
12

Cost-Effective Conceptual Design for Information Extraction

ARASH TERMEHCHY, Oregon State University
ALI VAKILIAN, MIT
YODSAWALAI CHODPATHUMWAN and MARIANNE WINSLETT, University of Illinois at
Urbana-Champaign

It is well established that extracting and annotating occurrences of entities in a collection of unstructured
text documents with their concepts improves the effectiveness of answering queries over the collection.
However, it is very resource intensive to create and maintain large annotated collections. Since the available
resources of an enterprise are limited and/or its users may have urgent information needs, it may have to
select only a subset of relevant concepts for extraction and annotation. We call this subset a conceptual design
for the annotated collection. In this article, we introduce and formally define the problem of cost-effective
conceptual design where, given a collection, a set of relevant concepts, and a fixed budget, one likes to find a
conceptual design that most improves the effectiveness of answering queries over the collection. We provide
efficient algorithms for special cases of the problem and prove it is generally NP-hard in the number of
relevant concepts. We propose three efficient approximations to solve the problem: a greedy algorithm, an
approximate popularity maximization (APM for short), and approximate annotation-benefit maximization
(AAM for short). We show that, if there are no constraints regrading the overlap of concepts, APM is a fully
polynomial time approximation scheme. We also prove that if the relevant concepts are mutually exclusive,
the greedy algorithm delivers a constant approximation ratio if the concepts are equally costly, APM has
a constant approximation ratio, and AAM is a fully polynomial-time approximation scheme. Our empirical
results using a Wikipedia collection and a search engine query log validate the proposed formalization of the
problem and show that APM and AAM efficiently compute conceptual designs. They also indicate that, in
general, APM delivers the optimal conceptual designs if the relevant concepts are not mutually exclusive.
Also, if the relevant concepts are mutually exclusive, the conceptual designs delivered by AAM improve the
effectiveness of answering queries over the collection more than the solutions provided by APM.

Categories and Subject Descriptors: H.2.1 [Logical Design]: Schema and subschema

General Terms: Design, Algorithms, Performance

Additional Key Words and Phrases: Conceptual design, information extraction, effective query answering

ACM Reference Format:
Arash Termehchy, Ali Vakilian, Yodsawalai Chodpathumwan, and Marianne Winslett. 2015. Cost-effective
conceptual design for information extraction. ACM Trans. Datab. Syst. 40, 2, Article 12 (June 2015), 39
pages.
DOI: http://dx.doi.org/10.1145/2716321

1. INTRODUCTION

Discovering structured data from large unstructured or semi-structured document
collections is an active research area in data management [Chiticariu et al. 2010;

The authors are supported by NFS grants CCF-0938071, CCF-0938064, CNS-0716532, IIS-1423238, and
IIS-1421247. A. Termehchy is also supported by a Yahoo! Key Scientific Challenges award.
Authors’ addresses: A. Termehchy (corresponding author), Oregon State University, OR; email: termehca@
oregonstate.edu; A. Vakilian, MIT, Cambridge, MA; Y. Chodpathumwan, M. Winslett, University of Illinois
at Urbana-Champaign, IL.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by
others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
c© 2015 ACM 0362-5915/2015/06-ART12 $15.00

DOI: http://dx.doi.org/10.1145/2716321

ACM Transactions on Database Systems, Vol. 40, No. 2, Article 12, Publication date: June 2015.

12:2 A. Termehchy et al.

Fig. 1. Wikipedia article excerpts.

Fig. 2. Semantically annotated Wikipedia article excerpts.

Doan et al. 2009; Sarawagi 2008; Dalvi et al. 2009]. A popular method of discov-
ering structured data from unstructured or semi-structured documents is semantic
annotation: extracting the mentions of named entities in a collection of unstructured
or semi-structured text documents and annotating these mentions by their concepts
[Chakrabarti et al. 2007, 2010; Chu-Carroll et al. 2006; Dill et al. 2003; Schenkel
et al. 2007; Finin et al. 2010; van Zwol and Loosbroek 2007; Egozi et al. 2011]. It
is well established that semantically annotating a collection improves the effective-
ness of answering queries over the collection [Chu-Carroll et al. 2006; Dalvi et al. 2009;
Chakrabarti et al. 2007]. Figure 2 depicts excerpts of semantically annotated Wikipedia
articles (www.wikipedia.org) whose original and unannotated versions are shown in
Figure 1. Since the mentions to the entities named Michael Jordan are disambiguated
by their concepts, a query interface can deliver more effective results for the queries
about Michael Jordan, the scientist, over the semantically annotated collection than
the unannotated one.

We call the set of all concepts that have at least one entity in the collection a concep-
tual domain (domain for short). A possible domain for the articles shown in Figure 1
is the set of concepts {athlete, scientist, position, organization, sport, nationality}.

ACM Transactions on Database Systems, Vol. 40, No. 2, Article 12, Publication date: June 2015.

Cost-Effective Conceptual Design for Information Extraction 12:3

Intuitively, annotating all concepts in a domain will provide more effective results for
the input queries. Recent studies, however, indicate that accurately annotating the en-
tities of a concept in a large collection requires developing, deploying, and maintaining
complex pieces of software, manual labor, and/or collecting training data, which may
take a long time and substantial amount of computational and financial resources
[Chiticariu et al. 2010; Anderson et al. 2013; Elhelw et al. 2012; Doan et al. 2009;
Finin et al. 2010]. Given a concept, developers have to design and write a program
called an annotator or extractor that finds and annotates all instances of the concept
in the collection. One may write hand-tuned programming rules, such as regular ex-
pressions, that leverage formatting or language patterns in the text to identify and
extract instances of some concepts, such as Email [Chiticariu et al. 2010; McCallum
2005]. However, formatting and language patterns for most concepts, such as person
or protein, are subtle and involve many exceptions. In these cases, it is not unusual
to have thousands of rules to extract concepts [McCallum 2005]. Hence, developing
and maintaining annotating programs becomes extremely time consuming [Chiticariu
et al. 2010].

One may also use machine learning methods for concept extraction [McCallum 2005;
Chiticariu et al. 2010; Anderson et al. 2013]. Nevertheless, studies of several recent
concept extraction systems, such as DeepDive (deepdive.stanford.edu), show that using
and deploying machine learning methods for concept extraction are also very time
consuming and labor intensive [Anderson et al. 2013; Chiticariu et al. 2010]. In order
to extract the instances of a concept, developers have to first inspect the dataset and
identify a set of clues, called features, which indicate whether some terms in a document
refer to an instance of the concept. For instance, the occurrence of word said in a
sentence may suggest that the subject of the sentence refers to an instance of concept
person. Then, developers have to write programs to extract these features from the
documents. Each concept extractor may use hundreds of features [Anderson et al.
2013; McCallum 2005]. These efforts are more costly for concepts that are defined in
specific domains, such as geology and medicine, as they require extensive collaborations
between developers and scarce domain experts. As communication between developers
and domain experts is often ineffective, developers may have to spend a great deal of
time and sift through the data to find the relevant features [Anderson et al. 2013].

After finding candidate features, developers have to perform feature selection: they
have to analyze available features, remove some of them (e.g., those that are highly
correlated), and select a subset of those features that predict the instances of the
concept accurately [Anderson et al. 2013; McCallum 2005]. Developers iterate the
steps of finding, extracting, and revising features and testing the annotation program
several times in order to create an annotation program with a reasonable accuracy
[Anderson et al. 2013; Doan et al. 2009].

Finally, since annotation modules need to perform complex text analysis, it may take
days or weeks, plus a great deal of computational resources, to execute them over a
large collection [Jain et al. 2008a; Shen et al. 2008; Agichtein and Gravano 2003].
Thus, users have to wait a long time for the execution of extraction programs before
they have a fully annotated collection. The long delays to execute extraction programs
and to create and/or update fully annotated collections are well recognized as an issue
in concept extraction [Shen et al. 2008; Gulhane et al. 2011; Elhelw et al. 2012; Doan
et al. 2009]. They are particularly problematic in domains with urgent information
needs [Jain et al. 2008a; Shen et al. 2008; Elhelw et al. 2012]. For example, an FBI
agent who needs to query the evolving content of Web sites and social media pages to
find and respond to new activities in human trafficking, a stock analyst who has to
respond to changes in the stock market in a timely fashion, and an epidemiologist who

ACM Transactions on Database Systems, Vol. 40, No. 2, Article 12, Publication date: June 2015.

12:4 A. Termehchy et al.

must act quickly to control the spread of an infectious disease cannot afford to wait for
all annotation programs to be (re-)executed [Shen et al. 2008].

Since the structure and content of documents in many domains evolve over time,
the annotation programs should be regularly rewritten and rerun to create an updated
annotated collection [Gulhane et al. 2011; Elhelw et al. 2012; Kowalkiewicz et al. 2006;
Chen et al. 2012]. A recent study from Yahoo! Research indicates that the average
lifetime of most extractors is about two months [Gulhane et al. 2011]. Hence, users
have to wait a long time for annotation programs to be rewritten and rerun in order
to pose their queries over an updated and fully annotated collection [Shen et al. 2008;
Elhelw et al. 2012; Chen et al. 2012].

Therefore, an enterprise may decide to select only a subset of the concepts in the
domain for annotation or re-annotation to provide a partially annotated collection rel-
atively quickly. Users can pose their queries over the partially annotated collection
and get reasonably effective answers. Moreover, since the available financial and com-
putational resources of most enterprises are limited, they may not be able to hire a
sufficient number of machine learning experts and acquire computational resources to
(re-)write and (re-)execute the annotation programs for all concepts in their domains
and select subsets of these domains for annotation. We call this subset of concepts a
conceptual design (design for short) for the annotated collection.

Clearly, an enterprise wants to find a design whose required time (or resources) for
annotation does not exceed its limit on turnaround time (or budget) and that most
improves the effectiveness of answering queries over the annotated collection. Each
concept may require different amounts of time and resources for annotating its entities
in a collection. For instance, an enterprise may use a freely available and relatively
simple annotation program from OpenNLP (opennlp.apache.org) to discover the entities
of concept Email, to purchase and deploy a more sophisticated annotation program
from companies (such as ontotext.com) to annotated instances of concept position, or
to develop and deploy in-house annotators to identify entities of more domain-specific
concepts, such as athlete. The latter annotators may require more financial resources
and/or time to develop and execute than the former. This scenario suggests a novel
conceptual design problem: given a domain and a document collection, we want to find
a design for the collection that most improves the overall effectiveness of answers to
input queries, while its annotation costs do not exceed a given budget.

Although building and maintaining annotation modules are among the most expen-
sive stages of managing an annotated collection, to the best of our knowledge, the
choice of a cost-effective design for a collection is generally guided only by intuition and
has not been studied before. One cannot address this problem by conceptual or logical
design guidelines in classic database literature, as they neither consider the cost of
creating or maintaining a concept nor the impact of having a concept in the design
on the degree of effectiveness of answering queries [GarciaMolina et al. 2008]. In this
article, we introduce and formalize the problem of cost-effective conceptual design for
semantic annotation. Our formal treatment paves the way for systematic analysis of
the problem and shows that intuitively appealing heuristics, such as choosing relatively
less costly concepts and/or those that appear most often in queries, are not generally
optimal, even for cases where all annotators have equal cost. We prove the problem to
be generally NP-hard in the number of concepts in the domain and provide efficient
algorithms with provably bounded or sufficiently small worst-case approximation ra-
tios to solve the problem. Our extensive experiments using a large-scale real-world
document collection, queries from a search engine query log, and real-world conceptual
domains show that our algorithms efficiently select designs that provide effectiveness
close to that of the optimal design for queries. In summary, we make the following
contributions.

ACM Transactions on Database Systems, Vol. 40, No. 2, Article 12, Publication date: June 2015.

Cost-Effective Conceptual Design for Information Extraction 12:5

—We formally analyze the impact of possibly inaccurate annotation of a concept in a
collection on the effectiveness of answering queries over the collection. We quantify
this impact using a function called annotation benefit for two categories of real-world
domains: those with mutually exclusive concepts and those that do not have any
constraints regrading the overlap of concepts.

—We introduce and formally define the problem of cost-effective conceptual design for
semantic annotation as maximizing the value of the annotation-benefit function over
a set of concepts in a domain, given a limited time or budget. We propose efficient
exact algorithms for some interesting special cases of the problem. We prove that
the problem over both categories of domains is generally NP-hard in the number of
concepts in the domain.

—We propose three efficient approximation algorithms for the problem: a greedy algo-
rithm, an approximate popularity maximization (APM for short) algorithm, and an
approximate annotation-benefit maximization (AAM for short) algorithm. We prove
that the designs returned by the greedy algorithm improve the effectiveness of an-
swering queries almost as much as the optimal design if the concepts are mutually
exclusive and have equal cost. We also prove that the designs returned by APM
improve the effectiveness of answering queries by at most a constant factor less
than the optimal design and that the AAM algorithm is a fully polynomial-time ap-
proximation scheme in mutually exclusive domains: the effectiveness improvement
achieved by its designs will get sufficiently close to the improvement achieved by
optimal designs, given sufficient running time. We also show that APM is a fully
polynomial-time approximation scheme for those domains without any constraint
regarding the overlap of concepts.

—Our extensive experiments over the collection of Wikipedia articles, concepts from
the YAGO ontology [Schenkel et al. 2007], and queries from the MSN query
log [Demidova et al. 2010] show that the annotation-benefit formula accurately
quantifies the impact of a design on the amount of improvement in the effec-
tiveness of answering queries over the annotated collection for both categories of
domains.

—Our empirical results indicate that APM finds optimal designs for most cases where
the domain does not have any constraint regrading the overlap of its concepts. They
also show that the designs delivered by the AAM algorithm improve the effectiveness
of answering queries more than the APM algorithm across domains with mutually
exclusive concepts. We evaluate the scalability of APM and AAM and show that both
algorithms can find designs that improve the effectiveness of answering queries in a
reasonable amount of time and with modest memory overheads for a preprocessing
task.

—Because the complete information about the values of input parameters for AAM may
not be available at design time, we explore the sensitivity of this algorithm to errors
in estimating its input parameters and show that, when using the input parameters
computed over a small sample of the collection, AAM still returns designs that are
generally more effective than those returned by APM over domains with mutually
exclusive concepts.

This article is organized as follows. Section 2 reviews the related work. Section 3 de-
scribes the basic definitions. Section 4 quantifies the impact of a design on the improve-
ment in effectiveness of answering queries over a collection annotated by the design.
Section 5 introduces the problem of cost-effective conceptual design and explores its
hardness. Section 6 proposes efficient approximation algorithms for the problem and
explores their worst-case approximation ratios. Section 7 contains the empirical results

ACM Transactions on Database Systems, Vol. 40, No. 2, Article 12, Publication date: June 2015.

12:6 A. Termehchy et al.

about the accuracy of the annotation-benefit function and the average approximation
ratios of the algorithms, and Section 8 concludes the article.

2. RELATED WORK

Conceptual design is a topic of research in data management [GarciaMolina et al.
2008]. Our work extends this line of research by introducing and exploring the ability
of a conceptual design in effectively answering input queries and its cost effectiveness.

There is a large body of work on building programs that extract entities that belong to
a given concept, and systems that manage the extracted data [Chu-Carroll et al. 2006;
Dalvi et al. 2009; Chiticariu et al. 2010; Chakrabarti et al. 2007, 2010; Dill et al. 2003;
Sarawagi 2008; Doan et al. 2009; Dalvi et al. 2009; Anderson et al. 2013; Chen et al.
2012; Graupmann et al. 2004]. We build on this work by offering a new preprocessing
design phase that can be followed by and coupled with any of these previously proposed
approaches.

As developing concept extraction programs is very time consuming, researchers have
proposed frameworks for iterative development of these programs so that developers
can check the accuracy of a concept extraction program in each iteration of its develop-
ment and stop if the program delivers the desired level of accuracy [Shen et al. 2008;
Anderson et al. 2013]. Our work is orthogonal to these efforts and focuses on selecting
those concepts for which one will (re-)write an extraction program.

In order to address the long delays in concept and relation extractions, researchers
have proposed several techniques to optimize the execution time of SQL queries over
existing databases whose information comes from concept and relation extraction pro-
grams [Ipeirotis et al. 2006; Jain et al. 2008a, 2008b; Huang and Yu 2010; Agichtein
and Gravano 2003; Doan et al. 2009; Shen et al. 2007; Elhelw et al. 2012]. Similar
systems optimize the use of information extraction programs to add missing data val-
ues to an existing database [Kanani and McCallum 2012]. These techniques generally
improve execution time or storage capacity by processing only those “promising” docu-
ments in the collection that contain information about the database relations, instead
of the whole collection. Our work differs in addressing the issues raised at design time
rather than query time. We also consider ranking queries as opposed to SQL queries.
Our model covers other types of cost in annotation in addition to runtime and storage
space. Moreover, we explore using both structured data (i.e., annotated documents) and
unstructured data (i.e., unannotated documents) in effectively answering queries.

Researchers have proposed methods to discover the schema of the noisy output of
information extraction modules [Cafarella et al. 2007]. Our work, however, finds the set
of concepts that are worth extracting and annotating, given their costs of annotation.

Researchers have empirically shown that annotating all concepts in a domain using
sufficiently precise annotators improves the effectiveness of answering queries [Chu-
Carroll and Prager 2007; Sanderson 2008; Krovetz and Croft 1992; Stokoe et al. 2003].
We extend this line of work by considering the cost of building concept annotators,
providing a formal analysis of the impact of concept annotation on the improvement in
effectiveness of answering queries, and proposing systematic methods to select concepts
for annotation given a fixed budget.

We have described and studied the problem of cost-effective conceptual design in
Termehchy et al. [2014]. The current article improves this work in seven directions.
First, it provides the formal proofs and further analysis of the results in Termehchy
et al. [2014]. Second, it studies the hardness of the cost-effective conceptual design prob-
lem in more detail and proves its connection to the well-known SUBSET SUM problem.
Third, it proposes exact and efficient (polynomial-time) algorithms for the problem
in some interesting special cases. Fourth, it proposes a greedy approximation algo-
rithm for some special cases of the problem that are more efficient than the algorithms

ACM Transactions on Database Systems, Vol. 40, No. 2, Article 12, Publication date: June 2015.

Cost-Effective Conceptual Design for Information Extraction 12:7

proposed in Termehchy et al. [2014]. Fifth, we evaluate and analyze the effectiveness
of our proposed models and algorithms using an additional effectiveness metric (i.e.,
mean reciprocal rank) and provide more insight on the effectiveness of the investigated
models and algorithms. Sixth, we provide a detailed empirical study on the trade-off
between the running times and the output qualities of the proposed algorithms. Finally,
we analyze the parameter estimation techniques for cost-effective conceptual design
algorithms over a large collection.

3. BASIC DEFINITIONS

Similar to previous work, we refrain from rigorously defining the notions of named
entities [Dalvi et al. 2009] and define a named entity (entity for short) as a unique name
in some (possibly infinite) domain. A concept is a set of entities, that is, its instances.
For example, person and country are concepts corresponding to entities Albert Einstein
and Jordan, respectively. A collection is a set of text documents. There may be several
mentions, that is, occurrences, of an entity in a collection. For example, Michael Jeffrey
Jordan and Michael Jordan refer to the famous athlete in the collection shown in
Figure 2. We call these mentions instances of the entity and, for brevity, also the
instances of its concept (athlete).

A domain may have some constraints on the relationship between its concepts
[Abiteboul et al. 2011]. Concepts C1 and C2 are mutually exclusive in a domain if
and only if no entity belongs to both C1 and C2. For instance, concepts person and
location are mutually exclusive, as no entity is both a person and a location. When all
concepts in domain D are mutually exclusive, then each occurrence of an entity in a col-
lection over D maps to exactly one concept. Our study of real-world ontologies, such as
DBPedia (wiki.dbpedia.org/Ontology), Schema.org (schema.org), and YAGO, indicates
that mutually exclusive concepts appear frequently in these ontologies. For example, in
Schema.org, each entity should belong to only one of the concepts of Action, Broadcast-
Service, Class, CreativeWork, Event, Intangible, MedicalEntity, Organization, Person,
Place, Product, and Property, which are mutually exclusive. As another example, in
DBPedia, different types of organizations, places, events, devices, and creative works
are described by mutually exclusive concepts. Mutually exclusive concepts are also
easier to annotate via learning-based methods, as one can use the positive training
examples of one concept as negative training examples for the others [Riloff and Jones
1999]. When this constraint is available in the domain, we exploit it to find cost-effective
conceptual designs. Concepts in a domain may have other types of relationships such
as a subclass/superclass relationship (e.g., person and scientist). Analyzing and solving
the problem of cost-effective conceptual design for concepts with other types of relations
is a larger undertaking and provides interesting subjects for future work.

Extracted entities can be represented and stored in a variety of data formats, such as
XML files [Chu-Carroll et al. 2006] or annotation stores [Kandogan et al. 2006; Fagin
et al. 2010]. Our framework and algorithms are oblivious to the ways in which the
annotated documents are stored.

In this article, we consider queries that seek information about named entities [Chu-
Carroll et al. 2006; Chakrabarti et al. 2007; Chu-Carroll and Prager 2007]. A query
takes the form (C, T), where C is a concept and T a finite set of keywords. Example
queries include (person, {Jordan}) and ((location, {Jordan attractions}). This type of
query has been widely used to search annotated collections [Chu-Carroll et al. 2006;
Graupmann et al. 2005; Chakrabarti et al. 2007; Pound et al. 2010]. Query (C, T) over
collection CO is answered by a function that maps T to a ranked list of documents in
CO such that each document in the list contains an occurrence of an entity in C. One
may use a variety of functions to rank the documents [Manning et al. 2008].

ACM Transactions on Database Systems, Vol. 40, No. 2, Article 12, Publication date: June 2015.

12:8 A. Termehchy et al.

Empirical studies on real-world query logs indicate that the majority of entity-centric
queries refer to a single entity [Sanderson 2008]. Since this article is the starting
effort to address the problem of cost-effective conceptual design, it is reasonable to
start with the aforementioned class of queries. We do not consider complex queries
such as aggregations (e.g., the average number of actors in a movie) or those that
seek information about relationships between several entities. Such queries require a
different model and algorithms, and thus are beyond the scope of this work.

4. THE BENEFIT OF A CONCEPTUAL DESIGN

4.1. Objective Function

Let S be the design of annotated collection CO and Q be a set of queries over CO. We
would like to quantify the degree by which S improves the effectiveness of answering
queries in Q over CO. The value of this function should be larger for those designs that
help the query interface to answer a larger number of queries in Q more effectively. It
has been shown that most information needs over annotated collections are precision
oriented [Dill et al. 2003; Chu-Carroll et al. 2006]. In some settings, users may be more
interested in improving query answer recall, rather than precision at k. For instance, a
biologist may want to view all possible genomic causes of cancer listed in the scientific
literature. The problem of cost-effective design to maximize other objective functions,
such as recall, is an interesting subject for future work.

We choose the standard metric of precision at k (p@k for short) to measure the
effectiveness of answering queries over an annotated collection [Manning et al. 2008].
The value of p@k for a query is the ratio of the number of relevant answers in the
top-k returned answers for the query, divided by k. Precision at k has also a simpler
form than other precision-oriented metrics such as mean reciprocal rank (MRR) or
normalized discounted cumulative gain (NDCG), thus, is easier to optimize [Manning
et al. 2008]. We average the values of p@k over queries in Q to measure the amount of
effectiveness in answering queries in Q.

4.2. Effectiveness Improvement for Queries of Annotated Concepts

Let Q : (C, T) be a query in Q. If C is annotated, that is, C ∈ S, the query interface will
find and return only those documents that contain information about entities in C. It
will then rank them according to its ranking function, such as the traditional TF-IDF
scoring methods or learning to rank techniques [Manning et al. 2008]. Our model is
orthogonal to the method used to rank the candidate answers. Annotating C in CO will
help the query interface to avoid nonrelevant results that otherwise may have been
placed in the top-k answers for Q. We call the fraction of queries in Q whose concept is
C the popularity of C in Q. Let uQ be the function that maps concept C to its popularity
in Q. When Q is clear from the context, we simply use u instead of uQ. The portion of
queries for which the query interface returns only those documents about entities in
their desired concepts is

∑
C∈S u(C). Given all other conditions are the same, the larger

the value of
∑

C∈S u(C), the more likely that the query interface will achieve a larger
p@k value over queries in Q. Hence, we may use

∑
C∈S u(C) to compare the degrees of

improvement in the value of p@k over queries in Q achieved by various designs.
Annotators, however, may make mistakes in identifying the correct concepts for

occurrences of entities in a collection [Chu-Carroll et al. 2006]. An annotator may
annotate some appearances of entities from concepts other than C as the occurrences
of entities in C. For instance, the annotator of concept person may annotate Lincoln
Building as a person. The accuracy of annotating concept C over CO is the number
of correct annotations of C divided by the number of all annotations of C in CO. We

ACM Transactions on Database Systems, Vol. 40, No. 2, Article 12, Publication date: June 2015.

Cost-Effective Conceptual Design for Information Extraction 12:9

denote the accuracy of annotating C over CO as prCO(C). When CO is clear from the
context, we show prCO(C) as pr(C). Given query Q : (C, T) and C ∈ S, it is reasonable
to assume that 1 − pr(C) of the top-k results may contain information about entities
that do not belong to C. Hence we should refine our estimate to∑

C∈S
u(C)pr(C) (1)

in order to reward those designs whose concepts are annotated more accurately.

4.3. Effectiveness Improvement for Queries of Unannotated Concepts

Given query Q : (C, T) ∈ Q, if C ∈ C − S (C is not annotated by S), there is in-
sufficient metadata information in the collection for the query interface to identify the
occurrences of the entities in C. Therefore, it may view the concept name C and the key-
words in T as a bag of words and use some document ranking function to return the
top-k answers for Q. We like to estimate the fraction of the results for Q that contain a
matching entity in concept C. Given all other conditions are the same, the larger this
fraction, the more likely that the query interface delivers more relevant answers, and
therefore a larger p@k value for Q. Based on the available constraints on the relations
between concepts in the domain, we provide two different estimations of the fraction
of the results for Q that contain a matching entity in concept C.

Domains with mutually exclusive concepts. If concepts in the domain are mutually
exclusive, the annotated concepts may help the query interface to eliminate some
nonrelevant answers from its results for Q. For example, assume the instances of
concept location are annotated and the instances of concept person are not annotated in
the collection. As these concepts are mutually exclusive, given query (person, {Jordan}),
the query interface can ignore matching instances like Jordan River for this query.
Because text documents are coherent, they do not usually contain information about
entities with similar or the same name but from mutually exclusive concepts. For
instance, it is unlikely to find a document that contains information about both Jaguar,
the vehicle, and Jaguar, the animal. Hence, the query interface can eliminate those
candidate answers for Q whose matched terms are annotated by concepts other than
the concept of Q. By removing these nonrelevant answers from its ranked list, the
query interface may improve the value of p@k for Q.

In order to compute the fraction of candidate answers for Qwhose matching instances
belong to C, we have to first calculate the fraction of candidate answers that survive
the elimination. This ratio, however, may vary across different queries in Q as some
queries may have more candidate answers with matched annotated instances from
concepts in S than others. Estimating this ratio per query is generally hard, as it may
require estimating and computing model parameters per query. In particular, detailed
information about queries in a query workload such as their candidate answers may not
be always available. Hence, in order to have an estimation which can be efficiently and
effectively computed over a large number of queries, we assume all queries in Q have
equal ratios of candidate answers that contain matched instances of a certain concept in
the domain. We further estimate this ratio for the concept by the fraction of documents
in the collection that contain instances of the concept. Our empirical results using
queries from a real-world search engine query log and collection (reported in Section 7)
show that, in spite of these simplifying assumptions, our model effectively estimates
the degrees of improvement achieved by various designs for a collection.

Let dCO(E) denote the fraction of documents that contain instances of concept E in
collection CO. These instances may or may not be annotated, depending on whether
E ∈ S. We call dCO(E) the frequency of E over CO. When CO is clear from the context, we

ACM Transactions on Database Systems, Vol. 40, No. 2, Article 12, Publication date: June 2015.

12:10 A. Termehchy et al.

denote the frequency of E as d(E). Given design S for collection CO, we want to compute
the fraction of those candidate answers for query Q : (C, T) that contain a matching
instance of concepts E ∈ C−S. In order to simplify our model, we estimate this fraction
as

∑
E∈C−S d(E). Our experimental results in Section 7.2 indicate that, despite of this

simplification, our objective function effectively captures the degree of improvement
delivered by a conceptual design over a collection. This portion of answers will stay
in the list of results for Q after the query interface eliminates all candidate answers
with matching instances from concepts in S. Hence, the fraction of candidate answers
that contain a matching instance of concept C in the list of answers for a query in Q
is d(C)/

∑
E∈C−S d(E). We assume that the documents in the collection are not so long

such that finding information about a matching entity from a single document takes a
great deal of time and effort.

Using this estimation and Eq. (1), we formally define the function that estimates the
likelihood of improvement for the value of p@k for queries that both belong and those
that do not belong to the conceptual design in a query workload over a collection that
is annotated by concepts in design S.

Definition 4.1. Given domain C with mutually exclusive concepts, query workload
Q, and conceptual design S ⊆ C, the annotation benefit of S is

AB(S) =
∑
C∈S

u(C)pr(C) +
∑

C∈C−S
u(C)

d(C)∑
E∈C−S d(E)

. (2)

Overall, the annotation benefit estimates the likelihood in improving users’ satisfaction
by answering queries more precisely. The larger the value of the annotation benefit for
design S over collection CO, the more likely it is that Q will have a larger average p@k
over the version of CO annotated by concepts in S.

The first term of the annotation benefit in Eq. (2) reflects the portion of queries for
which the query interface returns only those candidate answers with instances match-
ing the concept of the query. It is larger for those concepts that are more frequently
used in queries. For example, let a domain contain concepts C1, C2, and C3, where the
instances of C1 appear in 90% of queries and 1% of documents, the instances of C2
occur in 1% of queries and 90% of documents, and the instances of C3 appear in 9% of
queries and 9% of documents. If all annotators have perfect accuracies (i.e., pr(C) = 1,
C ∈ {C1, C2, C3}), we have

∑
C∈{C1} u(C) >

∑
C∈{C2} u(C). Although C1 appears in only

1% of documents, it is used in 90% of queries. Hence, it is more likely that the query
interface will answer the input queries more effectively if we annotate the instances of
C1 rather than C2 in the collection.

The second term represents the impact of annotating the concepts in S on the like-
lihood of improving the precision of answering queries whose concepts are not in S.
Given that the concept of a query does not belong to S, the more frequent the con-
cepts in S in the collection, the more nonrelevant answers the query interface can
eliminate.

Domains without constraints regarding the overlap of concepts. If there is no con-
straint on the relations between concepts in the domain, such as whether they are
mutually exclusive or superclass/subclass, the query interface has to examine all doc-
uments in the collection to answer Q. For example, assume that a domain contains
concepts actress and director and the entities of actress are annotated in the collection.
Given query (director, {Rossellini}), the query interface cannot filter out its matching
instances from concept actress like Isabella Rossellini because concepts actress and di-
rector are not mutually exclusive. Thus, if the instances of concept C are not annotated,
C /∈ S, the fraction of candidate answers of Q : (C, T) that contain a matching instance

ACM Transactions on Database Systems, Vol. 40, No. 2, Article 12, Publication date: June 2015.

Cost-Effective Conceptual Design for Information Extraction 12:11

of concepts C is d(C). Using Eq. (1), we formally define the function that estimates
the likelihood of improvement for the value of p@k for all queries in a query workload
over a collection that is annotated by concepts in design S over domains without any
constraint.

Definition 4.2. Given domain C without any constraint, query workload Q, and con-
ceptual design S ⊆ C, the annotation benefit of S is

AB(S) =
∑
C∈S

u(C)pr(C) +
∑

C∈C−S
u(C)d(C). (3)

Similar to the formula for annotation benefit in Eq. (2), the first term of the annotation
benefit in Eq. (3) reflects the group of queries for which the query interface returns only
those candidate answers with instances matching their concepts. The second term of
the annotation benefit in Eq. (3), however, is different from the second term in Eq. (2)
and represents the impact of the frequency of a concept that is not in S on the likelihood
of the precision of its queries.

Some domains may contain a mix of mutually exclusive and overlapping concepts.
Analyzing and solving the problem of cost-effective conceptual design for such domains
is a larger undertaking which requires more space than one article and provides an
interesting subject for future work.

4.4. Estimating the Input Parameters

According to Definitions 4.1 and 3, we need popularities, frequencies, and accuracies
of annotation for each concept in a domain in order to compute the annotation benefit
of a design over the domain. These values, however, are not usually available before
annotating the instances of concepts in the collection. Similar issues arise in database
query optimization, where complete information about running times of operators in
a query is not available before running the query [GarciaMolina et al. 2008]. Our
empirical results indicate that one can effectively estimate the values of popularities
and frequencies of concepts over a small sample of a collection (e.g., 384 out of about 1
million documents). The enterprise may use methods such as crowd sourcing to compute
the popularities and frequencies of concepts over such small samples. These annotated
documents may be also used as training data for the annotation program of the concept
if it is selected for annotation. In some settings, a sample workload of queries with their
concepts is not available, that is, we may have access only to pure keyword queries.
The enterprise can use the click-through information of sample queries to effectively
find their associated concepts [Bennett et al. 2007]. Nevertheless, rigorous study of
parameter estimation methods for concept extraction requires a deeper theoretical
investigation and empirical analysis over more than one collection. An interesting
future work is to find practical parameter estimation methods that can effectively
estimate such parameters over many different collections.

An enterprise may use the annotation-benefit function to choose those concepts for
which it should develop annotation programs, therefore it may not know the accuracies
of the annotation programs in design time. Because one has to spend more time and
resources to develop a more accurate annotator, the accuracy of annotating a concept
somewhat represents the cost of developing its annotation program. Hence, the en-
terprise may set the accuracy of annotating a concept to a reasonable value that can
be achieved using its associated cost. It may also compute and compare the values of
annotation benefit for designs across multiple assignments of costs and accuracies of
annotating concepts in the domain.

ACM Transactions on Database Systems, Vol. 40, No. 2, Article 12, Publication date: June 2015.

12:12 A. Termehchy et al.

5. COST-EFFECTIVE CONCEPTUAL DESIGN

5.1. Costs of Concept Extractions

Researchers have noticed the overheads and costs of curating and organizing large
datasets [Dong et al. 2013; Kanani and McCallum 2012; Jain et al. 2008a]. For exam-
ple, some researchers have recently considered the problem of selecting datasets for
fusion such that the marginal cost of acquiring and processing a new dataset does not
exceed its marginal gain, where cost and gain are measured using the same metric,
such as U.S. dollars [Dong et al. 2013]. Other researchers have considered the problem
of filling missing values in a relational database by extracting information from the
Web, given that the resources available for information extraction are limited [Kanani
and McCallum 2012; Jain et al. 2008a]. They identify the costs associated with infor-
mation extraction as the computational power and network bandwidth needed to issue
queries to find and download relevant documents and the time to execute information
extraction programs over the downloaded documents. In addition to these recurring
overheads, concept extraction may incur one-time costs such as the amount of time,
money, or manual labor spent on developing, training, and/or maintaining concept
extractors.

Our goal is to propose a rather general framework that can capture various types
of costs involved in concept extraction. Given collection CO, we define function wCO
that maps each concept to a real number, which reflects the amount of resources used
to annotate instances of this concept over collection CO. When the collection is clear
from the context, we simply denote the cost function as w. The cost function captures
both one-time and recurring overheads. In some settings, concept annotation incurs
multiple types of costs which may be measured in different units. For instance, an
enterprise may spend financial resources to develop concept extractors, and it will take
some time to execute these annotators. The enterprise may not be able to represent
these multiple cost elements using a unified measure. We will explain how our proposed
framework handles these cases in Section 6.1.

We assume that annotating certain concepts does not impact the cost and accuracy of
other concepts in the collection. The costs of (re-)writing, (re-)running, and maintaining
an extractor for a concept are still considerable in most cases after coupling its extrac-
tion with other related concepts. For example, programmers have to find, extract, and
select a great deal of relevant features for each concept separately, run its extraction
programs, and rewrite and/or rerun it as the underlying collection evolves. The problem
also becomes rather complex to express and solve without this assumption.

Researchers have developed effective methods to estimate the required time and
computational power for concept extraction [Jain et al. 2008a]. An enterprise may also
use the amount of money needed to purchase extraction programs from other companies
(e.g., ontotext.com) to estimate the cost of acquiring concept extraction programs. It
may predict the cost of annotator programs that are developed in-house using current
techniques for predicting costs of software development and maintenance [Boehm et al.
2000]. In the absence of any evidence, one may assume that all concepts require an
equal amount of resources for annotation. As we show in Section 5, it is still challenging
to find cost-effective designs in this setting.

5.2. The Cost-Effective Conceptual Design Problem

Since the resources available to develop, maintain, and execute concept annotators are
limited, our goal is to find a conceptual design S such that annotating the concepts in S
in the queries and collection maximizes the annotation benefit. Let Bdenote the amount
of resources available to perform the annotation. Annotating a set of concepts S is fea-
sible if

∑
C∈S w(C) ≤ B. We formally define the annotation-benefit problem as follows.

ACM Transactions on Database Systems, Vol. 40, No. 2, Article 12, Publication date: June 2015.

Cost-Effective Conceptual Design for Information Extraction 12:13

Problem 5.1. Given a domain C, the goal of the COST-EFFECTIVE CONCEPTUAL DESIGN

problem is to construct a conceptual design S that maximizes the annotation benefit
(AB) while satisfying the constraint w(S) ≤ B.

In the case of domains with no constraints, we can rewrite the annotation-benefit
function as follows.

AB(S) =
∑
C∈S

u(C)pr(C) +
∑

C∈C−S
u(C)d(C)

=
∑
C∈S

u(C)(pr(C) − d(C))

+
∑
C∈C

u(C)d(C),

where the term
∑

C∈C u(C)d(C) is independent of S. Concept extraction is intended
to be an informative process, that is, it should perform better than random selection
[Downey et al. 2006]. A random annotator for concept C with frequency d(C) will
achieve pr = d(C). Thus it is reasonable to assume that, for an annotation of C that
takes resources, we have pr(C) ≥ d(C). Moreover, if for a concept C, pr(C) < d(C), it
is better to leave the concept unannotated. If we do not annotate C, the benefit we get
from C is at least u(C)d(C), while annotating C gives a benefit of pr(C)u(C) for concept
C, which is less than u(C)d(C).

Thus, the optimization problem in this setting is the following:

max
∑
C∈S

u(C)(pr(C) − d(C)), s.t.
∑
C∈S

w(C) ≤ B.

If the domain has n concepts, the COST-EFFECTIVE CONCEPTUAL DESIGN problem over
domains with no constraints is equivalent to the 0-1 KNAPSACK problem with n objects,
where the value of each object OC is u(C)(pr(C) − d(C)) and its weight is w(C). Since
the 0-1 KNAPSACK problem is NP-hard, the COST-EFFECTIVE CONCEPTUAL DESIGN problem
over domains with no constraints is also NP-hard.

Next, we prove that the COST-EFFECTIVE CONCEPTUAL DESIGN problem is NP-hard for
domains with mutually exclusive concepts by a reduction from the following NP-hard
variant of the PARTITION problem [Korte and Schrader 1981].

Problem 5.2. Let A = {a1, . . . , a2m} be a set of 2m positive integers that sum up to
2A, such that for each a ∈ A, A

m+1 < a < A
m−1 . The goal is to decide whether there exists

a set I ⊂ A such that
∑

a∈I a = A.

THEOREM 5.3. Problem 5.2 polynomially reduces to the COST-EFFECTIVE CONCEPTUAL

DESIGN problem over a domain with mutually exclusive concepts.

PROOF. Given an instance of Problem 5.2, we construct an instance of the COST-
EFFECTIVE CONCEPTUAL DESIGN problem with 2mconcepts as follows. For each 1 ≤ i ≤ 2m,
let w(Ci) = u(Ci) = ai, pr(Ci) = 1, and d(Ci) = 1 and let B = A.

A conceptual design S is a maximal design for the COST-EFFECTIVE CONCEPTUAL DESIGN

problem if there exists no C ′ ∈ C − S such that w(C ′) + ∑
C∈S w(C) ≤ B; there is no

concept C such that its annotation cost is less than the leftover annotation budget.
Moreover, since for each i we have w(Ci) < A

m−1 and B = A, the size of each maximal
feasible solution is either m− 1 or m. Next we show that the optimal conceptual design
of the constructed instance of the COST-EFFECTIVE CONCEPTUAL DESIGN problem is at
most A+ A

m and this value is obtained iff there exists a set S such that w(S) = A. By a

ACM Transactions on Database Systems, Vol. 40, No. 2, Article 12, Publication date: June 2015.

12:14 A. Termehchy et al.

straightforward analysis, we have

AB(S) ≤
∑
C∈S

u(C) + 2A− ∑
C∈S u(C)

m

= 2A
m

+
∑
C∈S

u(C)
(

1 − 1
m

)

= 2A
m

+
∑
C∈S

w(C)
(

1 − 1
m

)

≤ 2A
m

+ A
(

1 − 1
m

)
= A+ A

m
,

where S is a feasible conceptual design. Moreover, AB(S) = A+ A
m iff w(S) = A. Thus

there exists a set I ⊆ A such that
∑

a∈I a = A iff its corresponding COST-EFFECTIVE

CONCEPTUAL DESIGN instance (which is constructed in polynomial time) has a solution
of value A+ A

m.

Problem 5.4. (Subset Sum Problem). In the SUBSET SUM problem we are given a set
S of n positive integer numbers and the goal is to determine whether there exists a
subset A ⊆ S whose total sum of its element is W , where W is a positive integer.

THEOREM 5.5. The SUBSET SUM problem polynomially reduces to the COST-EFFECTIVE

CONCEPTUAL DESIGN problem over a domain with mutually exclusive concepts.

PROOF. Given an instance of the SUBSET SUM problem with n integers a1, . . . , an and
query value W , we construct the following instance of COST-EFFECTIVE CONCEPTUAL DE-
SIGN. For each i ≤ n, create a concept Ci such that u(Ci) = w(Ci) = ai and d(Ci) = 0.
Moreover, we add two extra concepts Cn+1 and Cn+2 with w(Cn+1) = w(Cn+2) = W ,
u(Cn+1) = u(Cn+2) = 0 and d(Cn+1) = d(Cn+2) = 1. Since for each i, u(Ci)d(Ci) = 0, the
benefit of the mixed part is always zero. Thus for the constructed instance, W is an
upper bound for COST-EFFECTIVE CONCEPTUAL DESIGN and it obtains W iff there exists a
subset A such that

∑
ai∈A ai = W .

By Theorem 5.3 and Theorem 5.5 and the fact that both the SUBSET SUM problem and
Problem 5.2 are NP-hard, we have the following corollary.

COROLLARY 5.6. The COST-EFFECTIVE CONCEPTUAL DESIGN problem is NP-hard.

If a domain contains a manageable number of concepts, developers can manually
estimate the popularities of concepts among users and their associated costs, and
manually select the most cost-effective concepts for extraction. However, we observe
a new trend in concept extraction where the number of possible concepts is too large
for a manual approach. For instance, search engine companies such as Google and
Microsoft have proposed a set of hundreds of concepts, called schema.org. Enterprises
can annotate their Web pages using the concepts from schema.org, so that users of
Google and Bing can satisfy their information needs from the enterprises’ Web sites
more easily. It is very difficult to manually navigate through hundreds of concepts, pick
the ones that are most likely to be queried by users, and select a cost-effective subset of
these concepts. This is particularly true for enterprises with diverse sets of Web pages,
such as newspapers, like The New York Times, and large companies such as IBM.
Further, as shown in Section 6, a cost-effective design does not necessarily include the
concepts most popular among users, as a concept may be sufficiently frequent in the

ACM Transactions on Database Systems, Vol. 40, No. 2, Article 12, Publication date: June 2015.

Cost-Effective Conceptual Design for Information Extraction 12:15

collection for an effective document ranking method to provide answers with reasonable
ranking quality for queries involving this concept.

The obvious first step toward a solution for the COST-EFFECTIVE CONCEPTUAL DESIGN

problem is to adopt a greedy solution, that is, pick those concepts with the largest value
of u(C)pr(C) or the largest values for both u(C)pr(C) and d(C). However, the following
examples show the problems of using such ideas.

Example 5.7. Consider a domain with three concepts {event, personality, shape}
from the YAGO ontology over the collection of English Wikipedia articles [Schenkel
et al. 2007]. Some instances of concept event, personality, and shape in this collection
are Jesus Christ Crucifixion, Julia Child, and sphere. These concepts have the following
normalized u and d values over the collection.

event personality shape
u 0.57 0.38 0.05
d 0.91 0.07 0.02

Assume they can be annotated with perfect accuracy. Given that developing
an annotator costs the same for all three concepts, that is, w(C) = 1, C ∈
{event, personality, shape}, and B = 1, we would like to select a concept for annota-
tion that delivers the maximum annotation benefit. Although event has larger u and d
values than the other two concepts, annotating place maximizes the annotation-benefit
function.

AB(event) = 0.57 + 1
1 − 0.91

(0.38 × 0.07 + 0.05 × 0.02)

= 0.877

By annotating concept personality, the value of the annotation benefit becomes

AB(Personality) = 0.38 + 1
1 − 0.07

(0.57 × 0.91 + 0.05 × 0.02)

= 0.939.

This is because d(personality) ≈ d(shape). However, event has considerably higher d
value than the other two concepts. Thus, after event has been annotated, personality
and shape are still indistinguishable, but annotating personality helps event to be
recognizable as well.

An interesting special case of the COST-EFFECTIVE CONCEPTUAL DESIGN problem over
mutually exclusive domains is its unweighted variant, the setting in which all costs
are equal. It will provide useful insights to the general problem and accepts exact
algorithms in some cases. It may also occur in practice. For instance, if the enterprise
does not have sufficient information about the costs of the concepts in a domain, it may
assume their costs to be equal. In this setup, the goal is to find a set of B concepts,
S, whose annotations maximize the value of the annotation benefit over the collection
where B is the available budget for annotation.

5.3. Equally Popular or Frequent Concepts

An interesting variant of the COST-EFFECTIVE CONCEPTUAL DESIGN problem is the case in
which all concepts are equally popular; for each C ∈ C, u(C) = u, where u is a fixed
constant.

ACM Transactions on Database Systems, Vol. 40, No. 2, Article 12, Publication date: June 2015.

12:16 A. Termehchy et al.

PROPOSITION 5.8. Suppose that for each C ∈ C, u(C) = u where u is a fixed constant.
The greedy approach that picks concepts in descending order of pr() values achieves an
optimal solution.

PROOF. By annotating a set S of concepts, the value of the annotation benefit is equal
to

AB(S) =
∑
C∈S

u(C)pr(C) +
∑

C∈C−S u(C)d(C)∑
C∈C−S d(C)

= u
∑
C∈S

pr(C) + u∑
C∈C−S d(C)

∑
C∈C−S

d(C)

= u

(∑
C∈S

pr(C) + 1

)
.

Another case of interest is when all concepts have almost the same number of in-
stances in the collection; for each C ∈ C, d(C) = d, where d is a fixed constant.

PROPOSITION 5.9. Given that d(C) = d for each C ∈ C, choosing concepts in descending
order of u()pr() achieves the maximum annotation benefit.

PROOF. Let d(C) = d for each C ∈ C, where d is a fixed constant, and let B be the
given budget for annotation. After annotating an arbitrary set S of concepts, the value
of the annotation benefit will be equal to

AB(S) =
∑
C∈S

u(C)pr(C) +
∑

C∈C−S
u(C)d(C)∑

C∈C−S
d(C)

=
∑
C∈S

u(C)pr(C) + d
1 − B · d

∑
C∈C−S

u(C)

=
∑
C∈S

u(C)pr(C) + d
1 − B · d

(∑
C∈C

u(C)pr(C) −
∑
C∈S

u(C)pr(C)

)

=
∑
C∈S

u(C)pr(C)
(

1 − d
1 − B · d

)
+ d

1 − B · d

∑
C∈C

u(C)pr(C).

Since the values of both 1 − d
1−B·d and

∑
C∈C are independent of choice of S, if we want

to annotate a set of concepts S of size B from C to maximize the annotation benefit, we
should choose those concepts with the m highest u()pr() values.

5.4. Greedy Approximation Algorithm

We have shown in Section 5.3 that the greedy algorithm which picks those B concepts
with the largest values of u()pr() delivers the optimal answer for some cases of the COST-
EFFECTIVE CONCEPTUAL DESIGN problem for mutually exclusive domains. We can show
that the greedy algorithm has a reasonable approximation ratio for the unweighted
variant of the problem over mutually exclusive domains. Consider a maximization
problem M. A polynomial-time algorithm A is an α-approximation to M if SOLA ≥
1
α
OPTM, where SOLA is the value of the solution returned by A and OPTM is the value

of the optimal solution to M.

THEOREM 5.10. The greedy algorithm is a (prmin
B

B+1)-approximation where prmin =
minC∈C pr(C).

ACM Transactions on Database Systems, Vol. 40, No. 2, Article 12, Publication date: June 2015.

Cost-Effective Conceptual Design for Information Extraction 12:17

PROOF. We use the method of Gal and Klots [1995] to analyze the algorithm. It is
clear that the greedy algorithm at least picks those B concepts with largest u()pr()
value. On the other hand, the optimal solution cannot pick more than B concepts of C.
If the optimal solution picks � concepts, we have � + 1 terms in the annotation-benefit
formula (� for the extracted concepts and one for the mixed one). The total benefit
of these terms is less than the sum of the � + 1 largest values of u()pr(). Since the
annotation-benefit of the output of the greedy algorithm is more than the sum of the
u()pr() of the B concepts with the largest u()pr(),

AB(Sgreedy) > prmin
B

B+ 1
OPT.

Furthermore, we can show that the ratio obtained for the greedy algorithm in
Theorem 5.10 is tight. Consider the following example in Gal and Klots [1995]. A
set C of n + 1 concepts with the following u and d is given:

—u(Ci) = 1 − (i − 1)ε, 1 ≤ i ≤ n; u(Cn+1) = 0,
—d(Ci) = (1 − ε − ε2)/(n − 1), 1 ≤ i ≤ n − 1; d(Cn) = ε2; d(Cn+1) = ε,
—pr(Ci) = 1, 1 ≤ i ≤ n + 1.

Here, ε is a small positive number. Set w(C) = 1 for each concept C in C. For B = n− 1,
the value of the solution returned by the greedy algorithm is close to n − 1, while the
value of the optimal solution, which selects {C2, . . . , Cn} is about n.

Using a similar idea to the proof of Theorem 5.10, we prove the approximation ratio
of the greedy algorithm for the case where the concepts are not equally costly.

THEOREM 5.11. The greedy algorithm is a (prmin · wmin
wmax

· B
B+1)-approximation, where

prmin = minC∈C pr(C), wmin = minC∈C w(C), and wmax = maxC∈C w(C).

Hence, the greedy algorithm may not deliver a reasonably effective design if the con-
cepts are not equally costly. In Section 6, we propose efficient algorithms with constant
or sufficiently small approximation ratios for the general case of the problem.

6. APPROXIMATION APPROACHES FOR THE GENERAL CASE

A brute-force algorithm for the COST-EFFECTIVE CONCEPTUAL DESIGN problem may take
several days or weeks of computation, even if the domain contains only 50 concepts. In
this section, we design some efficient approximation algorithms for the general case of
the COST-EFFECTIVE CONCEPTUAL DESIGN problem.

6.1. Approximate Popularity Maximization Algorithm (APM)

We can use available efficient algorithms with bounded approximation ratios for the 0-1
KNAPSACK problem to solve the COST-EFFECTIVE CONCEPTUAL DESIGN problem over domains
without any constraint with the same approximation ratios. An algorithm A for an
optimization problem P is fully polynomial-time approximation scheme (FPTAS) if,
given ε > 0,A achieves approximation guarantee (1+ε), andA finds the solution in time
polynomial in the size of the input of P and (1/ε). Since the 0-1 KNAPSACK problem is NP-
hard, FPTAS is the best possible approximation for the problem, unless P = NP. In our
experiments, we consider an FPTAS algorithm of the 0-1 KNAPSACK problem described
in Ibarra and Kim [1975] that uses a dynamic programming approach. Note that, since
the COST-EFFECTIVE CONCEPTUAL DESIGN problem over domains with no constraint is
simply a 0-1 KNAPSACK problem, there is an FPTAS algorithm for the COST-EFFECTIVE

CONCEPTUAL DESIGN problem over domains with no constraint.
Moreover, we use the idea behind FPTAS algorithms of the 0-1 KNAPSACK problem to

devise an approximation algorithm for the COST-EFFECTIVE CONCEPTUAL DESIGN problem

ACM Transactions on Database Systems, Vol. 40, No. 2, Article 12, Publication date: June 2015.

12:18 A. Termehchy et al.

over domains with mutually exclusive concepts. This algorithm ignores the improve-
ment in effectiveness of answering those queries whose concepts are not in the design
of a collection. As discussed in Section 4, this improvement is achieved by eliminating
those nonrelevant answers whose concepts are in the design of the collection from the
list of candidate answers for these queries. This degree of improvement is represented
by the second term of the annotation-benefit function. Hence this algorithm picks a
conceptual design S with maximum value of

∑
C∈S u(C)pr(C). We call this modified

problem the POPULARITY MAXIMIZATION problem. More formally, given a domain C, the
POPULARITY MAXIMIZATION problem maximizes

∑
C∈S u(C)pr(C) subject to

∑
C∈S w(C) ≤ B.

The following lemma shows that we can design a constant factor approximation
algorithm for the COST-EFFECTIVE CONCEPTUAL DESIGN problem by applying an algorithm
with bounded approximation ratio for the POPULARITY MAXIMIZATION problem.

LEMMA 6.1. A ρ-approximation algorithm for the POPULARITY MAXIMIZATION problem
is a (ρ+1/prmin)-approximation for the COST-EFFECTIVE CONCEPTUAL DESIGN problem over
domains with mutually exclusive concepts, where prmin = minC∈C pr(C).

PROOF. Let P = 〈C, B, d, u, pr, w〉 be an instance of the COST-EFFECTIVE CONCEPTUAL

DESIGN problem. Let SOL be the solution returned by the ρ-approximation of the POP-
ULARITY MAXIMIZATION problem on P and let OPT be the optimal solution of the COST-
EFFECTIVE CONCEPTUAL DESIGN problem on P. Note that, for any set S, the value of the
second term in the annotation-benefit function∑

C∈C−S
u(C)

d(C)∑
E∈C−S d(E)

is less than u(Cmax), where Cmax = arg maxC∈C u(C). Let MOPT be the value of the second
term in the annotation-benefit function in the optimal solution, MOPT =

∑
C∈C\OPT u(C)d(C)∑

C∈C\OPT d(C) .
Since for each C ∈ C, w(C) ≤ B,∑

C∈SOL

pr(C)u(C) ≥ pr(Cmax)u(Cmax) ≥ pr(Cmax)MOPT.

Moreover, since SOL is a ρ-approximate solution of the POPULARITY MAXIMIZATION prob-
lem on P, we have

ρ
∑

C∈SOL

pr(C)u(C) ≥
∑

C∈OPT

pr(C)u(C).

These two together imply that (ρ + 1/pr(Cmax))AB(SOL) ≥ AB(OPT); thus SOL is a
(ρ + 1/pr(Cmax))-approximate solution. Let prmin = minC∈C pr(C). Since for any C ∈
C, pr(C) ≥ prmin, SOL is a (ρ + 1/prmin)-approximate solution of the COST-EFFECTIVE

CONCEPTUAL DESIGN problem.

In particular, if pr(C) = 1 for all C ∈ C, a ρ-approximation of the POPULARITY MAXI-
MIZATION problem is a (ρ + 1)-approximation for the COST-EFFECTIVE CONCEPTUAL DESIGN

problem.
The POPULARITY MAXIMIZATION problem is also a version of the 0-1 KNAPSACK problem

with n objects, if we choose the value of each object OC to be u(C)pr(C) and its weight
to be w(C). Thus, in our experiments we use the FPTAS algorithm for the KNAPSACK

problem [Ibarra and Kim 1975] to solve this problem.

COROLLARY 6.2. An FPTAS algorithm that returns a (1 + ε)-approximate solution to
the POPULARITY MAXIMIZATION problem is a (1 + ε + 1/prmin)-approximation algorithm for
the COST-EFFECTIVE CONCEPTUAL DESIGN problem over domains with mutually exclusive
concepts whose running time is polynomial in 1

ε
and the number of concepts.

ACM Transactions on Database Systems, Vol. 40, No. 2, Article 12, Publication date: June 2015.

Cost-Effective Conceptual Design for Information Extraction 12:19

COROLLARY 6.3. A greedy algorithm that returns a 2-approximate solution to the POP-
ULARITY MAXIMIZATION problem is a (2 + 1/prmin)-approximation algorithm for the COST-
EFFECTIVE CONCEPTUAL DESIGN problem whose running time is O(|C| log |C|).

We call this algorithm the approximate popularity maximization (APM) algorithm.
Concept annotation may incur multiple types of costs which may be measured in

different units therefore cannot be represented using a single measure. APM can be
used to solve the COST-EFFECTIVE DESIGN PROBLEM in this case. The enterprise can cate-
gorize its cost elements into groups with compatible cost measures and add a separate
budget constraint for each cost group to the COST-EFFECTIVE CONCEPTUAL DESIGN prob-
lem. We call this problem MULTIPLY-CONSTRAINED COST-EFFECTIVE CONCEPTUAL DESIGN.
When there is no constraint regarding the overlap of concepts in the domain, one
may use existing PTAS algorithms for the MULTIPLY-CONSTRAINED KNAPSACK problem
to obtain a PTAS algorithm for the MULTIPLY-CONSTRAINED COST-EFFECTIVE CONCEPTUAL

DESIGN problem [Freville 2004]. Unfortunately, there is no FPTAS algorithm for the
MULTIPLY-CONSTRAINED KNAPSACK problem unless P = NP [Korte and Schrader 1981].

Consider the case of the MULTIPLY-CONSTRAINED COST-EFFECTIVE CONCEPTUAL DESIGN

problem where the concepts are mutually exclusive. We define the problem of MULTIPLY-
CONSTRAINED POPULARITY MAXIMIZATION similar to the problem of POPULARITY MAXIMIZA-
TION but with multiple budget constraints. Clearly, a PTAS algorithm for the MULTIPLY

CONSTRAINED KNAPSACK problem is also a PTAS algorithm for the MULTIPLY-CONSTRAINED

POPULARITY MAXIMIZATION problem. Since the objective function of the new problem is
identical to that of the POPULARITY MAXIMIZATION problem with a single budget constraint,
according to Lemma 6.1, this algorithm will be a (1 + ε + 1/prmin)-approximation for
the MULTIPLY-CONSTRAINED COST-EFFECTIVE CONCEPTUAL DESIGN problem and its running
time is polynomial in the number of concepts and exponential in (1

ε
). In this article,

however, we focus on the case where cost elements can be expressed through a single
metric, and we leave empirical analysis of the MULTIPLY-CONSTRAINED COST-EFFECTIVE

CONCEPTUAL DESIGN problem for future work.

6.2. Approximate Annotation-Benefit Maximization Algorithm (AAM)

In this section we present an FPTAS algorithm for the COST-EFFECTIVE CONCEPTUAL DE-
SIGN problem over domains with mutually exclusive concepts. Since in Theorem 5.3 we
proved that the problem is NP-hard, FPTAS is the optimal approximation guarantee
for the problem unless P = NP. The algorithm is based on the dynamic program-
ming method of the 0-1 KNAPSACK problem in addition to some scaling techniques. For
simplicity in exposition of the algorithm, we assume that pr(C) = 1 for each C ∈ C.
However, in Remark 6.8 we state that our approach works for an arbitrary pr function,
given an additional property that usually holds in practice. Without loss of generality,
we can also assume that u(C) and d(C) are positive integers for all concepts.

Given a fixed constant N, we define the BOUNDED COST-EFFECTIVE(C, B, N) problem as
follows.

max
S

f (N,S) = 1
N

(
N

∑
C∈S

u(C) +
∑

C∈C−S
u(C)d(C)

)
(4)

s.t.
∑

C∈C−S
d(C) ≤ N

∑
C∈C−S

w(C) ≤ B

ACM Transactions on Database Systems, Vol. 40, No. 2, Article 12, Publication date: June 2015.

12:20 A. Termehchy et al.

In addition to the cost constraint that we had previously, BOUNDED COST-
EFFECTIVE(C, B, N) has a constraint over frequency of documents. Let 〈C, B, d, u, w〉 be
an instance of COST-EFFECTIVE CONCEPTUAL DESIGN (C, B). For any value of N, the value
of the optimal solution of BOUNDED COST-EFFECTIVE(C, B, N) on 〈C, B, d, u, w〉 is not more
than the optimal solution of the annotation benefit of COST-EFFECTIVE CONCEPTUAL DE-
SIGN on 〈C, B, d, u, w〉. Moreover, for a fixed N, the objective function of the BOUNDED

COST-EFFECTIVE(C, B, N) is a separable function. Thus it is easier to find the maximum
value of BOUNDED COST-EFFECTIVE(C, B, N) for a fixed N rather than finding the optimal
conceptual design of the COST-EFFECTIVE CONCEPTUAL DESIGN problem.

LEMMA 6.4. Let OPT be the value of the optimal solution of the COST-EFFECTIVE

CONCEPTUAL DESIGN (C, B) problem and let OPTbnd be the maximum value of an optimal
solution of BOUNDED COST-EFFECTIVE(C, B, N) over different values of N. Then OPT =
OPTbnd. Moreover, the same set of concepts (conceptual design) obtains the optimal
value in both functions.

PROOF. Consider the COST-EFFECTIVE CONCEPTUAL DESIGN problem and assume that
AB obtains its maximum value for set SOPT. Let NOPT = ∑

C /∈C−SOPT
d(C). Then, we have

OPT(BOUNDED COST-EFFECTIVE(C, B, NOPT)) = AB(SOPT) = OPT.

Thus OPTbnd ≥ OPT. For the other direction, we know that the value of f (N,S) is at
most AB(S) for all feasible solutions S of BOUNDED COST-EFFECTIVE(C, B, N). This implies
that OPTbnd ≤ OPT.

Hence OPT = OPTbnd. It also implies that the set S that achieves the maximum value
of COST-EFFECTIVE CONCEPTUAL DESIGN (C, B) obtains the maximum value of BOUNDED

COST-EFFECTIVE(C, B, N) over different values of N as well.

Lemma 6.4 implies that, in order to find a set with the maximum annotation benefit,
we can instead solve BOUNDED COST-EFFECTIVE(C, B, N) for all different values of N and
return the set that obtains the maximum value. In other words, first we give an FPTAS
for BOUNDED COST-EFFECTIVE(C, B, N), where N is a given fixed value. The first step is
to check whether for the given N there exists a feasible solution to BOUNDED COST-
EFFECTIVE(C, B, N). For the given N, a feasible solution has to contain all concepts C
that d(C) > N. Let Srem = {C|d(C) > N} and Crem = C − Srem. If w(Srem) > B, there
is no feasible solution for BOUNDED COST-EFFECTIVE(C, B, N). Otherwise, we select all
concepts in Srem and we set Brem = B− w(Srem) to be the leftover budget. The problem
is equivalent to optimizing the bounded problem on Crem, Brem, and N. Now, for each
C ∈ Crem we have d(C) ≤ N. To solve BOUNDED COST-EFFECTIVE(C, B, N) optimally for the
given N, we can apply dynamic programming. Let Vinit(N) = ∑

C∈Crem
u(C)d(C)/N. We

can rewrite the objective function of BOUNDED COST-EFFECTIVE(C, B, N) as follows:∑
C∈S

v(C) + Vinit(N),

where v(C) = u(C)(1 − d(C)/N) for each C ∈ Crem.
Let Crem = {C1, . . . , Cn}. We define Q[i, P, X] to be the minimum required cost that

we must pay to obtain a solution of BOUNDED COST-EFFECTIVE(C, B, N) of value at least
P − Vinit if we are only allowed to annotate concepts from the first i concepts of Crem.
We can state the recursive relation of Q[i, P, X] as follows:

(1) Q[0, 0, X] = 0 for all 0 ≤ X ≤ N;
(2) Q[0, P, X] = ∞ for all P > 0 and 0 ≤ X ≤ N;
(3) Q[i, P, X] = min(Q[i − 1, P, X − d(Ci)],

Q[i − 1, min
{

P − v(Ci), 0
}
, X] + w(Ci)).

ACM Transactions on Database Systems, Vol. 40, No. 2, Article 12, Publication date: June 2015.

Cost-Effective Conceptual Design for Information Extraction 12:21

To find the optimal solution of BOUNDED COST-EFFECTIVE(C, B, N), we need to find the
maximum value of V such that Q[n, V, N] ≤ Brem. The running time of the described
dynamic programming is O(nV N), where V is the value of the optimal solution of
the bounded problem for the given N. The described dynamic programming is pseudo-
polynomial and we can convert it to an FPTAS via scaling techniques.

LEMMA 6.5. There exists a (1 + ε)-approximation algorithm to BOUNDED COST-
EFFECTIVE(C, B, N) which runs in O(Nn3/ε).

PROOF. To eliminate the dependency of the running time on V , we scale v(C) for
each C ∈ Crem. Let M = maxC∈Crem v(C) and λ = εM

n , where n = |Crem|. We define
v̂(C) = �v(C)/λ
. This implies that

λv̂(C) ≤ v(C) ≤ λ(v̂(C) + 1).

The maximal value of BOUNDED COST-EFFECTIVE(C, B, N) over the scaled values is at
most

∑
C∈Crem

v̂(C) <
∑

C∈Crem
(n/ε)(v(C)/M) = O(n2/ε).

Now, let Cscl be the set returned by dynamic programming after scaling and let Corg
be the optimal solution of the problem before scaling and OPT = ∑

C∈Corg
v(C). Thus∑

C∈Cscl

v(C) ≥ λ
∑

C∈Cscl

v̂(C)

≥ λ
∑

C∈Corg

v̂(C)

≥
∑

C∈Corg

v(C) − λ|Corg|

≥ OPT − λn

≥ OPT − εM ≥ (1 − ε)OPT ≥ 1
(1 + ε)

OPT.

The first inequality comes from λv̂(C) ≤ v(C). The second one is because of the optimal-
ity of Cscl over the scaled values. The third inequality is derived from v(C) ≤ λ(v̂(C)+1).

Thus, the proposed dynamic programing algorithm with the scaled profits is a (1+ε)-
approximation whose running time is O(Nn3/ε).

Although we need to satisfy the document frequency constraint of BOUNDED COST-
EFFECTIVE(C, B, N),

∑
C∈Crem−S d(C) ≤ N, for a given N we can allow S to violate the

document frequency constraint by ε; our ultimate goal is to maximize the annotation
benefit of COST-EFFECTIVE CONCEPTUAL DESIGN (C, B). Later we show that the value of AB
for a (1 + ε)-approximate solution of BOUNDED COST-EFFECTIVE(C, B, N), S, that violates
the document frequency constraint by at most ε is comparable to the optimal solution
of BOUNDED COST-EFFECTIVE for the given N.

LEMMA 6.6. There is a (1 + ε)-approximation algorithm for BOUNDED COST-
EFFECTIVE(C, B, N) that violates

∑
C∈Crem−S d(C) ≤ (1 + ε)N, and its running time is

O(n4/ε2).

PROOF. First we apply the scaling introduced in Lemma 6.5 and then scale d for
concepts as follows. Define d̂(C) = �d(C)/γ
 where γ = εN/n. Then we work with
d̂(C), v̂(C) and N̂ = �N/γ
 = �n/ε
. Thus the running time of the algorithm on the
scaled value is O(N̂n3/ε) = O(n4/ε2). For the optimal solution Cs of the scaled instance,

ACM Transactions on Database Systems, Vol. 40, No. 2, Article 12, Publication date: June 2015.

12:22 A. Termehchy et al.

we have
∑

C∈Crem−Cscl
d̂(C) ≤ N̂. Thus

∑
C∈Crem−Cscl

d(C) ≤ γ

⎛
⎝ ∑

C∈Crem−Cscl

d̂(C) + (n − |Cscl|)
⎞
⎠

≤ γ N̂ + γ n
≤ N + γ n = (1 + ε)N.

This implies that the returned solution Cscl may violate N by a factor of ε. Thus, we
have a (1 + ε)-approximation algorithm for BOUNDED COST-EFFECTIVE(C, B, N) that may
violate constraint

∑
C∈Crem−Cscl

d(C) ≤ N by ε and its running time is O(n4/ε2).

By Lemma 6.6, we have an algorithm that finds a solution Ss with value at least
(1+ε) times the optimal solution of BOUNDED COST-EFFECTIVE(C, B, N). However, Ss may
violate the document frequency constraint by ε. Suppose that Ss is the set returned
by the algorithm after performing the described scaling. Let Nr = ∑

C∈Ss
d(C) and

let Ns be the value of N for which Ss is returned in our algorithm (since we allow
the algorithm to violate the constraint by ε, Nr ≤ (1 + ε)Ns). Suppose that SOPT is the
optimal solution of COST-EFFECTIVE CONCEPTUAL DESIGN(C, B). Lemmas 6.4 and 6.6 imply
that AB(SOPT) ≤ (1 + ε) f (Ns,Ss). Thus AB(Ss) = f (Nr,Ss) ≥ f (Ns,Ss)/(1 + ε) ≥ (1/(1 +
ε)2)AB(SOPT) ≥ (1 − 2ε)AB(SOPT) ≥ 1

(1+2ε) AB(SOPT), where f is the objective function of
the BOUNDED COST-EFFECTIVE problem. By maximizing BOUNDED COST-EFFECTIVE(C, B, N)
over all possible values of N (0 < N ≤ Dtotal = ∑

C∈Crem
d(C)), we can find a (1 + ε)-

approximation1 of COST-EFFECTIVE CONCEPTUAL DESIGN(C, B) in O(Dtotal
n4

ε2).

THEOREM 6.7. The COST-EFFECTIVE CONCEPTUAL DESIGN problem admits an FPTAS
algorithm.

Instead of checking all possible values of N which lead to a pseudo-polynomial algo-
rithm, we solve BOUNDED COST-EFFECTIVE(C, B, N) for some specific values of N (which
is polynomial in the size of input) and still guarantees a (1 − ε)-approximation
(in the relaxed version we allow the solution to violate the document frequency
constraint by a factor of ε). Consider the set N = {

N1, . . . , Np
}

such that Ni =
Dmin(1/(1 − ε))i where Dmin = minC∈Crem d(C) and Np−1 ≤ Dtotal ≤ Np. This im-
plies that p < log(1−ε)−1 (Dtotal/Dmin) + 1 = (log Dtotal − log Dmin)/(− log(1 − ε)) + 1 <
O((log Dtotal)/ε), where the last inequality comes from − log(1 − ε) = − ln(1 −
ε)/ ln 2 > ε/ ln 2. Thus the number of different values of N we need to exam-
ine is polynomial in log Dtotal and 1/ε. Suppose that (NOPT,SOPT) is a pair that
maximizes f , that is, OPT = f (NOPT,SOPT) where OPT is the value of an op-
timal solution of COST-EFFECTIVE CONCEPTUAL DESIGN(C, B). Let Ng be the smallest
member of N that is greater than NOPT. Note that (Ng,SOPT) is a feasible solu-
tion to BOUNDED COST-EFFECTIVE(C, B, Ng) and, since Ng > NOPT, Ng f (Ng,SOPT) >
NOPT f (NOPT,SOPT). Thus f (Ng,SOPT) > (NOPT/Ng)OPT. Since our algorithm exam-
ines N = Ng, the solution returned by our algorithm is at least (1−ε) times the optimal
solution of BOUNDED COST-EFFECTIVE(C, B, Ng). Since NOPT > Ng−1, NOPT/Ng ≥ Ng−1/Ng
and thus f (Ng,SOPT) ≥ (Ng−1/Ng)OPT ≥ (1 − ε)OPT. This implies that the value of an
optimal solution of BOUNDED COST-EFFECTIVE(C, B, Ng) is at least (1−ε)OPT ≥ 1

(1+ε) OPT.
This fact, along with Lemma 6.6, leads us to obtain an FPTAS algorithm for the
COST-EFFECTIVE CONCEPTUAL DESIGN problem with runtime O((n4 log Dtotal)/ε3). Note that

1We let ε′ = 2ε.

ACM Transactions on Database Systems, Vol. 40, No. 2, Article 12, Publication date: June 2015.

Cost-Effective Conceptual Design for Information Extraction 12:23

Table I. Summary of Approximation Ratios and Time
Complexities of Approximation Algorithms for the
COST-EFFECTIVE CONCEPTUAL DESIGN Problem

Algorithm Approximation ratio Running time
APM 2 + ε O(n3/ε)
AAM 1 + ε O(n5/ε3)

log Dtotal ≤ log(nDmax) ≤ log n+ log Dmax, where Dmax = maxC∈Cp d(C) and is polynomial
in the size of input. Hence the running time is bounded by O(n5/ε3).

Remark 6.8. We assumed that pr(C) = 1 for all C ∈ C. However, our approach also
works for a realistic function pr. For a given N, we define v(C) = u(C)(pr(C) − d(C)

N) and
the proof holds as long as v(C) is a positive value for all concepts.

Figure 3 depicts the steps of AAM algorithms. Table I summarizes the approxima-
tion algorithms we presented for the COST-EFFECTIVE CONCEPTUAL DESIGN problem over
domains with mutually exclusive concepts.

7. EXPERIMENTS

7.1. Experiment Setting

Domains. To validate the accuracy of the annotation-benefit function and the effec-
tiveness of our conceptual design algorithms, we use concepts from YAGO ontology
version 2008-w40-2 [Schenkel et al. 2007]. YAGO organizes its concepts using IS-A
(i.e., parent-child) relationships in a DAG with a single root. We define a level as a set
of concepts that have the same distance (in terms of the number of edges) from the root
of the ontology. Most levels in the DAG generally contain a set of mutually exclusive
concepts. We select three domains from this ontology for our experiments. All concepts
in each domain are mutually exclusive and have at least one instance in our dataset.
Domain M1 consists of seven concepts from the third level of the ontology. Examples of
concepts in M1 are object, causal agent, and psychological feature. We use domain M1
to validate how accurately the annotation-benefit function estimates the effectiveness
of answering queries over annotated collections. Since some validation experiments
require running brute-force algorithms, we have to use a domain with a small number
of concepts while containing as many documents in the dataset as possible. So we need
to select concepts in the top level in the ontology tree. Thus the concepts in M1 are
vague for users.

The popularities (u) and frequencies (d) of concepts in domain M1 are shown in
Figure 4. We further select two larger domains from the YAGO ontology to evaluate
the average-case performance ratios and efficiency of our approximation algorithms.
Domain M2 consists of 76 mutually exclusive concepts from the fourth level of the
ontology, such as location and event. Since we would like to evaluate our algorithms
over domains with concepts that have more specific meanings, that is, concepts in the
lower level of the ontology tree, we expand some relatively abstract concepts such as
whole to their descendants on the sixth level of the ontology and create a third domain,
called domain M3. This domain consists of 87 concepts such as person and animal.
We also select an additional domain, called N1, from the fifth level of YAGO with 10
concepts whose concepts are not guaranteed mutually exclusive. We use this domain to
validate the annotation-benefit formula for those domains with no constraint and we
measure the empirical approximation ratio of APM over these domains.

Dataset. We use a semantically annotated version of the Wikipedia collection that is
created from the October 8, 2008 dump of English Wikipedia articles [Schenkel et al.
2007]. This collection uses concepts from the YAGO ontology. It contains 2,666,190

ACM Transactions on Database Systems, Vol. 40, No. 2, Article 12, Publication date: June 2015.

12:24 A. Termehchy et al.

Fig. 3. Description of AAM algorithm.

ACM Transactions on Database Systems, Vol. 40, No. 2, Article 12, Publication date: June 2015.

Cost-Effective Conceptual Design for Information Extraction 12:25

Fig. 4. Popularities (u) and frequencies (d) of concepts in domain M1.

Table II. Original Number of Queries and Queries Remaining After Filtering Out those
whose Ranking Quality is Not Improved by Annotating All Concepts in the Domain

Domain M1 M2 M3 N1
Before filtering 1281 888 5820 714

Number of Queries After filtering 98 187 1737 199
% Remaining 7.65% 21.06% 29.85% 27.87%

Before filtering 928 595 3650 537
Number of Distinct Queries After filtering 98 118 972 138

% Remaining 10.56% 19.83% 26.63% 25.70%

Wikipedia articles, of which 1,470,661 are annotated. For each domain, we select all
documents that contain an annotation of a concept in the domain and, create a dataset
for this domain. The datasets for domain M1, M2, M3, and N1 contain 525,703, and
399,792, and 927,848, and 186,952 documents, respectively. Each annotation contains
a confidence value that indicates the accuracy of the annotation. We have used the
average confidence values over all annotations of a concept to compute its annotation
accuracy. The accuracies of annotations are between 0.75-0.95 in domain M1, between
0.8-0.95 in domain M2 and M3, and between 0.8-0.94 in domain N1.

Query Workload. We use a subset of the Bing query log whose target URLs are
Wikipedia articles [Demidova et al. 2010]. Each query contains up to six keywords
and has one to two relevant answers that are the Wikipedia URL. Because the query
log does not list the concept behind each query, we adopt an automatic approach to
find those concepts associated with the query. Given a domain, for each query we
find that concept from the domain whose instance(s) match the query terms in its
relevant answers. We ignore queries that match instances from multiple concepts in
their relevant answers, as these queries do not comply with our query model.

The effectiveness of answering some queries may not be improved from semantically
annotating the collection [Chu-Carroll et al. 2006; Sanderson 2008]. For instance, all
candidate answers for a query may contain matched instances of the same concept.
In order to reasonably evaluate our algorithms, we have not considered those queries
whose rankings are the same over the unannotated and the fully annotated version
(i.e., annotating all concepts in the domain) of the collection. Table II shows the original
number of queries and the queries remaining after filtering out the ones whose ranking
quality is not improved by annotating all concepts in the domain. Overall, the more
concepts in a domain, the greater the fraction of queries whose ranking quality is
improved by annotation. Since most concepts in a domain with few concepts, such as
M1, contain many entities, all matches to most queries refer to entities from a single

ACM Transactions on Database Systems, Vol. 40, No. 2, Article 12, Publication date: June 2015.

12:26 A. Termehchy et al.

Table III. Examples of Annotated Queries for Domains M1, M2, M3, and N1

Domains Queries

M1

object:“Rosetta Stone”
causal agent:“Israeli Prime Ministers”
causal agent:“Noah”
causal agent:“Scottie Pippen”
group:“Wizard of Oz and Emerald City”
group:“Niall Noigiallach”
psychological feature:“Final Fantasy 7 info on the remake”
psychological feature:“The book of Revelation”
relation:“NATO”
relation:“What is NATO”

M2

agent:“Carson Kit”
arrangement:“Tarzan”
event:“Final Fantasy 7 info on the remake”
event:“Jesus Christ crucifixion”
message:“Book of Matthew”
message:“Shadow Wikipedia”
personality:“Larry King”
shape:“Liberty Statue in Paris”
written communication:“The Adventures of Tom Sawyer”
written communication:“The story of Robin Hood”

M3

artifact:“Book of Esther”
artifact:“Hebrews”
event:“Final Fantasy 7 info on the remake”
event:“When was Muhammad born”
person:“Hilary Clinton biography”
person:“Michael Jordan”
person:“Noah”
social group:“way of the master radio”
social relation:Prime Minister of Pakistan”
written communication:“Planet of Apes”

N1

area:“largest city in the USA”
area:“New York City”
dramatic conposition:“essays Macbeth blood”
dramatic conposition:“Degrassi”
literary composition:“Gone With The Wind”
literary composition:“Dracula”
literary composition:“Phantom of the opera the book”
series:“American Idol”
series:“Desperate Housewives”
series:“Ultraman”

concept. Therefore, annotating concepts in these domains does not disambiguate many
queries. On the other hand, annotating concepts in domains with a relatively large
number of concepts, such as M3 and N1, disambiguates many queries and improves
their ranking quality. Real-world domains usually contain many concepts. This method
leads to collecting 98 (98 unique), 187 (118 unique), 1,737 (972 unique), and 199 (138
unique) queries for domain M1, M2, M3, and N1, respectively. Examples of queries for
each domain are shown in Table III.

We use twofold cross-validation to train the u values for concepts in each domain.
Because some concepts may not appear in the query workload, we smooth the u values

ACM Transactions on Database Systems, Vol. 40, No. 2, Article 12, Publication date: June 2015.

Cost-Effective Conceptual Design for Information Extraction 12:27

using the Bayesian m-estimate method with smoothing parameter 1 and uniform priors
[Hastie et al. 2009] as

û(C) = P̂(C|QW) + mp

m+ ∑
C P̂(C|QW)

,

where P̂(C|QW) is the probability that C occurs in the query workload and p denotes
the prior probability. We set the value of the smoothing parameter, m, to 1 and use
uniform prior.

Retrieval System. We index the datasets using Lucene (lucene.apache.org) and use
BM25 as the underlying retrieval algorithm [Manning et al. 2008]. Given a query,
we first rank its candidate answers using BM25. Then, we apply information about
the concepts in the query and documents to return those documents whose matching
instances have the same concept as the concept of the query, or to filter out the nonrele-
vant candidate answers for the query if using domain M1, M2, and M3, as explained in
Section 4. We performed our experiments on a Linux server with 250GB main memory
and two quad core processors. We implemented our retrieval system and optimization
algorithms using JAVA 1.7.0 51.

Effectiveness Metrics. Most queries in our query workloads have one relevant an-
swer, and the maximum of number of relevant answers per query in the workload is
two. Hence we measure the effectiveness of answering queries over the dataset using
precision at 3 (p@3). Since many of our queries have a single relevant answer, we also
use mean reciprocal rank (MRR), which is 1

r where r is the rank of the first relevant
answer to the query in the ranked list [Manning et al. 2008]. The value of MRR is
larger for ranked lists where the first relevant answer appears at higher positions in
the list. We have not defined the annotation-benefit function based on MRR. However,
it will provide additional insights on how accurately the annotation-benefit function
measures the effectiveness and user satisfaction from conceptual designs and the rank-
ing qualities delivered by our cost-effective conceptual design algorithms. We measure
the statistical significance of our results using the paired-t test at significance level
of 0.05. The statistically significant improvements are marked in bold in the reported
results.

Cost Metrics. We use two types of costs for concept annotation in our experiments.
We hypothesize that the cost of running an annotator for a concept may be proportional
to its frequency in a collection. It is true that some concepts, such as phone numbers,
are both frequent and quick to extract. However, if all other conditions, such as the
complexity of the concept extraction program, are the same, then the more frequent
concepts are likely to take more computational resources and time for extraction. For
instance, one may use a fast and easy-to-build classifier to separate documents about
sports from those about science in a large collection, and run extractors for concepts
scientist and athlete only on their relevant sub-collections [Huang and Yu 2010]. Given
that the extractors for scientist and athlete are almost equally complex and that the
sub-collection on sports contains more documents than the one on science, it will take
more time and computational resources to extract instances of athlete than scientist. We
call this type of cost assignment frequency-based cost. We also evaluate our algorithms
by assigning randomly generated costs to the concepts in a domain. We call this type of
cost assignment random cost. We report the average p@3 over 40 sets of random costs
for each budget. We use a range of budgets between 0 and 1 with step size of 0.1, where
1 means a sufficient budget to annotate all concepts in a domain.

ACM Transactions on Database Systems, Vol. 40, No. 2, Article 12, Publication date: June 2015.

12:28 A. Termehchy et al.

Table IV. Average p@3 for Oracle, PM, and AM over Domain M1

Frequency-based Cost Random Cost
Budget Oracle PM AM Oracle PM AM

0.1 0.146 0.146 0.146 0.190 0.188 0.190
0.2 0.207 0.207 0.207 0.208 0.205 0.208
0.3 0.218 0.218 0.218 0.216 0.216 0.216
0.4 0.218 0.218 0.218 0.218 0.218 0.218

Table V. Average MRR for Oracle, PM, and AM over Domain M1

Frequency-based Cost Random Cost
Budget Oracle PM AM Oracle PM AM

0.1 0.271 0.271 0.271 0.442 0.440 0.442
0.2 0.491 0.491 0.491 0.513 0.509 0.513
0.3 0.551 0.551 0.551 0.543 0.542 0.542
0.4 0.551 0.551 0.551 0.549 0.549 0.549
0.5 0.551 0.551 0.551 0.551 0.551 0.550
0.6 0.551 0.551 0.551 0.551 0.551 0.551

7.2. Model Validation

In this section, we investigate whether the annotation-benefit function accurately
estimates the likelihood of improvement in effectiveness of answering queries over
annotated collections.

7.2.1. Domain with Mutually Exclusive Concepts. We use three algorithms in this set of
experiments. Given complete information about the relevant answers of queries, Oracle
checks all possible designs in a domain whose costs do not exceed a fixed budget, and
delivers that design with maximum p@3 or MRR over all queries. Clearly, Oracle cannot
be used in a real-world setting as a query interface does not know the relevant answers
for the queries at query time. Because the designs returned by Oracle deliver the
maximum possible effectiveness for answering queries, we use its results to measure
how accurately practical methods predict the amount of improvement in effectiveness
of answering queries achieved by a design. AM is a brute-force algorithm that picks
the design with maximum annotation benefit over a domain given a fixed budget. An
intuitively appealing heuristic for finding a design is to select those concepts that are
most queried by users. The PM algorithm implements this heuristic. PM is a brute-
force algorithm that finds the design with the maximum value of

∑
C∈S u(C)pr(C) over a

domain given a fixed budget. Since all these algorithms use exhaustive search methods,
running them over a domain with a large number of concepts is not practical. Thus
we evaluate these algorithms only over domain M1. In order to precisely evaluate the
estimation accuracy of the annotation-benefit function, we assume that AM has the
exact values of concept frequencies. We will explain how to estimate the frequencies of
concepts without fully annotating them in Section 7.3.

Tables IV and V show the values of p@3 and MRR over domain M1 delivered by
AM and PM using frequency-based and random costs. We have omitted the results of
Oracle, AM, and PM for budgets from 0.5-0.9 in Table IV and from 0.7-0.9 in Table V,
because their results are the same as those for budgets 0.4 and 0.6 in these tables. Since
the number of concepts in domain 1 is rather small, there are few feasible solutions
that can exhaust the budget, given a modest or large budget. Hence all algorithms find
the same or very similar designs for these budgets over domain M1.

The designs returned by Oracle, AM, and PM deliver the same values of p@3 for
answering queries over all budgets for frequency-based cost. In this setting, AM and

ACM Transactions on Database Systems, Vol. 40, No. 2, Article 12, Publication date: June 2015.

Cost-Effective Conceptual Design for Information Extraction 12:29

PM pick the same designs for all budgets between 0.1 and 0.8. The designs selected by
AM and PM are different for budget 0.9. Nonetheless, both designs contain 6 out of 7
available concepts in the domain. Answering queries over an annotated collection that
contains annotation for all but one of the concepts in the domain will be as effective as
will answering queries over the fully annotated collection. Therefore they both achieve
the same values of p@3 and MRR. Further, the cost distribution in the frequency-
based cost setting is very skewed in domain M1. Since the number of concepts is rather
small in domain M1 and the cost distribution is skewed, there are very few feasible
solutions that can maximize the objective functions of either AM or PM given a small
budget. For example, with budget equal to 0.2, there are only two feasible designs that
exhaust the budget and one of them maximizes the objective functions of both AM
and PM.

Tables IV and V show that the designs produced by AM deliver more effective re-
sults for queries than the ones generated by PM for budgets 0.1–0.2 using a random
cost metric. Since the cost distribution of random costs is not as skewed as that for
frequency-based costs, there are more feasible solutions for both objective functions
than in the frequency-based cost setting for small budgets. For example, PM and AM
include causal agent and psychological feature, respectively, in their designs for bud-
get equal to 0.1. These designs are not feasible in the frequency-based cost setting.
Since causal agent is quite frequent in the collection, the matching instances of this
concept appear in most of the top candidate answers for queries with this concept.
Hence, AM does only slightly worse than PM in returning answers whose matching
instances belong to causal agent for queries with this concept. Because AM picks psy-
chological feature in its design, it is able to effectively answer the queries from this
concept. PM, however, does not pick this concept in its design. Because this concept is
not very frequent in the collection, the matching instances of most candidate answers
for queries with this concept belong to other concepts. Hence the PM design returns
considerably less effective results for these queries than the AM design. AM returns
the same designs as Oracle for budgets 0.1 and 0.2 in the random cost setting.

As the budget becomes larger, both algorithms pick almost all useful (relatively
popular and/or frequent) concepts. Thus, overall, the ranking qualities provided by
the designs from these methods are almost the same for larger budgets. The designs
generated by Oracle, AM, and PM deliver equal values of p@3. Since MRR is more
sensitive to the position of the top relevant answer than p@3, the values of MRR for
the Oracle designs are different from those for the designs of AM and PM in budget
0.3. In this budget, all methods pick the same designs and deliver the same ranking in
most runs. There are some runs where the designs selected by Oracle are different from
those of AM and PM. For instance, in one of the runs, Oracle picks object, causal agent,
and group, but AM and PM choose relation causal agent and group as their designs.
It seem reasonable to select relation because it has a higher popularity and frequency
than object. It turns out that the concept of the matching entities in many nonrelevant
answers, for queries whose entities belong to psychological feature, is object. Hence,
extracting entities of concept object helps the query interface to return more effective
results for queries of both concepts object and psychological feature. Documents that
contain instances of concept relation do not appear as nonrelevant answers of most
concepts. And extracting them does not improve the effectiveness of answering queries
of other concepts as much. We have made the simplifying assumption that the frequency
of a concept in the collection is proportional to the number of its instances in the
top nonrelevant answers for queries of other concepts. This observation shows that
such assumption might not always hold. We observe a similar situation in budget 0.5.
Although MRR is not the objective function of the AM algorithm, AM delivers higher
values of MRR than PM, and close to Oracle overall.

ACM Transactions on Database Systems, Vol. 40, No. 2, Article 12, Publication date: June 2015.

12:30 A. Termehchy et al.

Table VI. Average p@3 for Oracle, AM-N, and APM (ε = 0.001) over
Domain N1

Frequency-based Cost Random Cost
Budget Oracle AM-N APM Oracle AM-N APM

0.1 0.191 0.191 0.191 0.173 0.173 0.160
0.2 0.229 0.229 0.229 0.205 0.205 0.196
0.3 0.238 0.238 0.238 0.230 0.230 0.230
0.4 0.238 0.238 0.238 0.235 0.235 0.235
0.5 0.238 0.238 0.238 0.237 0.237 0.237
0.6 0.238 0.238 0.238 0.238 0.238 0.238

Table VII. Average MRR for Oracle, AM-N, and APM (ε = 0.001) over
Domain N1

Frequency-based Cost Random Cost
Budget Oracle AM-N APM Oracle AM-N APM

0.1 0.380 0.380 0.380 0.327 0.327 0.298
0.2 0.457 0.457 0.457 0.401 0.400 0.377
0.3 0.475 0.475 0.474 0.452 0.451 0.450
0.4 0.475 0.475 0.474 0.465 0.464 0.464
0.5 0.475 0.475 0.474 0.473 0.472 0.472
0.6 0.475 0.475 0.474 0.475 0.475 0.475

7.2.2. Domains without Constraints Regarding the Overlap of Concepts. We use two algorithms
in this set of experiments. Oracle is the same algorithm used in the validation experi-
ments for domains with mutually exclusive concepts. AM-N is a brute-force algorithm
that picks that design with maximum annotation benefit over a domain with no con-
straint given a fixed budget. Since the PM heuristic is very similar to AM-N, we do not
report its results in this section.

Tables VI and VII show the values of p@3 and MRR, respectively, over domain N1
delivered by Oracle and AM-N using frequency and random cost metrics. All results for
budget 0.7–0.9 are omitted as they are the same as the results over budget 0.6. Note
that, since the number of concepts in domain N1 is larger than in domain M1, this
increases the running time of Oracle. Due to the limited amount of time, we perform
the experiment over domain N1 using 20 sets of random costs.

Overall, the ranking quality delivered by AM-N is the same as Oracle. AM-N and
Oracle pick the same design for all budgets for frequency-based cost. Intuitively, more
popular and accurately annotated concepts should deliver a better ranking quality
for domains without any constraint, because query interface can use only the annota-
tions for the concept of each query to improve the ranking quality of its answers. As
opposed to the domain with mutually exclusive concepts, the query interface cannot
use annotations of concepts other than the concept in the query to filter nonrelevant
answers. AM-N generally picks the same designs as Oracle for runs of random cost.
AM-N chooses different designs from Oracle in a few runs. For instance, in one of the
runs, PM picks area, which is slightly more popular than dramatic composition, where
Oracle picks the latter instead. However, both designs lead to almost the same amount
of improvement in ranking qualities for queries. These results confirm our assumption
that the annotation-benefit formula is suited as an objective function for domains with
no constraints.

7.3. Effectiveness of Approximation Algorithms

7.3.1. Parameters Estimation. In addition to the popularities (u) of concepts in the query
workload, AAM requires the value of the frequency (d) for each concept in the collection.

ACM Transactions on Database Systems, Vol. 40, No. 2, Article 12, Publication date: June 2015.

Cost-Effective Conceptual Design for Information Extraction 12:31

Table VIII. Average p@3 for AAM (with ε = 0.1) and APM (with
ε = 0.001) Using Frequency-Based Costs

Domain M1 Domain M2 Domain M3
Domain APM AAM APM AAM APM AAM

0.1 0.146 0.146 0.196 0.230 0.145 0.145
0.2 0.177 0.207 0.203 0.237 0.164 0.165
0.3 0.218 0.218 0.205 0.239 0.175 0.176
0.4 0.218 0.218 0.203 0.241 0.183 0.196
0.5 0.218 0.218 0.237 0.241 0.175 0.198
0.6 0.218 0.218 0.239 0.241 0.202 0.202
0.7 0.218 0.218 0.241 0.241 0.202 0.202
0.8 0.211 0.218 0.235 0.241 0.202 0.202
0.9 0.218 0.218 0.241 0.241 0.202 0.202

Table IX. Average MRR for AAM (with ε = 0.1) and APM (with
ε = 0.001) Using Frequency-Based Costs

Domain M1 Domain M2 Domain M3
Domain APM AAM APM AAM APM AAM

0.1 0.271 0.271 0.461 0.585 0.311 0.310
0.2 0.383 0.491 0.521 0.616 0.377 0.369
0.3 0.551 0.551 0.549 0.642 0.419 0.406
0.4 0.551 0.551 0.535 0.646 0.445 0.476
0.5 0.551 0.551 0.637 0.646 0.430 0.484
0.6 0.551 0.551 0.641 0.646 0.503 0.503
0.7 0.551 0.551 0.646 0.646 0.503 0.503
0.8 0.510 0.551 0.638 0.644 0.503 0.503
0.9 0.551 0.551 0.646 0.646 0.503 0.503

The exact frequency of a concept, however, cannot be determined before annotating all
its instances. One may estimate the values of frequencies for the concepts from previous
rounds of annotating the collection [Gulhane et al. 2011], or using fast and easy-to-
develop classification algorithms [Huang and Yu 2010]. We estimate the frequencies
of concepts using a small sample of randomly selected documents from the collection.
For each domain, we calculate the frequency of each concept over a random sample
of 384 documents from the collection, which corresponds to an estimation error rate
of 5% under the 95% confidence level. Similar to computing concepts’ popularities, we
smoothed the value of d using a Bayesian m-estimate with smoothing parameter of
1 and uniform priors to smooth the estimations, particularly for those concepts with
estimated frequencies of 0 [Hastie et al. 2009].

7.3.2. Domains with Mutually Exclusive Concepts. Tables VIII, IX, X, and XI show the val-
ues of p@3 and MRR for APM and AAM algorithms for all mutually exclusive domains
using frequency-based and random costs, respectively. Generally, the designs gener-
ated by AAM improve the values of p@3 and MRR significantly more than the designs
produced by APM, over all domains and both types of cost metric. As discussed in
Section 4, the optimal design should balance three types of impacts. First, it should
contain the most popular concepts so that query interface can return potentially rel-
evant answers to as many queries as possible. Second, if a concept is very frequent,
most candidate answers for queries with this concept contain matching instances of
this concept. Hence, if the concept is relatively costly, the optimal design should not
include these concepts as they may not be worth annotating. Third, it should contain
relatively frequent and inexpensive concepts so that the query interface can eliminate

ACM Transactions on Database Systems, Vol. 40, No. 2, Article 12, Publication date: June 2015.

12:32 A. Termehchy et al.

Table X. Average p@3 of AAM (with ε = 0.3) and APM (with
ε = 0.001) Using Random Costs

Domain M1 Domain M2 Domain M3
Domain APM AAM APM AAM APM AAM

0.1 0.179 0.189 0.221 0.240 0.192 0.202
0.2 0.201 0.207 0.223 0.240 0.193 0.202
0.3 0.215 0.214 0.226 0.240 0.194 0.202
0.4 0.218 0.217 0.227 0.240 0.195 0.202
0.5 0.218 0.218 0.229 0.241 0.197 0.202
0.6 0.218 0.218 0.231 0.241 0.197 0.202
0.7 0.218 0.218 0.232 0.241 0.198 0.202
0.8 0.218 0.218 0.234 0.241 0.199 0.202
0.9 0.218 0.218 0.237 0.241 0.202 0.202

Table XI. Average MRR of AAM (with ε = 0.3) and APM (with
ε = 0.001) Using Random Costs

Domain M1 Domain M2 Domain M3
Domain APM AAM APM AAM APM AAM

0.1 0.388 0.438 0.517 0.641 0.479 0.502
0.2 0.471 0.512 0.532 0.643 0.482 0.503
0.3 0.534 0.541 0.554 0.644 0.486 0.503
0.4 0.550 0.549 0.565 0.645 0.488 0.503
0.5 0.551 0.551 0.568 0.645 0.491 0.503
0.6 0.551 0.551 0.585 0.645 0.493 0.503
0.7 0.551 0.551 0.594 0.645 0.494 0.503
0.8 0.551 0.551 0.609 0.646 0.495 0.503
0.9 0.551 0.551 0.622 0.646 0.503 0.503

many nonxrelevant answers from the list of results for those queries whose concepts
are not in the design.

In our experiments, the designs produced by APM have larger overall popularities
(u values) than the designs selected by AAM, across all domains and cost metrics.
We have observed that, in general, the most popular concepts in users’ queries may
not be the most frequent ones in the collection. The designs picked by AAM do not
normally include the most popular concepts. Instead, they contain a larger number of
relatively popular concepts than the designs selected by APM over all domains and
cost metrics. Generally, relatively popular concepts are also rather frequent. Since the
overall frequencies of the designs produced by AAM are generally larger than those
selected by APM, they help the query interface to eliminate more nonrelevant answers
from the results of those queries whose concepts are not included in these designs.
Because these designs include relatively popular concepts, they also help the query
interface to return those relevant answers to a relatively large number of queries.

In a small number of cases, the designs generated by APM deliver a larger p@3
than those produced by AAM. Although the differences between AAM and APM in
these cases are not statistically significant, it is interesting to explore the reasons
behind these improvements. The designs generated by APM for budgets 0.3 and 0.4
over domain M1, using random costs, deliver larger values of p@3 than the designs
of AAM. In both budgets, the relative effectiveness improvement of APM over AAM
in each budget is due to a single run where APM selects a design with larger value
of annotation benefit than the design picked by AAM. This illustrates the fact that
both methods are approximation algorithms and sometimes may return quite different
answers from their optimal solutions.

ACM Transactions on Database Systems, Vol. 40, No. 2, Article 12, Publication date: June 2015.

Cost-Effective Conceptual Design for Information Extraction 12:33

Generally, the differences between ranking quality achieved by the designs of AAM
and APM are smaller for larger budgets across all domains and cost metrics. This is
mainly due to the fact that AAM and APM can afford to include most of the popular and
frequent concepts in their designs for medium or large budgets. Adding the concepts
that are rare in the collection or query workload does not considerably improve the
effectiveness of answering queries. Because domain M1 has a relatively small number
of concepts, both algorithms pick similar designs given a smaller amount of budget for
this domain than other domains.

In some cases, the designs generated by APM deliver smaller values of p@3 and
MRR for larger budgets. For instance, the design for budget 0.8 delivers a smaller
value of p@3 than the one for budget 0.7 over domain M1 when frequency-based cost
is used. Given sufficient budget, APM may replace reasonably popular and frequent
concepts with more popular and less frequent concepts. As discussed in Section 4 and
the beginning of this section, this may have a negative impact on p@3 for answering
queries over the annotated collection.

The values of p@3 and MRR for the designs generated by AAM over domain M2
and domain M3 when random costs are used are almost the same over all budgets
greater than 0.1. The distributions of frequencies and popularities of concepts are
very skewed in these domains, where a relatively small number of concepts (e.g., 10
concepts in domain M2) have a large portion of the total frequency and popularity in
the domain. Since the costs are assigned randomly, in most runs AAM is able to pick
these concepts using a relatively small budget. AAM adds new concepts to this set
given larger budgets. The new concepts, however, do not improve the effectiveness of
answering queries over the annotated collection.

APM cannot find the set of more popular concepts given a small or moderate budget.
The algorithm used in APM has two main steps [Korte and Schrader 1981]. It separates
concepts into two sets: popular and unpopular. It then uses a dynamic programming
method to find the optimal solution from the set of popular concepts. If there is still
some budget left, it greedily picks concepts from the set of unpopular concepts until the
budget is exhausted. The decision of how to partition concepts into these two sets is
based on an approximation which is not accurate in many cases. Hence, in some cases
those concepts that belong to the optimal design may be placed in the set of unpopular
concepts. The greedy algorithm used to pick the concepts in the unpopular set sorts
them based on the ratio of u(C)×pr(C)

w(C) , where u is the popularity, pr the accuracy, and w

the cost of concept C, and then selects the top concepts. This method leaves out some
desired concepts that are relatively popular, but expensive.

7.3.3. Domains without Constraint. We investigate the effectiveness of the version of APM
algorithm introduced in Section 6.1 for domains without any constraint. Tables VI
and VII show the values of p@3 and MRR over domain N1 delivered by Oracle, AM-
N, and APM using frequency-based and random costs. Overall, the results delivered
by APM are the same as those of Oracle and AM-N, except at budgets 0.1 and 0.2 of
random cost. APM generally selects the same designs as those of PM. Hence it delivers
the same ranking qualities as do the optimal solutions. Since APM is an approximation
algorithm, it cannot find solutions that maximize concept popularity in some runs of
random cost. For example, APM picks the design consisting of literary composition,
where as AM-N picks the design with series and dramatic composition in one of the
runs. The overall popularity of the latter design is larger than the former. Thus APM
cannot answer queries as effectively as AM-N does. As the costs are quite skewed in
frequency-based runs, APM almost always picks the same designs as AM-N in these
runs.

ACM Transactions on Database Systems, Vol. 40, No. 2, Article 12, Publication date: June 2015.

12:34 A. Termehchy et al.

Table XII. Average Running Times of AAM and
APM (in minutes)

ε 0.5 0.3 0.1 0.01 0.001
Domain M1 1 2 2 - -

AAM Domain M2 1 5 102 - -
Domain M3 4 15 128 - -
Domain M1 1 2 2 2 5

APM Domain M2 1 2 2 3 12
Domain M3 4 14 15 15 23

Table XIII. Average Memory Usage of AAM and
APM (in MB)

ε 0.5 0.3 0.1 0.01 0.001
Domain M1 348 492 635 - -

AAM Domain M2 1667 6498 84139 - -
Domain M3 1326 5608 63466 - -
Domain M1 184 184 184 215 1976

APM Domain M2 184 184 184 215 4933
Domain M3 184 184 184 471 7732

7.4. Efficiency and Scalability of Approximation Algorithms

This section studies the efficiency and scalability of our approximation algorithms.
We show the efficiency and scalability of AAM and APM using frequency-based costs
over domains M1, M2, and M3. Our experiments on the random-based costs show
similar results for the scalability of the algorithms. Since the running time and memory
consumption of APM are similar over the domains with mutually exclusive concepts
and those without any constraints, we report the scalability results for APM only over
those domains with mutually exclusive concepts.

7.4.1. Efficiency. Table XII shows the average running time of APM and AAM algo-
rithms over domains M1, M2, and M3 with budgets 0.1 to 0.9 using values between 0.5
- 0.001 for ε. As we expect, the smaller the value of ε, the longer the running times of
both algorithms. APM is generally more efficient than AAM, particularly for smaller
values of ε. This observation confirms our comparative analysis of the time complexi-
ties of these algorithms in Section 6. We set the value of ε to 0.1 for AAM and to 0.001
for APM in our experiments to evaluate the improvement in effectiveness of answering
queries achieved by the designs produced by AAM and APM for frequency-based cost
as reported in Section 7.3, and we set the value of ε to 0.1 and 0.001, respectively.
According to Table XII, the running times of the algorithms for these values of ε are
reasonable for a design-time task. As we have to run AAM 40 times per budget in the
experiments using random costs, and reported in Section 7.3, we set the value of ε to
0.3 in AAM for these experiments. Table XII indicates that the running time of AAM
with this value of ε is reasonable for a design-time task.

Both APM and AAM use a dynamic programming approach and keep a table in the
main memory to maintain the solutions of their subproblems. Table XIII shows the
average memory usage of APM and AAM algorithms over domains M1, M2, and M3
using values from 0.5-0.001 for ε. Similar to running time, the smaller the value of ε,
the larger the memory AAM and APM need. Interestingly, AAM uses smaller amount
of memory over domains M3 than M2, even though the size of M2 is smaller than M3.
We have found that the distributions of costs and frequencies of concepts in domain M3
are more skewed than those of domain M2. Thus the size of Crem for domain M3 tends
to be smaller than the one for domain M2. Hence the amount of memory space required

ACM Transactions on Database Systems, Vol. 40, No. 2, Article 12, Publication date: June 2015.

Cost-Effective Conceptual Design for Information Extraction 12:35

Table XIV. Average p@3 over All Budgets for AAM and APM
Using Different Values of ε

ε 0.5 0.3 0.1 0.01 0.001
Domain M1 0.209 0.209 0.209 - -

AAM Domain M2 0.229 0.238 0.239 - -
Domain M3 0.188 0.188 0.188 - -
Domain M1 0.204 0.205 0.204 0.204 0.204

APM Domain M2 0.233 0.233 0.229 0.222 0.222
Domain M3 0.184 0.183 0.182 0.184 0.184

Table XV. Average MRR over All Budgets for AAM and APM
Using Different Values of ε

ε 0.5 0.3 0.1 0.01 0.001
Domain M1 0.325 0.501 0.513 - -

AAM Domain M2 0.636 0.635 0.635 - -
Domain M3 0.451 0.449 0.451 - -
Domain M1 0.497 0.501 0.497 0.497 0.497

APM Domain M2 0.595 0.595 0.584 0.586 0.586
Domain M3 0.445 0.444 0.439 0.444 0.444

to construct the dynamic programming table for AAM in domain M3 is smaller than
the one for M2. The size of the main-memory table becomes very large (e.g., for some
budgets it exceeds the available main memory) for ε ≤ 0.01 in AAM and for ε ≤ 0.001
in APM. Our results in Section 7.3 indicate that one does not need such small values
for ε, particularly for AAM, in order to find effective designs. Hence in this article we
have not used such values for epsilon for APM and AAM.

7.4.2. Scalability. One may have to set ε to values larger than 0.3 or 0.1 for AAM and
0.001 for APM in order to find the desired designs for large domains in a reasonable
amount of time and using modest memory overheads. Hence, we empirically examine
the effect of changes on the values of ε for the effectiveness of the algorithms. Tables XIV
and XV show the average values of p@3 and MRR for APM and AAM algorithms over
domains M1, M2, and M3 using values between 0.5 and 0.001 for ε. The average values
of p@3 and MRR delivered by the designs of AAM are relatively stable across different
values of ε in domains M1, M2, and M3. Except for some cases, such as ε = 0.5 in
domain M3, generally, the ranking qualities delivered by the designs of AAM and APM
tend to improve when using smaller value of ε.

Furthermore, Table XVI indicates that AAM with relatively small values of ε, that
is, 0.5 and 0.3, generally provides better ranking qualities than APM with considerably
smaller values of ε, and a comparable ranking quality to AAM using ε = 0.1. With this
choice of ε, AAM requires significantly less amount of resources than the ideal value of
ε, or that of APM with ε = 0.001, while sustaining its effectiveness.

8. CONCLUSIONS AND FUTURE WORK

Extracting and annotating the occurrences of entities in an unstructured or semi-
structured text collection by their concepts improves the effectiveness of answering
queries over the collection. Nonetheless, annotating the occurrences of a concept and
maintaining the annotated collection are resource intensive. Thus, an enterprise may
have to select a subset of the concepts for annotation, called a conceptual design, whose
cost of extraction does not exceed its budget and improves the effectiveness of answer-
ing queries most. To surpass the intuition-based approaches to conceptual design,
we introduced and formalized this problem and proved it NP-hard in the number of

ACM Transactions on Database Systems, Vol. 40, No. 2, Article 12, Publication date: June 2015.

12:36 A. Termehchy et al.

Table XVI. Average Ranking for AAM with ε = 0.5, 0.3, 0.1 and APM with ε = 0.001 Using
Frequency-Based Cost

p@3 MRR
AAM AAM

Domain Budget 0.5 0.3 0.1 APM 0.5 0.3 0.1 APM

M1

0.1 0.146 0.146 0.146 0.146 0.271 0.271 0.271 0.271
0.2 0.207 0.207 0.207 0.177 0.491 0.491 0.491 0.383
0.3 0.218 0.218 0.218 0.218 0.551 0.551 0.551 0.551
0.4 0.218 0.218 0.218 0.218 0.551 0.551 0.551 0.551
0.5 0.218 0.218 0.218 0.218 0.551 0.551 0.551 0.551
0.6 0.218 0.218 0.218 0.218 0.551 0.551 0.551 0.551
0.7 0.218 0.218 0.218 0.218 0.551 0.551 0.551 0.551
0.8 0.218 0.218 0.218 0.211 0.551 0.551 0.551 0.510
0.9 0.218 0.218 0.218 0.218 0.551 0.551 0.551 0.551

M2

0.1 0.232 0.230 0.230 0.196 0.590 0.585 0.585 0.461
0.2 0.233 0.233 0.237 0.203 0.616 0.614 0.616 0.521
0.3 0.239 0.239 0.239 0.205 0.642 0.642 0.642 0.549
0.4 0.241 0.241 0.241 0.203 0.646 0.646 0.646 0.535
0.5 0.241 0.241 0.241 0.237 0.646 0.646 0.646 0.637
0.6 0.241 0.241 0.241 0.239 0.646 0.646 0.646 0.641
0.7 0.241 0.241 0.241 0.241 0.646 0.646 0.646 0.646
0.8 0.241 0.241 0.241 0.235 0.646 0.646 0.644 0.638
0.9 0.241 0.241 0.241 0.241 0.646 0.646 0.646 0.646

M3

0.1 0.147 0.143 0.145 0.145 0.302 0.292 0.310 0.311
0.2 0.165 0.165 0.165 0.164 0.369 0.369 0.369 0.377
0.3 0.179 0.179 0.176 0.175 0.409 0.409 0.406 0.419
0.4 0.196 0.196 0.196 0.183 0.476 0.476 0.476 0.445
0.5 0.198 0.197 0.198 0.175 0.493 0.484 0.484 0.430
0.6 0.202 0.202 0.202 0.202 0.500 0.503 0.503 0.503
0.7 0.202 0.202 0.202 0.202 0.502 0.503 0.503 0.503
0.8 0.202 0.202 0.202 0.202 0.503 0.503 0.503 0.503
0.9 0.202 0.202 0.202 0.202 0.503 0.503 0.503 0.503

relevant concepts in the general case. We proposed two efficient approximation
algorithms for it: approximate popularity maximization (APM) and approximate
annotation-benefit maximization (AAM). We proved that if concepts are mutually
exclusive, APM has a constant factor approximation ratio and AAM is a fully
polynomial-time approximation scheme. If there is not any constraint regrading
the overlap of concepts, APM is a fully polynomial-time approximation scheme. Our
empirical studies over real-world datasets, concepts, and query workloads showed that
APM and AAM efficiently compute conceptual designs and return effective ones over
real-world concepts, with AAM delivering more effective results over domains with
mutually exclusive concepts.

We plan to extend this work in multiple directions. First, the information needs
behind some queries may be more complex than finding information about a single
entity. For example, a user may ask about the relationships between multiple entities.
We plan to extend our model to consider the dependencies between occurrences of mul-
tiple concepts in the input queries and the collection. For instance, assume that the
references to concept job appear mostly in queries that also refer to instances of con-
cept person. Given limited resources, it may be worth extracting only person, instead of
both person, and job, as the extracted instances of person may also improve the effec-
tiveness of answering queries about instances of job. Similarly, because some concepts

ACM Transactions on Database Systems, Vol. 40, No. 2, Article 12, Publication date: June 2015.

Cost-Effective Conceptual Design for Information Extraction 12:37

often occur together in documents, extracting one of them may make annotating the
rest less costly. For instance, if concepts person and job appear together in a collection
quite frequently, it will be less time consuming to develop and/or run the extractor of
job, given that the instances of person are already annotated in the collection. We plan
to represent this problem using a collection of precedence-constrained knapsack prob-
lems [Johnson and Niemi 1983] and to leverage the approximation algorithms for the
precedence-constrained knapsack problem to solve this extension of the cost-effective
design problem. We also plan to improve estimating the frequencies of concepts using
relatively inexpensive concept extraction programs, for example, simple classifiers that
do not use deep parsing, that can deliver a reasonable estimation of the ratio of those
documents that may contain instances of certain concepts, in a rather short amount of
time [Huang and Yu 2010].

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their helpful comments and Wolfgang Nejdl and Elena Demidova for
providing the query workload.

REFERENCES

Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, and Pierre Senellart. 2011.
Web Data Management. Cambridge University Press.

Eugene Agichtein and Luis Gravano. 2003. Querying text databases for efficient information extraction. In
Proceedings of the IEEE International Conference on Data Engineering (ICDE’03).

Michael Anderson, Dolan Antenucci, Victor Bittorf, Matthew Burgess, Michael Cafarella, Arun Kumar,
Feng Niu, Yongjoo Park, Christopher Re, and Ce Zhang. 2013. Brainwash: A data system for feature
engineering. In Proceedings of the Conference on Innovative Data Systems Research (CIDR’13).

Paul N. Bennett, Krysta Svore, and Susan T. Dumais. 2007. Classification-enhanced ranking. In Proceedings
of the International Conference on World Wide Web (WWW’07).

Barry Boehm, Chris Abts, and Sunita Chulan. 2000. Software development cost estimation approaches, a
survey. Ann. Softw. Engin. 10, 177–205.

Michael Cafarella, Dan Suciu, and Oren Etzioni. 2007. Navigating extracted data with schema discovery. In
Proceedings of the International Conference on World Wide Web (WWW’07).

Soumen Chakrabarti, Kriti Puniyani, and Sujatha Das. 2007. Optimizing scoring functions and indexes for
proximity search in type-annotated corpora. In Proceedings of the International Conference on World
Wide Web (WWW’07).

Soumen Chakrabarti, Sunita Sarawagi, and S. Sudarshan. 2010. Enhancing search with structure. IEEE
Data Engin. Bull. 33, 1.

Fei Chen, Xixuan Feng, Chris Re, and Min Wang. 2012. Optimizing statistical information extraction pro-
grams over evolving text. In Proceedings of the IEEE International Conference on Data Engineering
(ICDE’12).

Laura Chiticariu, Yunyao Li, Sriram Raghavan, and Frederick Reiss. 2010. Enterprise information extrac-
tion: Recent developments and open challenges. In Proceedings of the ACM SIGMOD International
Conference on Management of Data (SIGMOD’10).

Jennifer Chu-Carroll and John Prager. 2007. An experimental study of the impact of information extrac-
tion accuracy on semantic search performance. In Proceedings of the ACM International Conference on
Information and Knowledge Management (CIKM’07).

Jennifer Chu-Carroll, John Prager, Krzysztof Czuba, David Ferrucci, and Pablo Duboue. 2006. Semantic
search via XML fragments: A high-precision approach to IR. In Proceedings of the International ACM
SIGIR Conference on Research and Development in Information Retrieval (SIGIR’06).

Nilesh Dalvi, Ravi Kumar, Bo Pang, Raghu Ramakrishnan, Andrew Tomkins, Philip Bohannon, Sathiya
Keerthi, and Srujana Merugu. 2009. A Web of concepts. In Proceedings of the ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems (PODS’09).

Elena Demidova, Xuan Zhou, Irina Oelze, and Wolfgang Nejdl. 2010. Evaluating evidences for keyword
query disambiguation in entity centric database search. In Proceedings of the International Workshop
on Database and Expert Systems Application (DEXA’10).

ACM Transactions on Database Systems, Vol. 40, No. 2, Article 12, Publication date: June 2015.

12:38 A. Termehchy et al.

Stephen Dill, Nadav Eiron, David Gibson, Daniel Gruhl, R. Guha, Anant Jhingran, Tapas Kanungo, Sridhar
Rajagopalan, Andrew Tomkins, John Tomlin, and Jason Zien. 2003. SemTag and Seeker: Bootstrapping
the semantic Web via automated semantic annotation. In Proceedings of the International Conference
on World Wide Web (WWW’03).

Anhai Doan, Jeff Naughton, Akanksha Baid, Xiaoyang Chai, Fei Chen, et al. 2009. The case for a structured
approach to managing unstructured data. In Proceedings of the Conference on Innovative Data Systems
Research (CIDR’09).

Xin Luna Dong, Barna Saha, and Divesh Srivastava. 2013. Less is more: Selecting sources wisely for inte-
gration. Proc. VLDB Endow. 6, 2.

Doug Downey, Oren Etzioni, and Stephen Soderland. 2006. A probabilistic model of redundancy in informa-
tion extraction. In Proceedings of the International Joint Conferences on Artificial Intelligence (IJCAI’06).

Ofer Egozi, Shaul Markovitch, and Evgeniy Gabrilovich. 2011. Concept-based information retrieval using
explicit semantic analysis. ACM Trans. Inf. Syst. 29, 2, 1–34.

Amr Elhelw, Mina Farid, and Ihab Ilyas. 2012. Just-in-time information extraction using extraction views.
In Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD’12).

Ronald Fagin, Benny Kimelfeld, Yunyao Li, Sriram Raghavan, and Shivakumar Vaithyanathan. 2010. Un-
derstanding queries in a search database system. In Proceedings of the ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems (PODS’10).

Tim Finin, Will Murnane, Anand Karandikar, Nicholas Keller, Justin Martineau, and Mark Dredze. 2010.
Annotating named entities in Twitter data with crowdsourcing. In Proceedings of the CSLDAMT Confer-
ence of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies (CSLDAMT-NAACL HLT’10).

Arnaud Freville. 2004. The multidimensional 0-1 knapsack problem: An overview. Euro. J. Oper. Res. 155,
1–21.

Shmuel Gal and Boris Klots. 1995. Optimal partitioning which maximizes the sum of weighted averages.
Oper. Res. 43, 3.

Hector Garciamolina, Jeff Ullman, and Jennifer Widom. 2008. Database Systems: The Complete Book. Pren-
tice Hall.

Jens Graupmann, Michael Biwer, Christian Zimmer, Patrick Zimmer, Matthias Bender, Martin Theobald,
and Gerhard Weikum. 2004. COMPASS: A concept-based Web search engine for HTML, XML, and Deep
Web data. In Proceedings of the Conference on Very Large Databases (VLDB’04).

Jens Graupmann, Ralf Schenkel, and Gerhard Weikum. 2005. The SphereSearch engine for unified ranked
retrieval of heterogeneous XML and Web documents. In Proceedings of the Conference on Very Large
Databases (VLDB’05).

Pankaj Gulhane, Amit Madaan, Rupesh Mehta, Jeyashankher Ramamirtham, Rajeev Rastogi, Sandeep
Satpal, Srinivasan H. Sengamedu, Ashwin Tengli, and Charu Tiwari. 2011. Web-scale information
extraction with vertex. In Proceedings of the IEEE International Conference on Data Engineering
(ICDE’11).

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. 2009. The Elements of Statistical Learning.
Springer.

Jian Huang and Cong Yu. 2010. Prioritization of domain-specific Web information extraction. Oper. Res. 43,
500–508.

Oscar Ibarra and Chul Kim. 1975. Fast approximation algorithms for the knapsack and sum of subset
problems. J. ACM 22, 4, 463–468.

Panagiotis Ipeirotis, Eugene Agichtein, Pranay Jain, and Luis Gravano. 2006. To search or to crawl? Towards
a query optimizer for textcentric tasks. In Proceedings of the ACM SIGMOD International Conference
on Management of Data (SIGMOD’06).

Alpa Jain, Anhai Doan, and Luis Gravano. 2008a. Optimizing SQL queries over text databases. In Proceed-
ings of the IEEE International Conference on Data Engineering (ICDE’08).

Alpa Jain, Panagiotis Ipeirotis, and Luis Gravano. 2008b. Building query optimizers for information extrac-
tion: The SQoUT project. http://www.cs.columbia.edu/∼gravano/Papers/2008/sigmod-record08.pdf.

David S. Johnson and K. Niemi. 1983. On knapsacks, partitions, and a new dynamic programming technique
for trees. Math. Oper. Res. 8, 1–14.

Pallika Kanani and Andrew Mccallum. 2012. Selecting actions for resource-bounded information extraction
using reinforcement learning. In Proceedings of the ACM International Conference on Web Search and
Data Mining (WSDM’12).

Eser Kandogan, Rajasekar Krishnamurthy, Sriram Raghavan, Shivakumar Vaithyanathan, and Huaiyu
Zhu. 2006. Avatar semantic search: A database approach to information retrieval. In Proceedings of the
ACM SIGMOD International Conference on Management of Data (SIGMOD’06).

ACM Transactions on Database Systems, Vol. 40, No. 2, Article 12, Publication date: June 2015.

Cost-Effective Conceptual Design for Information Extraction 12:39

Bernhard Korte and Rainer Schrader. 1981. On the existence of fast approximation schemes. In Nonlinear
Programming, O. L. Mangasarian, R. R. Meyer, and S. M. Robinson, Eds. Academic Press, New York,
41–437.

Marek Kowalkiewicz, Tomasz Kaczmarek, and Witold Abramowicz. 2006. Myportal: Robust extraction and
aggregation of Web content. In Proceedings of the Conference on Very Large Databases (VLDB’06).

Robert Krovetz and W. Bruce Croft. 1992. Lexical ambiguity and information retrieval. ACM Trans. Inf. Syst.
10, 115–141.

Christopher Manning, Prabhakar Raghavan, and Hinrich Schutze. 2008. An Introduction to Information
Retrieval. Cambridge University Press.

Andrew Mccallum. 2005. Information extraction: Distilling structured data from unstructured text. ACM
Queue 3, 9, 48–57.

Jeffrey Pound, Ihab Ilyas, and Grant Weddell. 2010. Expressive and flexible access to Web-extracted data: A
keyword-based structured query language. In Proceedings of the ACM SIGMOD International Conference
on Management of Data (SIGMOD’10).

Ellen Riloff and Rosie Jones. 1999. Learning dictionaries for information extraction by multi-level bootstrap-
ping. In Proceedings of the National Conference on Artificial Intelligence (AAAI’99).

Mark Sanderson. 2008. Ambiguous queries: Test collections need more sense. In Proceedings of the Interna-
tional ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’08).

Sunita Sarawagi. 2008. Information extraction. Foundat. Trends Databases 1, 3, 261–377.
Ralf Schenkel, Fabian Suchanek, and Gjergji Kasneci. 2007. YAWN: A semantically annotated Wikipedia

XML corpus. In Proceedings of the Symposium on Database Systems for Business, Technology and Web
(BTW’07).

Warren Shen, Pedro Derose, Robert Mccann, Anhai Doan, and Raghu Ramakrishnan. 2008. Toward best-
effort information extraction. In Proceedings of the ACM SIGMOD International Conference on Manage-
ment of Data (SIGMOD’08).

Warren Shen, Anhai Doan, Jeff Naughton, and Raghu Ramakrishnan. 2007. Declarative information extrac-
tion using Datalog with embedded extraction predicates. In Proceedings of the Conference on Very Large
Databases (VLDB’07).

Christopher Stokoe, Michael P. Oakes, and John Tait. 2003. Word sense disambiguation in information
retrieval revisited. In Proceedings of the International ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval (SIGIR’03).

Arash Termehchy, Ali Vakilian, Yodsawalai Chodpathumwan, and Marianne Winslett. 2014. Which concepts
are worth extracting? In Proceedings of the ACM SIGMOD International Conference on Management of
Data (SIGMOD’14).

Roelof Van Zwol and Tim Van Loosbroek. 2007. Effective use of semantic structure in XML retrieval. In
Proceedings of the European Conference on IR Research (ECIR’07).

Received June 2014; revised November 2014; accepted December 2014

ACM Transactions on Database Systems, Vol. 40, No. 2, Article 12, Publication date: June 2015.

