ORACLE

Oracle® Database
Semantic Technologies Developer's Guide

11gRelease 2 (11.2)
E11828-10

November 2010

Provides usage and reference information about Oracle
Database support for semantic technologies, including
storage, inference, and query capabilities for data and
ontologies based on Resource Description Framework (RDF),
RDF Schema (RDEFS), and Web Ontology Language (OWL).

Oracle Database Semantic Technologies Developer's Guide, 11g Release 2 (11.2)
E11828-10

Copyright © 2005, 2010, Oracle and/ or its affiliates. All rights reserved.
Primary Author: Chuck Murray

Contributors: Eugene Inseok Chong, Souri Das, Vladimir Kolovski, Matt Perry, Jags Srinivasan, Seema
Sundara, Zhe (Alan) Wu, Aravind Yalamanchi

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

Contents

PUOIACE ... et s et s e e XV
AN S Lo = VLT OPRRRRRRT XV
Documentation AcCesSSIDILityccciiiiiiiiiiiiiii e XV
ReElated DOCUITIEIESveevieieiieeiieeeeeeeeee ettt ettt et e e eteeeaaeeteessaeeaeesaeseseeesesesseessesenseensessnssenseeens XVi
CONMVEIIEIONS ..o itveiiiee ettt eeeet e e e e et e e e e e eabeeeeseesabareeeesaaaaeeeeseaasseeseessaaeseeseansssaeseessssesseessnssanesessns XVi

What’s New in Semantic Technologies? ..., XVii
RELEASE 11.2 FRATULES.eveiieeeieeeeeeeeeee ettt ettt e e e et e e st e e s ata e e steeesssaeesntessateessneeesneeas XVii
RELEASE 11,1 FRATULES. ...ceveeeeeieeeeeeeeeeee ettt ettt e et e et e s et e e e et e e eateesaeeesseeessaaeesaaeeesnseessseeesnseeeas XX

1 Oracle Database Semantic Technologies Overview

1.1 Introduction to Oracle Semantic Technologies.............cccccoeeiiiiiiniiinicc e 1-2
1.2 Semantic Data MOdeling..........ccccecuiiiiiiiiiiiiiicceee e 1-3
1.3 Semantic Data in the Database...........cccccccoeiniiiiiiiiiiiiii 1-3
1.3.1 Metadata fOr MOAEISccoueuiuiiriniiiiiciciiiceeee et 1-3
1.3.2 SHAtEIMENES ...t 1-5
1.3.2.1 Triple Uniqueness and Data Types for Literalscccooeuoioiiiiiiiiniiiee, 1-6
1.3.3 Subjects and ODJECEScccuiiiiiiiiiiriiiicc s 1-7
1.3.4 Blank INOES........coviviiiiiiiiiciicccc s 1-7
1.3.5 PrOPertiesovoviviiiiie s 1-7
1.3.6 Inferencing: Rules and Rulebases..............cccccoiiiiiiiiiiiiiccccccce 1-7
1.3.7 Entailments (RULeS INAEXES)co.evuiriiriiniiiiiiieieitecricsee ettt 1-10
1.3.8 VArtual MOdelS. ..o 1-11
1.3.9 Semantic Data Security Considerationsc.ccccceeveiieieieiniinieiccceeccee e 1-14
1.4 Semantic Metadata Tables and VIeWS ... 1-14
1.5 Semantic Data Types, Constructors, and Methods...........cccooiii 1-15
1.5.1 Constructors for Inserting Triples Without Any Blank Nodes..........cccccooovrnnnnnnee. 1-17
1.5.2 Constructors for Inserting Triples With or Without Any Blank Nodes 1-17
1.6 Using the SEM_MATCH Table Function to Query Semantic Data............cccccecevurirnnnnnn. 1-18
1.6.1 Performing Queries with Incomplete or Invalid Entailments............ccccccevuvinnnnnne 1-21
1.6.2 Graph Patterns: Support for Curly Brace Syntax, and OPTIONAL, FILTER, and
UNION Keywords 1-22

1.6.3 Inline Query Optimizer Hints...........coooooiiiiic e 1-26
1.6.4 FUll-TeXt SEATCR.....c.oouiiiiiiiiiciec et 1-26
1.6.5 Best Practices for Query Performance ..o 1-27

1.6.51 FILTER Constructs Involving xsd:dateTime, xsd:date, and xsd:time 1-28
1.6.5.2 Function-Based Indexes for FILTER Constructs Involving xsd Data Types 1-28
1.6.5.3 FILTER Constructs Involving Relational EXpressions...........ccccevvvvveverencecncnee 1-29
1.6.5.4 Optimizer StatiSticsccoiiiiiiiiiicc s 1-29
1.6.5.5 Virtual Models and Semantic Network Indexes...........ccccccevvviiiiiininininnnnn, 1-29
1.7 Loading and Exporting Semantic Data..........cccccceeuiiiinnniiiiincicncccreeeneeeceees 1-30
1.7.1 Bulk Loading Semantic Data Using a Staging Table..............cccooouniiiniicnnn 1-30
1.7.1.1 Recording Event Traces during Bulk Loading...........cccccoooeiiniiiininn 1-31
1.7.2 Batch Loading Semantic Data Using the Java APL........c.ccccocovviinnniiiiiiene 1-31
1.7.2.1 When to Choose Batch Loading ..o, 1-33
1.7.3 Loading Semantic Data Using INSERT Statements...........ccccccceviiiiiiiniinniennnnn, 1-33
1.7.4 Exporting Semantic Datacccccociviiiiiiiiiiiiiiiiiic 1-33
1.8 Using Semantic Network INdeXescoovirieiiiiiiiiii 1-34
1.9 Quick Start for Using Semantic Datacoooeurueieiiiiciiiicec 1-35
1.10 Semantic Data Examples (PL/SQL and Java).......cccccoeoieiiiiieiciececcceceeienenenennns 1-36
1.10.1 Example: Journal Article Information ..o 1-36
1.10.2 Example: Family Informationccoooiiiiii e 1-38
1.11 Software Naming Changes for Semantic Technologiescccccccceeueuvurruinerveeeenrnnenenes 1-45
1.12 For More Information About Semantic Technologies..............cccccoveriireiirniccinicicicnne, 1-45
OWL Concepts

2.1 ONEOLOZIES ...ttt 2-1
2.1.1 Example: Cancer ONtOlOgYcoocurueuiiiuriciiiicicie e 2-1
2.1.2 Supported OWL SUDSELS.........c.ceuruririiiiciriirieiccercee e 2-2
2.2 Using OWL INerenCingccoiiueieiiiiiiiieiceie s 2-4
2.2.1 Creating a Simple OWL Ontologyc.cceueiiirieiiiiicieieccie e 2-4
222 Performing Native OWL Inferencingcccoceceeveveeervrnnnrnnnrrrreeeereeees e 2-5
2.2.3 Performing OWL and User-Defined Rules inferencing...........ccccocoeeueeiiiciciiiiniennne. 2-5
224 Generating OWL inferencing PToOOfscccooueiiiiiiniiiic 2-6
225 Validating OWL Models and Entailments...........ccccccoocoiiiiiiiiiiiiicccccceenes 2-7
2.2.6 Using SEM_APIS.CREATE_ENTAILMENT for RDFS Inference..........c.cccccoouviuiurnnnce. 2-8
227 Enhancing Inference Performancecccccocoeiiiiiiiiiiiiiiccccececcees 2-8
2.2.8 Optimizing owl:sameAs INfErence..........ccceciiiiiiiiiiicccceceeeceeeeeeeeee 2-9
2.2.81 Querying owl:sameAs Consolidated Inference Graphs.........c.ccccooreiiiirnnnnn. 2-10
229 Performing Incremental Inferencec.cccccoeiiiiiiiiiiiiiiiicccccceeceees 2-11
2.2.10 Using Parallel INference ... 2-12
2.2.11 Performing Selective Inferencing (Advanced Information)ccccoeeveiicieininnne. 2-12
2.3 Using Semantic Operators to Query Relational Data...........cccooeeviiiiiiiiciice 2-13
2.3.1 Using the SEM_RELATED OpPeratorccccceueeueueiiiimeieieieieeeieeeieeeeieeeeeeeeeeeneeeees 2-13
2.3.2 Using the SEM_DISTANCE Ancillary Operator.........c.cccooeueueiiirinieiniicieiiceieee 2-15
2.3.2.1 Computation of Distance Informationcccccceceeiiiviniiinniniiinnnne 2-16
2.3.3 Creating a Semantic Index of Type MDSYS.SEM_INDEXTYPEcccccccevvvvivunnnnee 2-16
2.3.4 Using SEM_RELATED and SEM_DISTANCE When the Indexed Column Is Not the

First Parameter 2-17
2.35 Using URIPREFIX When Values Are Not Stored as URISs..........ccccceeviiiivnininininne. 2-18

3 Simple Knowledge Organization System (SKOS) Support

3.1 Supported and Unsupported SKOS Semanticsccoceueieiiirieiiiciiciciiceeeecee 3-2
3.1.1 Supported SKOS Semanticsccccvviiiiiiiiiiiiiiiii e 3-2
3.1.2 Unsupported SKOS Semanticsccoeeviiiiiiiniiiiiiiiiceeeeeeeeenees 3-3
3.2 Performing Inference on SKOS Models...........ccccooiiiiiiiiiiiiiicc 3-3
3.2.1 Validating SKOS Models and Entailments ... 3-3
3.2.2 Property Chain Handling ..o 3-4

4 Semantic Indexing for Documents

4.1 Information Extractors for Semantically Indexing Documentscccoooeeiiinieieinnne. 4-2
4.2 ExXtractor POLICIES.c.oiiiiiiiiiiiiici 4-3
4.3 Semantically Indexing DOCUMENLS...........ccccoiiiiiiiiiiiiiicecceeeceee e 4-4
4.4 SEM_CONTAINS and SEM_CONTAINS_SELECT Syntax.......ccccocoeveeirieirinirieiiieiennnns 4-5
4.5 Searching for Documents Using SPARQL Query Patternsccoooeeiieeiiiicicinccnnne 4-6
4.6 Bindings from Matched Documents (SEM_CONTAINS_SELECT Ancillary Operator). 4-7
4.7 Improving the Quality of Document Search Operations..............cccooeeieiiiiiiiincicne 4-8
4.8 Indexing External DOCUMENLS.........c.coruiiiiiiiiiiiiccie et s 4-8
4.9 Configuring the Calais EXtractor tyPe ... 4-10
4.10 Working with General Architecture for Text Engineering (GATE)cccccooonrenie. 4-11
411 Creating a New EXtractor TYPecooceiiiiiiiiiii 4-12
4.12 Metadata Views for Semantic INdeXing.........cccccceeueueueiriniriiiiinnnnnirrcncreeeeeesee e 4-13
41241 MDSYS.RDFCTX_POLICIES V€Wcoovviiriiiiiiiiiiciecieci e 4-13
4122 RDECTX_INDEX_POLICIES VIeWcccsuoriniminiiinicinicisici e 4-13
4.12.3 RDFCTX_INDEX_EXCEPTIONS VIeWcccocoiiiiieiiieiiieiiieiies e 4-14
4.13 Default Style Sheet for GATE Extractor Output.......c..ccccovevrieiiiciiiciiiccicce 4-14

5 Fine-Grained Access Control for RDF Data

5.1 Virtual Private Database (VPD) for RDF Data......c.ccoceoeieiiinineniniiieieeeeeececeesesie e 5-2
511 VPD Policy for RDF Dataccccccoviviiiiiiiniiiiiiiiiiins 5-3
5.1.2 RDF Metadata for Enforcing VPD POLCI€Scccueuemimiiiiiiiiiiciciicceccecceeieceiae 5-5
5.1.3 Data Access CONSETAINEScc.evueieiieieiiiteicrieeest ettt sttt et 5-7
5.1.4 RDFEVPD_POLICIES VIEW ...ocvtetiiiriiieieieieieeeteteseeestestes e sae st ssessesaessessensessessesessessens 5-10
5.1.5 RDFVPD_MODELS VIEW ...ttt sttt stese st sttt st ste e ssenessenens 5-10
5.1.6 RDFVPD_POLICY_CONSTRAINTS VIEW ...cueeiiiiiiiriinieneniesiesieseeneeeeteeeeeieeiesie e 5-11
51.7 RDFVPD_PREDICATE_MDATA VIEW ..cuveieieieiieieeeeeeee ettt esesse e 5-11
5.1.8 RDFVPD_RESOURCE_REL VIEW....coeuiririiiiiiieiirieinieicieiesteie ettt 5-12
5.2 Oracle Label Security (OLS) for RDF Data.......c.cccccoiiiiiiiiiiiiciciicccccecs 5-12
5.2.1 Triple-Level SECUTILY ..o 5-12
5.2.2 Resource-Level SECUTILYcociiiiiiiiiiiecceeeee e 5-14
5.2.21 Securing RDF SUDJectsc.ooiiiioiiii 5-15
5222 Securing RDF Predicates ... 5-15
5.2.2.3 Securing RDEF ODbjJects.........ccccciviviiiiiiiiiiiiiiiiicii e 5-16
5224 Generating Labels for Inferred Triples........c.cccoooieiiiiiniiiiiniiiciccc 5-16
5225 Using Labels Based on Application LOGicCcccccceeuiiiiiiiiiiiiiiiccccice 5-18
5.2.2.6 RDFOLS_SECURE_RESOURCE VIEWccoetririiiriiiriiinieieeerieeieieseeiesieesseeseens 5-20

6 Workspace Manager Support for RDF Data

6.1 Enabling Workspace Manager Support for RDF Datacccooooiiiii 6-1
6.1.1 Removing Workspace Manager Support for RDF Data........cccccocovvvvnnrnnncinncne. 6-2
6.2 Version-Enabling an RDF Model...........ccoooiiic e 6-2
6.3 Inferring from Version-Enabled RDF Modelsccooriiiiiiiiiiiiiicce 6-3
6.4 Merging and Refreshing Workspaces in Version-Enabled RDF Models................c.c......... 6-3

7 Jena Adapter for Oracle Database

vi

71 Setting Up the Software ENVIronment...........ccccccoccciiiiiiiiiiiecceeeeeeeeeieenenenenenas 7-1
7.2 Setting Up the SPARQL SEIVICec.ooiuiiiiiiiieieiict s 7-3
7.21 Creating the Required Data Source Using WebLogic Server...........ccocovviieiiieinnnnen. 7-5
7.2.2 Configuring the SPARQL SEIVICEc.cueuiururiiiiiieiiricicieieeeeccecr e 7-6
7.2.2.1 Client Identifiersoeiiiiiiiiiiii e 7-8
7.2.3 Terminating Long-Running SPARQL Queries...........ccccooeuriieiniiininiieicceeeeeie, 7-8
7.2.4 N-Triples Encoding for Non-ASCII Characterscccoceceeueeeecieeeeeieieneeeeennes 7-8
7.3 Setting Up the Semantic Technologies Environmentcccooovoiiiiiiiciiiccie 7-9
7.4 SEM_MATCH and Jena Adapter Queries Compared...........cccooeueieirurieiiiiccieeiieciciecce 7-9
7.5 Optimized Handling of SPARQL QUETIESc.cceuiuimiiririiiiiciiiriricercreeeeeee s 7-10
7.51 Compilation of SPARQL queries to a single SEM_MATCH Call..........ccccccceevvvnnnn 7-10
7.5.2 Optimized Handling of Property Paths ..o 7-11
7.5.3 Optimized Handling of Plain BGP and OPTIONAL Queries..........ccccccoeueuvurueueunnnne 7-12
7.6 Additions to the SPARQL Syntax to Support Other Featurescccccoeviiiiinnnnnnnn 7-12
7.6.1 SOQL HINES ...ttt 7-12
7.6.2 Using Bind Variables in SPARQL QUETIES.......c.cccceueueiiuiiemiiriiiiiicicieiceeceereeeeeeeeeeeees 7-13
7.6.3 Additional WHERE Clause Predicates.........cccccooiuiiiiiiiiiiieiiciiieceeceeens 7-15
7.6.4 Additional Query OpHONSccccueioiiiiieiicc e 7-15
7.6.41 JOIN Option and Federated QUETies...........ccceuvuviviviiiiiririniirceceeee 7-16
7.6.4.2 525 Option Benefits and Usage Informationcccccoooeuevieicnicniicccccne, 7-18
7.6.5 Midtier Resource Caching ..o 7-18
7.7 Functions Supported in SPARQL Queries through the Jena Adapter..........ccccccceueueeee. 7-18
7.71 Functions in the ARQ Function Library ... 7-19
7.7.2 Native Oracle Database Functions for Projected Variables............cccccoovvvirnrninnnnen. 7-19
7.7.3 User-Defined FUNCHONSccoviiiiiiiiiiii s 7-20
7.8 Support for Server-Side APISccoviiiiiiiiiiciiii 7-23
7.8.1 Virtual Models SUPPOTT ... 7-24
7.8.2 Connection Pooling SUPPOTIt......ccccciiuiiiiiiiiiicicceeee s 7-25
7.8.3 Semantic Model PL/SQL INtEIfACEScovevevreerieriereeteeeeeereeeeete e eeeeveeveereevesreennens 7-26
7.8.4 Inference OPHIONS.........cccuiiiiiiiiiiiiiiic s 7-26
7.8.5 PelletInfGraph Class Support Deprecated...........cccccceoeeeiienniiineiicceecceeeees 7-26
7.9 Bulk Loading Using the Jena Adapter ..o 7-27
7.10 Example Queries Using the Jena Adapter..........cccccccceiiiiiiiiiiiiiiiccccceeces 7-28
7.10.1 Test.java: Query Family Relationships ... 7-29
7.10.2 Test6.java: Load OWL Ontology and Perform OWLPrime inference....................... 7-30
7.10.3 Test7 java: Bulk Load OWL Ontology and Perform OWLPrime inference............. 7-32
7.10.4 Test8.java: SPARQL OPTIONAL QUETYcouvviiiiiiiiiiiiiiiiccccns 7-33
7.10.5 Test9.java: SPARQL Query with LIMIT and OFFSETcccooviiniiniiiicinnn 7-35
7.10.6 Test10.java: SPARQL Query with TIMEOUT and DOP ..o 7-36

7.10.7

7.10.8

7.10.9

7.10.10
7.10.11
7.10.12
7.10.13
7.10.14
7.10.15
7.10.16

Test11java: Query Involving Named Graphs........ccccooiiiiiiiiiiiicc 7-37
Test12.java: SPARQL ASK QUETYcovurviiriiniiciicincie s 7-39
Test13.java: SPARQL DESCRIBE QUETYcccoiiviniiiiiiiiiiiiiicccns 7-40
Test14.java: SPARQL CONSTRUCT QUETY.....covuimiriiiiiiiiiiiieiciiiciieeieeeeeeeeenes 7-41
Test15.java: Query Multiple Models and Specify "Allow Duplicates" 7-42
Test16.java: SPARUL (SPARQL Update) Example.........cccccoccueciimiieciinnniceenes 7-44
Test17 java: SPARQL Query with ARQ Built-In Functions...........ccccoeveviiiiinnnnn 7-45
Test18.java: SELECT Cast QUETYcoouiuiiiiiiiiiiiiiicicicicictccct e 7-46
Test19 java: Instantiate Oracle Database Using OracleConnection............cccccc........ 7-47
Test20.java: Oracle Database Connection POOLNG ..o 7-48

8 Sesame Adapter for Oracle Database

8.1
8.2
8.2.1
8.2.2
8.2.2.1
8.2.2.2
8.2.2.3
8.2.3
8.3
8.4
8.4.1
8.5
8.5.1
8.6
8.6.1
8.6.2
8.6.3
8.7
8.7.1
8.7.2
8.7.3
8.7.4
8.8
8.8.1
8.8.2
8.8.3
8.8.4
8.9
8.10
8.10.1
8.10.2
8.10.3
8.10.4
8.10.5

Sesame Adapter OVEIVIEW ... 8-1
Setup and Configuration for the Sesame Adapter..........ccccoooiiiiiiii 8-3
Setting Up the Software Environment............cccccococeiiiiiiiiiiiieceeeeeecceeeenenes 8-3
Setting Up the SPARQL SeIViCecooeuiiiiuiiiiiiicieiec e 8-4
Creating the Required Data Source Using WebLogic Server..........c.cccccooeeue... 8-13
Configuring the SPARQL SEIVICEc.cucuiuiuiuiiimiiiieiicieeireeeeceeeeeeeeeeeeeeeeeeeees 8-14
Terminating Long-Running SPARQL Queriesc..ccoooeueieiircieininicieeece, 8-14

Setting Up the Semantic Technologies Environment...........ccccoooioriiniiiiiincnna 8-14
SEM_MATCH and Sesame Adapter Queries Comparedccccceeueueverircnneencnenenes 8-15
Optimized Handling of SPARQL QUETIESccoceveviviiiriiiiiiiiiiiiieiiceeees 8-16
Compilation of SPARQL Queries to a Single SEM_ MATCH Callccccceuevenne 8-16
Recommendations for Best Performanceccocoovvviiinininiiiniiicceccces 8-16
Statement Storage and Implications for Sesame Adapter Queries.............cccccevnnee. 8-16
Additions to the SPARQL Syntax to Support Other Featuresccccocooiiiiininn 8-17
SOL HINES c.utiitiieieeeeeeeete ettt ettt et te e e taeeev e e b e etb e e baeebeebeesabeenbaentseenbaeesaeenrs 8-17
Additional WHERE Clause Predicates..........cccoviiiiiiiiiiiiciiiiiicecceces 8-17
Additional Query OpHONSccceuiiiiiieiice s 8-18
Support for Server-Side APISccccccciiiiiiiecerree s 8-18
Virtual Models SUPPOTt ..o 8-19
Connection Pooling SUPPOTt........ccccciiuiiiiiiiiiiiiiiccs 8-20
Semantic Model PL/SQL INtEIfacescoocvvevvieeeirieiecreeeeeteeeeete ettt eve e eveens 8-21
Inference OPHONS.ccvviviiiiiiiii s 8-21
Oracle-Specific Extensions to Sesame APIs...........ccccoooiviiiiiiiiciinicee 8-21
Statement UNIiqUeNESs...........ccccviiiiiiiiiniiiiiic s 8-21
Indexes and Interoperability with the Jena Adapter.........cccccovvvviiininnnn 8-22
INFEIEIICE ...ttt 8-23
Performing Analysis Operations.............ccccceccueueieiemiieieieieeeneieeeneeneeneenenenenenenenenens 8-23
Using the Sesame Console with the Sesame Adapter ... 8-23
Example Queries Using the Sesame Adapter.........ccccocoviiiiiiiiiiiicee 8-26
Examplel.java: Basic Operations.........c.ccccccccieuiciiiiiiiiieiiieceeeeeeieieeeneeeeeeeneeenees 8-27
Example2 java: Add a Data File (in TRIG format)cccccocvvvviiiinininiiicnnn 8-29
Example3.java: SImple QUETYcccccuvuriviiiiiiiiiiiiiiiiinciccrc s 8-30
Example4.java: Simple Bulk Loadccccccoeiuiiiiiiiicccrecceeceees 8-32

Example5 . java: Bulk Load RDF/XML and Application Table Index Maintenance 8-34

vii

viii

8.10.6

8.10.7

8.10.8

8.10.9

8.10.10
8.10.11
8.10.12
8.10.13
8.10.14
8.10.15
8.10.16
8.10.17

8.10.18

Example6.java: Bulk Load With StatusListener to Handle Loading with Bad Data
8-36

Example7 java: Load Data from Sesame Store into Oracle Database 8-38
Example8.java: SPARQL ASK QUETY ...c.coouiuiiiieiiiiiiiciririeieieeeeeeeeeeeeeeeeeeeeeeeeeeeee s 8-40
Example9.java: SPARQL CONSTRUCT and DESCRIBE..........ccccccoviininiiiiicnnnn 8-41
Examplel0.java: Inference ... 8-43
Examplelljava: Named Graph QUETY.......cccccccoecuiiiiiiiiiiiiiieiiciccecceceeeeeeeeeenens 8-46
Examplel2java: Indexes on Application Table [Advanced]..........c.cccccoovvvvuerinnnnnnee. 8-48
Examplel3.java: Uniqueness Constraint on Application Table [Advanced] 8-49
Examplel4.java: Query Timeout and Parallel Execution [Advanced]........................ 8-51
Examplel5.java: Get COUNT of Matches [Advanced]ccccoouereiviunicicininnnnnnn. 8-53

Examplelé6.java: Specify Bind Variable for Constant in Query Pattern [Advanced] 8-54

Examplel7 java: Specify Bind Variable for Constant in Different Position in Query
Pattern [Advanced] 8-56

Examplel8java: Build URIs from Internal Numeric IDs [Advanced]........................ 8-58

SEM_APIS Package Subprograms

SEM_APIS.ADD_SEM_INDEX.....cccccosteimiimiineinetnetnieneeeesiesesreseeseseeneseeseseeseseeseseeneseesenes 9-2
SEM_APIS.ALTER_ENTAILMENTccocooiiiiiiiriieereeeeereeeeee e ee 9-3
SEM_APIS.ALTER _MODELcoociiiiiiiiiiiiiieieieteteeetetete e sttt se et ene e saees 9-4
SEM_APIS.ALTER_SEM_INDEX _ON_ENTAILMENTcccccevermimeineeneenecneeneeennene 9-5
SEM_APIS.ALTER_SEM_INDEX_ON_MODELcccccectriiimriniineeneeneeereeeneeeneeeseenenns 9-7
SEM_APIS.ANALYZE_ENTAILMENToooiiieeeceteeeeeteteeee et 9-9
SEM_APIS.ANALYZE _MODELc.coccciniiiriiineincinetnetnetnieenieesieseesesee e sesee e neseene 9-11
SEM_APIS.BULK_LOAD_FROM_STAGING_TABLEcccceceriiiineireerereereeeee 9-13
SEM_APIS.CLEANUP_FAILEDccciiiniiiiiiiiiieintnteeesteere ettt et se e sse e saens 9-15
SEM_APIS.COMPOSE_RDF_TERMcccccvtrtrirnriiniienienteeneneneeeneeeseereseeeseeeseesenaeneneene 9-16
SEM_APIS.CREATE_ENTAILMENTcocciiiiiiirieeneeeeeereeeeee e 9-19
SEM_APIS.CREATE_RULEBASEoocteititriieneteteetcteeeeet et sve v 9-27
SEM_APIS.CREATE_SEM_MODEL.......cccccectrminiiinieninenenineeneeeeseereseeeseeseeeseneeneneene 9-28
SEM_APIS.CREATE_SEM_NETWORKccccectriiiiiniinenreeeeeeereeesee e 9-29
SEM_APIS.CREATE_VIRTUAL_MODELccceoiiiiiiiiiiiieccececeeee e 9-30
SEM_APIS.DISABLE CHANGE_TRACKINGccceieetririreinerineeeeneeeneeeneeeneeeneeneneene 9-32
SEM_APIS.DISABLE_INC_INFERENCE........ccccceiiimiiinrinreneeeereeeseeeseeesee e 9-33
SEM_APIS.DROP_ENTAILMENTcoceotiitiitiiitiieirtetnenestteesestesteteeetene et ee st sve e 9-34
SEM_APIS.DROP_RULEBASEccoceitniiniintnctntetntetnetseesiees s seene 9-35
SEM_APIS.DROP_SEM_INDEX......cccccecteieiriiriiniiinieeereeeeeeeeeeseee s 9-36
SEM_APIS.DROP_SEM_MODEL........cocoiriiriiniiieieietninentntteesestesiesseneeseeteeeeeeesesne e 9-37
SEM_APIS.DROP_SEM_NETWORKcccecertmitmriinriinretneneneeneeeeseereseeeseeeseeseneeneneene 9-38
SEM_APIS.DROP_USER_INFERENCE_OBIJSc.cccceoiriiniinrinnireereereeeneeneeseeenee 9-39
SEM_APIS.DROP_VIRTUAL_MODEL........ccceceiiiiiiiiniiniiniieeseeeseee e 9-40
SEM_APIS.EENABLE CHANGE_TRACKINGcccccsetrreririeireenieeeeneereneeeneeeeeneneeneneene 9-41
SEM_APIS. ENABLE_INC_INFERENCEccccooiiiiiineeneereereeeseeeseee e 9-42
SEM_APIS.GET_CHANGE_TRACKING_INFOccccceoiniiiiiiiiniininccceceeee 9-43

SEM_APIS.GET_INC_INF_INFO....cccocecorierininennenetnenteeneeeseeeeereseeresese e seeseseene 9-44

SEM_APIS.GET_MODEL _IDccoiiiiiiniiiniineineneenreeereeeee et eene 9-45
SEM_APIS.GET_MODEL_NAME.......coccoiiiitiiiiiiiietetne st seestesresneseeseeeee e s 9-46
SEM_APIS.GET_TRIPLE_IDcocciriiciniiiiniiinicincencenieenretsreeeieesre e ses s e neeene 9-47
SEM_APIS.GETVSDATETIMETZVAL.....ccccoviiiinniiinneeenenteerecneseeteieeesesneseseesesnenene 9-49
SEM_APIS.GETVSDATETZVAL....coiiiiiiiieineeecrctseeesee ettt 9-50
SEM_APIS.GETVENUMERICVALccoueiiirinieiiinineicittnteieieentste et ieseeesesesse et sessenesene 9-51
SEM_APIS.GETVSSTRINGVAL.....c.ooviiieiiirinieitrinecittnteie et esesesesreseeeetsessesesesessesenne 9-52
SEM_APIS.GETVSTIMETZVAL...c.cciniiiinieinencneeneetsertsiee ettt 9-53
SEM_APIS.IS TRIPLEcoioiiiriiirietrereeteteteeteeeeeeeieeeie st st 9-55
SEM_APIS.LOOKUP_ENTAILMENTccooiiimiiniininetneeeeeeeeeeeere e 9-57
SEM_APIS.MERGE_MODELS........cccotrimtiiiiiieieieieteteese sttt seetene et saens 9-58
SEM_APIS.REMOVE_DUPLICATESc.ccoeirtrirtriincteeneeeneeeneeeeee s 9-60
SEM_APIS.RENAME_ENTAILMENTccccccciniiininieeneeeeeee e 9-61
SEM_APIS.RENAME_MODELcccoiiriiiiiiiiieieieieteese ettt et esessesnens 9-62
SEM_APIS.SWAP_NAMES......coocrinercnetnenetnteterestee et 9-63
SEM_APIS.VALIDATE_ENTAILMENTccceiiniiiinieereeree e 9-64
SEM_APIS.VALIDATE_MODELccoociriititiiiiiieietetetne sttt sttt saens 9-66
SEM_APIS.VALUE_NAME_PREFIX......cccccoiiiniiniinineenennereneeeeeeeseeeseee s 9-68
SEM_APIS.VALUE_NAME_SUFFIX......cccccoeitmiiiineineereeneeneeneeereeere e 9-70

10 SEM_PERF Package Subprograms

11

SEM_PERF.GATHER _STATSccooiiiieeneeerteneteeteee et 10-2

SEM_RDFCTX Package Subprograms

SEM_RDFCTX.CREATE_POLICYootiiiiiiriiineieeeeeereeeereeeee e seeene 11-2
SEM_RDFCTX.DROP_POLICY ...ceetrtrirririinenienienieieteteeeeeiteesreseestessesaeseeneeseeneesessessensens 11-4
SEM_RDFCTX.MAINTAIN_TRIPLES.......ccccecrtriniimeinetneeneeneeneenreesreesesesresesneeene 11-5
SEM_RDFCTX.SET_DEFAULT_POLICYccviiriiinineineneeeeeeeeeereeereeeesee e 11-7
SEM_RDFCTX.SET_EXTRACTOR_PARAM.....cccoitrtiitrirentnenesteteteneeneeeeeee s evesvenaens 11-8

12 SEM_RDFSA Package Subprograms

SEM_RDFSA.ADD_VPD_CONSTRAINTcccccoriiiiiiiiieeeeeeeeeeeeeeeeee 12-2
SEM_RDFSA.APPLY _OLS_POLICYootiiriiriinieiricenctnietneeneesieeereseereseee s eseeneneene 12-4
SEM_RDFSA.APPLY_VPD_POLICY ...c.cociciiiiiniieieeeeeereeereeesee e 12-7
SEM_RDFSA.CREATE_VPD_POLICYooctriniiiriiiiieieteeeteeneseesresteseeseenteeeeeneeessenaens 12-8
SEM_RDFSA.DELETE_VPD_CONSTRAINTcoceoviriieineineeneenreeereee e 12-10
SEM_RDFSA .DISABLE_OLS_POLICYccoeiiriiiiriiniineeeereeeneeeseeeseeneseee s ene 12-11
SEM_RDFSA.DROP_VPD_POLICYccertriririniinienienienietenteteteeeeereere e et veseseeeennene 12-12
SEM_RDFSA.ENABLE _OLS _POLICYcovtrtrintrieinieenieeneneeeneeieneereseereseeneseeseseenensesenne 12-13
SEM_RDFSA MAINT_VPD_METADATA ..ot 12-14

A
A1
A12
A1.21
A13
Al1.4
A15
A2
A2A1
A22
A3

Index

SEM_RDFSA.REMOVE_OLS _POLICYccceitrtrinrinineneeereeerteenieientereseeseseeessesesaenessenene 12-16

SEM_RDFSA.REMOVE_VPD_POLICYcccceooiiiriiiiiiniiniieiesei s 12-17
SEM_RDFSA.RESET_MODEL_LABELS........cccoceoisiiniiniiniieiese e s 12-18
SEM_RDFSA.SET_PREDICATE_LABELcccccoooiiiiiiiiinicce s 12-19
SEM_RDFSA.SET_RDFS_LABELcoiiiiiiiiieiiieicie s 12-21
SEM_RDFSA.SET_RESOURCE_LABEL.........ccooiiiiiiiniiniccce s 12-23
SEM_RDFSA.SET_RULE_LABELcccooiiiiiiiiiiii s 12-25
Enabling Semantic Technologies SUPPOIt..........ccccoiiiiiiiiiiiiec e, A-1
Enabling Semantic Technologies Support in a New Database Installation A-1
Upgrading Semantic Technologies Support from Release 11.1.......ccccccooiiiiinnnnne A-2
Handling of Empty RDF Literalsccccooioiiiiiiiiiiccc, A-3
Upgrading Semantic Technologies Support from Release 10.2..........ccccccceiuiicuennnne. A-4
Release 11.2.0.2: Required Actions if Semantic Technologies Installation is Invalid A-4
Spatial and Partitioning Requirements...........cccccooioimieieiniicieiiccieeeccce e A-5
Downgrading Semantic Technologies Support to a Previous Release............c.ccccccuceeee. A-5
Downgrading to Release 11.1 Semantic Technologies Support...........ccccceiruerennnnnee. A-5
Downgrading to Release 10.2 Semantic Technologies Support...........cccccevereieinncne. A-7
Removing Semantic Technologies SUPPOTtcccccueuiiiiciiiiiiiiiciccccceeeeee e A-8

List of Examples

o

T I QST T U T T T QT G ' Y
| T A |

= S LA a0 00NN =
A OWN =

1-15
1-16
1-17
1-18
1-19
1-20
1-21
1-22
1-23
1-24

N —
1111
~AOON=2DN

a1

NDNDMNPDMNPDMNDODNDNDNDNDNDNDDND

LLLLLELLS G

7-10
7-11

Inserting a Rule into @ RUIEDASEcoouiiiiiii e 1-9
Using Rulebases for INferencingccoceeiioiiiiiiicecec s 1-10
Creating an Entailmentooooii 1-11
Querying a Virtual Model ..o 1-12
SDO_RDE_TRIPLE_S Methods.........cccouiiuriiiiiniiciiieiecece i 1-16
SDO_RDEF_TRIPLE_S Constructor to Insert a Triple.........cccccoeviiiiiiiniiiiiiiiien, 1-17
SDO_RDEF_TRIPLE_S Constructor to Reusing a Blank Node.............cccccceeviiiiiiininnnnn. 1-18
SEM_MATCH Table FUNCHONcc.ooriiiriiiieicciccc s 1-20
HINTO Option with SEM_MATCH Table Function...........cccccccoeeiiiiniiiiniinne, 1-21
SEM_MATCH Table FUNCHONcc.oceiiieiieiieiccicc s 1-21
Curly Brace SYNtaX......ooccieiiice s 1-22
Curly Brace Syntax and OPTIONAL Constructcooeeueieiiiciiiiiiceeecceeeeicies 1-22
Curly Brace Syntax and Multi-Pattern OPTIONAL Construct...........cccccevvviviviiiinininnnne. 1-23
Curly Brace Syntax and Nested OPTIONAL Constructcccccevvvvviviviviiiiniininninnn, 1-23
Curly Brace Syntax and Parallel OPTIONAL Construct........cocevoeeecieieininieiccceae 1-23
Curly Brace Syntax and FILTER CONStruCt.........coccueuoiiiiicieiiiiceeecic s 1-24
Curly Brace Syntax and FILTER with REGEX and STR Built-In Constructs................... 1-25
Curly Brace Syntax and UNION and FILTER Constructs.........cccccoceveviiiiiiniininiennen, 1-25
Inline Query Optimizer HINts...........cooiuiiiiiiii 1-26
Creating a Full-Text Index on the MDSYS.RDF_VALUES$ Tablec.ccccoooniniininne. 1-27
Full-Teext SEArch........ccccviiiiiiiiiiiiiiiii s 1-27
Using HINTO to Ensure Use of Function-Based IndeX...........cccooooieiiiiii 1-28
Gathering Multicolumn and General Statisticsococoeuiiiioiiiiiicc 1-29
Using a Model for Journal Article Informationcooooeiiiiiiii 1-36
Using a Model for Family Information...........cccoooiiiiiiiiccc 1-38
Creating a Simple OWL Ontologyccocueuiiiurueieiicicieeccie s 2-4
Performing Native OWL INferencingccccooeiieiiiiiiiecceccece e 2-5
Performing OWL and User-Defined Rules Inferencing...........cccccooeeeieiinneiicniccnne, 2-5
Displaying Proof Information ... 2-6
Validating an Entailmentcoooiii 2-7
Performing Selective INferencingcocovoiieieiiiiiiiiicce 2-12
SEM_RELATED OPeratorcccouoiuriiiniiieiiieiiisiiseieie e 2-14
SEM_DISTANCE Ancillary Operator.........ccccoeuiueiieciiininininicisinis i 2-15
Using SEM_DISTANCE to Restrict the Number of Rows Returned............ccccccevvvvinnne 2-15
Creating a Semantic INdeX.........ccccocciiiiiiiiiiiis 2-17
Creating a Semantic Index Specifying a Model and Rulebase...........c.cccccooovniiiirninnnes 2-17
Query Benefitting from Generation of Statistical Information............ccccceceevviriviinnininnes 2-17
Specifying a URI Prefix During Semantic Index Creation...........ccccceevuvvivivrvniinnninnnes 2-18
SKOS Definition of an Electronics Scheme ... 3-1
Validating an SKOS Entailment..........ccccoiiiiiiiiiiiiiccccccccccceceneenennes 3-3
Property Chain Insertions to Implement S55...........cccccocoiiiiiiiiiiiiiciicececes 3-4
RDFCTX_EXTRACTOR Abstract Type Definition.ccccccovvvvviiinnnnninniine, 4-2
Creating a Custom Label Generator TYpe.........ccococeueieiininininicieeicce e 5-19
Loading Data into the Staging Table (prepareBulk).........c.ccccoooeiiiiiiiniiiiene, 7-27
Loading Data from the Staging Table into the Semantic Network (completeBulk) 7-28
Using prepareBulk with RDFa........cccccccccoiiiiiiiiiiiiccccces 7-28
Query Family Relationships........cccccccciiiiiiiiiiiiiiiiiiiicciccees 7-29
Load OWL Ontology and Perform OWLPrime inferencec.cccoocoeeiniiicnininicnnennnes 7-30
Bulk Load OWL Ontology and Perform OWLPrime inference............ccccccccceuvuruiunirunnnnne. 7-32
SPARQL OPTIONAL QUETY ..ottt 7-33
SPARQL Query with LIMIT and OFFSETcccccooiiimniinicicsiccccccen 7-35
SPARQL Query with TIMEOUT and DOP........cccccoovurmiiiniiicinicinicccescccnae 7-36
Named Graph Based QUETYcccccoueuiiiiiiiiiiiiiiiiiiiicce s 7-37
SPARQL ASK QUETY ...ttt 7-39

xi

7-12 SPARQL DESCRIBE QUETYcooiiiiiiiiiiiiiieiiieiiieieieiieeie e 7-40

7-13 SPARQL CONSTRUCT QUETY ...coovrviriririiiiiieiiiiieieieieieieeieeeiesese s 7-41
7-14 Query Multiple Models and Specify "Allow Duplicates"ccccovevininiiiniinnnnn 7-42
7-15 SPARUL (SPARQL Update) EXamplecccceiiiiiiiiiiiiiiiiiiciceceeeees 7-44
7-16 SPARQL Query with ARQ Built-In FUNCtioNScccovrvieiiiiiiiiiccc 7-45
7=17 SELECT Cast QUETYccooeiiiiiieieieiiciie ittt 7-46
7-18 Instantiate Oracle Database Using OracleConnection............ccoeerueiiiinieieiicniciciccnnen 7-47
7-19 Oracle Database Connection POOLNG..........c.ccouiiiiiiiiiiiieiic s 7-48
8-1 Sample Usage flow for Sesame Adapter ... 8-2
8-2 Migration Between Jena Adapter and Sesame Adapter Modelscccccoeueviivivninnnnnnn. 8-22
8-3 Using the Sesame COonSole.........cccueiiiiieiiiiii s 8-25
8-4 Basic OPerations.........cuciuiiiiiiiiiiiiiiiiiiciie s 8-27
8-5 Add a Data File (in TRIG fOrmat)cccceereririirieieininiinienestesiesie ettt 8-29
80 SIMPIe QUETY ..oouiiiiii s 8-30
8-7 Simple Bulk Load ... 8-32
8-8 Bulk Load RDF/XML and Application Table Index Maintenanceccccceevevevennnn. 8-34
8-9 Bulk Load With StatusListener to Handle Loading with Bad Datacccccccoouiirninnn. 8-36
8-10 Load Data from Sesame Store into Oracle Databasecccocovvvviiiiininnninnn 8-38
8—11 SPARQL ASK QUETYovriiiiiiiiiiniiiiicececicnces sttt sss st tenne 8-40
8-12 SPARQL CONSTRUCT and DESCRIBE...........cccccoviiiiiiiiiiiiicccncncscecssscacnnes 8-41
8=13 INfEIENCE ...coiiiiiiiiiiiicc s 8-43
8-14 Named Graph QUETY.......ccccoeiiiiiiiiiiiicieiec i 8-46
8-15 Indexes on Application Table [Advanced].........cccccoviiiiiiiiniii 8-48
8-16 Uniqueness Constraint on Application Table [Advanced].........ccccccoovvriiiiiiiiiinnnns 8-49
8-17 Query Timeout and Parallel Execution [Advanced]...........cccccovvvinininniiiins 8-51
8-18 Get COUNT of Matches [AdVanced]ccceeeveeeieriecienieiereeieseetese e se e ss e 8-53
8-19 Specify Bind Variable for Constant in Query Pattern [Advanced]...........cccccoevuvinniines 8-54
8-20 Specify Bind Variable for Constant in Different Position in Query Pattern [Advanced].........
8-56
8-21 Build URIs from Internal Numeric IDs [Advanced]........cccccevveruereeriirienienieieeiereeeeeenes 8-58

Xii

List of Figures

Oracle Semantic Capabilities.........ccoooiiiiiiiii e 1-2
INFETENCINGoviiiiiii s 1-8
Family Tree for RDF Example........cccccccoiiiiiiiiiiiiiiiiiiiccens 1-38
Cancer Ontology EXample..........coouiiiiiiiiiiic e 2-2
Physical Versioning of Entailment (Rules Index).........cccccoeeiiiiiiiiiinniiiiiiiiiins 6-3

xiii

List of Tables

Xiv

[U O s Y B I Y (T P |
wWnN =0

[
= 2 N =200~ WON=-WVONLONLA A4 a1 O0O0ONOOOGODWON =

(OCD\I\IU‘IU‘IU‘IU‘IU‘IU‘I-h-lh-hl\Jl\JN—l—*—l—L—L—L—L—L—L—L—L—L—L

€
N

12-1

MDSYS.SEM_MODELS$ VIieW COIUITITISvoiiuiiiiiiieieceeeeeee ettt et seeas 1-4
MDSYS.SEMM_model-name VIiew COIUINIS......c...ooouviiieieeiieeeeeee e eeeeeeeveeseveeeennes 1-4
MDSYS.RDF_VALUES$ Table COIUMINScvoiiviiiiiiieceieeteeeeeeeee ettt sane e 1-5
MDSYS.SEMR _rulebase-name View COIUMNScocveevieiiieeriiiireeeieeee e 1-9
MDSYS.SEM_RULEBASE_INFO View COIUMNSccccoitiiiieiieieeeieeeiee et eeve e e 1-9
MDSYS.SEM_RULES_INDEX_INFO View COIUMNSccceeeveiiiieiieeieeereeeie e v 1-10
MDSYS.SEM_RULES_INDEX_DATASETS View COlumMNSc.ccoovevevieviieeieereeeeeereenns 1-11
MDSYS.SEM_MODELS$ View Column Explanations for Virtual Models...................... 1-13
MDSYS.SEM_VMODEL_INFO View COIUMNSc..coceeiviieiieeii et eve v 1-13
MDSYS.SEM_VMODEL_DATASETS View COIUMNSccceeviieirieeieereeereeeie e e v 1-14
Semantic Metadata Tables and VIEWScocovieiiiiiieeiieiie ettt et e evee e 1-15
Built-in Functions Available for FILTER Clause.........coveevievieiieciieeeeeieeeveeeve e 1-24
Semantic Technology Software Objects: Old and New Namesccccocovvvinininiinnen. 1-45
PATIENTS Table Example Data ... 2-2
RDFES/OWL Vocabulary Constructs Included in Each Supported Rulebase.................... 2-3
MDSYS.SEMCL_entailment_name View COIUMNSccocvvevveievivieieeeeeeeeeeeeeeeeeeee e 2-10
MDSYS.RDFECTX_POLICIES VieWw COIUMNScccoiveeiiiiiieeiieeeeeereeeeeereeereeeveesveeeveeveens 4-13
MDSYS.RDECTX_INDEX_POLICIES View COIUMNSccceeeviieirieerieeereereeeeeereeeveeneens 4-13
MDSYS.RDFCTX_INDEX_EXCEPTIONS View COIUMNSc..ccvveeveeereeeieeieeeieeereereeans 4-14
MDSYS.RDFVPD_POLICIES VieWw COIUNNS.....ccuviveieiieeeieiieeeeieee e 5-10
MDSYS.RDFVPD_MODELS VieW COIUININScooouiiiiieieeeeee e eeavessvaeean 5-10
MDSYS.RDFVPD_POLICY_CONSTRAINTS View Columns........ccccceeveeevieenreeereeneenns 5-11
MDSYS.RDFVPD_PREDICATE_MDATA View Colummns.........c.ccocveeevienieeeveeereeceeeneenns 5-11
MDSYS.RDFVPD_RESOURCE_REL View COIUMNS.....ccccovvieirieerieeieereeeeeeeieeeveeveeneeens 5-12
MDSYS.RDFOLS_SECURE_RESOURCE View Columns..........ccceevveeeieeneeecreenieeereeneens 5-20
Functions and Return Values for my_strlen Example..........c.cccooevvininniniininininnnn, 7-20

PL/SQL Subprograms and Corresponding Jena Adapter Java Class and Methods.... 7-26
PL/SQL Subprograms and Corresponding Sesame Adapter Java Class and Methods 8-21

Inferencing Keywords for inf_components_in Parameter.............ccccoevvniinnnninnne. 9-21
SEM_RDEFSA Package Constants for label_gen Parametercccoooeviniiiiniiicnnns 9-24
SEM_RDEFSA Package Constants for rdfsa_options Parameter-...........ccccoevevviiinininne. 12-5

Audience

Preface

Oracle Database Semantic Technologies Developer's Guide provides usage and reference
information about Oracle Database Enterprise Edition support for semantic
technologies, including storage, inference, and query capabilities for data and
ontologies based on Resource Description Framework (RDF), RDF Schema (RDEFS),
and Web Ontology Language (OWL). The Semantic Technologies feature is licensed
with the Oracle Spatial option to Oracle Database Enterprise Edition, and it requires
the Oracle Partitioning option to Oracle Database Enterprise Edition.

Note: You must perform certain actions and meet prerequisites
before you can use any types, synonyms, or PL/SQL packages related
to Oracle semantic technologies support. These actions and
prerequisites are explained in Section A.1.

This guide is intended for those who need to use semantic technology to store,
manage, and query semantic data in the database.

You should be familiar with at least the main concepts and techniques for the Resource
Description Framework (RDF) and the Web Ontology Language (OWL).

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http: //www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

XV

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/support/contact.html or visit
http://www.oracle.com/accessibility/support.html if you are hearing
impaired.

Related Documents

For an excellent explanation of RDF concepts, see the World Wide Web Consortium
(W3C) RDF Primer athttp://www.w3.org/TR/rdf-primer/.

For information about OWL, see the OWL Web Ontology Language Reference at
http://www.w3.0org/TR/owl-ref/.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

XVi

What’s New in Semantic Technologies?

This section describes new and changed semantic technologies features for Oracle
Database Release 11.

Release 11.2 Features
The following are new and changed features for Oracle Database 11g Release 2 (11.2).

This release also includes the features that were supplied in the interim patch 7600122
for Release 11.1.0.7.0, which are listed in "Features Added for Release 11.1.0.7
(November, 2008)".

Release 11.2.0.2: Required Actions if Semantic Technologies Instal-
lation is Invalid: Further action may be required if your Semantic
Technologies installation is invalid after upgrading to Release
11.2.0.2.0. For information, see Section A.1.4.

Jena Adapter for Oracle Database (Updated November, 2010)

The Jena Adapter for Oracle Database provides a Java-based interface to Oracle
Semantic Technologies by implementing the well-known Jena Graph and Model APIs.
For information about downloading and using the Jena Adapter, see Chapter 7.

Note: An update of the Jena Adapter was made available in
November, 2010. For information about the new features in that
update, see the "readme" file included in the download .zip file.

Enhanced Optimizer Hint Support in SEM_MATCH (11.2.0.2)

Effective with Release 11.2.0.2, you can embed inline HINTO query optimizer hints
using SPARQL comments in SEM_MATCH, which allows optimizer hints to be
associated with non-root BGPs in a SPARQL query. In addition, new hints have been
introduced to influence joins between BGPs. For information, see Section 1.6.3, "Inline
Query Optimizer Hints".

Full-Text Indexing and Searching for RDF Terms (11.2.0.2)

Effective with Release 11.2.0.2, you can create an Oracle Text index on the
MDSYS.RDF_VALUES$ table and use the orardf : textContains SPARQL FILTER
function to execute efficient full-text searches in semantic queries. For information, see
Section 1.6.4, "Full-Text Search".

xvii

xviii

OLS Triple-Level Security (Added in Patch 9819833 in June 2010)

Oracle Label Security (OLS) for RDF data provides the triple-level security option, in
addition to the resource-level security previously available. Triple-level provides
superior performance and ease of use, and is described in Section 5.2.1.

Features Added in Patch to Release 11.2 (Released March 2010)

The following features are included in a Release 11.2 Semantic Technologies patch that
was made available on the Oracle Technology Network (OTN) in March 2010. You
must apply that patch in order to be able to use these features.

» The recommended best practices in Section 1.6.5.1, "FILTER Constructs Involving
xsd:dateTime, xsd:date, and xsd:time" and Section 1.6.5.2, "Function-Based Indexes
for FILTER Constructs Involving xsd Data Types"

s The functions with names in the form SEM_APIS.GETVS$... in Chapter 9, "SEM_
APIS Package Subprograms”

In addition, Section A.1.2, "Upgrading Semantic Technologies Support from Release
11.1" has been expanded to include Section A.1.2.1, "Handling of Empty RDF Literals".

Sesame Adapter for Oracle Database

The Sesame Adapter for Oracle Database integrates the popular Sesame Java APls
with Oracle Semantic Technologies support. For information about downloading and
using the Sesame Adapter, see Chapter 8.

Note: Support for the Sesame Adapter was provided in a patch that
was made available in January, 2010, on the Oracle Technology
Network (OTN), and is updated in a patch made available in March or
April, 2010.

Semantic Indexing for Documents

You can use semantic indexing to enable queries on information extracted from
unstructured documents. Documents indexed semantically can be searched using the
SEM_CONTAINS operator within a standard SQL query. For information about using
semantic indexing, see Chapter 4.

The SEM_RDFCTX PL/SQL package contains subprograms to manage extractor
policies and semantic indexes created for documents. This package is documented in
Chapter 11.

Virtual Private Database (VPD) and Oracle Label Security (OLS) Support

You can enforce a fine-grained access control mechanism for RDF data by using either
the Virtual Private Database (VPD) or Oracle Label Security (OLS) feature of Oracle
Database, as explained in Chapter 5.

Workspace Manager Support for RDF Data

You can use Oracle Workspace Manager to version-enable RDF data in the semantic
data store, as explained in Chapter 6.

New Procedures to Enable, Downgrade, and Remove Semantic
Technologies Support

The procedures for enabling, downgrading, and removing semantic technologies
support in the database have been redesigned. These procedures are explained in
Appendix A.

Note that you still must perform certain actions and meet prerequisites before you can
use any types, synonyms, or PL/SQL packages related to Oracle semantic technologies
support. These actions and prerequisites are explained in Section A.1.

Optimized owl:sameAs Inference

You can optimize the performance of owl : sameAs inference, as explained in
Section 2.2.8.

Optimizing Entailment Performance Through Compact Structures

You can specify RAW8=T in the options parameter to the SEM_APIS.CREATE_
ENTAILMENT procedure, to cause RAWS datatypes to be used instead of NUMBER
in many intermediate tables created during the inference process. This option can
improve entailment performance by up to 30% in some cases.

Incremental Inference

You can use incremental inference update entailments (rules indexes) efficiently after
triple additions, as explained in Section 2.2.9.

Parallel Inference

You can use parallel inference to improve inference performance by taking advantage
of the capabilities of a multi-core or multi-CPU architectures, as explained in
Section 2.2.10.

Filter and Union Support in Curly Brace Syntax for SEM_MATCH

You can now specify FILTER or UNION, or both, in addition to OPTIONAL as
keywords in the curly brace syntax supported for the SEM_MATCH table function.
These keywords are explained in Section 1.6.2.

Simple Knowledge Organization System (SKOS) Support

You can perform inferencing based on a core subset of the Simple Knowledge
Organization System (SKOS) data model, as explained in Chapter 3.

Inference Beyond OWLPrime
You can specify additional inference components to cover OWL constructs, such as
owl:intersectionOf and owl:unionOf, as explained in Table 9-1, " Inferencing

Keywords for inf_components_in Parameter” in the Usage Notes for the SEM_
APIS.CREATE_ENTAILMENT procedure in Chapter 9.

Systematized Nomenclature of Medicine - Clinical Terms (SNOMED CT)
Support

The current release includes a built-in rulebase that supports the expressiveness of
Systematized Nomenclature of Medicine - Clinical Terms (SNOMED CT) terminology.

To include this support, specify the SNOMED keyword in the inf_components_in
parameter in the call to the SEM_APIS.CREATE_ENTAILMENT procedure .

Xix

New SEM_APIS Package Subprograms

The following subprograms have been added to the SEM_APIS PL/SQL package,
which is documented in Chapter 9.

s SEM_APISMERGE_MODELS

s SEM_APISREMOVE_DUPLICATES
= SEM_APISRENAME_MODEL

s SEM_APIS.SWAP_NAMES

Parameters for SEM_PERF.GATHER_STATISTICS

The SEM_PERFE.GATHER_STATS procedure now accepts two parameters, both
optional: just_on_values_table and parallel. This procedure is documented in
Chapter 10.

SEM_APIS.*_RULES_INDEX Subprograms Deprecated

In the SEM_APIS PL/SQL package, the subprograms containing "_RULES_INDEX" in
their names are deprecated and removed from this manual. Instead, you should use
subprograms containing "_ENTAILMENT" in their names:

s Instead of SEM_APIS.ALTER_SEM_INDEX_ON_RULES_INDEX, use SEM_
APIS.ALTER_SEM_INDEX_ON_ENTAILMENT.

= Instead of SEM_APIS.ANALYZE_RULES_INDEX, use SEM_APIS. ANALYZE_
ENTAILMENT.

= Instead of SEM_APIS.CREATE_RULES_INDEX, use SEM_APIS.CREATE_
ENTAILMENT.

= Instead of SEM_APIS.DROP_RULES_INDEX, use SEM_APIS.DROP_
ENTAILMENT.

= Instead of SEM_APIS.LOOKUP_RULES_INDEX, use SEM_APIS.LOOKUP_
ENTAILMENT.

The old "*_RULES_INDEX" formats will continue to work, but you are encouraged to
switch to using the "™*_ENTAILMENT" subprograms.

Note that several metadata views still include "RULES_INDEX" in their names.

The terms entailment and rules index are synonyms in this manual, although entailment
is used predominantly

Release 11.1 Features
The following are new and changed features for Oracle Database 11g Release 1 (11.1).

Features Added for Release 11.1.0.7 (November, 2008)

This section describes features that are included in interim patch 7600122 for Release
11.1.0.7.0, which was made available on Oracle MetaLink in November, 2008.

= Support for virtual models (see Section 1.3.8)

s Curly brace syntax for SEM_MATCH graph pattern, including support for the
OPTIONAL construct (see Section 1.6.2)

s Using HINTO ("hint-zero") in a SEM_MATCH query (see Section 1.6)
s New columns returned from SEM_MATCH: id, _prefix, _suffix (see Section 1.6)

XX

= Ability to create and manage semantic network indexes on models and rules
indexes (see Section 1.8)

s SEM_APIS.BULK_LOAD_FROM_STAGING_TABLE procedure: New options in
the flags parameter join_hint for tasks IZC, MBV, and MBT; parallel=n)

= Simplification of staging table definition (fewer columns) and privilege
requirements (see Section 1.7.1)

= Simpler event tracing during bulk load (see the information about the new
RDF$ET_TAB table in Section 1.7.1.1)

Storage Model Enhancements and Migration

The storage model has been enhanced to support OWL inferencing: some internal data
structures and indexes have been changed, added, and removed. These changes also
result in enhanced performance.

Because of the extent of these changes, if you have semantic data that you used with
the previous release, you must upgrade that data to migrate it to the new format
before you can use any new features for this release. For more information, see
Appendix A, "Enabling, Downgrading, or Removing Semantic Technologies Support".

Support for OWL Inferencing

Support has been added to support storing, validating, and querying Web Ontology
Language (OWL)-based ontologies. Support is provided for a subset of the OWL DL
language.

To query ontology data, you can use table functions and operators that examine
semantic relationships, such as SEM_MATCH, SEM_RELATED, and SEM_DISTANCE.

New Bulk Loading Interface for Improved Performance

You can improve performance for bulk loading of semantic data in bulk using a
staging table and calling the SEM_APIS.BULK_LOAD_FROM_STAGING_TABLE
procedure. For more information, see Section 1.7.1.

Ontology-Assisted Querying of Relational Data

You can go beyond syntactic matching to perform semantic relatedness-based
querying of relational data, by associating an ontology with the data and using the
new SEM_RELATED operator (and optionally its SEM_DISTANCE ancillary operator).
The new SEM_INDEXTYPE index type improves performance for semantic queries.

Required Procedure for Using Semantic Technology Support

Before you can use any types, synonyms, or PL/SQL packages related to Oracle
semantic technologies support, you must enable support for semantic technologies.
For more information, see Appendix A, "Enabling, Downgrading, or Removing
Semantic Technologies Support".

XXi

XXii

1

Oracle Database Semantic Technologies
Overview

This chapter describes the support in Oracle Database Enterprise Edition for semantic
technologies, specifically Resource Description Framework (RDF) and a subset of the
Web Ontology Language (OWL). It assumes that you are familiar with the major
concepts associated with RDF and OWL, such as {subject, predicate, object} triples,
URIs, blank nodes, plain and typed literals, and ontologies. This chapter does not
explain these concepts in detail, but focuses instead on how the concepts are
implemented in Oracle.

= For an excellent explanation of RDF concepts, see the World Wide Web
Consortium (W3C) RDF Primer at http://www.w3 .0org/TR/rdf-primer/.

= For information about OWL, see the OWL Web Ontology Language Reference at
http://www.w3.org/TR/owl-ref/.

The PL/SQL subprograms for working with semantic data are in the SEM_APIS
package, which is documented in Chapter 9.

The RDF and OWL support are features of Oracle Spatial, which must be installed for
these features to be used. However, the use of RDF and OWL is not restricted to spatial
data.

This chapter contains the following major sections:

= Section 1.1, "Introduction to Oracle Semantic Technologies"

= Section 1.2, "Semantic Data Modeling"

s Section 1.3, "Semantic Data in the Database"

s Section 1.4, "Semantic Metadata Tables and Views"

= Section 1.5, "Semantic Data Types, Constructors, and Methods"

= Section 1.6, "Using the SEM_MATCH Table Function to Query Semantic Data"
= Section 1.7, "Loading and Exporting Semantic Data"

= Section 1.8, "Using Semantic Network Indexes"

= Section 1.9, "Quick Start for Using Semantic Data"

= Section 1.10, "Semantic Data Examples (PL/SQL and Java)"

= Section 1.11, "Software Naming Changes for Semantic Technologies"

For information about OWL concepts and the Oracle Database support for OWL
capabilities, see Chapter 2.

Oracle Database Semantic Technologies Overview 1-1

Introduction to Oracle Semantic Technologies

Required Actions to Enable Semantic Technologies Support: Before
performing any operations described in this guide, you must enable
semantic technologies support in the database and meet other
prerequisites, as explained in Section A.1, "Enabling Semantic
Technologies Support".

Release 11.2.0.2: Required Actions if Semantic Technologies Instal-
lation is Invalid: Further action may be required if your Semantic
Technologies installation is invalid after upgrading to Release
11.2.0.2.0. For information, see Section A.1.4.

1.1 Introduction to Oracle Semantic Technologies

Oracle Database enables you to store semantic data and ontologies, to query semantic
data and to perform ontology-assisted query of enterprise relational data, and to use
supplied or user-defined inferencing to expand the power of querying on semantic
data. Figure 1-1 shows how these capabilities interact.

Figure 1-1 Oracle Semantic Capabilities

INFER
QUERY
—— o
3 2
8 g 5 Query RDF/OWL Ontology-assisted
“ o v data and query of
= o 3 ontologies enterprise data
O >
\ I
STORE v 4 \ 4
RDF/OWL Enterprise
Bulk Load data and (relational)
ontologies data
Incremental
Load & DML
Database

As shown in Figure 1-1, the database contains semantic data and ontologies
(RDF/OWL models), as well as traditional relational data. To load semantic data, bulk
loading is the most efficient approach, although you can load data incrementally using
transactional INSERT statements.

Note: If you want to use existing semantic data from a release before
Oracle Database 11.1, the data must be upgraded as described in
Section A.1.

You can query semantic data and ontologies, and you can also perform
ontology-assisted queries of semantic and traditional relational data to find semantic
relationships. To perform ontology-assisted queries, use the SEM_RELATED operator,
which is described in Section 2.3.

1-2 Oracle Database Semantic Technologies Developer's Guide

Semantic Data in the Database

You can expand the power of queries on semantic data by using inferencing, which
uses rules in rulebases. Inferencing enables you to make logical deductions based on
the data and the rules. For information about using rules and rulebases for inferencing,
see Section 1.3.6.

1.2 Semantic Data Modeling

In addition to its formal semantics, semantic data has a simple data structure that is
effectively modeled using a directed graph. The metadata statements are represented
as triples: nodes are used to represent two parts of the triple, and the third part is
represented by a directed link that describes the relationship between the nodes. The
triples are stored in a semantic data network. In addition, information is maintained
about specific semantic data models created by database users. A user-created model
has a model name, and refers to triples stored in a specified table column.

Statements are expressed in triples: {subject or resource, predicate or property, object
or value}. In this manual, {subject, property, object} is used to describe a triple, and the
terms statement and triple may sometimes be used interchangeably. Each triple is a
complete and unique fact about a specific domain, and can be represented by a link in
a directed graph.

1.3 Semantic Data in the Database

There is one universe for all semantic data stored in the database. All triples are parsed
and stored in the system as entries in tables under the MDSYS schema. A triple
{subject, property, object} is treated as one database object. As a result, a single
document containing multiple triples results in multiple database objects.

All the subjects and objects of triples are mapped to nodes in a semantic data network,
and properties are mapped to network links that have their start node and end node as
subject and object, respectively. The possible node types are blank nodes, URIs, plain
literals, and typed literals.

The following requirements apply to the specifications of URIs and the storage of
semantic data in the database:

= A subject must be a URI or a blank node.
= A property must be a URL

= An object can be any type, such as a URI, a blank node, or a literal. (However, null
values and null strings are not supported.)

1.3.1 Metadata for Models

The MDSYS.SEM_MODELS$ view contains information about all models defined in the
database. When you create a model using the SEM_APIS.CREATE_SEM_MODEL
procedure, you specify a name for the model, as well as a table and column to hold
references to the semantic data, and the system automatically generates a model ID.

Oracle maintains the MDSYS.SEM_MODELS$ view automatically when you create and
drop models. Users should never modify this view directly. For example, do not use
SQL INSERT, UPDATE, or DELETE statements with this view.

The MDSYS.SEM_MODELS$ view contains the columns shown in Table 1-1.

Oracle Database Semantic Technologies Overview 1-3

Semantic Data in the Database

Table 1-1 MDSYS.SEM_MODELS View Columns

Column Name Data Type Description

OWNER VARCHAR2(30) Schema of the owner of the model.

MODEL_ID NUMBER Unique model ID number, automatically generated.

MODEL_NAME VARCHAR2(25) Name of the model.

TABLE_NAME VARCHAR2(30) Name of the table to hold references to semantic data
for the model.

COLUMN_NAME VARCHAR2(30) Name of the column of type SDO_RDF_TRIPLE_S in
the table to hold references to semantic data for the
model.

MODEL_ VARCHAR2(30) Name of the tablespace to be used for storing the triples

TABLESPACE_ for this model.

NAME

When you create a model, a view for the triples associated with the model is also
created under the MDSYS schema. This view has a name in the format SEMM_
model-name, and it is visible only to the owner of the model and to users with suitable
privileges. Each MDSYS.SEMM_model-name view contains a row for each triple (stored
as a link in a network), and it has the columns shown in Table 1-2.

Table 1-2 MDSYS.SEMM_model-name View Columns

Column Name Data Type Description

P_VALUE_ID NUMBER The VALUE_ID for the text value of the predicate
of the triple. Part of the primary key.

START_NODE_ID NUMBER The VALUE_ID for the text value of the subject of
the triple. Also part of the primary key.

CANON_END_ NUMBER The VALUE_ID for the text value of the canonical

NODE_ID form of the object of the triple. Also part of the
primary key.

END_NODE_ID NUMBER The VALUE_ID for the text value of the object of
the triple

MODEL_ID NUMBER The ID for the RDF graph to which the triple
belongs. It logically partitions the table by RDF
graphs.

COST NUMBER (Reserved for future use)

CTXT1 NUMBER (Reserved for future use)

CTXT2 VARCHAR2(4000) (Reserved for future use)

DISTANCE NUMBER (Reserved for future use)

EXPLAIN VARCHAR2(4000) (Reserved for future use)

PATH VARCHAR2(4000) (Reserved for future use)

LINK_ID VARCHAR2(71) Unique triple identifier value. (It is currently a

computed column, and its definition may change
in a future release.)

1-4 Oracle Database Semantic Technologies Developer's Guide

Semantic Data in the Database

Note: In Table 1-2, for columns P_VALUE_ID, START_NODE_ID,
END_NODE_ID, and CANON_END_NODE_ID, the actual ID values
are computed from the corresponding lexical values. However, a
lexical value may not always map to the same ID value.

1.3.2 Statements

The MDSYS.RDE_VALUES$ table contains information about the subjects, properties,

and objects used to represent RDF statements. It uniquely stores the text values (URIs
or literals) for these three pieces of information, using a separate row for each part of

each triple.

Oracle maintains the MDSYS.RDF_VALUES$ table automatically. Users should never
modify this view directly. For example, do not use SQL INSERT, UPDATE, or DELETE
statements with this view.

The RDF_VALUES$ table contains the columns shown in Table 1-3.

Table 1-3 MDSYS.RDF_VALUES Table Columns

Column Name Data Type Description

VALUE_ID NUMBER Unique value ID number, automatically generated.

VALUE_TYPE VARCHAR2(10) The type of text information stored in the VALUE_
NAME column. Possible values: UR for URI, BN for
blank node, PL for plain literal, PL.@ for plain literal
with a language tag, PLL for plain long literal, PLL@
for plain long literal with a language tag, TL for typed
literal, or TLL for typed long literal. A long literal is a
literal with more than 4000 bytes.

VNAME_PREFIX VARCHAR2(4000) If the length of the lexical value is 4000 bytes or less,
this column stores a prefix of a portion of the lexical
value. The SEM_APIS.VALUE_NAME_PREFIX
function can be used for prefix computation. For
example, the prefix for the portion of the lexical value
<http://www.w3.0rg/1999/02/22-rdf-syntax
-ns#type> without the angle brackets is
http://www.w3.0rg/1999/02/22-rdf-syntax-
ns#.

VNAME_SUFFIX VARCHAR2(512) If the length of the lexical value is 4000 bytes or less,
this column stores a suffix of a portion of the lexical
value. The SEM_APIS.VALUE_NAME_SUFFIX
function can be used for suffix computation. For the
lexical value mentioned in the description of the
VNAME_PREFIX column, the suffix is type.

LITERAL_TYPE VARCHAR2(4000) For typed literals, the type information; otherwise,
null. For example, for a row representing a creation
date of 1999-08-16, the VALUE_TYPE column can
contain TL, and the LITERAL_TYPE column can

contain

http://www.w3.0rg/2001/XMLSchema#date.
LANGUAGE_ VARCHAR2(80) Language tag (for example, £r for French) for a literal
TYPE with a language tag (that is, if VALUE_TYPE is PL@ or

PLL@). Otherwise, this column has a null value.
CANONL_ID NUMBER The ID for the canonical lexical value for the current

lexical value. (The use of this column may change in a
future release.)

Oracle Database Semantic Technologies Overview 1-5

Semantic Data in the Database

Table 1-3 (Cont.) MDSYS.RDF_VALUES$ Table Columns

Column Name Data Type Description

COLLISION_EXT VARCHAR2(64) Used for collision handling for the lexical value. (The
use of this column may change in a future release.)

CANON_ VARCHAR2(64) Used for collision handling for the canonical lexical

COLLISION_EXT value. (The use of this column may change in a future
release.)

LONG_VALUE CLOB The character string if the length of the lexical value is
greater than 4000 bytes. Otherwise, this column has a
null value.

VALUE_NAME VARCHAR2(4000) This is a computed column. If length of the lexical
value is 4000 bytes or less, the value of this column is
the concatenation of the values of VNAME_PREFIX
column and the VNAME_SUFFIX column.

1.3.2.1 Triple Uniqueness and Data Types for Literals

Duplicate triples are not stored in the database. To check if a triple is a duplicate of an
existing triple, the subject, property, and object of the incoming triple are checked
against triple values in the specified model. If the incoming subject, property, and
object are all URIs, an exact match of their values determines a duplicate. However, if
the object of incoming triple is a literal, an exact match of the subject and property, and
a value (canonical) match of the object, determine a duplicate. For example, the
following two triples are duplicates:

<eg:a> <eg:b> "123"**http://www.w3.0rg/2001/XMLSchema#int
<eg:a> <eg:b> "123"*"http://www.w3.0rg/2001/XMLSchema#unsignedByte

The second triple is treated as a duplicate of the first, because
"123"~~http://www.w3.0org/2001/XMLSchema#int has an equivalent value (is
canonically equivalent) to
"123"~"http://www.w3.0org/2001/XMLSchema#unsignedByte. Two entities
are canonically equivalent if they can be reduced to the same value.

To use a non-RDF example, A* (B-C), A*B-C*A, (B-C) *A, and -A*C+A*B all convert
into the same canonical form.

Value-based matching of lexical forms is supported for the following data types:
s STRING: plain literal, xsd:string and some of its XML Schema subtypes

s NUMERIC: xsd:decimal and its XML Schema subtypes, xsd:float, and xsd:double.
(Support is not provided for float/double INF, -INF, and NaN values.)

= DATETIME: xsd:datetime, with support for time zone. (Without time zone there
are still multiple representations for a single value, for example,
"2004-02-18T15:12:54" and "2004-02-18T15:12:54.0000".)

s DATE: xsd:date, with or without time zone
s OTHER: Everything else. (No attempt is made to match different representations).

Canonicalization is performed when the time zone is present for literals of type
xsd:time and xsd:dateTime.

The following namespace definition is used:
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema”

The first occurrence of a literal in the RDF_VALUES$ table is taken as the canonical
form and given the VALUE_TYPE value of CPL, CPL@, CTL, CPLL, CPLL@, or CTLL as

1-6 Oracle Database Semantic Technologies Developer's Guide

Semantic Data in the Database

appropriate; that is, a C for canonical is prefixed to the actual value type. If a literal
with the same canonical form (but a different lexical representation) as a previously
inserted literal is inserted into the RDF_VALUES$ table, the VALUE_TYPE value
assigned to the new insert is PL, PL.@, TL, PLL, PLL@, or TLL as appropriate.

Canonically equivalent text values having different lexical representations are thus
stored in the RDF_VALUES$ table; however, canonically equivalent triples are not
stored in the database.

1.3.3 Subjects and Objects

RDF subjects and objects are mapped to nodes in a semantic data network. Subject
nodes are the start nodes of links, and object nodes are the end nodes of links.
Non-literal nodes (that is, URIs and blank nodes) can be used as both subject and
object nodes. Literals can be used only as object nodes.

1.3.4 Blank Nodes

Blank nodes can be used as subject and object nodes in the semantic network. Blank
node identifiers are different from URIs in that they are scoped within a semantic
model. Thus, although multiple occurrences of the same blank node identifier within a
single semantic model necessarily refer to the same resource, occurrences of the same
blank node identifier in two different semantic models do not refer to the same
resource.

In an Oracle semantic network, this behavior is modeled by requiring that blank nodes
are always reused (that is, are used to represent the same resource if the same blank
node identifier is used) within a semantic model, and never reused between two
different models. Thus, when inserting triples involving blank nodes into a model, you
must use the SDO_RDF_TRIPLE_S constructor that supports reuse of blank nodes.

1.3.5 Properties

Properties are mapped to links that have their start node and end node as subjects and
objects, respectively. Therefore, a link represents a complete triple.

When a triple is inserted into a model, the subject, property, and object text values are
checked to see if they already exist in the database. If they already exist (due to
previous statements in other models), no new entries are made; if they do not exist,
three new rows are inserted into the RDF_VALUES$ table (described in Section 1.3.2).

1.3.6 Inferencing: Rules and Rulebases

Inferencing is the ability to make logical deductions based on rules. Inferencing
enables you to construct queries that perform semantic matching based on meaningful
relationships among pieces of data, as opposed to just syntactic matching based on
string or other values. Inferencing involves the use of rules, either supplied by Oracle
or user-defined, placed in rulebases.

Figure 1-2 shows triple sets being inferred from model data and the application of
rules in one or more rulebases. In this illustration, the database can have any number
of semantic models, rulebases, and inferred triple sets, and an inferred triple set can be
derived using rules in one or more rulebases.

Oracle Database Semantic Technologies Overview 1-7

Semantic Data in the Database

Figure 1-2 Inferencing

Rulebase 1 Rulebase 2

l

Inferred
Model 1 frm—y Triple Set 1

Inferred
Model 2 7| Triple Set 2

A rule is an object that can be applied to draw inferences from semantic data. A rule is
identified by a name and consists of:

= AnIF side pattern for the antecedents

= An optional filter condition that further restricts the subgraphs matched by the IF
side pattern

= A THEN side pattern for the consequents

For example, the rule that a chairperson of a conference is also a reviewer of the conference
could be represented as follows:

('chairpersonRule', -- rule name

‘(?r :ChairPersonOf ?c)’, -- IF side pattern

NULL, -- filter condition

‘(?r :ReviewerOf ?c)’, -- THEN side pattern
SEM_ALIASES (SEM_ALIAS('', 'http://some.org/test/'))
)

In this case, the rule does not have a filter condition, so that component of the
representation is NULL. For best performance, use a single-triple pattern on the THEN
side of the rule. If a rule has multiple triple patterns on the THEN side, you can easily
break it into multiple rules, each with a single-triple pattern, on the THEN side.

A rulebase is an object that contains rules. The following Oracle-supplied rulebases
are provided:

= RDFS

= RDF (a subset of RDFS)
s OWLSIF (empty)

s RDFS++ (empty)

s OWLPrime (empty)

s SKOSCORE (empty)

The RDFS and RDF rulebases are created when you call the SEM_APIS.CREATE_
SEM_NETWORK procedure to add RDF support to the database. The RDEFS rulebase
implements the RDFES entailment rules, as described in the World Wide Web
Consortium (W3C) RDF Semantics document at http://www.w3.org/TR/rdf-mt/.
The RDF rulebase represents the RDF entailment rules, which are a subset of the RDFS
entailment rules. You can see the contents of these rulebases by examining the
MDSYS.SEMR_RDFS and MDSYS.SEMR_RDF views.

1-8 Oracle Database Semantic Technologies Developer's Guide

Semantic Data in the Database

You can also create user-defined rulebases using the SEM_APIS.CREATE_RULEBASE
procedure. User-defined rulebases enable you to provide additional specialized
inferencing capabilities.

For each rulebase, a system table is created to hold rules in the rulebase, along with a
system view with a name in the format MDSYS.SEMR _rulebase-name (for example,
MDSYS.SEMR_FAMILY_RB for a rulebase named FAMILY_ RB). You must use this
view to insert, delete, and modify rules in the rulebase. Each MDSYS.SEMR _
rulebase-name view has the columns shown in Table 1-4.

Table 1-4 MDSYS.SEMR_rulebase-name View Columns

Column Name Data Type Description

RULE_NAME VARCHAR2(30) Name of the rule
ANTECEDENTS VARCHAR2(4000) IF side pattern for the antecedents

FILTER VARCHAR2(4000) Filter condition that further restricts the subgraphs
matched by the IF side pattern. Null indicates no filter
condition is to be applied.

CONSEQUENTS VARCHAR2(4000) THEN side pattern for the consequents

ALIASES SEM_ALIASES One or more namespaces to be used. (The SEM_
ALIASES data type is described in Section 1.6.)

Information about all rulebases is maintained in the MDSYS.SEM_RULEBASE_INFO
view, which has the columns shown in Table 1-5 and one row for each rulebase.

Table 1-5 MDSYS.SEM_RULEBASE_INFO View Columns

Column Name Data Type Description

OWNER VARCHAR2(30) Owner of the rulebase

RULEBASE_ VARCHAR2(25) Name of the rulebase

NAME

RULEBASE _ VARCHAR2(30) Name of the view that you must use for any SQL

VIEW_NAME statements that insert, delete, or modify rules in the
rulebase

STATUS VARCHAR2(30) Contains VALID if the rulebase is valid, INPROGRESS

if the rulebase is being created, or FAILED if a system
failure occurred during the creation of the rulebase.

Example 1-1 creates a rulebase named family_ rb, and then inserts a rule named
grandparent_rule into the family_rb rulebase. This rule says that if a person is
the parent of a child who is the parent of a child, that person is a grandparent of (that
is, has the grandParentOf relationship with respect to) his or her child’s child. It also
specifies a namespace to be used. (This example is an excerpt from Example 1-25 in
Section 1.10.2.)

Example 1-1 Inserting a Rule into a Rulebase
EXECUTE SEM_APIS.CREATE_RULEBASE('family rb');

INSERT INTO mdsys.semr_family_rb VALUES (
'grandparent_rule',
' (?x :parentOf ?y) (?y :parentOf ?z)',
NULL,
' (?x :grandParentOf ?z)',
SEM_ALTASES (SEM_ALIAS('', 'http://www.example.org/family/"')));

Oracle Database Semantic Technologies Overview 1-9

Semantic Data in the Database

Note that the kind of grandparent rule shown in Example 1-1 can be implemented
using the OWL 2 property chain construct. For information about property chain
handling, see Section 3.2.2.

You can specify one or more rulebases when calling the SEM_MATCH table function
(described in Section 1.6), to control the behavior of queries against semantic data.
Example 1-2 refers to the family_rb rulebase and to the grandParentOf
relationship created in Example 1-1, to find all grandfathers (grandparents who are
male) and their grandchildren. (This example is an excerpt from Example 1-25 in
Section 1.10.2.)

Example 1-2 Using Rulebases for Inferencing

-- Select all grandfathers and their grandchildren from the family model.
-- Use inferencing from both the RDFS and family rb rulebases.
SELECT x, vy
FROM TABLE (SEM_MATCH (
' (?x :grandParentOf ?y) (?x rdf:type :Male)',
SEM_Models('family'),
SEM_Rulebases ('RDFS', 'family_rb'),
SEM_ALIASES (SEM_ALIAS('', 'http://www.example.org/family/')),
null));

For information about support for native OWL inferencing, see Section 2.2.

1.3.7 Entailments (Rules Indexes)

An entailment (rules index) is an object containing precomputed triples that can be
inferred from applying a specified set of rulebases to a specified set of models. If a
SEM_MATCH query refers to any rulebases, an entailment must exist for each
rulebase-model combination in the query.

To create an entailment, use the SEM_APIS.CREATE_ENTAILMENT procedure. To
drop (delete) an entailment, use the SEM_APIS.DROP_ENTAILMENT procedure.

When you create an entailment, a view for the triples associated with the entailment is
also created under the MDSYS schema. This view has a name in the format SEMI_
entailment-name, and it is visible only to the owner of the entailment and to users with
suitable privileges. Each MDSYS.SEMI_entailment-name view contains a row for each
triple (stored as a link in a network), and it has the same columns as the SEMM._
model-name view, which is described in Table 1-2 in Section 1.3.1.

Information about all entailments is maintained in the MDSYS.SEM_RULES_INDEX_
INFO view, which has the columns shown in Table 1-6 and one row for each
entailment.

Table -6 MDSYS.SEM_RULES_INDEX_INFO View Columns

Column Name Data Type Description

OWNER VARCHAR2(30) Owner of the entailment
INDEX_NAME VARCHAR?2(25) Name of the entailment

INDEX_VIEW_ VARCHAR2(30) Name of the view that you must use for any SQL
NAME statements that insert, delete, or modify rules in the
entailment

1-10 Oracle Database Semantic Technologies Developer's Guide

Semantic Data in the Database

Table 1-6 (Cont.) MDSYS.SEM_RULES_INDEX_INFO View Columns

Column Name Data Type Description

STATUS VARCHAR2(30) Contains VALID if the entailment is valid, INVALID if
the entailment is not valid, INCOMPLETE if the
entailment is incomplete (similar to INVALID but
requiring less time to re-create), INPROGRESS if the
entailment is being created, or FAILED if a system
failure occurred during the creation of the entailment.

MODEL_COUNT NUMBER Number of models included in the entailment
RULEBASE _ NUMBER Number of rulebases included in the entailment
COUNT

Information about all database objects, such as models and rulebases, related to
entailments is maintained in the MDSYS.SEM_RULES_INDEX_DATASETS view. This
view has the columns shown in Table 1-7 and one row for each unique combination of
values of all the columns.

Table 1-7 MDSYS.SEM_RULES_INDEX_DATASETS View Columns

Column Name Data Type Description
INDEX_NAME VARCHAR2(25) Name of the entailment
DATA_TYPE VARCHAR2(8) Type of data included in the entailment. Examples:

MODEL and RULEBASE

DATA_NAME VARCHAR2(25) Name of the object of the type in the DATA_TYPE
column

Example 1-3 creates an entailment named family rb_rix family, using the
family model and the RDF'S and family_ rb rulebases. (This example is an excerpt
from Example 1-25 in Section 1.10.2.)

Example 1-3 Creating an Entailment

BEGIN
SEM_APIS.CREATE_ENTAILMENT (
'rdfs_rix_family',
SEM_Models ('family"'),
SEM_Rulebases ('RDFS', 'family_rb'));
END;
/

1.3.8 Virtual Models

A virtual model is a logical graph that can be used in a SEM_MATCH query. A virtual
model is the result of a UNION or UNION ALL operation on one or more models and
optionally the corresponding entailment.

Using a virtual model can provide several benefits:

= It can simplify management of access privileges for semantic data. For example,
assume that you have created three semantic models and one entailment based on
the three models and the OWLPrime rulebase. Without a virtual model, you must
individually grant and revoke access privileges for each model and the entailment.
However, if you create a virtual model that contains the three models and the
entailment, you will only need to grant and revoke access privileges for the single
virtual model.

Oracle Database Semantic Technologies Overview 1-11

Semantic Data in the Database

s It can facilitate rapid updates to semantic models. For example, assume that
virtual model VM1 contains model M1 and entailment R1 (that is, VM1 = M1
UNION ALL R1), and assume that semantic model M1_UPD is a copy of M1 that
has been updated with additional triples and that R1_UPD is an entailment
created for M1_UPD. Now, to have user queries over VM1 go to the updated
model and entailment, you can redefine virtual model VM1 (that is, VM1 = M1_
UPD UNION ALL R1_UPD).

s It can simplify query specification because querying a virtual model is equivalent
to querying multiple models in a SEM_MATCH query. For example, assume that
models m1, m2, and m3 already exist, and that an entailment has been created for
ml, m2 ,and m3 using the OWLPrime rulebase. You could create a virtual model
vml as follows:

EXECUTE sem_apis.create_virtual_model('vml', sem models('ml', 'm2', 'm3'),
sem_rulebases (‘OWLPRIME')) ;

To query the virtual model, use the virtual model name as if it were a model in a
SEM_MATCH query. For example, the following query on the virtual model:

SELECT * FROM TABLE (sem_match('{..}', sem_models(‘vml’), null, ..));

is equivalent to the following query on all the individual models:

SELECT * FROM TABLE (sem_match('{..}', sem_models('ml', 'm2', 'm3'),
sem_rulebases ('OWLPRIME'), ..));

A SEM_MATCH query over a virtual model will query either the SEMV or SEMU
view (SEMU by default and SEMV if the ' ALLOW_DUP=T" option is specified)
rather than querying the UNION or UNION ALL of each model and entailment.
For information about these views and options, see the reference section for the
SEM_APIS.CREATE_VIRTUAL_MODEL procedure.

Note that you cannot use Oracle Workspace Manager version-enabling on a model
that participates in a virtual model. (Workspace Manager support for RDF data is
described in Chapter 6.)

Virtual models use views (described later in this section) and add some metadata
entries, but do not significantly increase system storage requirements.

To create a virtual model, use the SEM_APIS.CREATE_VIRTUAL_MODEL procedure.
To drop (delete) a virtual model, use the SEM_APIS.DROP_VIRTUAL_MODEL
procedure. A virtual model is dropped automatically if any of its component models,
rulebases, or entailment are dropped.

To query a virtual model, specify the virtual model name in the models parameter of
the SEM_MATCH table function, as shown in Example 1-4.

Example 1-4 Querying a Virtual Model

SELECT COUNT (protein)
FROM TABLE (SEM_MATCH (

' (?protein rdf:type :Protein)
(?protein :citation ?citation)
(?citation :author "Bairoch A.")’,

SEM_MODELS (‘UNIPROT VM'),

NULL,

SEM_ALIASES (SEM_ALIAS('', 'http://purl.uniprot.org/core/')),

NULL,

NULL,

‘ALLOW_DUP=T"')) ;

1-12 Oracle Database Semantic Technologies Developer's Guide

Semantic Data in the Database

For information about the SEM_MATCH table function, see Section 1.6, which
includes information using certain attributes when querying a virtual model.

When you create a virtual model, an entry is created for it in the MDSYS.SEM_
MODELS$ view, which is described in Table 1-1 in Section 1.3.1. However, the values in
several of the columns are different for virtual models as opposed to semantic models,
as explained in Table 1-8.

Table -8 MDSYS.SEM_MODELS$ View Column Explanations for Virtual Models

Column Name Data Type Description

OWNER VARCHAR2(30) Schema of the owner of the virtual model

MODEL_ID NUMBER Unique model ID number, automatically generated.
Will be a negative number, to indicate that this is a
virtual model.

MODEL_NAME VARCHAR2(25) Name of the virtual model

TABLE_NAME VARCHAR2(30) Null for a virtual model

COLUMN_NAME VARCHAR2(30) Null for a virtual model

MODEL _ VARCHAR2(30) Null for a virtual model

TABLESPACE_

NAME

Information about all virtual models is maintained in the MDSYS.SEM_VMODEL _
INFO view, which has the columns shown in Table 1-9 and one row for each virtual
model.

Table -9 MDSYS.SEM_VMODEL_INFO View Columns

Column Name Data Type Description

OWNER VARCHAR2(30) Owner of the virtual model

VIRTUAL_ VARCHAR2(25) Name of the virtual model

MODEL_NAME

UNIQUE_VIEW_ VARCHAR2(30) Name of the view that contains unique triples in the

NAME virtual model, or null if the view was not created

DUPLICATE_ VARCHAR2(30) Name of the view that contains duplicate triples (if

VIEW_NAME any) in the virtual model

STATUS VARCHAR2(30) Contains VALID if the associated entailment is valid,
INVALID if the entailment is not valid, INCOMPLETE if
the entailment is incomplete (similar to INVALID but
requiring less time to re-create), INPROGRESS if the
entailment is being created, FAILED if a system failure
occurred during the creation of the entailment, or
NORIDX if no entailment is associated with the virtual
model.

MODEL_COUNT NUMBER Number of models in the virtual model

RULEBASE_ NUMBER Number of rulebases used for the virtual model

COUNT

RULES_INDEX_ NUMBER Number of entailments in the virtual model

COUNT

Information about all objects (models, rulebases, and entailment) related to virtual
models is maintained in the MDSYS.SEM_VMODEL_DATASETS view. This view has

Oracle Database Semantic Technologies Overview 1-13

Semantic Metadata Tables and Views

the columns shown in Table 1-10 and one row for each unique combination of values
of all the columns.

Table 1-10 MDSYS.SEM_VMODEL_DATASETS View Columns

Column Name Data Type Description

VIRTUAL_ VARCHAR2(25) Name of the virtual model

MODEL_NAME

DATA_TYPE VARCHAR2(8) Type of object included in the virtual model.

Examples: MODEL for a semantic model, RULEBASE for
a rulebase, or RULEIDX for an entailment

DATA_NAME VARCHAR2(25) Name of the object of the type in the DATA_TYPE

column

1.3.9 Semantic Data Security Considerations

The following database security considerations apply to the use of semantic data:

When a model or entailment is created, the owner gets the SELECT privilege with
the GRANT option on the associated view. Users that have the SELECT privilege
on these views can perform SEM_MATCH queries against the associated model or
entailment.

When a rulebase is created, the owner gets the SELECT, INSERT, UPDATE, and
DELETE privileges on the rulebase, with the GRANT option. Users that have the
SELECT privilege on a rulebase can create an entailment that includes the
rulebase. The INSERT, UPDATE, and DELETE privileges control which users can
modify the rulebase and how they can modify it.

To perform data manipulation language (DML) operations on a model, a user
must have DML privileges for the corresponding base table.

The creator of the base table corresponding to a model can grant privileges to
other users.

To perform data manipulation language (DML) operations on a rulebase, a user
must have the appropriate privileges on the corresponding database view.

The creator of a model can grant SELECT privileges on the corresponding
database view to other users.

A user can query only those models for which that user has SELECT privileges to
the corresponding database views.

Only the creator of a model or a rulebase can drop it.

1.4 Semantic Metadata Tables and Views

Oracle Database maintains several tables and views in the MDSYS schema to hold
metadata related to semantic data. (Some of these tables and views are created by the
SEM_APIS.CREATE_SEM_NETWORK procedure, as explained in Section 1.9, and
some are created only as needed.) Table 1-11 lists the tables and views in alphabetical
order. (In addition, several tables and views are created for Oracle internal use, and
these are accessible only by users with DBA privileges.)

1-14 Oracle Database Semantic Technologies Developer's Guide

Semantic Data Types, Constructors, and Methods

Table 1-11 Semantic Metadata Tables and Views

Name Contains Information About Described In
RDF_VALUE$ Subjects, properties, and objects used to Section 1.3.2
represent statements
RDFOLS_SECURE_ Resources secured with Oracle Label Security Section 5.2.2.6
RESOURCE (OLS) policies and the sensitivity labels
associated with these resources
RDFVPD_MODELS RDF models and their associated VPD policies ~ Section 5.1.5
RDFVPD_POLICIES All VPD policies defined in the schema or the ~ Section 5.1.4
policies to which the user has FULL access
RDFVPD_POLICY_ Constraints defined in the VPD policy that are Section 5.1.6
CONSTRAINTS accessible to the current user
RDFVPD_PREDICATE_ Predicate metadata associated with a VPD Section 5.1.7
MDATA policy
RDFVPD_RESOURCE_REL Subclass, subproperty, and equivalence Section 5.1.8

property relationships that are defined between
resources in a VPD policy

SEM_MODEL$ All models defined in the database Section 1.3.1
SEMM_model-name Triples in the specified model Section 1.3.1
SEM_RULEBASE_INFO Rulebases Section 1.3.6
SEM_RULES_INDEX_ Database objects used in entailments Section 1.3.7
DATASETS

SEM_RULES_INDEX_INFO Entailments (rules indexes) Section 1.3.7
SEM_VMODEL_INFO Virtual models Section 1.3.8
SEM_VMODEL_ Database objects used in virtual models Section 1.3.8
DATASETS

SEMCL _entailment-name owl:sameAs clique members and canonical Section 2.2.8

representatives

SEMI_entailment-name Triples in the specified entailment Section 1.3.7
SEMR _rulebase-name Rules in the specified rulebase Section 1.3.6
SEMU_virtual-model-name ~ Unique triples in the virtual model Section 1.3.8
SEMV _virtual-model-name ~ Triples in the virtual model Section 1.3.8

1.5 Semantic Data Types, Constructors, and Methods

The SDO_RDEF_TRIPLE object type represents semantic data in triple format, and the
SDO_RDEF_TRIPLE_S object type (the _S for storage) stores persistent semantic data in
the database. The SDO_RDF_TRIPLE_S type has references to the data, because the
actual semantic data is stored only in the central RDF schema. This type has methods
to retrieve the entire triple or part of the triple.

Note: Blank nodes are always reused within an RDF model and
cannot be reused across models

The SDO_RDEF_TRIPLE type is used to display triples, whereas the SDO_RDF_
TRIPLE_S type is used to store the triples in database tables.

Oracle Database Semantic Technologies Overview 1-15

Semantic Data Types, Constructors, and Methods

The SDO_RDEF_TRIPLE object type has the following attributes:

SDO_RDF_TRIPLE (
subject VARCHAR2 (4000),
property VARCHAR2 (4000),
object VARCHAR2 (10000))

The SDO_RDEFE_TRIPLE_S object type has the following attributes:

SDO_RDF_TRIPLE_S (

RDF_C_ID NUMBER, -- Canonical object value ID
SEM_M_ID NUMBER, -- Model ID

RDF_S_ID NUMBER, -- Subject value ID
RDF_P_ID NUMBER, -- Property value ID

RDF_O_ID NUMBER) -- Object value ID

The SDO_RDF_TRIPLE_S type has the following methods that retrieve a triple or a
part (subject, property, or object) of a triple:

GET_TRIPLE() RETURNS SDO_RDF_TRIPLE
GET_SUBJECT () RETURNS VARCHAR2
GET_PROPERTY () RETURNS VARCHAR2
GET_OBJECT () RETURNS CLOB

Example 1-5 shows the SDO_RDF_TRIPLE_S methods.

Example 1-5 SDO_RDF_TRIPLE_S Methods

SELECT a.triple.GET _TRIPLE() AS triple
FROM articles_rdf_data a WHERE a.id = 1;

TRIPLE (SUBJECT, PROPERTY, OBJECT)

SDO_RDF_TRIPLE ('<http://nature.example.com/Articlel>"', '<http://purl.org/dc/elem
ents/1.1/title>', '<All about XYZ>"')

SELECT a.triple.GET_SUBJECT() AS subject
FROM articles_rdf_data a WHERE a.id = 1;

SUBJECT

<http://nature.example.com/Articlel>

SELECT a.triple.GET_PROPERTY () AS property
FROM articles_rdf_data a WHERE a.id = 1;

PROPERTY

<http://purl.org/dc/elements/1.1/title>

SELECT a.triple.GET_OBJECT() AS object
FROM articles_rdf data a WHERE a.id = 1;

OBJECT

<All about XYZ>

1-16 Oracle Database Semantic Technologies Developer's Guide

Semantic Data Types, Constructors, and Methods

1.5.1 Constructors for Inserting Triples Without Any Blank Nodes

The following constructor formats are available for inserting triples into a model table.
The only difference is that in the second format the data type for the object is CLOB, to
accommodate very long literals.

SDO_RDF_TRIPLE_S (

model name VARCHAR2, -- Model name
subject VARCHAR2, -- Subject
property VARCHAR2, -- Property
object VARCHAR2) -- Object
RETURN SELF;

SDO_RDF_TRIPLE_S (

model_name VARCHAR2, -- Model name
subject VARCHAR2, -- Subject
property VARCHAR2, -- Property
object CLOB) -- Object

RETURN SELF;

GET_OBJ_VALUE () RETURN VARCHAR2;

Example 1-6 uses the first constructor format to insert a triple.

Example 1-6 SDO_RDF_TRIPLE_S Constructor to Insert a Triple

INSERT INTO articles_rdf data VALUES (2,
SDO_RDF_TRIPLE_S ('articles', '<http://nature.example.com/Articlel>",
'<http://purl.org/dc/elements/1.1/creator>",
'"Jane Smith"'));

1.5.2 Constructors for Inserting Triples With or Without Any Blank Nodes

The following constructor formats are available for inserting triples referring to blank
nodes into a model table. The only difference is that in the second format the data type
for the fourth attribute is CLOB, to accommodate very long literals.

SDO_RDF_TRIPLE_ S (

model_name VARCHAR2, -- Model name

sub_or_bn VARCHAR2, -- Subject or blank node

property VARCHAR2, -- Property

obj_or_bn VARCHAR2, -- Object or blank node

bn m_id NUMBER) -- ID of the model from which to reuse the blank node
RETURN SELF;

SDO_RDF_TRIPLE_S (

model_name VARCHAR2, -- Model name

sub_or_bn VARCHAR2, -- Subject or blank node

property VARCHAR2, -- Property

object CLOB, -- Object

bn_m_id NUMBER) -- ID of the model from which to reuse the blank node
RETURN SELF;

If the value of bn_m_1id is positive, it must be the same as the model ID of the target
model.

Example 1-7 uses the first constructor format to insert a triple that reuses a blank node
for the subject.

Oracle Database Semantic Technologies Overview 1-17

Using the SEM_MATCH Table Function to Query Semantic Data

Example 1-7 SDO_RDF_TRIPLE_S Constructor to Reusing a Blank Node

INSERT INTO nsu_data VALUES (SDO_RDF_TRIPLE_S (
‘nsu’,
' _:BNSEQN1001A",
'<http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>",
'<http://www.w3.0rg/1999/02/22-rdf-syntax-ns#Seq>",
4));

1.6 Using the SEM_MATCH Table Function to Query Semantic Data

To query semantic data, use the SEM_MATCH table function. This function has the
following attributes:

SEM_MATCH (

query VARCHAR2,
models SEM_MODELS,
rulebases SEM_RULEBASES,
aliases SEM_ALIASES,
filter VARCHAR2,
index_status VARCHAR2,
options VARCHAR2

) RETURN ANYDATASET;

The query attribute is required. The other attributes are optional (that is, each can be a
null value).

The query attribute is a string literal (or concatenation of string literals) with one or
more triple patterns, usually containing variables. (The query attribute cannot be a
bind variable or an expression involving a bind variable.) A triple pattern is a triple of
atoms enclosed in parentheses. Each atom can be a variable (for example, ?x), a
qualified name (for example, rdf : type) that is expanded based on the default
namespaces and the value of the aliases attribute, or a full URI (for example,
<http://www.example.org/family/Male>). In addition, the third atom can be a
numeric literal (for example, 3 . 14), a plain literal (for example, "Herman"), a
language-tagged plain literal (for example, "Herman" @en), or a typed literal (for
example, "123"~"xsd:int).

For example, the following query attribute specifies three triple patterns to find
grandfathers (that is, grandparents who are also male) and the height of each of their
grandchildren:

' (?x :grandParentOf ?y) (?x rdf:type :Male) (?y :height ?h)'

The models attribute identifies the model or models to use. Its data type is SEM_
MODELS, which has the following definition: TABLE OF VARCHAR2 (25).If you are
querying a virtual model, specify only the name of the virtual model and no other
models. (Virtual models are explained in Section 1.3.8.)

The rulebases attribute identifies one or more rulebases whose rules are to be
applied to the query. Its data type is SDO_RDF_RULEBASES, which has the following
definition: TABLE OF VARCHAR2 (25). If you are querying a virtual model, this
attribute must be null.

The aliases attribute identifies one or more namespaces, in addition to the default
namespaces, to be used for expansion of qualified names in the query pattern. Its data
type is SEM_ALIASES, which has the following definition: TABLE OF SEM_ALIAS,
where each SEM_ALIAS element identifies a namespace ID and namespace value. The
SEM_ALIAS data type has the following definition: (namespace_id

VARCHAR2 (30) , namespace_val VARCHAR2 (4000))

1-18 Oracle Database Semantic Technologies Developer's Guide

Using the SEM_MATCH Table Function to Query Semantic Data

The following default namespaces (namespace_id and namespace_val attributes)
are used by the SEM_MATCH table function:

('rdf', 'http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"')
('rdfs', 'http://www.w3.org/2000/01/rdf-schema#"')
('xsd', 'http://www.w3.org/2001/XMLSchema#')

You can override any of these defaults by specifying the namespace_id value and a
different namespace_val value in the aliases attribute.

The filter attribute identifies any additional selection criteria. If this attribute is not
null, it should be a string in the form of a WHERE clause without the WHERE keyword.
For example: ' (h >= 6) ’ to limit the result to cases where the height of the
grandfather’s grandchild is 6 or greater (using the example of triple patterns earlier in
this section).

The index_status attribute lets you query semantic data even when the relevant
entailment does not have a valid status. (If you are querying a virtual model, this
attribute refers to the entailment associated with the virtual model.) If this attribute is
null, the query returns an error if the entailment does not have a valid status. If this
attribute is not null, it must be the string INCOMPLETE or INVALID. For an
explanation of query behavior with different index_status values, see Section 1.6.1.

The options attribute identifies options that can affect the results of queries. Options
are expressed as keyword-value pairs. The following options are supported:

= ALL_BGP_HASH and ALL_B GP_NL are global query optimizer hints that specify
that all inter-BGP joins (for example. the join between the root BGP and an
OPTIONAL BGP) should use the specified join type.

Example 1-13 shows the ALL_BGP_HASH option used in a SEM_MATCH query.

= ALL_ORDERED is a global query optimizer hint that specifies that the triple
patterns in each BGP in the query should be evaluated in order. If ALL_ ORDERED
is used with a HINTO hint specified in the options attribute, the HINTO hint
overrides the ALL_ORDERED hint for the root BGP.

Example 1-13 shows the ALL_ORDERED option used in a SEM_MATCH query.

= ALLOW_DUP=T generates an underlying SQL statement that performs a "union all"
instead of a union of the semantic models and inferred data (if applicable). This
option may introduce more rows (duplicate triples) in the result set, and you may
need to adjust the application logic accordingly. If you do not specify this option,
duplicate triples are automatically removed across all the models and inferred
data to maintain the set semantics of merged RDF graphs; however, removing
duplicate triples increases query processing time. In general, specifying ‘' ALLOW_
DUP=T' improves performance significantly when multiple semantic models are
involved in a SEM_MATCH query.

If you are querying a virtual model, specifying ALLOW_DUP=T causes the SEMV_
vm_name view to be queried; otherwise, the SEMU_vm_name view is queried.

s HINTO={<hint-string>} (pronounced and written "hint" and the number zero)
specifies one or more keywords with hints to influence the execution plan and
results of queries. Conceptually, a graph pattern with n triple patterns and
referring to m distinct variables results in an (n+m)-way join: n-way self-join of the
target RDF model or models and optionally the corresponding entailment, and
then m joins with RDF_VALUES$ for looking up the values for the m variables. A
hint specification affects the join order and join type used for the query execution.

The hint specification, <hint-string>, uses keywords, some of which have
parameters consisting of a sequence or set of aliases, or references, for individual

Oracle Database Semantic Technologies Overview 1-19

Using the SEM_MATCH Table Function to Query Semantic Data

triple patterns and variables used in the query. Aliases for triple patterns are of the
form ti where i refers to the 0-based ordinal numbers of triple patterns in the
query. For example, the alias for the first triple pattern in a query is t0, the alias
for the second one is t1, and so on. Aliases for the variables used in a query are
simply the names of those variables. Thus, ?x will be used in the hint specification
as the alias for a variable ?x used in the graph pattern.

Hints used for influencing query execution plans include LEADING(<sequence of
aliases>), USE_NL(<set of aliases>), USE_HASH(<set of aliases>), and INDEX(<alias>
<index_name>). Hints used for influencing the results of queries include GET_
CANON_VALUE(<set of aliases for variables>), which ensures