Planning

= Space Reclamation

See Also: Oracle Database Storage Administrator’s Guide

Automatic Undo Management

Earlier releases of Oracle Database used rollback segments to store undo. Space
management for these rollback segments was complex. Automatic undo management
eliminates the complexities of managing rollback segments by automatically managing
space in an undo tablespace. Automatic undo management also optimally tunes the
length of time that undo is retained before being overwritten. This automatic tuning of
undo retention improves the success rate of long running queries and of certain Oracle
Flashback features, which may require the presence of old undo information.

Manageability 14-11

Space Management

Although you can configure the database to use rollback segments, automatic undo
management is the default. An autoextending undo tablespace is automatically
created upon database installation.

Automatic tuning of undo retention generally achieves better results with a fixed size
undo tablespace. If you want to change the undo tablespace to fixed size for this or
other reasons, the Undo Advisor can help you determine the proper fixed size to
allocate. You provide the desired undo retention period for your long-running queries
or Oracle Flashback operations, and the Undo Advisor suggests the required undo
tablespace size. The Undo Advisor makes its recommendations based on system
activity statistics, including the longest running query and undo generation rate.
Adpvisor information includes the following:

s Current undo retention
n Current undo tablespace size
= Longest query duration
= Best undo retention possible

= Undo tablespace size necessary for current undo retention

See Also:

s "Introduction to Undo Segments and Automatic Undo
Management" on page 2-16

s Oracle Database 2 Day DBA for information about managing
undo and running the Undo Advisor

» Oracle Database Administrator’s Guide for more information
about the undo tablespace and on undo retention

Oracle-Managed Files

With Oracle-managed files, you do not need to directly manage the files comprising an
Oracle database. Oracle Database uses standard file system interfaces to create and
delete files as needed. This automates the routine task of creation and deletion of
database files.

Free Space Management

Oracle Database allows for managing free space within a table with bitmaps, as well as
traditional dictionary based space management. The bitmapped implementation
eliminates much space-related tuning of tables, while providing improved
performance during peak loads. Additionally, Oracle Database provides automatic
extension of data files, so the files can grow automatically based on the amount of data
in the files. Database administrators do not need to manually track and reorganize the
space usage in all the database files.

Proactive Space Management

Oracle Database introduces a nonintrusive and timely check for space utilization
monitoring. It automatically monitors space utilization during normal space allocation
and de-allocation operations and alerts you if the free space availability falls below the
pre-defined thresholds. Space monitoring functionality is set up out of box, causes no
performance impact, and is uniformly available across all tablespace types. Also, the
same functionality is available both through Oracle Enterprise Manager as well as
SQL. Because the monitoring is performed at the same time as space is allocated and

14-12 Oracle Database Concepts

Space Management

freed up in the database, this guarantees immediate availability of space usage
information whenever you need it.

Notification is performed using server-generated alerts. The alerts are triggered when
certain space-related events occur in the database. For example, when the space usage
threshold of a tablespace is crossed or when a resumable session encounters an out of
space situation, then an alert is raised. An alert is sent instantaneously to take
corrective measures. You may choose to get paged with the alert information and add
space to the tablespace to allow the suspended operation to continue from where it left
off.

The database comes with a default set of alert thresholds. You can override the default
for a given tablespace or set a new default for the entire database through Oracle
Enterprise Manager.

Intelligent Capacity Planning

Space may get overallocated because of the difficulty to predict the space requirement
of an object or the inability to predict the growth trend of an object. On tables that are
heavily updated, the resulting segment may have a lot of internal fragmentation and
maybe even row chaining. These issues can result in a wide variety of problems from
poor performance to space wastage. Oracle Database offers several features to address
these challenges.

Oracle Database can predict the size of a given table based on its structure and
estimated number of rows. This is a powerful "what if" tool that allows estimation of
the size of an object before it is created or rebuilt. If tablespaces have different extent
management policies, then the tool will help decide the tablespace that will cause least
internal fragmentation.

The growth trend report takes you to the next step of capacity planning: planning for
growth. Most database systems grow over time. Planning for growth is an important
aspect of provisioning resources. To aid this process, Oracle Database tracks historical
space utilization in the AWR and uses this information to predict the future resource
requirements.

Space Reclamation

Oracle Database provides in-place reorganization of data for optimal space utilization
by shrinking it. Shrinking of a segment makes unused space available to other
segments in the tablespace and may improve the performance of queries and DML
operations.

The segment shrink functionality both compacts the space used in a segment and then
deallocates it from the segment. The deallocated space is returned to the tablespace
and is available to other objects in the tablespace. Sparsely populated tables may cause
a performance problem for full table scans. By performing shrink, data in the table is
compacted and the high water mark of the segment is pushed down. This makes full
table scans read less blocks run faster.

Segment shrink is an online operation — the table being shrunk is open to queries and
DML while the segment is being shrunk. Additionally, segment shrink is performed in
place. This is an advantage over online table redefinition for compaction and
reclaiming space. You can schedule segment shrink for one or all the objects in the
database as nightly jobs without requiring any additional space to be provided to the
database.

Segment shrink works on heaps, IO0Ts, IOT overflow segments, LOBs, LOB segments,
materialized views, and indexes with row movement enabled in tablespaces with

Manageability 14-13

Automatic Storage Management

automatic segment space management. When segment shrink is performed on tables
with indexes on them, the indexes are automatically maintained when rows are moved
around for compaction. User-defined triggers are not fired, however, because
compaction is a purely physical operation and does not impact the application.

Note: Segment shrink can be performed only on tables with row
movement enabled. Applications that explicitly track rowids of objects
cannot be shrunk, because the application tracks the physical location
of rows in the objects.

To easily identify candidate segments for shrinking, Oracle Database automatically
runs the Segment Advisor to evaluate the entire database. The Segment Advisor
performs growth trend analysis on individual objects to determine if there will be any
additional space left in the object in seven days. It then uses the reclaim space target to
select candidate objects to shrink.

Note: The Segment Advisor does not evaluate undo and temporary
tablespaces.

In addition to using the pre-computed statistics in the workload repository, the
Segment Advisor performs sampling of the objects under consideration to refine the
statistics for the objects. Although this operation is more resource intensive, it can be
used to perform a more accurate analysis.

Although segment shrink reduces row chaining, and Oracle Database recommends
online redefinition to remove chained rows, the Segment Advisor actually detects
certain chained rows that are above a threshold. For example, if a row size increases
during an update such that it no longer fits into the block, then the Segment Advisor
recommends that the segment be reorganized to improve I/O performance.

Note: The Segment Advisor does not detect chained rows created by
inserts.

See Also:

s "Row Chaining and Migrating" on page 2-5 for more information
about row chaining

» Oracle Database Administrator’s Guide and Oracle Database 2 Day
DBA for more information about using the Segment Advisor

Automatic Storage Management

Automatic Storage Management (ASM) provides a vertical integration of the file
system and volume manager specifically built for Oracle database files. ASM
distributes I/O load across all available resources to optimize performance while
removing the need for manual I/O tuning; spreading out the database files avoids
hotspots. ASM helps you manage a dynamic database environment by enabling you to
increase a database's size without having to shutdown the database to adjust the
storage allocation.

ASM lets you define a pool of storage, called a disk group, and then the Oracle kernel
manages the file naming and placement of the database files on that disk group. You

14-14 Oracle Database Concepts

Backup and Recovery

can change the storage allocation, such as by adding or removing disks, by using SQL
statements such as CREATE DISKGROUP, ALTER DISKGROUP, and DROP
DISKGROUP. You can also manage disk groups with Oracle Enterprise Manager and
Database Configuration Assistant (DBCA).

Oracle Database provides a simplified management interface for storage resources.
ASM eliminates the need for manual I/O performance tuning. It virtualizes storage to
a set of disk groups and provides redundancy options to enable a high level of
protection. ASM facilitates nonintrusive storage configuration changes with automatic
rebalancing. It spreads database files across all available storage to optimize
performance and resource utilization. ASM reduces your storage administrative
overhead by automating manual storage and thereby increasing your ability to
manage larger databases and more of them with increased efficiency.

The following are some of the basic ASM concepts:
= Automatic Storage Management Instances

The ASM instance is a special Oracle instance that manages the disks in disk
groups. The ASM instance must be configured and running to enable the database
instance to access ASM files. This configuration is done automatically if Database
Configuration Assistant was used for database creation. An ASM instance cannot
mount a database. The ASM instance simply coordinates data layout for database
instances. Database instances direct the I/O to disks in disk groups without going
through an ASM instance.

» Disk Groups

A disk group is one or more ASM disks managed as a logical unit. The data
structures in a disk group are self contained and consume some of the disk space
in a disk group. ASM disks can be added or dropped from a disk group while the
database is running. ASM rebalances the data to ensure an even I/O load to all
disks in a disk group even as the disk group configuration changes.

= Automatic Storage Management Files

When the database requests it, ASM creates files. ASM assigns each file a fully
qualified name ending in a dotted pair of numbers. You can create more
user-friendly alias names for the ASM filenames. To see alias names for ASM files,
query the VSASM_ALIAS data dictionary view from an ASM instance. In general,
users need not be aware of file names.

= Automatic Storage Management Disks

Storage is added and removed from disk groups in units of ASM disks. ASM disks
can be entire physical disks, Logical Unit Numbers (LUNs) from a storage array, or
pre-created files in a NAS filer. ASM disks should be independent of each other to
obtain optimal I/O performance. For instance, with a storage array, you might
specify a LUN that represents a hardware mirrored pair of physical disks to ASM
as a single ASM disk.

See Also: Oracle Database Storage Administrator’s Guide for
information about ASM

Backup and Recovery

Oracle Database provides several features that help you to easily manage backup and
recovery. These include the following:

= Recovery Manager

Manageability 14-15

Backup and Recovery

= Mean Time to Recovery

s Self Service Error Correction

Recovery Manager

Oracle Recovery Manager (RMAN) is a powerful tool that simplifies, automates, and
improves the performance of backup and recovery operations. RMAN enables one
time backup configuration, automatic management of backups and archived logs
based on a user-specified recovery window, restartable backups and restores, and test
restore/recovery.

RMAN implements a recovery window to control when backups expire. This lets you
establish a period of time during which it is possible to discover logical errors and fix
the affected objects by doing a database or tablespace point-in-time recovery. RMAN
also automatically expires backups that are no longer required to restore the database
to a point-in-time within the recovery window. Control file autobackup also allows for
restoring or recovering a database, even when a RMAN repository is not available.

DBCA can automatically schedule an on disk backup procedure. All you do is specify
the time window for the automatic backups to run. A unified storage location for all
recovery related files and activities in an Oracle database, called the flash recovery
area, can be defined with the initialization parameter DB_RECOVERY_FILE_DEST. All
files needed to completely recover a database from a media failure, such as control
files, archived log files, Flashback logs, RMAN backups, and so on, are part of the flash
recovery area.

Allocating sufficient space to the flash recovery area ensures faster, simpler, and
automatic recovery of the Oracle database. Flash recovery actually manages the files
stored in this location in an intelligent manner to maximize the space utilization and
avoid out of space situations to the extent possible. Based on the specified RMAN
retention policy, the flash recovery area automatically deletes obsolete backups and
archive logs that are no longer required based on that configuration.

Incremental backups let you back up only the changed blocks since the previous
backup. When the block change tracking feature is enabled, Oracle Database tracks the
physical location of all database changes. RMAN automatically uses the change
tracking file to determine which blocks need to be read during an incremental backup
and directly accesses that block to back it up. It reduces the amount of time needed for
daily backups, saves network bandwidth when backing up over a network, and
reduces the backup file storage.

Incremental backups can be used for updating a previously made backup. With
incrementally updated backups, you can merge the image copy of a datafile with a
RMAN incremental backup, resulting in an updated backup that contains the changes
captured by the incremental backup. This eliminates the requirement to make a whole
database backup repeatedly. You can make a full database backup once for a given
database and use incremental backups subsequently to keep the full back up updated.
A backup strategy based on incrementally updated backups can help keep the time
required for media recovery of your database to a minimum.

See Also:
s Oracle Database Administrator’s Guide

» Oracle Database Backup and Recovery User's Guide

14-16 Oracle Database Concepts

Configuration Management

Mean Time to Recovery

Oracle Database allows for better control over database downtime by letting you
specify the mean time to recover (MTTR) from system failures in number of seconds. A
user-specified MTTR, coupled with dynamic initialization parameters, helps improve
database availability. After you set a time limit for how long a system failure recovery
can take, Oracle Database automatically and transparently makes sure that the system
can restart in that time frame, regardless of the application activity running on the
system at the time of the failure. This provides the fastest possible up time after a
system failure.

The smaller the online logfiles are, the more aggressively DBWRs do incremental
checkpoints, which means more physical writes. This may adversely affect the
run-time performance of the database. Furthermore, if you set
FAST_START_MTTR_TARGET, then the smallest logfile size may drive incremental
checkpointing more aggressively than needed by the MTTR.

The Logfile Size Advisor determines the optimal smallest logfile size from the current
FAST_ START_ MTTR_TARGET setting and the MTTR statistics. A smallest logfile size is
considered optimal if it does not drive incremental checkpointing more aggressively
than needed by FAST_START_MTTR_TARGET.

The MTTR Advisor helps you evaluate the effect of different MTTR settings on system
performance in terms of extra physical writes. When MTTR advisor is enabled, after
the system runs a typical workload, you can query V$MTTR_TARGET_ADVICE to see
the ratio of the estimated number of cache writes under other MTTR settings to the
number of cache writes under the current MTTR. For instance, a ratio of 1.2 indicates
20% more cache writes.

By looking at the different MTTR settings and their corresponding cache write ratio,
you can decide which MTTR value fits your recovery and performance needs.
VSMTTR_TARGET_ADVICE also gives the ratio on total physical writes, including
direct writes, and the ratio on total I/O, including reads.

See Also: Oracle Database Backup and Recovery User’s Guide for
information about using the MTTR Advisor

Self Service Error Correction

Oracle Flashback technology lets you view and rewind data back and forth in time.
You can query past versions of schema objects, query historical data, perform change
analysis, or perform self-service repair to recover from logical corruptions while the
database is online.

This revolutionizes recovery by just operating on the changed data. The time it takes to
recover the error is equal to the amount of time it took to make the mistake.

See Also:

= "Overview of High Availability Features" on page 1-22
= "Oracle Flashback Technology" on page 15-9

= "Overview of Oracle Flashback Query" on page 13-26

Configuration Management

Oracle Enterprise Manager has several powerful configuration management facilities
that help detect configuration changes and differences and enforce best practice

Manageability 14-17

Workload Management

configuration parameter settings. These capabilities also encompass the underlying
hosts and operating systems.

Oracle Enterprise Manager continuously monitors the configuration of all Oracle
systems for such things as best practice parameter settings, security set-up, storage
and file space conditions, and recommended feature usage. Non-conforming systems
are automatically flagged with a detailed explanation of the specific-system
configuration issue. For example, Oracle Enterprise Manager advises you to use new
functionality such as automatic undo management or locally managed tablespaces if
they are not being used. This automatic monitoring of system configurations promotes
best practices configuration management, reduces administrator workload and the
risk of availability, performance, or security compromises.

Oracle Enterprise Manager also automatically alerts you to new critical patches — such
as important security patches — and flags all systems that require that patch. In
addition, you can invoke the Oracle Enterprise Manager patch wizard to find out what
interim patches are available for that installation.

See Also: Oracle Enterprise Manager Concepts

Workload Management
Oracle Database provides the following resource management features:
s Overview of the Database Resource Manager

s Overview of Services

Overview of the Database Resource Manager

The Database Resource Manager provides the ability to prioritize work within the
Oracle database system. High priority users get resources, so as to minimize response
time for online workers, for example, while lower priority users, such as batch jobs or
reports, could take longer. This allows for more granular control over resources and
provides features such as automatic consumer group switching, maximum active
sessions control, query execution time estimation and undo pool quotas for consumer
groups.

You can specify the maximum number of concurrently active sessions for each
consumer group. When this limit is reached, the Database Resource Manager queues
all subsequent requests and runs them only after existing active sessions complete.

The Database Resource Manager solves many resource allocation problems that an
operating system does not manage so well:

= Excessive overhead. This results from operating system context switching between
Oracle database server processes when the number of server processes is high.

s Inefficient scheduling. The operating system deschedules Oracle database servers
while they hold latches, which is inefficient.

» Inappropriate allocation of resources. The operating system distributes resources
equally among all active processes and is unable to prioritize one task over
another.

= Inability to manage database-specific resources.
With the Database Resource Manager, you can do the following:

= Guarantee certain users a minimum amount of processing resources regardless of
the load on the system and the number of users.

14-18 Oracle Database Concepts

Workload Management

Distribute available processing resources by allocating percentages of CPU time or
I/0 requests per second to different users and applications.

For example, in a data warehouse, a higher percentage of CPU may be given to
ROLAP (relational on-line analytical processing) applications than to batch jobs. If
I/0O resource management is enabled with a shared storage configuration, then
you could also the maximum number of I/O requests per second that can be
issued by this database, or the maximum megabytes of I/O per second.

Limit the degree of parallelism of any operation performed by members of a group
of users.

Create an active session pool.

This pool consists of a specified maximum number of user sessions allowed to be
concurrently active within a group of users. Additional sessions beyond the
maximum are queued for execution, but you can specify a timeout period, after
which queued jobs terminate.

Allow automatic switching of users from one group to another group based on
administrator-defined criteria.

If a member of a particular group of users creates a session that runs for longer
than a specified amount of time or uses a larger amount of I/O (in MB) or a higher
number of I/O requests than allocated, then this session can be automatically
switched to another group of users with different resource requirements.

Prevent the execution of operations that are estimated to run for a longer time than
a predefined limit.

Note: Switching users or preventing operations could be based on
amount of I/0O, as well as amount of CPU time.

See Also: Oracle Database Administrator's Guide for more information
about automatic switching
Create an undo pool.

This pool consists of the amount of undo space that can be consumed in by a
group of users.

Configure an instance to use a particular method of allocating resources.

You can dynamically change the method, for example, from a daytime setup to a
nighttime setup, without having to shut down and restart the instance.

Identify sessions that would block a quiesce from completing.

It is thus possible to balance one user's resource consumption against that of other
users and to partition system resources among tasks of varying importance, to achieve
overall enterprise goals.

Database Resource Manager Concepts

Resources are allocated to users according to a resource plan specified by the database
administrator. The following terms are used in specifying a resource plan:

A resource plan specifies how the resources are to be distributed among various users
(resource consumer groups).

Manageability 14-19

Workload Management

Resource consumer groups let you group user sessions together by resource
requirements. Resource consumer groups are different from user roles; one database
user can have different sessions assigned to different resource consumer groups.

Resource allocation methods determine what policy to use when allocating for any
particular resource. Resource allocation methods are used by resource plans and
resource consumer groups.

Resource plan directives are a means of assigning consumer groups to particular
plans and partitioning resources among consumer groups by specifying parameters
for each resource allocation method.

The Database Resource Manager also allows for creation of plans within plans, called
subplans. Subplans allow further subdivision of resources among different users of an
application.

Levels provide a mechanism to specify distribution of unused resources among
available users. Up to eight levels of resource allocation can be specified.

See Also:

s Oracle Database Administrator’s Guide for information about
using the Database Resource Manager

» Oracle Database Performance Tuning Guide for information about
how to tune resource plans

Overview of Services

Services represent groups of applications or a subset of a large application with
common attributes, service level thresholds, and priorities. Application functions can
be divided into workloads identified by services. For example, the Oracle E*Business
suite can define a service for each module, such as general ledger, accounts receivable,
order entry, and so on. Oracle Mail can define services for IMAP processes, postman,
garbage collector, monitors, and so on. A service can span one or more instances of an
Oracle database or multiple databases in a cluster, and a single instance can support
multiple services.

The number of instances offering the service is transparent to the application. Services
provide a single system image to manage competing applications, and they allow each
workload to be managed as a single unit.

Middle tier applications and clients select a service by specifying the service name as
part of the connection in the TNS connect data. For example, data sources for the Web
server or the application server are set to route to a service. Using Net
Easy*Connection, this connection includes the service name and network address. For
example, service:IP.

Server side work, such as the Scheduler, parallel execution, and Oracle Streams
Advanced Queuing set the service name as part of the workload definition. For the
Scheduler, jobs are assigned to job classes, and job classes run within services. For
parallel execution and parallel DML, the query coordinator connects to a service, and
the parallel execution processes inherit the service for the duration of the query. For
Oracle Streams Advanced Queuing, streams queues are accessed using services. Work
running under a service inherits the thresholds and attributes for the service and is
measured as part of the service.

The Database Resource Manager binds services to consumer groups and priorities.
This lets services be managed in the database in the order of their importance. For
example, you can define separate services for high priority online users and lower
priority internal reporting applications. Likewise, you can define gold, silver, and

14-20 Oracle Database Concepts

Workload Management

bronze services to prioritize the order in which requests are serviced for the same
application.

When planning the services for a system, include the priority of each service relative to
the other services. In this way, the Database Resource Manager can satisfy the highest
priority services first, followed by the next priority services, and so on.

This section includes the following topics:
= Workload Management with Services

= High Availability with Services

Workload Management with Services

AWR lets you analyze the performance of workloads using the aggregation dimension
for service. AWR automatically maintains response time and CPU consumption
metrics, performance and resource statistics wait events, threshold-based alerts, and
performance indexes for all services.

Service, module, and action tags identify operations within a service at the server.
(MODULE and ACTION are set by the application) End to end monitoring enables
aggregation and tracing at service, module, and action levels to identify high load
operations. Oracle Enterprise Manager administers the service quality thresholds for
response time and CPU consumption, monitors the top services, and provides drill
down to the top modules and top actions for each service.

With AWR, performance management by the service aggregation makes sense when
monitoring by sessions may not. For example, in systems using connection pools or
transaction processing monitors, the sessions are shared, making accountability
difficult.

The service, module, and action tags provide major and minor boundaries to
discriminate the work and the processing flow. This aggregation level lets you tune
groups of SQL that run together (at service, module, and action levels). These statistics
can be used to manage service quality, to assess resource consumption, to adjust
priorities of services relative to other services, and to point to places where tuning is
required. With Oracle Real Application Clusters (Oracle RAC), services can be
provisioned on different instances based on their current performance.

Connect time routing and run-time routing algorithms balance the workload across
the instances offering a service. The metrics for server-side connection load balancing
are extended to include service performance. Connections are shared across instances
according to the current service performance. Using service performance for load
balancing accommodates nodes of different sizes and workloads with competing
priorities. It also prevents sending work to nodes that are hung or failed.

AWR maintains metrics for service performance continuously. These metrics are
available when routing run-time requests from mid-tier servers and TP monitors to
Oracle RAC. For example, Oracle JDBC connection pools use the service data when
routing the run-time requests to instances offering a service.

High Availability with Services

Oracle RAC use services to enable uninterrupted database operations. Services are
tightly integrated with the Oracle Clusterware high availability framework that
supports Oracle RAC. When a failure occurs, the service continues uninterrupted on
the nodes and instances unaffected by the failure. Those elements of the services
affected by the failure are recovered fast by Oracle Clusterware, and the recovering
sessions are balanced across the surviving system automatically.

Manageability 14-21

Oracle Scheduler

For planned outages, Oracle RAC provides interfaces to relocate, disable, and enable
services. Relocate migrates the service to another instance, and, as an option, the
sessions are disconnected. To prevent the Oracle Clusterware system from responding
to an unplanned failure that happens during maintenance or repair, the service is
disabled on the node doing maintenance at the beginning of the planned outage. It is
then enabled at the end of the outage.

These service-based operations, in combination with schema pre-compilation
(DBMS_SCHEMA_COPY) on a service basis, minimize the downtime for many planned
outages. For example, application upgrades, operating system upgrades, hardware
upgrades and repairs, Oracle patches approved for rolling upgrade, and parameter
changes can be implemented by isolating one or more services at a time.

The continuous service built into Oracle RAC is extended to applications and mid-tier
servers. When the state of a service changes, (for example, up, down, or not restarting),
the new status is notified to interested subscribers through events and callouts.
Applications can use this notification to achieve very fast detection of failures,
balancing of connection pools following failures, and balancing of connection pools
again when the failed components are repaired. For example, when the service at an
instance starts, the event and callouts are used to immediately trigger work at the
service.

When the service at an instance stops, the event is used to interrupt applications using
the service at that instance. Using the notification eliminates the client waiting on TCP
timeouts. The events are integrated with Oracle JDBC connection pools, Oracle Data
Provider for .Net Connection Pools, and Oracle Call Interface, including Transparent
Application Failover (TAF).

With Oracle Data Guard, production services are offered at the production site. Other
standby sites can offer reporting services when operating in read only mode. Oracle
RAC and Data Guard Broker are integrated, so that when running failover, switchover,
and protection mode changes, the production services are torn down at the original
production site and built up at the new production site. There is a controlled change of
command between Oracle Clusterware managing the services locally and Data Guard
managing the transition. When the Data Guard transition is complete, Oracle
Clusterware resumes management of the high availability operation automatically.

See Also:

» Oracle Real Application Clusters Administration and Deployment
Guide

» Oracle Database Advanced Application Developer’s Guide
» Oracle Database PL/SQL Packages and Types Reference

» Oracle Database Performance Tuning Guide

= "Oracle Scheduler" on page 14-22

= "Overview of the Database Resource Manager" on page 14-18

Oracle Scheduler

Oracle Database includes a feature rich job scheduler. You can schedule jobs to run at a
designated date and time (such as every weeknight at 11:00pm), or upon the
occurrence of a designated event (such as when inventory drops below a certain level).
You can define custom calendars such as the last workday of every fiscal quarter.

You create and manipulate Scheduler objects such as jobs, programs, and schedules
with the DBMS_ SCHEDULER package or with Oracle Enterprise Manager. Because

14-22 Oracle Database Concepts

Oracle Scheduler

Scheduler objects are standard database objects, you can control access to them with
system and object privileges.

Program objects (or programs) contain metadata about the command that the Scheduler
will run, including default values for any arguments. Schedule objects (schedules)
contain information about run date and time and recurrence patterns. Job objects (jobs)
associate a program with a schedule, and are the principal object that you work with
in the Scheduler. You can create multiple jobs that refer to the same program but that
run at different schedules. A job can override the default values of program
arguments, so multiple jobs can refer to the same program but provide different
argument values.

The Scheduler provides comprehensive job logging in Oracle Enterprise Manager and
in a variety of views available from SQL*Plus. You can configure a job to raise an event
when a specified job state change occurs. Your application can process the event and
take appropriate action. For example, the Scheduler can page or send an e-mail to the
DBA if a job terminates abnormally.

The Scheduler also includes chains, which are named groups of steps that work
together to accomplish a task. Steps in the chain can be a program, subchain or an
event, and you specify rules that determine when each step runs and what the
dependencies between steps are. An example of a chain is to run programs A and B,
and only run program C if programs A and B complete successfully, otherwise run
program D.

The Scheduler is integrated with the Database Resource Manager. You can associate
Scheduler jobs with resource consumer groups, and you can create Scheduler objects
called windows that automatically activate different resource plans at different times.
Running jobs can then see a change in the resources that are allocated to them when
there is a change in resource plan. A Scheduler job can name a window as its schedule
instead of a schedule object. Such a job runs when the named window opens.
Additionally, windows can be grouped into window groups, and a job can name a
window group as its schedule. Such a job runs whenever any of the windows in the
named window group opens.

See Also: Oracle Database Administrator’s Guide for a detailed
overview of the Scheduler and for information about how to use and
administer the Scheduler

What Can the Scheduler Do?

The Scheduler provides complex enterprise scheduling functionality. You can use this
functionality to do the following:

s Schedule Job Execution

s Time-Based Scheduling

= Event-Based Scheduling

= Define Multi-Step Jobs

= Schedule Job Processes that Model Business Requirements
= Manage and Monitor Jobs

= Execute and Manage Jobs in a Clustered Environment
Schedule Job Execution

The most basic capability of a job scheduler is to schedule the execution of a job. The
Scheduler supports both time-based and event-based scheduling.

Manageability 14-23

Oracle Scheduler

Time-Based Scheduling

Time-based scheduling enables users to specify a fixed date and time (for example,
Jan. 23rd 2006 at 1:00 AM), a repeating schedule (for example, every Monday), or a
defined rule (for example the last Sunday of every other month or the fourth Thursday
in November which defines Thanksgiving).

Users can create new composite schedules with minimum effort by combining existing
schedules. For example if a HOLIDAY and WEEKDAY schedule were already defined,
a WORKDAY schedule can be easily created by excluding the HOLIDAY schedule
from the WEEKDAY schedule.

Companies often use a fiscal calendar as opposed to a regular calendar and thus have
the requirement to schedule jobs on the last workday of their fiscal quarter. The
Scheduler supports user-defined frequencies which enables users to define not only
the last workday of every month but also the last workday of every fiscal quarter.

Event-Based Scheduling

Event-based scheduling as the name implies triggers jobs based on real-time events.
Events are defined as any state changes or occurrences in the system such as the
arrival of a file. Scheduling based on events enables you to handle situations where a
precise time is not known in advance for when you would want a job to execute.

Define Multi-Step Jobs

The Scheduler has support for single or multi-step jobs. Multi-step jobs are defined
using a Chain. A Chain consists of multiple steps combined using dependency rules.
Since each step represents a task, Chains enable users to specify dependencies between
tasks, for example execute task C one hour after the successful completion of task A
and task B.

Schedule Job Processes that Model Business Requirements

The Scheduler enables job processing in a way that models your business
requirements. It enables limited computing resources to be allocated appropriately
among competing jobs, thus aligning job processing with your business needs. Jobs
that share common characteristic and behavior can be grouped into larger entities
called job classes. You can prioritize among the classes by controlling the resources
allocated to each class. This lets you ensure that critical jobs have priority and enough
resources to complete. Jobs can also be prioritized within a job class.

The Scheduler also provides the ability to change the prioritization based on a
schedule. Because the definition of a critical job can change across time, the Scheduler
lets you define different class priorities at different times.

Manage and Monitor Jobs

There are multiple states that a job undergoes from its creation to its completion. All
Scheduler activity is logged, and information, such as the status of the job and the time
to completion, can be easily tracked. This information is stored in views. It can be
queried with Oracle Enterprise Manager or a SQL query. The views provide
information about jobs and their execution that can help you schedule and manage
your jobs better. For example, you can easily track all jobs that failed for user scott.

In order to facilitate the monitoring of jobs, users can also flag the Scheduler to raise an
event if unexpected behavior occurs and indicate the actions that should be taken if
the specified event occurs. For example if a job failed an administrator should be
notified.

14-24 Oracle Database Concepts

Oracle Scheduler

Execute and Manage Jobs in a Clustered Environment

A cluster is a set of database instances that cooperates to perform the same task. Oracle
Real Application Clusters provides scalability and reliability without any change to
your applications. The Scheduler fully supports execution of jobs in such a clustered
environment. To balance the load on your system and for better performance, you can
also specify the service where you want a job to run.

See Also:

n Oracle Database Administrator’s Guide for more information about
transferring files with the DBMS_SCHEDULER package and also the
DBMS_FILE_TRANSFER package

» Oracle Database SQL Language Reference for more information about
fixed user database links

Manageability 14-25

Oracle Scheduler

14-26 Oracle Database Concepts

15

Backup and Recovery

Backup and recovery procedures protect your database against data loss and
reconstruct the data, should loss occur. This chapter introduces concepts fundamental
to designing a backup and recovery strategy.

This chapter contains the following topics:
= Introduction to Backup and Recovery
= Database Backups

s Problems Requiring Data Repair

s Data Repair

See Also:

= "Overview of Database Backup and Recovery Features" on
page 1-20

» Oracle Database Backup and Recovery User’s Guide for backup and
recovery concepts and tasks

Introduction to Backup and Recovery

A backup is a copy of data. This copy can include important parts of the database such
as datafiles, which contain user data, and the server parameter file and control file,
which contain configuration information.

The main purpose of a backup is as a safeguard against unexpected data loss and
application errors. For example, a disk may fail, causing the loss of datafiles. You can
restore a backup of the data and reconstruct the lost data through media recovery.
Media recovery refers to the various operations involved in restoring, rolling forward,
and rolling back a backup of database files.

You have two ways to perform backup and recovery of an Oracle database: Recovery
Manager (RMAN) and user-managed techniques. RMAN is an Oracle Database utility
that can back up, restore, and recover database files. It is a feature of Oracle Database
and does not require separate installation. You can also use operating system
commands for backups and SQL*Plus for media recovery. This technique, also called
user-managed backup and recovery, is fully supported by Oracle, although use of
RMAN is recommended because it is more robust and simplifies administration.

Oracle Flashback Technology is an alternative to traditional backup and recovery. You
can use flashback features to view past states of data, and move data back and forth in
time, without restoring data from backups. Instead, you can issue a single command to
rewind your entire database, or a single table, to a time in the past. The flashback

Backup and Recovery 15-1

Introduction to Backup and Recovery

features of Oracle Database are more efficient and less disruptive than media recovery
in most circumstances in which they are applicable.

No matter which backup and recovery tool you use, it is recommended that you
configure a flash recovery area to manage your recovery-related files.

Flash Recovery Area

The flash recovery area is an optional Oracle Database-managed directory, file system,
or Automatic Storage Management disk group that provides a centralized disk
location for backup and recovery files. You can configure the flash recovery area when
creating a database with the Database Configuration Assistant or add it later.

Oracle Database can write archived logs to the flash recovery area. RMAN can store
backups in the flash recovery are and restore them from the flash recovery area during
media recovery. The flash recovery area also acts as a disk cache for tape.

Oracle Database recovery components interact with the flash recovery area to ensure
that the database is completely recoverable by using files stored in the recovery area.
All files necessary to recover the database following a media failure are part of the
flash recovery area.

The following recovery-related files are stored in the flash recovery area:
s Current control file

s Online redo logs

= Archived redo logs

= Flashback logs

= Control file autobackups

= Datafile and control file copies

= Backup pieces

Oracle Database enables you to define a disk limit, which is the amount of space that
the database can use in the flash recovery area. A disk limit enables you to use the
remaining disk space for other purposes and not to dedicate a complete disk for the
flash recovery area. It does not include any overhead that is not known to Oracle
Database. For example, the disk limit does not include the extra size of a file system
that is compressed, mirrored, or uses some other redundancy mechanism.

Oracle Database and RMAN create files in the flash recovery area until the space used
reaches the recovery area disk limit. When it must make room for new files, Oracle
Database deletes files from the flash recovery area that are obsolete, redundant, or
backed up to tertiary storage. Oracle Database prints a warning when available disk
space is less than 15%, but it continues to fill the disk to 100% of the disk limit.

The bigger the flash recovery area, the more useful it becomes. The recommended disk
limit is the sum of the database size, the size of incremental backups, and the size of all
archive logs that have not been copied to tape.

See Also:

» Oracle Database Backup and Recovery User's Guide for the rules
that define the priority of file deletion, as well as other
information about the flash recovery area

s Oracle Database Administrator’s Guide for information about how
to set up and administer the flash recovery area

15-2 Oracle Database Concepts

Database Backups

Database Backups

This section describes physical backups. This section includes the following topics:
= What Are Database Backups?

= Whole Database and Partial Database Backups

» Consistent and Inconsistent Backups

= RMAN and User-Managed Backups

What Are Database Backups?

Database backups can be either physical or logical. Physical backups, which are the
primary concern in a backup and recovery strategy, are copies of physical database
files. You can make physical backups with either RMAN or operating system utilities.

In contrast, logical backups contain logical data such as tables and stored procedures.
You can extract the logical data with an Oracle Database utility such as Data Pump
Export and store it in a binary file. Logical backups can supplement physical backups.

The primary purpose of a database backup is for data protection, but you can also
create archival database backups for data preservation. For example, suppose you
have a business requirement to preserve customer transaction records for a specified
period of time. You can use RMAN to create an archival backup of the database, along
with the redo necessary to make it consistent, for offsite storage. You can control how
long this database backup is exempt from the RMAN retention policies that govern the
deletion of obsolete backups.

Whole Database and Partial Database Backups

A whole database backup is a backup of every datafile in the database, plus the
control file. Whole database backups are the most common type of backup.

As shown in Figure 15-1, a whole database backups can be taken in either
ARCHIVELOG or NOARCHIVELOG mode and is either a consistent backup or an
inconsistent backup. Whether a backup is consistent determines whether you must
apply redo logs after restoring the backup.

Figure 15-1 Whole Database Backup Options

Whole database backups

ARCHIVELOG NOARCHIVELOG
open, inconsistent closed open, inconsistent closed
| (not valid) I
consistent inconsistent consistent inconsistent

(not recommended)

A partial backup includes a subset of the database, that is, individual tablespaces or
datafiles. A tablespace backup is a backup of the datafiles that make up the tablespace.
Tablespace backups, whether online or offline, are valid only if the database is

Backup and Recovery 15-3

Database Backups

operating in ARCHIVELOG mode. The reason is that redo is required to make the
restored tablespace consistent with the other tablespaces in the database.

A datafile backup is a backup of a single datafile. Datafile backups, which are not as
common as tablespace backups, are valid in ARCHIVELOG databases.

See Also: Oracle Database Backup and Recovery Reference and Oracle
Database Utilities for information about logical backups

Consistent and Inconsistent Backups

Database backups are either consistent or inconsistent. This section explains the
difference between them.

This section includes the following topics:
s Overview of Consistent Backups

s Overview of Inconsistent Backups

Overview of Consistent Backups

In a consistent database backup, all read /write datafiles and control files are
checkpointed with the same system change number (SCN). The files in the backup are
guaranteed to contain all changes up to the same SCN. Unlike an inconsistent backup,
a consistent whole database backup does not require recovery after it is restored.

The only way to make a consistent whole database backup is to shut down the
database with the NORMAL, IMMEDIATE, or TRANSACTIONAL options and make the
backup while the database is closed. If a database is not shut down consistently, for
example, an instance fails or you issue a SHUTDOWN ABORT statement, then the
datafiles are always inconsistent—unless the database is a read-only database.

The important point is that you can open the database after restoring a consistent
whole database backup without needing recovery because the data is already consistent:
no action is required to make the data in the restored datafiles correct. Thus, you can
restore a year-old consistent backup of your database without performing media
recovery and without the database performing instance recovery.

Note: When you restore a consistent whole database backup without
applying redo, you lose all transactions that were made after the
backup was taken.

A consistent whole database backup is the only valid backup option for databases
operating in NOARCHIVELOG mode. Other backup options require recovery for
consistency, which is not possible without archived redo logs.

A consistent whole database backup is also a valid backup option for databases
operating in ARCHIVELOG mode. When this type of backup is restored and archived
logs are available, you have the option of either opening the database immediately and
losing transactions that were made after the backup was made, or applying the
archived logs to recover those transactions.

Overview of Inconsistent Backups

In an inconsistent database backup, read /write datafiles and control files are not
guaranteed to be checkpointed to the same SCN. The files in the backup can contain
data taken from different points in time, which means that changes can be missing.
This situation can occur when datafiles are modified while backups are being taken.

15-4 Oracle Database Concepts

Database Backups

If you back up the database when it is open or mounted after an inconsistent
shutdown, then the backup is inconsistent. A backup of online datafiles is called an
online backup. You must run the database in ARCHIVELOG mode for online backups.

As long as the database runs in ARCHIVELOG mode, and you back up the archived
redo logs and datafiles, inconsistent backups can be the foundation for a sound backup
and recovery strategy. Inconsistent backups offer superior availability because you do
not have to shut down the database to make backups that fully protect the database.

Oracle Database recovery makes inconsistent backups consistent by reading all
archived and online redo logs, starting with the earliest SCN in any of the datafile
headers, and applying the changes from the logs back into the datafiles. After making
an inconsistent backup, always ensure that you have the redo necessary to recover the
backup by archiving the unarchived redo logs. If you do not have all archived redo
logs produced during the backup, then you cannot recover it because you do not have
all the redo necessary to make it consistent.

See Also: Oracle Database Backup and Recovery User’s Guide

RMAN and User-Managed Backups

The RMAN BACKUP command generates either image copies or backup sets. An image
copy is an exact duplicate of a datafile, control file, or archived log. You can create
image copies of physical files with operating system utilities or RMAN, and you can
restore them as-is without performing additional processing by using either operating
system utilities or RMAN.

Note: Unlike operating system copies, RMAN validates the blocks
in the file and records the image copy in the repository.

A backup set is a backup in a proprietary format that consists of one or more physical
files called backup pieces. A backup set can contain multiple datafiles. The smallest
unit of a backup set is a binary file called a backup piece. Backup sets, which are only
created and accessed through RMAN, are the only form in which RMAN can write
backups to sequential devices such as tape drives.

This section includes the following topics:
s Online Backups

= Control File Backups

= Archived Redo Log Backups

Online Backups

Because the database continues writing to the file during an online backup, it is
possible to back up inconsistent data within a block. For example, assume that either
RMAN or an operating system utility reads the block while database writer is in the
middle of updating the block. In this case, RMAN or the copy utility could read the
new data in the first half of the block and the old data in the second half of the block.
The block is fractured, meaning that the data in this block is not consistent.

During an RMAN backup, the Oracle database reads the datafiles, not an operating
system utility. The server reads each block and determines whether the block is
fractured. If the block is fractured, then the database re-reads the block until it gets a
valid block.

Backup and Recovery 15-5

Database Backups

When you back up an online datafile with an operating system utility rather than with
RMAN, you must use a different method to handle fractured blocks. You must first
place the files in backup mode with the ALTER TABLESPACE BEGIN BACKUP
statement (to back up an individual tablespace), or the ALTER DATABASE BEGIN
BACKUP statement (to back up the entire database). After an online backup is
completed, you must run the ALTER TABLESPACE. ..END BACKUP or ALTER
DATABASE END BACKUP statement to take the files out of backup mode.

When updates are made to files in backup mode, additional redo data is logged. This
additional data is needed to repair fractured blocks that might be backed up by the
operating system utility.

Control File Backups

Backing up the control file is a crucial aspect of backup and recovery. Without a control
file, you cannot mount or open the database. You can instruct RMAN to automatically
backup the control file whenever you run backup jobs by executing CONFIGURE
CONTROLFILE AUTOBACKUP ON. Because the autobackup uses a default filename,
RMAN can restore this backup even if the RMAN repository is unavailable. Hence,
this feature is extremely useful in a disaster recovery scenario.

You can make manual backups of the control file by using the following methods:

s The RMAN BACKUP CURRENT CONTROLFILE command makes a binary backup
of the control file, as either a backup set or an image copy.

s The SQL statement ALTER DATABASE BACKUP CONTROLFILE makes a binary
backup of the control file.

s The SQL statement ALTER DATABASE BACKUP CONTROLFILE TO TRACE
exports the control file contents to a SQL script file. You can use the script to create
a new control file. Trace file backups have one major disadvantage: they contain
no records of archived redo logs, and RMAN backups and copies. For this reason,
binary backups are preferable.

See Also:
» Oracle Database Backup and Recovery User's Guide

» Oracle Database Backup and Recovery Reference

Archived Redo Log Backups

You can use archived redo logs to roll a backup forward in time. To recover a backup
through the most recent archived redo log, every log generated after the backup was
made must be available. In other words, you cannot recover from archived redo log
100 to log 200 if log 173 is missing. If log 173 is missing, then you must halt recovery
after applying log 172 and open the database with the RESETLOGS option.

Because archived redo logs are essential to recovery, you should back them up
regularly. If you use a media manager, then back up the logs regularly to tape. You can
make backups of archived logs by using the following methods:

s The RMAN BACKUP ARCHIVELOG command
s The RMAN BACKUP. . .PLUS ARCHIVELOG command

= An operating system utility

15-6 Oracle Database Concepts

Problems Requiring Data Repair

See Also:
» Oracle Database Backup and Recovery User's Guide

» Oracle Database Backup and Recovery Reference

Problems Requiring Data Repair

The following failures may require DBA intervention, and may even crash a database
instance, but will not generally cause data loss or the need to recover from backup.

= Instance failures
= Network failures
» Failure of Oracle Database background processes

» Failure of a statement to execute due to, for example, exhaustion of some resource
such as space in a datafile

Typically, data recovery is a response to media failures or user errors.
This section includes the following topics:
= Media Failures

s User Errors

Media Failures

A media failure occurs when a problem external to the database prevents Oracle
Database from reading from or writing to a file during database operations. Typical
media failures include physical failures, such as head crashes, and the overwriting,
deletion or corruption of a database file. Media failures are less common than user or
application errors, but your backup and recovery strategy should prepare for them.

Database operation after a media failure of online redo log files or control files
depends on whether the files are protected by multiplexing. When an online redo log
or control file is multiplexed, the database maintains multiple copies of the file.

If a media failure damages a disk containing one copy of a multiplexed online redo
log, then the database can usually continue to operate without significant interruption.
Damage to a nonmultiplexed online redo log causes database operation to halt and
may cause permanent loss of data.

Damage to any control file, whether it is multiplexed or not, halts the database when it
attempts to read or write to the damaged control file. The database accesses the control
file frequently, for example, at every checkpoint and online redo log switch.

Media failures are either read errors or write errors. In a read error, the instance
cannot read a datafile and an operating system error is returned to the application,
along with an error indicating that the file cannot be found, cannot be opened, or
cannot be read. The database continues to run, but the error is returned each time an
unsuccessful read occurs. At the next checkpoint, a write error will occur when the
database attempts to write to the datafile header as part of the checkpoint process.

The effect of a datafile write error depends upon which tablespace the datafile is in. If

the instance cannot write to a datafile in the SYSTEM tablespace, an undo tablespace,
or a datafile with active rollback segments, then the database issues an error and shuts
down. All files in the SYSTEM tablespace and all datafiles containing undo or rollback

segments must be online in order for the database to operate properly.

Backup and Recovery 15-7

Data Repair

User Errors

Data Repair

If the instance cannot write to a datafile other than those in the preceding list, then the
result depends on whether the database is running in ARCHIVELOG mode. In
ARCHIVELOG mode, the database records an error in the database writer trace file and
takes the affected datafile offline. All other datafiles in the tablespace containing this
datafile remain online. You can then rectify the underlying problem and restore and
recover the affected tablespace.

In NOARCHIVELOG mode, the database writer background process fails and the
instance fails. The cause of the problem determines the required response. If the
problem is temporary, then crash recovery usually can be performed using the online
redo log files. In such situations, the instance can be restarted without resorting to
media recovery. If a datafile is damaged, however, then you must restore a consistent
backup of the entire database.

A user or application may make unwanted changes to your database, such as
erroneous updates, deleting the contents of a table, or dropping database objects. An
adequate backup and recovery strategy uses the many features of Oracle Database to
let you return your database to the desired state, with the minimum possible impact
upon database availability, and minimal DBA effort.

See Also:

» Oracle Database Backup and Recovery User’s Guide to learn how to
perform point-in-time recovery for an entire database

» Oracle Database Backup and Recovery User’s Guide to learn how to
perform tablespace point-in-time recovery

» Oracle Database Backup and Recovery User’s Guide to learn how to
use the flashback features of Oracle Database

Typically, you have more than one way to solve the problems described in "Problems
Requiring Data Repair" on page 15-7.

Data Recovery Advisor is an integrated solution that performs much of the diagnosis
and repair work for you. Data Recovery Advisor can diagnose failures, suggest both
manual and automated repair options, and in some cases automatically repair failures.

To correct problems caused by logical data corruptions or user errors, you can use
Oracle Flashback as an alternative to media recovery. Oracle Flashback features enable
you to rewind the whole database or a subset of the database to a previous time.

To correct media failures, you can use media recovery. Media recovery is the
application of redo or incremental backups to a backup to update it with lost changes.
Block media recovery is a more specialized operation that you use when just a few
blocks in one or more files have been corrupted.

This section includes the following topics:
= Data Recovery Advisor
s Oracle Flashback Technology

s Media Recovery

15-8 Oracle Database Concepts

Data Repair

See Also:
» Oracle Database Backup and Recovery User's Guide

» Oracle Database Backup and Recovery Reference

Data Recovery Advisor

Oracle Database includes the Data Recovery Advisor tool, which automatically
diagnoses persistent data failures, presents appropriate repair options, and executes
them at your request. You can use Data Recovery Advisor either through the
Enterprise Manager interface or through the RMAN client.

A checker is a diagnostic operation or procedure registered with the Health Monitor to
assess the health of the database or its components. The health assessment is known as
a data integrity check and can be invoked reactively or proactively.

Failures are normally detected reactively. A database operation involving corrupted
data results in an error, which automatically invokes a data integrity check that
searches the database for failures related to the error. If failures are diagnosed, then
they are recorded in the Automatic Diagnostic Repository (ADR). You can also invoke
a data integrity check proactively through the Health Monitor or by checking for block
corruption with the VALIDATE and BACKUP commands in RMAN.

You can use Data Recovery Advisor to generate repair advice and repair failures only
after failures have been detected by the database and stored in ADR. Each failure has a
status: open or closed. Each failure also has a priority: critical, high, or low. Failures
with critical priority require immediate attention because they make the whole
database unavailable. Failures with high priority make a database partly unavailable
or unrecoverable, and usually have to be repaired in a reasonably short time.
Examples of high-priority failures include data block corruptions and non-fatal I/O
errors. Low priority failures can wait until more important failures are fixed.

Data Recovery Advisor automatically determines the best repair options and their
impact on the database. Typically, Data Recovery Advisor generates both manual and
automated repair options for each failure or group of failures. The manual options are
categorized as either mandatory or optional.

Before presenting an automated repair option, Data Recovery Advisor validates it with
respect to the specific environment, as well as availability of media components
required to complete the proposed repair. If you choose an automatic repair, then
Oracle Database executes it for you. The Data Recovery Advisor tool verifies the repair
success and closes the appropriate failures.

See Also:

» Oracle Database Backup and Recovery User's Guide to learn how to
use the Data Recovery Advisor in the RMAN command-line
interface

» Oracle Database 2 Day DBA to learn how to use the Data Recovery
Adpvisor in Enterprise Manager

Oracle Flashback Technology

Oracle Database provides a group of features known as Oracle Flashback Technology
that support viewing past states of data, and winding data back and forth in time,
without requiring the restore of the database from backup. Depending on the changes
to your database, Flashback features can often reverse the unwanted changes more
quickly and with less impact on database availability than media recovery.

Backup and Recovery 15-9

Data Repair

See Also: "Overview of High Availability Features" on page 1-22 for
an overview of all Oracle Flashback features, including those not
directly related to backup and recovery

This section includes the following topics:
= Oracle Flashback Database

s Oracle Flashback Table

s Oracle Flashback Drop

Oracle Flashback Database

Oracle Flashback Database enables you to rewind an Oracle database to a previous
time to correct problems caused by logical data corruptions or user errors.

If a flash recovery area is configured, and if you have enabled the Flashback database
functionality, then you can use the RMAN or SQL FLASHBACK DATABASE command
to return the database to a prior time. Flashback Database is not true media recovery
because it does not involve restoring physical files. Flashback Database is preferable to
using the RESTORE and RECOVER commands in some cases because it is faster and
easier and does not require restoring the whole database.

When you use Flashback Database, Oracle Database uses past block images to back
out changes to the database. During normal database operation, Oracle Database
occasionally logs these block images in flashback logs. Flashback logs are written
sequentially and are not archived. Oracle Database automatically creates, deletes, and
resizes flashback logs in the flash recovery area. You only need to be aware of
flashback logs for monitoring performance and deciding how much disk space to
allocate to the flash recovery area for flashback logs.

The time it takes to rewind a database with FLASHBACK DATABASE is proportional to
how far back in time you must go and the amount of database activity after the target
time. The time it would take to restore and recover the whole database could be much
longer. The before images in the flashback logs are only used to restore the database to
a point in the past, and forward recovery is used to bring the database to a consistent
state at some time in the past. Oracle Database returns datafiles to the previous
point-in-time, but not auxiliary files, such as initialization parameter files.

Flashback database can also be used to compliment Data Guard, Recovery Advisor,
and for synchronizing clone databases.

See Also:

» Oracle Database Backup and Recovery User’s Guide for details
about using Oracle Flashback Database

» Oracle Database SQL Language Reference for information about
the FLASHBACK DATABASE statement

» Oracle Data Guard Concepts and Administration for information
on how flashback database compliments Oracle Data Guard

» Oracle Database High Availability Overview for information on
further uses of flashback database and restore points

Oracle Flashback Table

Oracle Flashback Table enables you to rewind tables to a specified point in time with a
single statement. You can restore table data along with associated indexes, triggers,
and constraints, while the database is online, undoing changes to only the specified

15-10 Oracle Database Concepts

Data Repair

tables. Oracle Flashback Table does not address physical corruption such as bad disks
or data segment and index inconsistencies.

Oracle Flashback Table works like a self-service repair tool. Suppose a user
accidentally deletes some important rows from a table and wants to recover the
deleted rows. You can restore the table to the time before the deletion and see the
missing rows in the table with the FLASHBACK TABLE statement.

You can restore the table and its contents to a certain wall clock time or user-specified
system change number (SCN). Use Oracle Flashback Table with Oracle Flashback
Version Query and Oracle Flashback Transaction Query to find a time to which to
restore the table.

For Oracle Flashback Table to succeed, the system must retain enough undo
information to satisfy the specified SCN or timestamp, and the integrity constraints
specified on the tables cannot be violated. Also, row movement must be enabled on
the table.

The availability of retained undo information for Oracle Flashback Table is controlled
by the automatically tuned undo retention period of the system. The undo retention
period indicates the amount of time that must pass before old undo information—that
is, undo information for committed transactions—can be overwritten. The database
collects usage statistics and tunes the undo retention period based on these statistics
and on undo tablespace size. You can request a minimum undo retention period by
setting the UNDO_RETENTION initialization parameter.

Note: Automatic tuning of undo retention occurs only when the
database is in automatic undo management mode (the default). The
database may or may not be able to honor your request for a
minimum undo retention period. This depends on a number of
factors, including the current transaction activity on the system,
whether the undo tablespace is autoextending or fixed size, and
whether you specified RETENTION GUARANTEE for the undo
tablespace.

See Oracle Database Administrator’s Guide for more information about
the automatic tuning of undo retention.

See Also:
= "Automatic Undo Retention" on page 2-17

» Oracle Database Backup and Recovery User's Guide for details about
using Oracle Flashback Table

» Oracle Database SQL Language Reference for information on the
UNDO_RETENTION initialization parameter and information about
the FLASHBACK TABLE statement

Oracle Flashback Drop

Oracle Flashback Drop reverses the effects of a DROP TABLE operation. Flashback
Drop is substantially faster than other recovery mechanisms that can be used in this
situation, such as point-in-time recovery, and does not lead to any loss of recent
transactions or downtime.

When you drop a table, the database does not immediately remove the space
associated with the table. Instead, the table is renamed and, along with any associated
objects, is placed in the recycle bin of the database. Oracle Database uses the recycle

Backup and Recovery 15-11

Data Repair

bin to manage dropped database objects until the space they occupied is needed to
store new data. The recycle bin is actually a data dictionary table that contains
information about the dropped objects.

See Also: Oracle Database Backup and Recovery User’s Guide for details
about using Oracle Flashback Drop

Media Recovery

To restore a physical backup of a datafile or control file is to reconstruct it and make it
available to the Oracle database. To recover a restored datafile is to update it by
applying archived redo logs and online redo logs, that is, records of changes made to
the database after the backup was taken. If you use RMAN, then you can also recover
datafiles with incremental backups, which are backups of a datafile that contain only
blocks that changed after a previous incremental backup.

After the necessary files are restored, media recovery must be initiated by the user.
Media recovery involves various operations to restore, roll forward, and roll back a
backup of database files.

Media recovery applies archived redo logs and online redo logs to recover the
datafiles. Whenever a change is made to a datafile, the change is first recorded in the
online redo logs. Media recovery selectively applies the changes recorded in the online
and archived redo logs to the restored datafile to roll it forward.

Figure 15-2 illustrates the basic principle of backing up, restoring, and performing
media recovery on a database.

Figure 15-2 Media Recovery

-

Backup Media
database failure
C G O @ o>
100 200 300 400 500
SCN
Archived
redo logs

oy R S S S

Restored Recovered
database Recover (redo changes) database

15-12 Oracle Database Concepts

Data Repair

Unlike media recovery, Oracle Database performs crash recovery and instance
recovery automatically after an instance failure. Crash and instance recovery recover a
database to its transaction-consistent state just before instance failure. Crash recovery
is the recovery of a database in a single-instance configuration or an Oracle Real
Application Clusters configuration after all instances have crashed. In contrast,
instance recovery is the recovery of one or more failed instances by a live instance in
an Oracle Real Application Clusters configuration.

This section includes the following topics:
s Datafile Media Recovery

= Block Media Recovery

s Complete Recovery

= Database Point-in-Time Recovery

= RMAN and User-Managed Recovery

Datafile Media Recovery

Datafile media recovery is used to recover from a lost or damaged current datafile or
control file. It is also used to recover changes that were lost when a tablespace went
offline without the OFFLINE NORMAL option. Both datafile media recovery and
instance recovery must repair database integrity. However, these types of recovery
differ with respect to their additional features. Media recovery has the following
characteristics:

= Applies changes to restored backups of damaged datafiles.
s Can use archived logs as well as online logs.
= Requires explicit invocation by a user.

= Does not detect media failure (that is, the need to restore a backup) automatically.
After a backup has been restored, however, detection of the need to recover it
through media recovery is automatic.

= Has arecovery time governed solely by user policy (for example, frequency of
backups, parallel recovery parameters, number of database transactions since the
last backup) rather than by Oracle Database internal mechanisms.

The database cannot be opened if any of the online datafiles needs media recovery, nor
can a datafile that needs media recovery be brought online until media recovery is
complete. The following scenarios necessitate media recovery:

= You restore a backup of a datafile.
= You restore a backup control file (even if all datafiles are current).

= A datafile is taken offline (either by you or automatically by Oracle Database)
without the OFFLINE NORMAL option.

Unless the database is not open by any instance, datafile media recovery can only
operate on offline datafiles.

Block Media Recovery

Block media recovery is a technique for restoring and recovering individual data
blocks while all database files remain online and available. If only a few blocks are
corrupt, then block media recovery may be preferable to datafile recovery.

Backup and Recovery 15-13

Data Repair

See Also: Oracle Database Backup and Recovery User’s Guide to learn
how to perform block media recovery

Complete Recovery

Complete recovery applies all of the redo changes contained in the archived and online
logs to a backup. Typically, you perform complete media recovery after a media failure
damages datafiles or the control file.You can perform complete recovery on a database,
tablespace, or datafile.

If you are performing complete recovery on the whole database, then you must:
= Mount the database

= Ensure that all datafiles you want to recover are online

= Restore a backup of the whole database

= Run the RMAN RECOVER DATABASE command, which will apply the correct
redo logs and incremental backups.

If you are performing complete recovery on a tablespace or datafile, then you must:
= Take the tablespace or datafile to be recovered offline if the database is open
= Restore a backup of the datafiles you want to recover

= Apply online or archived redo logs, or a combination of the two

Database Point-in-Time Recovery

Database point-in-time recovery, which is also called incomplete recovery, results in a
noncurrent version of the database. In other words, you do not apply all of the redo
records generated after the restored backup. Typically, you perform point-in-time
recovery of the whole database in the following situations:

= Media failure destroys some or all of the online redo logs.
= A user error causes data loss, for example, a user inadvertently drops a table.
= You cannot perform complete recovery because an archived redo log is missing.

s Complete recovery is possible with a backup control file. If using RMAN it is
seamless and automatic.

To perform database point-in-time recovery, you must restore all datafiles from
backups created prior to the time to which you want to recover and then open the
database with the RESETLOGS option when recovery completes. The RESETLOGS
operation creates a new incarnation of the database—in other words, a database with a
new stream of log sequence numbers starting with log sequence 1.

Before using the OPEN RESETLOGS command to open the database in read /write
mode after an incomplete recovery, it is a good idea to first open the database in
read-only mode, and inspect the data to make sure that the database was recovered to
the correct point. If the recovery was done to the wrong point, then it is easier to re-run
the recovery if no OPEN RESETLOGS has been done. If you open the database
read-only and discover that not enough recovery was done, then just run the recovery
again to the desired time. If you discover that too much recovery was done, then you
must restore the database again and re-run the recovery.

Note: Flashback Database is an alternative to database point-in-time
recovery.

15-14 Oracle Database Concepts

Data Repair

See Also: "Oracle Flashback Database" on page 15-10

Tablespace Point-in-Time Recovery The tablespace point-in-time recovery (TSPITR)
feature lets you recover one or more tablespaces to a point in time older than the rest
of the database. TSPITR is most useful when you want to:

= Recover from an erroneous drop or truncate table operation
= Recover a table that has become logically corrupted

= Recover from an incorrect batch job or other DML statement that has affected only
a subset of the database

= Recover one independent schema to a point different from the rest of a physical
database (in cases where there are multiple independent schemas in separate
tablespaces of one physical database)

= Recover a tablespace on a very large database (VLDB) rather than restore the
whole database from a backup and perform a complete database roll-forward

TSPITR has the following limitations:

= You cannot use it on the SYSTEM tablespace, an UNDO tablespace, or any tablespace
that contains rollback segments.

= Tablespaces that contain interdependent data must be recovered together. For
example, if two tables are in separate tablespaces and have a foreign key
relationship, then both tablespaces must be recovered at the same time; you cannot
recover just one of them. Oracle Database can enforce this limitation when it
detects data relationships that have been explicitly declared with database
constraints. There could be other data relationships that are not declared with
database constraints. Oracle Database cannot detect these relationships, so the
DBA must be careful to always restore a consistent set of tablespaces.

See Also: Oracle Database Backup and Recovery User’s Guide and
Oracle Database Backup and Recovery Reference for more information on

TSPITR

RMAN and User-Managed Recovery

You have a choice between two basic techniques for recovering physical files. You can:
» Use the RMAN utility to restore and recover the database

= Restore backups by means of operating system utilities, and then recover them by
running the SQL*Plus RECOVER command

Whichever method you choose, you can recover a database, tablespace, or datafile.
Before performing media recovery, you must determine which datafiles to recover.
Often you can use the fixed view VSRECOVER_FILE. This view lists all files that
require recovery and explains the error that necessitates recovery.

See Also: Oracle Database Backup and Recovery Reference for more
about using V$ views in a recovery scenario

RMAN Restore and Recovery The basic RMAN recovery commands are RESTORE and
RECOVER. Use RESTORE to restore datafiles from backup sets or from image copies on
disk, either to their current location or to a new location. You can also restore backup
sets containing archived redo logs, but this is usually unnecessary, because RMAN
automatically restores the archived logs that are needed for recovery and deletes them

Backup and Recovery 15-15

Data Repair

after the recovery is finished. Use the RMAN RECOVER command to perform media
recovery and apply archived logs or incremental backups.

See Also: Oracle Database Backup and Recovery Reference for details
about how to restore and recover using RMAN

User-Managed Restore and Recovery If you do not use RMAN, then you can restore
backups with operating system utilities and then run the SQL*Plus RECOVER
command to recover the database.

See Also: Oracle Database Backup and Recovery User’s Guide for details

about how to restore and recover with operating system utilities and
SQL*Plus

15-16 Oracle Database Concepts

16

Business Intelligence

This chapter describes some of the basic ideas in business intelligence.
This chapter contains the following topics:

s Introduction to Data Warehousing and Business Intelligence

s Overview of Extraction, Transformation, and Loading (ETL)

s Overview of Materialized Views for Data Warehouses

= Overview of Bitmap Indexes in Data Warehousing

= Overview of Parallel Execution

s Overview of Analytic SQL

s Overview of OLAP Capabilities

s Overview of Data Mining

Introduction to Data Warehousing and Business Intelligence

A data warehouse is a relational database that is designed for query and analysis
rather than for transaction processing. It usually contains historical data derived from
transaction data, but it can include data from other sources. It separates analysis
workload from transaction workload and enables an organization to consolidate data
from several sources.

In addition to a relational database, a data warehouse environment includes an
extraction, transportation, transformation, and loading (ETL) solution, an online
analytical processing (OLAP) engine, Oracle Warehouse Builder, client analysis tools,
and other applications that manage the process of gathering data and delivering it to
business users.

This section includes the following topics:
s Characteristics of Data Warehousing
» Differences Between Data Warehouse and OLTP Systems

s Data Warehouse Architecture

Characteristics of Data Warehousing

Data warehouses all share the following basic characteristics:
= Subject Oriented
s Integrated

Business Intelligence 16-1

Introduction to Data Warehousing and Business Intelligence

s Nonvolatile

s Time Variant

Subject Oriented

Data warehouses are designed to help you analyze data. For example, to learn more
about your company's sales data, you can build a warehouse that concentrates on
sales. Using this warehouse, you can answer questions like "Who was our best
customer for this item last year?" This ability to define a data warehouse by subject
matter, sales in this case, makes the data warehouse subject oriented.

Integrated

Integration is closely related to subject orientation. Data warehouses must put data
from disparate sources into a consistent format. They must resolve such problems as
naming conflicts and inconsistencies among units of measure. When they achieve this
goal, they are said to be integrated.

Nonvolatile

Nonvolatile means that, once entered into the warehouse, data should not change.
This is logical because the purpose of a warehouse is to enable you to analyze what
has occurred.

Time Variant

In order to discover trends in business, analysts need large amounts of data. This is
very much in contrast to online transaction processing (OLTP) systems, where
performance requirements demand that historical data be moved to an archive. A data
warehouse's focus on change over time is what is meant by the term time variant.

Typically, data flows from one or more online transaction processing (OLTP) databases
into a data warehouse on a monthly, weekly, or daily basis. The data is normally
processed in a staging file before being added to the data warehouse. Data
warehouses commonly range in size from tens of gigabytes to a few terabytes. Usually,
the vast majority of the data is stored in a few very large fact tables.

Differences Between Data Warehouse and OLTP Systems

Data warehouses and OLTP systems have very different requirements. Here are some
examples of differences between typical data warehouses and OLTP systems:

= Workload

= Data Modifications
= Schema Design

= Typical Operations

s Historical Data

Workload

Data warehouses are designed to accommodate ad hoc queries. You might not know
the workload of your data warehouse in advance, so a data warehouse should be
optimized to perform well for a wide variety of possible query operations.

OLTP systems support only predefined operations. Your applications might be
specifically tuned or designed to support only these operations.

16-2 Oracle Database Concepts

Introduction to Data Warehousing and Business Intelligence

Data Modifications

A data warehouse is updated on a regular basis by the ETL process (run nightly or
weekly) using bulk data modification techniques. The end users of a data warehouse
do not directly update the data warehouse.

In OLTP systems, end users routinely issue individual data modification statements to
the database. The OLTP database is always up to date, and reflects the current state of
each business transaction.

Schema Design

Data warehouses often use denormalized or partially denormalized schemas (such as
a star schema) to optimize query performance.

OLTP systems often use fully normalized schemas to optimize update/insert/delete
performance, and to guarantee data consistency.

Typical Operations

A typical data warehouse query scans thousands or millions of rows.For example,
"Find the total sales for all customers last month."

A typical OLTP operation accesses only a handful of records. For example, "Retrieve
the current order for this customer.”

Historical Data

Data warehouses usually store many months or years of data. This is to support
historical analysis.

OLTP systems usually store data from only a few weeks or months. The OLTP system
stores only historical data as needed to successfully meet the requirements of the
current transaction.

Data Warehouse Architecture

Data warehouses and their architectures vary depending upon the specifics of an
organization's situation. Three common architectures are:

s Data Warehouse Architecture (Basic)
= Data Warehouse Architecture (with a Staging Area)
= Data Warehouse Architecture (with a Staging Area and Data Marts)

Data Warehouse Architecture (Basic)

Figure 16-1 shows a simple architecture for a data warehouse. End users directly
access data derived from several source systems through the data warehouse.

Business Intelligence 16-3

Introduction to Data Warehousing and Business Intelligence

Figure 16-1 Architecture of a Data Warehouse

Data Sources Warehouse Users

Operational
System

—F—

ﬁ
Metadata

Summary
Data

—

Raw Data

Operational Reporting
System
—— |
Flat Files Mining

In Figure 16-1, the metadata and raw data of a traditional OLTP system is present, as
is an additional type of data, summary data. Summaries are very valuable in data
warehouses because they pre-compute long operations in advance. For example, a
typical data warehouse query is to retrieve something like August sales.

Summaries in Oracle Database are called materialized views.

Data Warehouse Architecture (with a Staging Area)

As shown in Figure 16-1, you must clean and process your operational data before

putting it into the warehouse. You can do this programmatically, although most data
warehouses use a staging area instead. A staging area simplifies building summaries
and general warehouse management. Figure 16-2 illustrates this typical architecture.

Figure 16-2 Architecture of a Data Warehouse with a Staging Area

Data Staging
Sources Area Warehouse Users

Operational
System

Operational
System

—————

Flat Files

Mining

16-4 Oracle Database Concepts

Overview of Extraction, Transformation, and Loading (ETL)

Overview of

Data Warehouse Architecture (with a Staging Area and Data Marts)

Although the architecture in Figure 16-2 is quite common, you might want to
customize your warehouse's architecture for different groups within your
organization.

Do this by adding data marts, which are systems designed for a particular line of
business. Figure 16-3 illustrates an example where purchasing, sales, and inventories
are separated. In this example, a financial analyst might want to analyze historical data
for purchases and sales.

Figure 16-3 Architecture of a Data Warehouse with a Staging Area and Data Marts

Data Staging Data
Sources Area Warehouse Marts Users
— 3
—p

Operational Purchasing Analysis

System

>
Metadata |:.
8_'6_’ Summary| | oy Data

Data
Operational
System

— -]

Flat Files Inventory

See Also: Oracle Database Data Warehousing Guide

Extraction, Transformation, and Loading (ETL)

You must load your data warehouse regularly so that it can serve its purpose of
facilitating business analysis. To perform this operation, data from one or more
operational systems must be extracted and copied into the warehouse. The process of
extracting data from source systems and bringing it into the data warehouse is
commonly called ETL, which stands for extraction, transformation, and loading. The
acronym ETL is perhaps too simplistic, because it omits the transportation phase and
implies that each of the other phases of the process is distinct. The entire process,
including data loading, is referred to as ETL. You should understand that ETL refers to
a broad process, and not three well-defined steps.

The methodology and tasks of ETL have been well known for many years, and are not
necessarily unique to data warehouse environments: a wide variety of proprietary
applications and database systems are the IT backbone of any enterprise. Data has to
be shared between applications or systems, trying to integrate them, giving at least
two applications the same picture of the world. This data sharing was mostly
addressed by mechanisms similar to what is now called ETL.

Data warehouse environments face the same challenge with the additional burden that
they not only have to exchange but to integrate, rearrange and consolidate data over
many systems, thereby providing a new unified information base for business
intelligence. Additionally, the data volume in data warehouse environments tends to
be very large.

Business Intelligence 16-5

Overview of Extraction, Transformation, and Loading (ETL)

What happens during the ETL process? During extraction, the desired data is
identified and extracted from many different sources, including database systems and
applications. Very often, it is not possible to identify the specific subset of interest,
therefore more data than necessary has to be extracted, so the identification of the
relevant data will be done at a later point in time. Depending on the source system's
capabilities (for example, operating system resources), some transformations may take
place during this extraction process. The size of the extracted data varies from
hundreds of kilobytes up to gigabytes, depending on the source system and the
business situation. The same is true for the time delta between two (logically) identical
extractions: the time span may vary between days/hours and minutes to near
real-time. Web server log files for example can easily become hundreds of megabytes
in a very short period of time.

After extracting data, it has to be physically transported to the target system or an
intermediate system for further processing. Depending on the chosen way of
transportation, some transformations can be done during this process, too. For
example, a SQL statement which directly accesses a remote target through a gateway
can concatenate two columns as part of the SELECT statement.

If any errors occur during loading, an error is logged and the operation can continue.
This section includes the following topics:

= Transportable Tablespaces

= Table Functions

= External Tables

s Table Compression

s Change Data Capture

Transportable Tablespaces

Transportable tablespaces are the fastest way for moving large volumes of data
between two Oracle databases. You can transport tablespaces between different
computer architectures and operating systems.

Previously, the most scalable data transportation mechanisms relied on moving flat
files containing raw data. These mechanisms required that data be unloaded or
exported into files from the source database. Then, after transportation, these files
were loaded or imported into the target database. Transportable tablespaces entirely
bypass the unload and reload steps.

Using transportable tablespaces, Oracle Database data files (containing table data,
indexes, and almost every other Oracle database object) can be directly transported
from one database to another. Furthermore, like import and export, transportable
tablespaces provide a mechanism for transporting metadata in addition to
transporting data.

The most common applications of transportable tablespaces in data warehouses are in
moving data from a staging database to a data warehouse, or in moving data from a
data warehouse to a data mart.

Table Functions

Table functions provide the support for pipelined and parallel execution of
transformations implemented in PL/SQL, C, or Java. Scenarios as mentioned earlier
can be done without requiring the use of intermediate staging tables, which interrupt
the data flow through various transformations steps.

16-6 Oracle Database Concepts

Overview of Extraction, Transformation, and Loading (ETL)

A table function is defined as a function that can produce a set of rows as output.
Additionally, table functions can take a set of rows as input. Table functions extend
database functionality by allowing:

= Multiple rows to be returned from a function

= Results of SQL subqueries (that select multiple rows) to be passed directly to
functions

= Functions take cursors as input
= Functions can be parallelized

= Returning result sets incrementally for further processing as soon as they are
created. This is called incremental pipelining

Table functions can be defined in PL/SQL using a native PL/SQL interface, or in Java
or C using the Oracle Data Cartridge Interface (ODCI).

External Tables

External tables let you use external data as a virtual table that can be queried and
joined directly and in parallel without requiring the external data to be first loaded in
the database. You can then use SQL, PL/SQL, and Java to access the external data.

External tables enable the pipelining of the loading phase with the transformation
phase. The transformation process can be merged with the loading process without
any interruption of the data streaming. It is no longer necessary to stage the data
inside the database for further processing inside the database, such as comparison or
transformation. For example, the conversion functionality of a conventional load can
be used for a direct-path INSERT AS SELECT statement in conjunction with the
SELECT from an external table. Figure 164 illustrates a typical example of pipelining.

Figure 16-4 Pipelined Data Transformation

products times

sales
(amount_sold,
quantity_sold)

Fact Table
customers channels

Dimension Table Dimension Table

The main difference between external tables and regular tables is that externally
organized tables are read-only. No DML operations (UPDATE/ INSERT/DELETE) are
possible and no indexes can be created on them.

External tables are a complement to SQL*Loader and are especially useful for
environments where the complete external source has to be joined with existing
database objects and transformed in a complex manner, or where the external data
volume is large and used only once. SQL*Loader, on the other hand, might still be the
better choice for loading of data where additional indexing of the staging table is
necessary. This is true for operations where the data is used in independent complex
transformations or the data is only partially used in further processing.

Business Intelligence 16-7

Overview of Materialized Views for Data Warehouses

Table Compression

You can save disk space by compressing heap-organized tables. A typical type of
heap-organized table you should consider for table compression is partitioned tables.

To reduce disk use and memory use (specifically, the buffer cache), you can store tables
and partitioned tables in a compressed format inside the database. This often leads to a
better scaleup for read-only operations. Table compression can also speed up query
execution. There is, however, a slight cost in CPU overhead.

Table compression should be used with highly redundant data, such as tables with
many foreign keys. You should avoid compressing tables with much update or other
DML activity. Although compressed tables or partitions are updatable, there is some
overhead in updating these tables, and high update activity may work against
compression by causing some space to be wasted.

See Also: "Table Compression" on page 5-7

Change Data Capture

Change Data Capture efficiently identifies and captures data that has been added to,
updated, or removed from Oracle Database relational tables, and makes the change
data available for use by applications.

Oftentimes, data warehousing involves the extraction and transportation of relational
data from one or more source databases into the data warehouse for analysis. Change
Data Capture quickly identifies and processes only the data that has changed, not
entire tables, and makes the change data available for further use.

Change Data Capture does not depend on intermediate flat files to stage the data
outside of the relational database. It captures the change data resulting from INSERT,
UPDATE, and DELETE operations made to user tables. The change data is then stored
in a database object called a change table, and the change data is made available to
applications in a controlled way.

See Also: Oracle Database Data Warehousing Guide

Overview of Materialized Views for Data Warehouses

One technique employed in data warehouses to improve performance is the creation
of summaries. Summaries are special kinds of aggregate views that improve query
execution times by precalculating expensive joins and aggregation operations prior to
execution and storing the results in a table in the database. For example, you can create
a table to contain the sums of sales by region and by product.

The summaries or aggregates that are referred to in this book and in literature on data
warehousing are created in Oracle Database using a schema object called a
materialized view. Materialized views can perform a number of roles, such as
improving query performance or providing replicated data.

Previously, organizations using summaries spent a significant amount of time and
effort creating summaries manually, identifying which summaries to create, indexing
the summaries, updating them, and advising their users on which ones to use.
Summary management eased the workload of the database administrator and meant
that the user no longer needed to be aware of the summaries that had been defined.
The database administrator creates one or more materialized views, which are the
equivalent of a summary. The end user queries the tables and views at the detail data
level.

16-8 Oracle Database Concepts

Overview of Bitmap Indexes in Data Warehousing

The query rewrite mechanism in Oracle Database automatically rewrites the SQL
query to use the summary tables. This mechanism reduces response time for returning
results from the query. Materialized views within the data warehouse are transparent
to the end user or to the database application.

Although materialized views are usually accessed through the query rewrite
mechanism, an end user or database application can construct queries that directly
access the summaries. However, serious consideration should be given to whether
users should be allowed to do this because any change to the summaries will affect the
queries that reference them.

To help you select from among the many possible materialized views in your schema,
Oracle Database provides a collection of materialized view analysis and advisor
functions and procedures in the DBMS_ADVISOR package. Collectively, these functions
are called the SQL Access Advisor, and they are callable from any PL/SQL program.
The SQL Access Advisor recommends materialized views from a hypothetical or
user-defined workload or one obtained from the SQL cache. You can run the SQL
Access Advisor from Oracle Enterprise Manager or by invoking the DBMS_ADVISOR
package.

See Also: Oracle Database Performance Tuning Guide for
information about materialized views and the SQL Access Advisor

Overview of Bitmap Indexes in Data Warehousing

Bitmap indexes are widely used in data warehousing environments. The environments
typically have large amounts of data and ad hoc queries, but a low level of concurrent
DML transactions. For such applications, bitmap indexing provides:

= Reduced response time for large classes of ad hoc queries
= Reduced storage requirements compared to other indexing techniques

= Dramatic performance gains even on hardware with a relatively small number of
CPUs or a small amount of memory

= Efficient maintenance during parallel DML and loads

Fully indexing a large table with a traditional B-tree index can be prohibitively
expensive in terms of space because the indexes can be several times larger than the
data in the table. Bitmap indexes are typically only a fraction of the size of the indexed
data in the table.

An index provides pointers to the rows in a table that contain a given key value. A
regular index stores a list of rowids for each key corresponding to the rows with that
key value. In a bitmap index, a bitmap for each key value replaces a list of rowids.

Each bit in the bitmap corresponds to a possible rowid, and if the bit is set, it means
that the row with the corresponding rowid contains the key value. A mapping
function converts the bit position to an actual rowid, so that the bitmap index provides
the same functionality as a regular index. If the number of different key values is
small, bitmap indexes save space.

Bitmap indexes are most effective for queries that contain multiple conditions in the
WHERE clause. Rows that satisfy some, but not all, conditions are filtered out before the
table itself is accessed. This improves response time, often dramatically. A good
candidate for a bitmap index would be a gender column due to the low number of
possible values.

Business Intelligence 16-9

Overview of Parallel Execution

Parallel query and parallel DML work with bitmap indexes as they do with traditional
indexes. Bitmap indexing also supports parallel create indexes and concatenated
indexes.

See Also: Oracle Database Data Warehousing Guide

Overview of Parallel Execution

When Oracle Database runs SQL statements in parallel, multiple processes work
together simultaneously to run a single SQL statement. By dividing the work
necessary to run a statement among multiple processes, Oracle Database can run the
statement more quickly than if only a single process ran it. This is called parallel
execution or parallel processing.

Parallel execution dramatically reduces response time for data-intensive operations on
large databases typically associated with decision support systems (DSS) and data
warehouses. Symmetric multiprocessing (SMP), clustered systems, and large-scale
cluster systems gain the largest performance benefits from parallel execution because
statement processing can be split up among many CPUs on a single Oracle Database
system. You can also implement parallel execution on certain types of online
transaction processing (OLTP) and hybrid systems.

Parallelism is the idea of breaking down a task so that, instead of one process doing all
of the work in a query, many processes do part of the work at the same time. An
example of this is when 12 processes handle 12 different months in a year instead of
one process handling all 12 months by itself. The improvement in performance can be
quite high.

Parallel execution helps systems scale in performance by making optimal use of
hardware resources. If your system's CPUs and disk controllers are already heavily
loaded, you must alleviate the system's load or increase these hardware resources
before using parallel execution to improve performance.

In Oracle RAC environments, parallel execution is controlled by the service placement
of a particular service. Specifically, parallel processes run on the nodes on which you
have configured the service. The default behavior is for Oracle Database to run the
parallel process only on the instance that offers the service that you used to connect to
the database. This does not affect other parallel operations such as parallel recovery or
the processing of GV$queries.

Some tasks are not well-suited for parallel execution. For example, many OLTP
operations are relatively fast, completing in mere seconds or fractions of seconds, and
the overhead of utilizing parallel execution would be large, relative to the overall
execution time.

See Also: Oracle Database Data Warehousing Guide for specific
information on tuning your parameter files and database to take full
advantage of parallel execution and the Oracle Real Application Clusters
Administration and Deployment Guide for considerations regarding
parallel execution in Oracle RAC environments

How Parallel Execution Works

When parallel execution is not used, a single server process performs all necessary
processing for the sequential execution of a SQL statement. For example, to perform a
full table scan (such as SELECT * FROM emp), one process performs the entire
operation, as illustrated in Figure 16-5.

16-10 Oracle Database Concepts

Overview of Analytic SQL

Figure 16-5 Serial Full Table Scan

Serial Process

SELECT * EMP Table

FROM EMP;

Figure 16-6 illustrates several parallel execution servers performing a scan of the table
emp. The table is divided dynamically (dynamic partitioning) into load units called
granules and each granule is read by a single parallel execution server. The granules
are generated by the coordinator. Each granule is a range of physical blocks of the table
emp. The mapping of granules to execution servers is not static, but is determined at
execution time. When an execution server finishes reading the rows of the table emp
corresponding to a granule, it gets another granule from the coordinator if there are
any granules remaining. This continues until all granules are exhausted, in other
words, until the entire table emp has been read. The parallel execution servers send
results back to the parallel execution coordinator, which assembles the pieces into the
desired full table scan.

Figure 16-6 Parallel Full Table Scan

Parallel Execution Parallel Execution

Coordinator Server
CELECT * R* EMP Table
FROM EMP; < > |

b

Given a query plan for a SQL query, the parallel execution coordinator breaks down
each operator in a SQL query into parallel pieces, runs them in the right order as
specified in the query, and then integrates the partial results produced by the parallel
execution servers executing the operators. The number of parallel execution servers
assigned to a single operation is the degree of parallelism (DOP) for an operation.
Multiple operations within the same SQL statement all have the same degree of
parallelism.

See Also: Oracle Database Data Warehousing Guide for information on
granules as well as how Oracle Database divides work and handles
DOP in multiuser environments

Overview of Analytic SQL

Oracle has introduced many SQL operations for performing analytic operations in the
database. These operations include ranking, moving averages, cumulative sums,
ratio-to-reports, and period-over-period comparisons. Although some of these
calculations were previously possible using SQL, this syntax offers much better
performance.

This section discusses:

Business Intelligence 16-11

Overview of Analytic SQL

= SQL for Aggregation
= SQL for Analysis
= SQL for Modeling

SQL for Aggregation

Aggregation is a fundamental part of data warehousing. To improve aggregation
performance in your warehouse, Oracle Database provides extensions to the GROUP
BY clause to make querying and reporting easier and faster. Some of these extensions
enable you to:

= Aggregate at increasing levels of aggregation, from the most detailed up to a
grand total

s Calculate all possible combinations of aggregations with a single statement
= Generate the information needed in cross-tabulation reports with a single query

These extension let you specify exactly the groupings of interest in the GROUP BY
clause. This allows efficient analysis across multiple dimensions without performing a
CUBE operation. Computing a full cube creates a heavy processing load, so replacing
cubes with grouping sets can significantly increase performance. CUBE, ROLLUP, and
grouping sets produce a single result set that is equivalent to a UNION ALL of
differently grouped rows.

To enhance performance, these extensions can be parallelized: multiple processes can
simultaneously run all of these statements. These capabilities make aggregate
calculations more efficient, thereby enhancing database performance, and scalability.

One of the key concepts in decision support systems is multidimensional analysis:
examining the enterprise from all necessary combinations of dimensions. The term
dimension is used to mean any category used in specifying questions. Among the
most commonly specified dimensions are time, geography, product, department, and
distribution channel, but the potential dimensions are as endless as the varieties of
enterprise activity. The events or entities associated with a particular set of dimension
values are usually referred to as facts. The facts might be sales in units or local
currency, profits, customer counts, production volumes, or anything else worth
tracking.

Here are some examples of multidimensional requests:

= Show total sales across all products at increasing aggregation levels for a
geography dimension, from state to country to region, for 1999 and 2000.

» Create a cross-tabular analysis of our operations showing expenses by territory in
South America for 1999 and 2000. Include all possible subtotals.

= List the top 10 sales representatives in Asia according to 2000 sales revenue for
automotive products, and rank their commissions.

All these requests involve multiple dimensions. Many multidimensional questions
require aggregated data and comparisons of data sets, often across time, geography or
budgets.

See Also: Oracle Database Data Warehousing Guide

SQL for Analysis

Oracle has advanced SQL analytical processing capabilities using a family of analytic
SQL functions. These analytic functions enable you to calculate:

16-12 Oracle Database Concepts

Overview of OLAP Capabilities

= Rankings and percentiles

= Moving window calculations
s Lag/lead analysis

= First/last analysis

= Linear regression statistics

Ranking functions include cumulative distributions, percent rank, and N-tiles. Moving
window calculations allow you to find moving and cumulative aggregations, such as
sums and averages. Lag/lead analysis enables direct inter-row references so you can
calculate period-to-period changes. First/last analysis enables you to find the first or
last value in an ordered group.

Other features include the CASE expression. CASE expressions provide if-then logic
useful in many situations.

To enhance performance, analytic functions can be parallelized: multiple processes can
simultaneously run all of these statements. These capabilities make calculations easier
and more efficient, thereby enhancing database performance, scalability, and
simplicity.

See Also: Oracle Database Data Warehousing Guide

SQL for Modeling

The Oracle MODEL clause brings a new level of power and flexibility to SQL
calculations. With the MODEL clause, you can create a multidimensional array from
query results and then apply formulas to this array to calculate new values. The
formulas can range from basic arithmetic to simultaneous equations using recursion.
For some applications, the MODEL clause can replace PC-based spreadsheets. Models in
SQL leverage the Oracle Database strengths in scalability, manageability, collaboration,
and security. The core query engine can work with unlimited quantities of data. By
defining and executing models within the database, users avoid transferring large
datasets to and from separate modeling environments. Models can be shared easily
across workgroups, ensuring that calculations are consistent for all applications. Just
as models can be shared, access can also be controlled precisely with the Oracle
Database security features. With its rich functionality, the MODEL clause can enhance
all types of applications.

See Also: Oracle Database Data Warehousing Guide

Overview of OLAP Capabilities

Oracle online analytical processing (OLAP) adds power to your SQL applications by
providing extensive analytic content and fast query response times. A SQL query
interface enables any application to query cubes and dimensions without any
knowledge of OLAP.

The OLAP option automatically generates a set of relational views on cubes,
dimensions, and hierarchies. SQL applications query these views to display the
information-rich contents of these objects to analysts and decision makers. You can
also create custom views that comply with the structure expected by your applications,
using the system-generated views like base tables.

Analysts can choose any SQL query and analysis tool for selecting, viewing, and
analyzing the data. You can use your favorite tool or application, or use one of the

Business Intelligence 16-13

Overview of OLAP Capabilities

tools supplied with Oracle Database, such as Oracle Application Express and Business
Intelligence Publisher.

See Also: Oracle OLAP User’s Guide

This section includes the following topics:

s Full Integration of Multidimensional Technology
= Ease of Application Development

= Ease of Administration

= Security

s Unmatched Performance and Scalability

s Reduced Costs

Full Integration of Multidimensional Technology

By integrating multidimensional objects and analytics into the database, Oracle
provides the best of both worlds: the power of multidimensional analysis along with
the reliability, availability, security, and scalability of Oracle Database.

Oracle OLAP is fully integrated into Oracle Database. At a technical level, this means:
s The OLAP engine runs within the kernel of Oracle Database

= Dimensional objects are stored in Oracle Database in their native
multidimensional format

» Cubes and other dimensional objects are first class data objects represented in the
Oracle data dictionary

= Data security is administered in the standard way, by granting and revoking
privileges to Oracle Database users and roles

= Applications can query dimensional objects using SQL

The benefits to your organization are significant. Oracle OLAP offers the power of
simplicity. One database, standard administration and security, standard interfaces
and development tools.

Ease of Application Development

Oracle OLAP makes it easy to enrich your database and your applications with
interesting analytic content. Native SQL access to Oracle multidimensional objects and
calculations greatly eases the task of developing dashboards, reports, business
intelligence, and analytical applications of any type compared to systems that offer
proprietary interfaces. Moreover, SQL access means that the power of Oracle OLAP
analytics can be used by any database application, not just by the traditional limited
collection of OLAP applications.

Ease of Administration

Because Oracle OLAP is completely embedded in Oracle Database, there is no
administration learning curve as is typically associated with standalone OLAP servers.
You can leverage your existing DBA staff, rather than invest in specialized
administration skills.

16-14 Oracle Database Concepts

Overview of OLAP Capabilities

Security

One major administrative advantage of Oracle's embedded OLAP technology is
automated cube maintenance. With standalone OLAP servers, the burden of refreshing
the cube is left entirely to the administrator. This can be a complex and potentially
error-prone job. The administrator must create procedures to extract the changed data
from the relational source, move the data from the source system to the system
running the standalone OLAP server, load and rebuild the cube. The administrator
must take responsibility for the security of the changed values during this process, as
well.

With Oracle OLAP, in contrast, cube refresh is handled entirely by Oracle Database.
The database tracks the staleness of the dimensional objects, automatically keeps track
of the deltas in the source tables, and automatically applies only the changed values
during the refresh process. The administrator simply schedules the refresh at
appropriate intervals, and Oracle Database takes care of everything else.

With Oracle OLAP, standard Oracle Database security features are used to secure your
multidimensional data.

In contrast, with a standalone OLAP server, administrators must manage security
twice: once on the relational source system and again on the OLAP server system.
Additionally, they must manage the security of data in transit from the relational
system to the standalone OLAP system.

Unmatched Performance and Scalability

Business intelligence and analytical applications are dominated by actions such as
drilling up and down hierarchies and comparing aggregate values such as
period-over-period, share of parent, projections onto future time periods, and a myriad
of similar calculations. Often these actions are essentially random across the entire
space of potential hierarchical aggregations. Because Oracle OLAP pre-computes or
efficiently computes on the fly all aggregates in the defined multidimensional space, it
delivers unmatched performance for typical business intelligence applications.

Oracle OLAP queries take advantage of Oracle shared cursors, dramatically reducing
memory requirements and increasing performance.

When Oracle Database is installed with Oracle Real Application Clusters (Oracle
RAC), OLAP applications receive the same benefits in performance, scalability,
failover, and load balancing as any other application.

Reduced Costs

All these features add up to reduced costs. Administrative costs are reduced because
existing personnel skills can be leveraged. Moreover, Oracle Database can manage the
refresh of dimensional objects, a complex task left to administrators in other systems.
Standard security reduces administration costs as well. Application development costs
are reduced because the availability of a large pool of application developers who are
SQL knowledgeable, and a large collection of SQL-based development tools means
applications can be developed and deployed more quickly. Any SQL-based
development tool can take advantage of Oracle OLAP. Hardware costs are reduced by
Oracle OLAP's efficient management of aggregations, use of shared cursors, and
Oracle RAC, which enables highly scalable systems to be built from low-cost
commodity components.

Business Intelligence 16-15

Overview of Data Mining

Overview of Data Mining

Oracle Data Mining embeds data mining in the Oracle Database. The data never leaves
the database — data preparation, model building, and model scoring are all performed
within the database. Since the data never leaves the database, there are significant
advantages in scalability, manageability, and user access. Thus, the Oracle Database
provides an infrastructure for application developers to integrate data mining
seamlessly with database applications. Data mining is often used in applications such
as call centers, ATMs, ERM, and business planning.

As of Oracle Database 11g, Oracle Data Mining models are implemented as data
dictionary objects in the SYS schema. A set of new data dictionary views present
mining models and their properties. New system and object privileges control access
to mining model objects.

Support of Generalized Linear Models (GLM) is new for Oracle Data Mining 11g.
Oracle Data Mining supports two forms of GLM, one for classification and one for
regression:

= Binary Logistic Regression, used for classification, predicts the probability for each
row of scoring data. The dependent variable (target) is binary and categorical. For
example, demographic attributes might be used to predict whether customer
response to a promotion is low or high.

= Multivariate Linear Regression, used for regression, predicts the best estimate
within a continuum for each row of scoring data. For example, demographic
attributes such as age bracket, income level, gender, and town of residence might
be used to predict sales per customer.

Oracle Data Mining GLM can handle many hundreds or thousands of input attributes,
unlike traditional implementations that typically support 30 or fewer input attributes.

Data mining activities such as model building, testing, and scoring are accomplished
through a PL/SQL API, a Java API, and SQL Data Mining functions. The Java APl is
compliant with the data mining standard JSR 73. The Java API and the PL/SQL API

are fully interoperable.

Optionally, Oracle Data Mining can automatically perform all algorithm-required data
preparation, such as binning, normalization, and outlier treatment. Additionally,
user-specified data transformations can be integrated with the algorithm-specific data
preparation to simplify testing and scoring; models like this are supermodels.

The SQL Data Mining functions are SQL language operators for the deployment of
data mining models. The Data Mining functions support the scoring of classification,
regression, clustering, and feature extraction models. Within the context of standard
SQL statements, pre-created models can be applied to new data and the results
returned for further processing.

Predictive Analytics is a technology that captures data mining processes in simple
routines. Sometimes called "one-click data mining," predictive analytics simplify and
automate the data mining process. The procedure returns the results of analytic
processing. The models and other intermediate objects are not preserved. The DBMS_
PREDICTIVE_ANALYTICS PL/SQL package implements Predictive Analytics with
the following procedures:

= EXPLAIN - Ranks attributes in order of strongest relationships with a target
attribute.

= PREDICT - Predicts the value of a target attribute.

s PROFILE - Creates rules that identify the records that have the same target value.

16-16 Oracle Database Concepts

Overview of Data Mining

Oracle Data Mining supports the following algorithms (Generalized Linear Models are
new for Oracle Database 11g):

For classification, Naive Bayes, Decision Tree, Generalized Linear Models (Binary
Logistic Regression), and Support Vector Machine

For regression, Support Vector Machine and Generalized Linear Models
(Multivariate Linear Regression)

For associations (market basket analysis), Apriori

For clustering, k-Means and O-Cluster

For attribute importance, Minimum Description Length

For anomaly detection, One Class Support Vector Machine

For feature extraction, Non-Negative Matrix Factorization

See Also:

Oracle Data Mining Concepts
Oracle Data Mining Administrator’s Guide
Oracle Data Mining Application Developer’s Guide

Oracle Data Mining Java API Reference contains Javadoc
descriptions of the classes that constitute the Oracle Data
Mining Java API

The PL/SQL API is described in the DBMS_DATA_MINING,
DBMS_DATA_MINING_TRANSFORM, and DBMS_PREDICTIVE_
ANALYTICS chapters of Oracle Database PL/SQL Packages and
Types Reference

The SQL Data Mining functions are described in Oracle Database
SQL Language Reference

Business Intelligence 16-17

Overview of Data Mining

16-18 Oracle Database Concepts

17

High Availability

This chapter discusses the concept of database availability and introduces you to
Oracle Database high availability products and features.

Note: Availability is influenced by many choices you make other
than your database software: hardware, application and operating
system software, storage media, network reliability, and operational
processes are all important.

This chapter includes these topics:

s Introduction to High Availability

= Causes Of Downtime

»s Protection Against Computer Failures

m Protection Against Data Failures

s Avoiding Downtime During Planned Maintenance

s Maximum Availability Architecture (MAA) Best Practices

See Also:
» Oracle Database High Availability Overview
» Oracle Database High Availability Best Practices

These books provide complete information about best practices for
deploying a highly available environment and describes the Oracle
products and features that support high availability.

Introduction to High Availability

Enterprises have used their information technology (IT) infrastructure to provide
competitive advantage, increase productivity, and empower users to make faster and
more informed decisions. However, with these benefits has come an increasing
dependence on that infrastructure. Revenue and customers can be lost, penalties can
be owed, and bad press can have a lasting effect on customers and a company's
reputation. Building a high availability IT infrastructure is critical to the success and
well being of all enterprises in today's fast moving economy.

Trends in computing technology are also enabling a new IT architecture, referred to as
Grid computing, to be deployed. The Grid computing architecture effectively pools
large numbers of servers and storage into a flexible, on-demand computing resource

High Availability 17-1

Causes Of Downtime

for all enterprise computing needs. Technology innovations like low-cost blade
servers, small and inexpensive multiprocessor servers, modular storage technologies,
and open source operating systems (such as Linux) provide the raw materials for the
Grid. By harnessing these technologies and leveraging the Grid technology available
in the Oracle Database, enterprises can deliver an extremely high quality of service to
users while vastly reducing expenditures on IT. The Oracle Database enables you to
capture the cost advantages of Grid enterprise computing without sacrificing
performance, scalability, security, manageability, functionality, or system availability.

This chapter examines the causes of downtime and looks at the technology available in
the Oracle Database that avoids costly downtime and enables rapid recovery from
failures.

Causes Of Downtime

One of the challenges when designing a highly available IT Grid infrastructure is
examining and addressing all the possible causes of downtime. Figure 17-1 shows a
diagram that classifies system downtime into two primary categories: unplanned and
planned downtime. It is important to consider the causes of both unplanned and
planned downtime when designing a fault tolerant and resilient IT infrastructure.

Figure 17-1 Causes of Downtime

System
Downtime
1
| |
Unplanned Planned
Downtime Downtime
1 1
1 1 1 1
Computer Data Data System
Failures Failures Changes Changes

Unplanned downtime results from computer failures or data failures. Planned
downtime is primarily due to data changes or system changes that must be applied to
the production system. The following sections examine each of these causes of
downtime and describes the Oracle technology you can apply to avoid downtime.

Protection Against Computer Failures

A computer failure occurs when the computer system or database server unexpectedly
fails and causes a service interruption. In most cases, computer failures are due to
hardware breakdown. These types of failures are best remedied by taking advantage
of cluster technology and fast database crash recovery. The recommended solutions
include Enterprise grids with Oracle Real Application Clusters (Oracle RAC), fast start
fault recovery, Oracle Data Guard, and Oracle Streams.

This section includes the following topics:

Overview of Enterprise Grids with Oracle Real Application Clusters and Oracle
Clusterware

Fast Start Fault Recovery
Oracle Data Guard

17-2 Oracle Database Concepts

Protection Against Computer Failures

s Oracle Streams

Overview of Enterprise Grids with Oracle Real Application Clusters and Oracle

Clusterware

With Oracle RAC, the enterprise can build database servers across multiple systems
that are highly available and highly scalable. In an Oracle RAC environment, Oracle
Database runs on two or more systems in a cluster while concurrently accessing a
single shared database. This provides a single database system that spans multiple
hardware systems yet appears to the application as a single unified database system.
This extends the following availability and scalability benefits for all of your
applications:

= Flexibility and cost effectiveness in capacity planning, so that a system can scale to
any desired capacity on demand and as business needs change.

= Fault tolerance within the cluster, especially computer failures.
The following list describes the features of an Oracle RAC environment:

Enterprise Grids—Oracle RAC enables enterprise Grids. Enterprise Grids are built out
of large configurations of standardized, commodity-priced components: processors,
servers, network, and storage. Oracle RAC is the only technology that can harness
these components into a useful processing system for the enterprise. Oracle RAC and
the Grid dramatically reduce operational costs and provide flexibility so that systems
become more adaptive, proactive, and agile. Dynamic provisioning of nodes, storage,
CPUs, and memory allow service levels to be easily and efficiently maintained while
lowering cost still further through improved use. In addition, Oracle RAC is
completely transparent to the application accessing the Oracle RAC database, thereby
allowing existing applications to be deployed on Oracle RAC without requiring any
modifications.

Scalability—Oracle RAC gives you the flexibility to add nodes to the cluster as the
demand for capacity increases, scaling the system up incrementally to save costs and
eliminating the need to replace smaller single node systems with larger ones. Grid
pools of standard low-cost computers and modular disk arrays make this solution
even more powerful with Oracle Database. It makes the capacity upgrade process
much easier and faster because you can incrementally add one or more nodes to the
cluster, compared to replacing existing systems with new and larger nodes to upgrade
systems. The Cache Fusion technology implemented in Oracle RAC and the
InfiniBand support provided in Oracle Database enable you to scale the capacity
almost linearly, without making any changes to your application.

Fault Tolerance—Another key advantage of the Oracle RAC cluster architecture is the
inherent fault tolerance provided by multiple nodes. Because the physical nodes run
independently, the failure of one or more nodes will not affect other nodes in the
cluster. Failover can happen to any node on the Grid. In the extreme case, an Oracle
RAC system will still provide database service even when all but one node is down.
This architecture allows a group of nodes to be transparently put online or taken
offline, for maintenance, while the rest of the cluster continues to provide database
service. Oracle RAC provides built in integration with the Oracle Application Server
for failing over connection pools. With this capability, an application is immediately
notified of any failure rather than having to wait tens of minutes for a TCP timeout to
occur. The application can immediately take the appropriate recovery action. And Grid
load balancing redistributes load over time.

Oracle Clusterware—Oracle RAC also provides a complete set of clusterware to
manage the cluster. Oracle Clusterware provides all of the features required to run the

High Availability 17-3

Protection Against Computer Failures

cluster, including node membership, messaging services, and locking. Because Oracle
Clusterware is a fully integrated stack with common event and management APIs, it
can be centrally managed from Oracle Enterprise Manager. There is no need to
purchase additional software to support your cluster, which helps avoid the additional
efforts required to integrate and test third-party clusterware. Oracle Clusterware also
provides the same interface and operates the same way across all of the platforms on
which Oracle Database is available. While Oracle continues to support third-party
clusterware for use with Oracle RAC, there is no need or advantage to using
third-party clusterware.

You can extend the high availability capabilities of the Oracle Clusterware framework
to your applications. That is, you can use the same high availability mechanisms of
Oracle Database and Oracle RAC to make your custom applications highly available.
You can use Oracle Clusterware to monitor, relocate, and restart your applications,
thus allowing you to integrate and coordinate failover of your applications with
database failover.

Services—Oracle RAC supports an entity referred to as a service that you can define to
group database workloads and route work to the optimal instances that are assigned
to offer the service. Services represent classes of database users or applications. You
define and apply business policies to these services to perform tasks such as to allocate
nodes for times of peak processing or to automatically handle a server failure. Using
services ensures the application of system resources where and when they are needed
to achieve business goals.

See Also: Oracle Database 2 Day + Real Application Clusters Guide

Fast Start Fault Recovery

One of the most common causes of unplanned downtime is a system fault or crash.
System faults are the result of hardware failures, power failures, and operating system
or server crashes. The amount of disruption these failures cause depends on the
number of affected users and how quickly service is restored. High availability
systems are designed to quickly and automatically recover from failures, should they
occur. Users of critical systems look to the IT organization for a commitment that
recovery from a failure will be fast and take a predictable amount of time. Periods of
downtime longer than this commitment can have a direct effect on operations and lead
to lost revenue and productivity.

Oracle Database provides very fast recovery from system faults and crashes. However,
equally important to being fast is being predictable. The fast start fault recovery
technology included in Oracle Database automatically bounds database crash recovery
time and is unique to Oracle Database. The database self tunes checkpoint processing
to safeguard the desired recovery time objective. This makes recovery time fast and
predictable and improves the ability to meet service-level objectives. The Oracle fast
start fault recovery feature can reduce recovery time on a heavily loaded database
from tens of minutes to a few seconds.

See Also: Oracle Database Performance Tuning Guide for information
on fast start fault recovery

Oracle Data Guard

Oracle Data Guard ensures high availability, data protection, and disaster recovery for
enterprise data. Data Guard maintains standby databases as transactionally consistent
copies of the primary (production) database. Then, if the primary database becomes

unavailable because of a planned or an unplanned outage, Data Guard can switch any

17-4 Oracle Database Concepts

Protection Against Data Failures

standby database to the primary role, minimizing the downtime associated with the
outage. Automated failover using Data Guard fast-start failover and fast application
notification with integrated Oracle clients provides a high level of data protection and
data availability.

See Also: Oracle Data Guard Concepts and Administration

Oracle Streams

You can use Streams to configure flexible high availability environments. With Oracle
Streams, you can create a local or remote copy of a production database. In the event of
human error or a catastrophe, the copy can be used to resume processing.

See Also: Oracle Streams Concepts and Administration

Protection Against Data Failures

A data failure is the loss, damage, or corruption of critical enterprise data. The causes
of data failure are more complex and subtle than computer failure and can be caused
by a failure of the storage hardware, human error, corruption, or site failure.

Figure 17-2 focuses on the four types of data failures: storage failure, human error,
corruption, and site failure.

Figure 17-2 Downtime Due to Data Failures

System
Downtime
1
| |
Unplanned Planned
Downtime Downtime
| 1
1 1 1 1
Computer Data Data System
Failures Failures Changes Changes
1
1 1 1
Storage Failure | | Human Error | | Corruption | | Site Failure

It is extremely important to design a solution to protect against and recover from data
failures. A system or network fault may prevent users from accessing data, but data
failures without proper backups or recovery technology can result in either the
recovery operation taking many hours to perform, or in lost data.

Oracle Database provides many data protection capabilities. The motivation for many
of these enhancements is the new economics around data protection and recovery.
Over the last twenty years, disk capacity has grown by three orders of magnitude
while the cost per megabyte has fallen dramatically. This is a trend that shows no sign
of abating. This has made the cost of disk storage competitive with tape as a backup
media. Plus, disk storage has additional benefits of being online and able to provide
random access to the data.

These trends allowed Oracle to rethink and make its recovery strategy hierarchical to
take advantage of these economic dynamics. By making additional disk storage
available to Oracle Database, you can reduce backup and recovery time from hours to
minutes. In essence, you can trade inexpensive disk storage for expensive downtime.

High Availability 17-5

Protection Against Data Failures

This section includes the following topics:
= Protecting Against Storage Failures

» Protecting Against Human Errors

Protecting Against Storage Failures

Provisioning storage for a single-database instance, much less for an entire enterprise,
can be complex. Historically, the process included the following steps:

1. Estimate the amount of space needed

2. Map out what you hope will be an optimal layout (where to put data files, archive
files, and so on to avoid hot spots)

Create logical volumes
Create file systems

Define and set up how you will protect and mirror your data

3
4
5
6. Define and implement your backup and recovery plan for the data
7. Install the Oracle software

8

Create the database

Then, the hard work begins—looking for hot spots that negatively affect performance;
moving datafiles around to reduce contention, and dreading the day when a disk
crash occurs or when you run out of space and must add more disks and shift all the
files around to rebalance across your updated storage configuration.

Fortunately, that scenario changed dramatically with the Automatic Storage
Management (ASM) feature of Oracle Database. ASM provides a vertically integrated
file system and volume manager directly in the Oracle kernel, resulting in much less
work to provision database storage.

ASM provides a higher level of availability, without the expense, installation, and
maintenance of specialized storage products, and provides unique capabilities for
database applications. ASM spreads its files across all available storage for optimal
performance, and it can mirror as well, providing protection against data loss. ASM
extends the concept of SAME (stripe and mirror everything) and adds more flexibility
in that it can do mirroring at the database file level instead of having to mirror at the
entire disk level.

Most importantly, ASM eliminates the complexity associated with managing data and
disks, and it simplifies the processes of setting up mirroring, adding disks, and
removing disks. Rather than managing hundreds, possibly thousands of files (as in a
large data warehouse) database administrators using ASM create and administer a
larger-grained object, the disk group, which identifies the set of disks to be managed
as a logical unit. The automation of the file naming and placement of the underlying
database files save the DBAs time and ensures that best practice standards are
followed.

Optionally, you can use the ASM native mirroring mechanism to protect against
storage failures. Mirroring is enabled by default and triple mirroring is also available.
With ASM mirroring, you can provide an additional level of data protection with the
use of failure groups. A failure group is a set of disks sharing a common resource (disk
controller or an entire disk array) whose failure can be tolerated.

Once defined, an ASM failure group intelligently places redundant copies of the data
in separate failure groups to ensure that the data will be available and transparently

17-6 Oracle Database Concepts

Protection Against Data Failures

protected against the failure of any component in the storage subsystem. In addition,
ASM supports the Hardware Assisted Resilient Data capability (discussed below in
the Protecting Against Data Corruptions section) to further protect your data.

See Also:
s Oracle Database 2 Day DBA

» Oracle Database Storage Administrator’s Guide

Protecting Against Human Errors

Most research performed on the causes of downtime identifies human error as the
single largest cause of downtime. Human errors—such as the inadvertent deletion of
important data or when an incorrect WHERE clause in an UPDATE statement updates
many more rows than were intended—must be prevented wherever possible and must
be undone when the precautions against them fail. Oracle Database provides easy to
use yet powerful tools that help administrators quickly diagnose and recover from
these errors. It also includes features that allow end users to recover from problems
without administrator involvement, reducing the support burden on the
administrators and speeding recovery of the lost and damaged data.

The following sections describe the Oracle features that protect against human errors:
s Guarding Against Human Errors

s Oracle Flashback Technology

s LogMiner SQL-Based Log Analyzer

s Protecting Against Data Corruptions

= Protecting Against Site Failures

Guarding Against Human Errors

The best way to prevent errors is to restrict a user's access to data and services they
truly need to conduct their business. Oracle Database provides a wide range of
security tools to control user access to application data by authenticating users and
then allowing administrators to grant users only those privileges required to perform
their duties. In addition, the security model of Oracle Database helps you restrict data
access at a row level, using the Virtual Private Database (VPD) feature. This further
isolates users from data they do not need access to.

Oracle Flashback Technology

When authorized people make mistakes, you need the tools to correct these errors.
Oracle Database provides a family of human error correction technology called
Flashback. Flashback revolutionizes data recovery. In the past, it might take minutes to
damage a database but hours to recover it. With Flashback technology, the time to
correct errors equals the time it took to make the error. It is also easy to use a single,
short command to recover the entire database instead of following some complex
procedure. Flashback is unique to Oracle Database and provides:

= A SQL interface to quickly analyze and repair human errors.

= Fine-grained surgical analysis and repair for localized damage, such as when the
wrong customer order is deleted.

» Correction of more widespread damage yet does it quickly to avoid long
downtime, such as when all of this month's customer orders have been deleted.

High Availability 17-7

Protection Against Data Failures

= Recovery at all levels including the row, transaction, table, tablespace, and
database wide.

Table 17-1 describes how Flashback technology corrects human errors.

Table 17-1 Protecting Against Human Errors with Oracle Flashback Technology

Feature

Description

Flashback Query

Oracle Flashback Query enables you to query any data at some point in time in the past. You can use
Flashback Query to view and reconstruct lost data that may have been deleted or changed by accident. For
example:

SELECT * FROM employee AS OF TIMESTAMP TO_TIMESTAMP ('19-APR-05 02:00:00 PM') WHERE ..

This statement displays rows from the employee table as of 2:00pm on the specified date. Developers can
use this feature to build self-service error correction into their applications, empowering end users to undo
and correct their errors without delay rather than burdening administrators to perform this task. Flashback
Query is simple to manage, because the database automatically keeps the necessary information to
reconstruct data for a configurable time into the past.

Flashback Versions
Query

The Flashback Versions Query provides a way to view changes made to the database at the row level. It is
an extension to SQL and enables you to retrieve all of the different versions of a row across a specified time
interval. For example:

SELECT * FROM employee VERSIONS BETWEEN TIMESTAMP TO_TIMESTAMP ('19-APR-05
02:00:00 PM') AND TIMESTAMP TO_TIMESTAMP ('19-APR-05 03:00:00 PM') WHERE ..

This statement displays each version of the row, with each row changed by a different transaction between
2:00 and 3:00 p.m. on 19 April. This helps you to pinpoint when and how data is changed and trace it back
to the user, application, or transaction, and tracks down the source of a logical corruption in the database
and correct it. Flashback Versions Query also helps application developers debug code.

Flashback
Transaction

Oracle Flashback Transaction backs out a transaction and its dependent tra