
Cypher Cheat Sheet

START me=node:people(name='Andres')
[MATCH me-[:FRIEND]->friend]
WHERE friend.age > 18
RETURN me, friend.name
ORDER BY friend.age asc
SKIP 5 LIMIT 10

Read-Only Query Structure

Neo4j

Cypher is the declarative query language for Neo4j, the world’s leading graph database.

- Cypher matches patterns of nodes and relationship in the graph, to extract information or modify the data.
- Cypher has the concept of identifiers which denote named, bound elements and parameters.
- Cypher can mutate graph data by creating, updating, and removing nodes, relationships, and properties.

You can try cypher snippets live in the Neo4j Console at
http://console.neo4j.org

START n=node(id,[id2,
id3])

Load the node with id
id into n

START n=node:indexName
(key="value")

Query the index with an
exact query and put the
result into n

Use node_auto_index for
the auto-index

START n=node:indexName
("lucene query")

Query the index using a
full Lucene query and
put the result in n

START n=node(*) Load all nodes

START m=node(1),
n=node(2)

Multiple start points

RETURN * Return all named nodes,
relationships and iden-
tifiers

RETURN expr AS alias Set result column name
as alias

RETURN distinct
expr

Return unique values
for expr

MATCH n-->m A pattern where n has
outgoing relationships to
another node, no matter
relationship-type

MATCH n--m n has relationship in
either direction to m

MATCH n-[:KNOWS]->m The outgoing relationship
between n and m has to be
of KNOWS relationship type

MATCH n-[:KNOWS|LOVES]-m n has KNOWS or LOVES
relationship to m

MATCH n-[r]->m An outgoing relationship
from n to m, and store the
relationship in r

MATCH n-[r?]->m The relationship is
optional

MATCH n-[*1..5]->m A multi step relationship
between between n and m,
one and five steps away

MATCH n-[*]->m A pattern where n has a
relationship to m unbound
number of steps away

MATCH n-[?:KNOWS*..5]->m An optional relationship
between n and m that is of
KNOWS relationship type,
and between one and five
steps long.

MATCH n-->m<--o A pattern with n having an
outgoing relationship to
m, and m having incoming
relationship from o

MATCH p=n-->m<--o Store the path going from
n to o over m into the
path identifier p

MATCH p = shortestPath(
n-[:KNOWS*3]->m)

Find the shortest path
between n and m of type
KNOWS of at most length 3

MATCH meaning

START meaning

RETURN meaning

neo4j.org
neotechnology.com

© 2012 Neo Technology Inc.

friend.age
friend.name
friend.age
http://console.neo4j.org
http://neo4j.org
http://neotechnology.com
neotechnology.com

NOT pred1 AND/OR pred2 Boolean operators for
predicates

ALL(x in coll: pred) TRUE if pred is TRUE for all
values in
coll

ANY(x in coll : pred) TRUE if pred is TRUE for at
least one value in coll

NONE(x in coll : pred) TRUE if pred returns FALSE
for all values in
coll

SINGLE(x in coll : pred) TRUE if pred returns TRUE
for a single value in coll

identifier IS NULL TRUE if identifier is <NULL>

n.prop? = value TRUE if n.prop = value or n
is NULL or n.prop does not
exist

n.prop! = value TRUE if n.prop = value,
FALSE if n is NULL or n.prop
does not exist

n =~ /regexp/ Regular expression

e1 <> e2
e1 < e2
e1 = e2

Comparison operators

has(n.prop) Checks if property exists

n-[:TYPE]->m Filter on existence of
relationship

expr IN coll Checks for existence of expr
in coll

CREATE (n {
name :"Name" })

Creates the node with
the given properties

CREATE n = {map} Create node from map
parameter

CREATE n = {manyMaps} Create many nodes from
parameter with
coll of maps

CREATE n-[:KNOWS]->m Creates the
relationship with the
given type and dir

CREATE n-[:LOVES
{since: 2007}] ->m

Creates the
relationship with the
given type, dir, and
properties

CREATE UNIQUE
n-[:KNOWS]->m

Tries to match the
pattern. Creates the
missing pieces if the
match fails

CREATE UNIQUE
n-[:KNOWS]->(m
{name:"Name"})

Tries to match a node
with the property name
set to "Name". Creates
the node and sets the
property if it can’t be
found.

CREATE UNIQUE
n-[:LOVES {since: 2007}]
->m

Tries to find the
relationship with the
given type, direction,
and attributes.
Creates it if not
found.

DELETE n, DELETE rel Deletes the node,
relationship

DELETE n.prop Removes the property

SET n.prop = value Updates or creates the
property prop with the given
value

SET n = {map} Updates the properties with
the given map
parameter

SET n.prop = null Deletes the property prop

Predicates meaning

Cypher Cheat Sheet

CREATE meaning

DELETE meaning

CREATE UNIQUE meaning

SET meaning

neo4j.org
neotechnology.com

© 2012 Neo Technology Inc.

2

START emil=node:people(name='Emil')
MATCH emil-[:MARRIED_TO]-madde
CREATE/CREATE UNIQUE
emil-[:DAD]->(noomi {name:"Noomi"})<-[:MOM]-madde
DELETE emil.spare_time
SET emil.happy=true
RETURN noomi

Read-Write-Return Query Structure

n.prop
n.prop
n.prop
n.prop
n.prop
n.prop
n.prop
n.prop
n.prop
n.prop
http://neotechnology.com
http://neo4j.org
http://neotechnology.com

HEAD(coll) First element of
coll

TAIL(coll) coll except first
element

LAST(coll) Last element of
coll

TYPE(rel) Relationship type of
rel

ID(node)
ID(relationship)

Id of node or
relationship

COALESCE(expr,default) Returns default if
expr is NULL
otherwise expr

RANGE(start,end[,step]) Creates a range from
start to end
(inclusive) with a
optional step

ABS(v)
ROUND(v)
SQRT(v)
SIGN(v)

Math functions

COUNT([distinct] expr) Returns the number of non-
NULL values in expr

COUNT(*) Returns the number of values
aggregated over

SUM(expr) Returns the sum of all
values in expr
Throws exception for
non-numeric values

AVG(expr) Returns the average of all
values in expr

MAX(expr) Returns the largest value in
expr

MIN(expr) Returns the smallest values
in expr

COLLECT(expr) Returns an coll containing
all values in expr

FILTER(x in coll :
predicate)

Returns a all the elements
in coll that match the given
predicate

EXTRACT(x in coll :
expr)

Applies the
expr once for every element
in coll

NODES(path) Returns the nodes in path

RELS(path) Returns the relationships in
path

LENGTH(path) Returns the length of path

Functions meaning

Aggregate Functions meaning

Path Functions meaning

Cypher Cheat Sheet

neo4j.org
neotechnology.com

© 2012 Neo Technology Inc.

3

a-zA-Z0-9_
or

'some na-me'

Allowed identifier
(or quoted)

n + / - * % m Arithmetic operators
"+" also works on
strings and collections

n.prop, n.prop? Property on node,
property on node, or
NULL if missing

[42,"Hello",'World',{p}] A collection

{param} Parameter value, passed
into the query execution
as map
{ param : "value",... }

a-->()<--b A path-pattern

Expressions meaning

http://neo4j.org
http://neotechnology.com
n.prop
n.prop

Cypher Cheat Sheet

START n=node(...)
MATCH n-->m-->o
WHERE not (n-->o)
RETURN o

Not already connected to

This returns nodes that m is
connected to, that n is not
already connected to.

START n=node(...)
MATCH path = n-[*]-n
RETURN n, length(path)

Find cycles

This returns nodes that m is
connected to, that n is not
already connected to.

START n=node(...)
MATCH n-[r]-m
RETURN type(r), count(*)

Group count relationship
types

Returns a count of each of
the relationship-types.

START n=node(...)
MATCH n-[r?]-()
DELETE n,r

Delete node with
relationships

Finds the node and all
relationships (if any) and
deletes node and
relationships.

START n = node(1), m =
node(2) RETURN n.name
+" and "+ m.name

String concat on expressions

Useful Snippets

Cypher Screencast
http://bit.ly/cypher-stanley

Cypher Reference Manual
http://bit.ly/cypher-reference

Cypher Presentation
http://bit.ly/cypher-slide

neo4j.org
neotechnology.com

© 2012 Neo Technology Inc.

Useful Links

4

The Neo4j-Shell supports commands to begin transactions,
which allows you issue multiple commands and then only
commit them when you’re satisfied and rollback if you ran into
an issue or don’t want your changes to happen.

neo4j-sh (0)$ begin
==> Transaction started
neo4j-sh (0)$ rollback
==> Transaction rolled back
neo4j-sh (0)$ commit
==> Transaction committed

 Transactions

FOREACH is used to execute a mutating operation for each
element of a collection, e.g. creating a node for each ele-
ment
using the element as an attribute value.

START user=node:users("name:A*"),
promotion=node(...)
MATCH user-[:FRIEND]-friend-[:FRIEND]-foaf
WITH user, collect(distinct foaf) as new_friends

FOREACH

 WITH
WITH syntax is similar to RETURN. It separates query parts
explicitly, allowing you to declare which identifiers to carry
over to the next part. This can be used to limit the visible
identifiers but mostly for creating aggregate values that can
be used in the next query part either for filtering
(implementing HAVING) or for the creation of new structures
in the graph.

WITH also creates a boundary between reading and
updating query parts so that they don’t interfere.

START user=node:users("name:A*")
MATCH user-[:FRIEND]-friend
WITH user, count(friend) as friends
WHERE friends > 10
RETURN user

START user=node:users("name:A*")
MATCH user-[:FRIEND]-friend
WITH user, count(friend) as friends
SET user.numberOfFriends = friends

http://neo4j.org
http://neotechnology.com
neotechnology.com
user.numberOfFriends

neo4j.org
neotechnology.com

© 2012 Neo Technology Inc.

Cypher Cheat Sheet 5

http://neo4j.org
http://neotechnology.com
neotechnology.com

