
MongoDB is an open-source, high-performance,
document-oriented database.

Documents are JSON-like data structures stored in a format called
BSON (bsonspec.org). Documents are stored in collections, each of
which resides in its own database. Collections can be thought of as
the equivalent of a table in an RDBMS. There are no fixed schemas in
MongoDB, so documents with different “shapes” can be stored in the
same collection.

MongoDB features full index support (including secondary and
compound indexes); indexes are specified per collection. There is a rich,
document-based query language (see reverse) that leverages these
indexes. MongoDB also provides sophisticated atomic update modifiers
(see reverse) to keep code contention-free.

Clustered setups are supported, including easy replication for high
availability, as well as auto-sharding for write-scaling and large
data-set sizes.

Queries and What They Match

The following queries cannot use indexes as of MongoDB v2.0. These query forms should
normally be accompanied by at least one other query term which does use an index:

Docs where a is 10, or an array containing the value 10.

Docs where a is 10 and b is “hello.”

Docs where a is greater than 10. Also $lt (<), $gte (>=),
$lte (<=), and $ne (!=).

Docs where a is either 10 or “hello.”

Docs where a is an array containing both 10 and “hello”.

Docs where a is an embedded document with b equal to 10.

Docs where a is an array containing a single item with both
b equal to 1 and c equal to 2.

Docs where a is 1 or b is 2.

Docs where a begins with the letter “m”.

{a: 10}

{a: 10, b: “hello”}

{a: {$gt: 10}}

{a: {$in: [10, “hello”]}}

{a: {$all: [10, “hello”]}}

{“a.b”: 10}

{a: {$elemMatch: {b: 1, c: 2}}}

{$or: [{a: 1}, {b: 2}]}

db.foo.find({a: /̂ m/})

Docs where a is anything but 10 or “hello.”

Docs where a mod 10 is 1.

Docs where a is an array with exactly 3 elements.

Docs containing an a field.

Docs where a is a string (see bsonspec.org for more types).

Docs where a matches the regular expression “foo.*bar”.

Docs where a is not a string. $not negates any of the other
query operators.

{a: {$nin: [10, “hello”]}}

{a: {$mod: [10, 1]}}

{a: {$size: 3}}

{a: {$exists: true}}

{a: {$type: 2}}

{a: /foo.*bar/}

{a: {$not: {$type: 2}}}

Update Modifiers

Increment a by 2.

Set a to the value 5.

Delete the a key.

Append the value 1 to the array a.

Append both 1 and 2 to the array a.

Append the value 1 to the array a (if it doesn’t already exist).

Append both 1 and 2 to the array a (if they don’t already exist).

Remove the last element from the array a.

Remove the first element from the array a.

Remove all occurrences of 5 from the array a.

Remove all occurrences of 5 or 6 from the array a.

{$inc: {a: 2}}

{$set: {a: 5}}

{$unset: {a: 1}}

{$push: {a: 1}}

{$pushAll: {a: [1, 2]}}

{$addToSet: {a: 1}}

{$addToSet: {a: {$each: [1, 2]}}}

{$pop: {a: 1}}

{$pop: {a: -1}}

{$pull: {a: 5}}

{$pullAll: {a: [5, 6]}}

