
Chapter 8

Complexity

231

8.1 Introduction

• Solvable problems versus efficiently solvable problems.

• Measuring complexity: complexity functions.

• Polynomial complexity.

• NP-complete problems.

232

8.2 Measuring complexity

• Abstraction with respect to the machine being used.

• Abstraction with respect to the data (data size as only parameter).

• O notation.

• Efficiency criterion: polynomial.

233

8.3 Polynomial problems

• Influence of the encoding.

• Graph example.

• Reasonable encodings:

– no padding,

– polynomial decoding,

– unary representation of numbers not allowed.

234

Complexity and Turing machines

Time complexity of a Turing machine that always stops:

TM(n) = max {m | ∃x ∈ Σ∗, |x| = n and the execution of M on x
is m steps long}.

A Turing machine is polynomial if there exists a polynomial p(n) such that

TM(n) ≤ p(n)

for all n ≥ 0.

The class P is the class of languages that are decided by a polynomial

Turing machine.

235

8.4 Polynomial transformations

• Diagonalisation is not adequate to prove that problems are not in P.

• Another approach: comparing problems.

236

The Travelling Salesman (TS)

• Set C of n Cities.

• Distances d(ci, cj).

• A constant b.

• Is there a permutation of the towns such that:∑
1≤i<n

d(cpi, cpi+1) + d(cpn, cp1) ≤ b.

237

Hamiltonian Circuit (HC)

• Graph G = (V,E)

• Is there a closed circuit in the graph that contains each vertex exactly

once.

s s

s s
@
@
@
@
@
@
@@ s s

s s
s

�
�
�
�
�
�
��@

@
@
@
@
@
@@

238

Definition of polynomial transformations

Goal : to establish a link between problems such as HC and TS (one is in

P if and only if the other is also in P).

Definition :

Consider languages L1 ∈ Σ∗1 and L2 ∈ Σ∗2. A polynomial transformation

from L1 to L2 (notation L1 ∝ L2) is a function f : Σ∗1 → Σ∗2 that satisfies

the following conditions :

1. it is computable in polynomial time,

2. f(x) ∈ L2 if and only if x ∈ L1.

239

HC ∝ TS

• The set of cities is identical to the set of vertices of the graph, i.e.

C = V .

• The distances are the following (ci, cj) =

{
1 si (ci, cj) ∈ E
2 si (ci, cj) 6∈ E

.

• The constant b is equal to the number of cities, i.e. b = |V |.

240

Properties of ∝

If L1 ∝ L2, then

• if L2 ∈ P then L1 ∈ P,

• if L1 6∈ P then L2 6∈ P.

If L1 ∝ L2 et L2 ∝ L3, then

• L1 ∝ L3.

241

Polynomially equivalent problems

Definition

Two languages L1 and L2 are polynomially equivalent (notation L1 ≡P L2)

if and only if L1 ∝ L2 and L2 ∝ L1.

• Classes of polynomially equivalent problems: either all problems in the

class are in P, or none is.

• Such an equivalence class can be built incrementally by adding

problems to a known class.

• We need a more abstract definition of the class containing HC and TS.

242

The class NP

• The goal is to characterise problems for which it is necessary to

examine a very large number of possibilities, but such that checking

each possibility can be done quickly.

• Thus, the solution is fast, if enumerating the possibilities does not

cost anything.

• Modelisation : nondeterminism.

243

The complexity of nondeterministic Turing machines

The execution time of a nondeterministic Turing machine on a word w is

given by

• the length of the shortest execution accepting the word, if it is

accepted,

• the value 1 if the word is not accepted.

The time complexity of M (non deterministic) is the function TM(n)

defined by

TM(n) = max {m | ∃x ∈ Σ∗, |x| = n and
the execution time of M on x is m steps long}.

244

The definition of NP

Définition

The class NP (from Nondeterministic Polynomial) is the class of languages

that are accepted by a polynomial nondeterministic Turing machine.

Exemple

HC and TS are in NP.

245

Theorem

Consider L ∈ NP. There exists a deterministic Turing machine M and a

polynomial p(n) such that M decides L and has a time complexity

bounded by 2p(n).

Let Mnd be a nondeterministic machine of polynomial complexity q(n)

that accepts L. The idea is to simulate all executions of Mnd of length

less than q(n). For a word w, the machine M must thus:

1. Determine the length n of w and compute q(n).

2. Simulate each execution of Mnd of length q(n) (let the time needed be

q′(n)). If r is the largest number of possible choices within an

execution of Mnd, there are at most rq(n) executions of length q(n).

246

3. If one of the simulated executions accepts, M accepts. Otherwise, M

stops and rejects the word w.

Complexity : bounded by rq(n) × q′(n) and thus by 2log2(r)(q(n)+q′(n)),

which is of the form 2p(n).

247

The structure of NP

Definition A polynomial equivalence class C1 is smaller than a polynomial

equivalence class C2 (notation C1 � C2) if there exists a polynomial

transformation from every language in C1 to every language in C2.

Smallest class in NP : P

• The class NP contains the class P (P ⊆ NP).

• The class P is a polynomial equivalence class.

• For every L1 ∈ P and for every L2 ∈ NP, we have L1 ∝ L2.

248

Largest class in NP : NPC

A language L is NP-complete if

1. L ∈ NP,

2. for every language L′ ∈ NP, L′ ∝ L.

Theorem

If there exists an NP-complete language L decided by a polynomial

algorithm, then all languages in NP are polynomially decidable, i.e.

P = NP.

Conclusion : An NP-complete problem does not have a polynomial

solution if and only if P 6= NP

249

NPC

P

NP

250

Proving NP-completeness

To prove that a language L is NP-complete, one must establish that

1. it is indeed in the class NP (L ∈ NP),

2. for every language L′ ∈ NP, L′ ∝ L,

or, alternatively,

3. There exists L′ ∈ NPC such that L′ ∝ L.

Concept of NP-hard problem.

251

A first NP-complete problem

propositional calculus

Boolean calculus :

p ¬p
0 1
1 0

p q p ∧ q
0 0 0
0 1 0
1 0 0
1 1 1

p q p ∨ q
0 0 0
0 1 1
1 0 1
1 1 1

p q p ⊃ q
0 0 1
0 1 1
1 0 0
1 1 1

252

• Boolean expression: (1 ∧ (0 ∨ (¬1))) ⊃ 0.

• Propositional variables and propositional calculus :

(p ∧ (q ∨ (¬r))) ⊃ s.

• Interpretation function. Valid formula, satisfiable formula.

• Conjunctive normal form: conjunction of disjunctions of literals.

253

Cook’s theorem

SAT Problem : satisfiability of conjunctive normal form propositional

calculus formulas.

Theorem

The SAT problem is NP-complete

Proof

1. SAT is in NP.

2. There exists a polynomial transformation from every language in NP

to LSAT.

• Transformation with two arguments : word and language.

• The languages of NP are characterised by a polynomial-time

nondeterministic Turing machine.

254

Word w (|w| = n) and nondeterministic polynomial Turing machine

M = (Q,Γ,Σ,∆, s, B, F) (bound p(n)).

Description of an execution of M (T : tape; Q : state; P : position; C :

choice.)

Q P C T

p(n) + 1

...

· · ·
· · ·
· · ·
...
· · ·
· · ·
· · ·︸ ︷︷ ︸

p(n)+1

255

Representing an execution with propositional variables:

1. A proposition tijα for 0 ≤ i, j ≤ p(n) and α ∈ Γ.

2. A proposition qiκ for 0 ≤ i ≤ p(n) and κ ∈ Q.

3. A proposition pij for 0 ≤ i, j ≤ p(n).

4. A proposition cik for 0 ≤ i ≤ p(n) and 1 ≤ k ≤ r.

256

Formula satisfied only by an execution of M that accepts the word w :

conjunction of the following formulas.

∧
0≤i,j≤p(n)

(
∨
α∈Γ

tijα) ∧
∧

α 6=α′∈Γ

(¬tijα ∨ ¬tijα′)

One proposition for each tape cell. Length O(p(n)2).

∧
0≤i≤p(n)

(
∨

0≤j≤p(n)

pij) ∧
∧

0≤j 6=j′≤p(n)

(¬pij ∨ ¬pij′)

One proposition for each position. Length O(p(n)3).

257

 ∧
0≤j≤n−1

t0jwj+1
∧

∧
n≤j≤p(n)

t0jB

 ∧ q0s ∧ p00

Initial state. Length O(p(n))

∧
0≤i<p(n)

0≤j≤p(n)

α∈Γ

[(tijα ∧ ¬pij) ⊃ t(i+1)jα]

∧
0≤i<p(n)

0≤j≤p(n)

α∈Γ

[¬tijα ∨ pij ∨ t(i+1)jα]

Transitions, tape not modified. Length O(p(n)2).

258

∧
0≤i<p(n)

0≤j≤p(n)

α∈Γ

1≤k≤r

((qiκ ∧ pij ∧ tijα ∧ cik) ⊃ q(i+1)κ′)∧
((qiκ ∧ pij ∧ tijα ∧ cik) ⊃ t(i+1)jα′)∧
((qiκ ∧ pij ∧ tijα ∧ cik) ⊃ p(i+1)(j+d))

∧
0≤i<p(n)

0≤j≤p(n)

α∈Γ

1≤k≤r

(¬qiκ ∨ ¬pij ∨ ¬tijα ∨ ¬cik ∨ q(i+1)κ′)∧
(¬qiκ ∨ ¬pij ∨ ¬tijα ∨ ¬cik ∨ t(i+1)jα′)∧
(¬qiκ ∨ ¬pij ∨ ¬tijα ∨ ¬cik ∨ p(i+1)(j+d))

Transitions, modified part. Length O(p(n)2).

259

∨
0≤i≤p(n)

κ∈F

[qiκ]

Final state reached. Length O(p(n)).

• Total length of the formula O(p(n)3).

• The formula can be built in polynomial time.

• Thus, we have a transformation that is polynomial in terms of n = |w|.

• The formula is satisfiable if and only if the Turing machine M accepts.

260

Other NP-complete problems

3-SAT : satisfiability for conjunctive normal form formulas with exactly 3

literals per clause.

SAT ∝ 3-SAT.

1. A clause (x1 ∨ x2) with two literals is replaced by

(x1 ∨ x2 ∨ y) ∧ (x1 ∨ x2 ∨ ¬y)

2. A clause (x1) with a single literal is replaced by

(x1 ∨ y1 ∨ y2) ∧ (x1 ∨ y1 ∨ ¬y2) ∧
(x1 ∨ ¬y1 ∨ y2) ∧ (x1 ∨ ¬y1 ∨ ¬y2)

261

3. A clause

(x1 ∨ x2 ∨ · · · ∨ xi ∨ · · · ∨ x`−1 ∨ x`)

with ` ≥ 4 literals is replaced by

(x1 ∨ x2 ∨ y1) ∧ (¬y1 ∨ x3 ∨ y2)
∧ (¬y2 ∨ x4 ∨ y3) ∧ · · ·
∧ (¬yi−2 ∨ xi ∨ yi−1) ∧ · · ·
∧ (¬y`−4 ∨ x`−2 ∨ y`−3)
∧ (¬y`−3 ∨ x`−1 ∨ x`)

262

The vertex cover problem (VC) is NP-complete.

Given a graph G = (V,E) and an integer j ≤ |V |, the problem is to

determine if there exists a subset V ′ ⊆ V such that |V ′| ≤ j and such that,

for each edge (u, v) ∈ E, either u, or v ∈ V ′.

s s

s s
@
@
@
@
@
@
@@�

�
�
�
�
�
��

s

s

�
�
�
�
�
�
��

sf s

sf sf
@
@
@
@
@
@
@@�

�
�
�
�
�
��

s

sf

�
�
�
�
�
�
��

263

3-SAT ∝ VC

Instance of 3-SAT :

E1 ∧ · · · ∧ Ei ∧ · · · ∧ Ek
Each Ei is of the form

xi1 ∨ xi2 ∨ xi3
where xij is a literal. The set of propositional variables is

P = {p1, . . . , p`}.

The instance of VC that is built is then the following.

264

1. The set of vertices V contains

(a) a pair of vertices labeled pi and ¬pi for each propositional variable

in P,

(b) a 3-tuple of vertices labeled xi1, xi2, xi3 for each clause Ei.

The number of vertices is thus equal to 2`+ 3k.

265

2. The set of edges E contains

(a) The edge (pi,¬pi) for each pair of vertices pi,¬pi, 1 ≤ i ≤ `,

(b) The edges (xi1, xi2), (xi2, xi3) et (xi3, xi1) for each 3-tuple of

vertices xi1, xi2, xi3, 1 ≤ i ≤ k,

(c) an edge between each vertex xij and the vertex p or ¬p representing

the corresponding literal.

The number of edges is thus `+ 6k.

3. The constant j is `+ 2k.

266

Example

(p2 ∨ ¬p1 ∨ p4) ∧ (¬p3 ∨ ¬p2 ∨ ¬p4)

s s s s s s s sp1 ¬p1 p2 ¬p2 p3 ¬p3 p4 ¬p4

s

s

s�
�
�
�
�
�
�
�
�@

@
@
@
@
@
@
@
@

x11 x13

x12

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

E
E
E
E
E
E
E
E
E
E
E
E
E

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

s

s

s�
�
�
�
�
�
�
�
�@
@
@
@
@
@
@
@
@

x21 x23

x22

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

Z
Z

Z
Z

Z
Z
Z

Z
Z
Z

Z
Z
Z

Z
Z

Z
ZZ

267

Other examples

The Hamiltonian circuit (HC) and travelling salesman (TS) problems are

NP-complete.

The chromatic number problem is NP-Complete. Given a graph G and a

constant k this problem is to decide whether it is possible to colour the

vertices of the graph with k colours in such a way that each pair of

adjacent (edge connected) vertices are coloured differently.

268

The integer programming problem is NP-compete. An instance of this

problem consists of

1. a set of m pairs (vi, di) in which each vi is a vector of integers of size n

and each di is an integer,

2. a vector d of size n,

3. a constant b.

The problem is to determine if there exists an integer vector x of size n

such that x · vi ≤ di for 1 ≤ i ≤ m and such that x · d ≥ b.

Over the rationals this problem can be solved in polynomial time (linear

programming).

269

The problem of checking the equivalence of nondeterministic finite

automata is NP-hard. Notice that there is no known NP algorithm for

solving this problem. It is complete in the class PSPACE.

270

8.8 Interpreting NP-completeness

• Worst case analysis. Algorithms that are efficient “on average” are

possible.

• Heuristic methods to limit the exponential number of cases that need

to be examined.

• Approximate solutions for optimisation problems.

• The “usual” instances of problems can satisfy constraints that reduce

to polynomial the complexity of the problem that actually has to be

solved.

271

8.9 Other complexity classes

The class co-NP is the class of languages L whose complement (Σ∗ − L)

is in NP.

The class EXPTIME is the class of languages decided by a deterministic

Turing machine whose complexity function is bounded by an exponential

function (2p(n) where p(n) is a polynomial).

272

The class PSPACE is the class of languages decided by a deterministic

Turing machine whose space complexity (the number of tape cells used) is

bounded by a polynomial.

The class NPSPACE is the class of languages accepted by a

nondeterministic Turing machine whose space complexity is bounded by a

polynomial.

P ⊆ NP
co-NP

⊆ PSPACE ⊆ EXPTIME.

273

