
Chapter 8

Complexity
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8.1 Introduction

• Solvable problems versus efficiently solvable problems.

• Measuring complexity: complexity functions.

• Polynomial complexity.

• NP-complete problems.
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8.2 Measuring complexity

• Abstraction with respect to the machine being used.

• Abstraction with respect to the data (data size as only parameter).

• O notation.

• Efficiency criterion: polynomial.
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8.3 Polynomial problems

• Influence of the encoding.

• Graph example.

• Reasonable encodings:

– no padding,

– polynomial decoding,

– unary representation of numbers not allowed.
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Complexity and Turing machines

Time complexity of a Turing machine that always stops:

TM(n) = max {m | ∃x ∈ Σ∗, |x| = n and the execution of M on x
is m steps long}.

A Turing machine is polynomial if there exists a polynomial p(n) such that

TM(n) ≤ p(n)

for all n ≥ 0.

The class P is the class of languages that are decided by a polynomial

Turing machine.
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8.4 Polynomial transformations

• Diagonalisation is not adequate to prove that problems are not in P.

• Another approach: comparing problems.
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The Travelling Salesman (TS)

• Set C of n Cities.

• Distances d(ci, cj).

• A constant b.

• Is there a permutation of the towns such that:∑
1≤i<n

d(cpi, cpi+1) + d(cpn, cp1) ≤ b.
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Hamiltonian Circuit (HC)

• Graph G = (V,E)

• Is there a closed circuit in the graph that contains each vertex exactly

once.
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Definition of polynomial transformations

Goal : to establish a link between problems such as HC and TS (one is in

P if and only if the other is also in P).

Definition :

Consider languages L1 ∈ Σ∗1 and L2 ∈ Σ∗2. A polynomial transformation

from L1 to L2 (notation L1 ∝ L2) is a function f : Σ∗1 → Σ∗2 that satisfies

the following conditions :

1. it is computable in polynomial time,

2. f(x) ∈ L2 if and only if x ∈ L1.
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HC ∝ TS

• The set of cities is identical to the set of vertices of the graph, i.e.

C = V .

• The distances are the following (ci, cj) =

{
1 si (ci, cj) ∈ E
2 si (ci, cj) 6∈ E

.

• The constant b is equal to the number of cities, i.e. b = |V |.

240



Properties of ∝

If L1 ∝ L2, then

• if L2 ∈ P then L1 ∈ P,

• if L1 6∈ P then L2 6∈ P.

If L1 ∝ L2 et L2 ∝ L3, then

• L1 ∝ L3.
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Polynomially equivalent problems

Definition

Two languages L1 and L2 are polynomially equivalent (notation L1 ≡P L2)

if and only if L1 ∝ L2 and L2 ∝ L1.

• Classes of polynomially equivalent problems: either all problems in the

class are in P, or none is.

• Such an equivalence class can be built incrementally by adding

problems to a known class.

• We need a more abstract definition of the class containing HC and TS.
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The class NP

• The goal is to characterise problems for which it is necessary to

examine a very large number of possibilities, but such that checking

each possibility can be done quickly.

• Thus, the solution is fast, if enumerating the possibilities does not

cost anything.

• Modelisation : nondeterminism.
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The complexity of nondeterministic Turing machines

The execution time of a nondeterministic Turing machine on a word w is

given by

• the length of the shortest execution accepting the word, if it is

accepted,

• the value 1 if the word is not accepted.

The time complexity of M (non deterministic) is the function TM(n)

defined by

TM(n) = max {m | ∃x ∈ Σ∗, |x| = n and
the execution time of M on x is m steps long}.
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The definition of NP

Définition

The class NP (from Nondeterministic Polynomial) is the class of languages

that are accepted by a polynomial nondeterministic Turing machine.

Exemple

HC and TS are in NP.
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Theorem

Consider L ∈ NP. There exists a deterministic Turing machine M and a

polynomial p(n) such that M decides L and has a time complexity

bounded by 2p(n).

Let Mnd be a nondeterministic machine of polynomial complexity q(n)

that accepts L. The idea is to simulate all executions of Mnd of length

less than q(n). For a word w, the machine M must thus:

1. Determine the length n of w and compute q(n).

2. Simulate each execution of Mnd of length q(n) (let the time needed be

q′(n)). If r is the largest number of possible choices within an

execution of Mnd, there are at most rq(n) executions of length q(n).
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3. If one of the simulated executions accepts, M accepts. Otherwise, M

stops and rejects the word w.

Complexity : bounded by rq(n) × q′(n) and thus by 2log2(r)(q(n)+q′(n)),

which is of the form 2p(n).
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The structure of NP

Definition A polynomial equivalence class C1 is smaller than a polynomial

equivalence class C2 (notation C1 � C2) if there exists a polynomial

transformation from every language in C1 to every language in C2.

Smallest class in NP : P

• The class NP contains the class P (P ⊆ NP).

• The class P is a polynomial equivalence class.

• For every L1 ∈ P and for every L2 ∈ NP, we have L1 ∝ L2.
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Largest class in NP : NPC

A language L is NP-complete if

1. L ∈ NP,

2. for every language L′ ∈ NP, L′ ∝ L.

Theorem

If there exists an NP-complete language L decided by a polynomial

algorithm, then all languages in NP are polynomially decidable, i.e.

P = NP.

Conclusion : An NP-complete problem does not have a polynomial

solution if and only if P 6= NP
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NPC

P

NP
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Proving NP-completeness

To prove that a language L is NP-complete, one must establish that

1. it is indeed in the class NP (L ∈ NP),

2. for every language L′ ∈ NP, L′ ∝ L,

or, alternatively,

3. There exists L′ ∈ NPC such that L′ ∝ L.

Concept of NP-hard problem.
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A first NP-complete problem

propositional calculus

Boolean calculus :

p ¬p
0 1
1 0

p q p ∧ q
0 0 0
0 1 0
1 0 0
1 1 1

p q p ∨ q
0 0 0
0 1 1
1 0 1
1 1 1

p q p ⊃ q
0 0 1
0 1 1
1 0 0
1 1 1
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• Boolean expression: (1 ∧ (0 ∨ (¬1))) ⊃ 0.

• Propositional variables and propositional calculus :

(p ∧ (q ∨ (¬r))) ⊃ s.

• Interpretation function. Valid formula, satisfiable formula.

• Conjunctive normal form: conjunction of disjunctions of literals.
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Cook’s theorem

SAT Problem : satisfiability of conjunctive normal form propositional

calculus formulas.

Theorem

The SAT problem is NP-complete

Proof

1. SAT is in NP.

2. There exists a polynomial transformation from every language in NP

to LSAT.

• Transformation with two arguments : word and language.

• The languages of NP are characterised by a polynomial-time

nondeterministic Turing machine.
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Word w (|w| = n) and nondeterministic polynomial Turing machine

M = (Q,Γ,Σ,∆, s, B, F ) (bound p(n)).

Description of an execution of M (T : tape; Q : state; P : position; C :

choice.)

Q P C T

p(n) + 1


... ... ...

· · ·
· · ·
· · ·
...
· · ·
· · ·
· · ·︸ ︷︷ ︸

p(n)+1
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Representing an execution with propositional variables:

1. A proposition tijα for 0 ≤ i, j ≤ p(n) and α ∈ Γ.

2. A proposition qiκ for 0 ≤ i ≤ p(n) and κ ∈ Q.

3. A proposition pij for 0 ≤ i, j ≤ p(n).

4. A proposition cik for 0 ≤ i ≤ p(n) and 1 ≤ k ≤ r.
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Formula satisfied only by an execution of M that accepts the word w :

conjunction of the following formulas.

∧
0≤i,j≤p(n)

(
∨
α∈Γ

tijα) ∧
∧

α 6=α′∈Γ

(¬tijα ∨ ¬tijα′)



One proposition for each tape cell. Length O(p(n)2).

∧
0≤i≤p(n)

(
∨

0≤j≤p(n)

pij) ∧
∧

0≤j 6=j′≤p(n)

(¬pij ∨ ¬pij′)



One proposition for each position. Length O(p(n)3).
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 ∧
0≤j≤n−1

t0jwj+1
∧

∧
n≤j≤p(n)

t0jB

 ∧ q0s ∧ p00

Initial state. Length O(p(n))

∧
0≤i<p(n)

0≤j≤p(n)

α∈Γ

[(tijα ∧ ¬pij) ⊃ t(i+1)jα]

∧
0≤i<p(n)

0≤j≤p(n)

α∈Γ

[¬tijα ∨ pij ∨ t(i+1)jα]

Transitions, tape not modified. Length O(p(n)2).
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∧
0≤i<p(n)

0≤j≤p(n)

α∈Γ

1≤k≤r


((qiκ ∧ pij ∧ tijα ∧ cik) ⊃ q(i+1)κ′)∧
((qiκ ∧ pij ∧ tijα ∧ cik) ⊃ t(i+1)jα′)∧
((qiκ ∧ pij ∧ tijα ∧ cik) ⊃ p(i+1)(j+d))



∧
0≤i<p(n)

0≤j≤p(n)

α∈Γ

1≤k≤r


(¬qiκ ∨ ¬pij ∨ ¬tijα ∨ ¬cik ∨ q(i+1)κ′)∧
(¬qiκ ∨ ¬pij ∨ ¬tijα ∨ ¬cik ∨ t(i+1)jα′)∧
(¬qiκ ∨ ¬pij ∨ ¬tijα ∨ ¬cik ∨ p(i+1)(j+d))



Transitions, modified part. Length O(p(n)2).
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∨
0≤i≤p(n)

κ∈F

[qiκ]

Final state reached. Length O(p(n)).

• Total length of the formula O(p(n)3).

• The formula can be built in polynomial time.

• Thus, we have a transformation that is polynomial in terms of n = |w|.

• The formula is satisfiable if and only if the Turing machine M accepts.
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Other NP-complete problems

3-SAT : satisfiability for conjunctive normal form formulas with exactly 3

literals per clause.

SAT ∝ 3-SAT.

1. A clause (x1 ∨ x2) with two literals is replaced by

(x1 ∨ x2 ∨ y) ∧ (x1 ∨ x2 ∨ ¬y)

2. A clause (x1) with a single literal is replaced by

(x1 ∨ y1 ∨ y2) ∧ (x1 ∨ y1 ∨ ¬y2) ∧
(x1 ∨ ¬y1 ∨ y2) ∧ (x1 ∨ ¬y1 ∨ ¬y2)
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3. A clause

(x1 ∨ x2 ∨ · · · ∨ xi ∨ · · · ∨ x`−1 ∨ x`)

with ` ≥ 4 literals is replaced by

(x1 ∨ x2 ∨ y1) ∧ (¬y1 ∨ x3 ∨ y2)
∧ (¬y2 ∨ x4 ∨ y3) ∧ · · ·
∧ (¬yi−2 ∨ xi ∨ yi−1) ∧ · · ·
∧ (¬y`−4 ∨ x`−2 ∨ y`−3)
∧ (¬y`−3 ∨ x`−1 ∨ x`)
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The vertex cover problem (VC) is NP-complete.

Given a graph G = (V,E) and an integer j ≤ |V |, the problem is to

determine if there exists a subset V ′ ⊆ V such that |V ′| ≤ j and such that,

for each edge (u, v) ∈ E, either u, or v ∈ V ′.
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3-SAT ∝ VC

Instance of 3-SAT :

E1 ∧ · · · ∧ Ei ∧ · · · ∧ Ek
Each Ei is of the form

xi1 ∨ xi2 ∨ xi3
where xij is a literal. The set of propositional variables is

P = {p1, . . . , p`}.

The instance of VC that is built is then the following.
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1. The set of vertices V contains

(a) a pair of vertices labeled pi and ¬pi for each propositional variable

in P,

(b) a 3-tuple of vertices labeled xi1, xi2, xi3 for each clause Ei.

The number of vertices is thus equal to 2`+ 3k.
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2. The set of edges E contains

(a) The edge (pi,¬pi) for each pair of vertices pi,¬pi, 1 ≤ i ≤ `,

(b) The edges (xi1, xi2), (xi2, xi3) et (xi3, xi1) for each 3-tuple of

vertices xi1, xi2, xi3, 1 ≤ i ≤ k,

(c) an edge between each vertex xij and the vertex p or ¬p representing

the corresponding literal.

The number of edges is thus `+ 6k.

3. The constant j is `+ 2k.
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Example

(p2 ∨ ¬p1 ∨ p4) ∧ (¬p3 ∨ ¬p2 ∨ ¬p4)

s s s s s s s sp1 ¬p1 p2 ¬p2 p3 ¬p3 p4 ¬p4
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Other examples

The Hamiltonian circuit (HC) and travelling salesman (TS) problems are

NP-complete.

The chromatic number problem is NP-Complete. Given a graph G and a

constant k this problem is to decide whether it is possible to colour the

vertices of the graph with k colours in such a way that each pair of

adjacent (edge connected) vertices are coloured differently.

268



The integer programming problem is NP-compete. An instance of this

problem consists of

1. a set of m pairs (vi, di) in which each vi is a vector of integers of size n

and each di is an integer,

2. a vector d of size n,

3. a constant b.

The problem is to determine if there exists an integer vector x of size n

such that x · vi ≤ di for 1 ≤ i ≤ m and such that x · d ≥ b.

Over the rationals this problem can be solved in polynomial time (linear

programming).

269



The problem of checking the equivalence of nondeterministic finite

automata is NP-hard. Notice that there is no known NP algorithm for

solving this problem. It is complete in the class PSPACE.
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8.8 Interpreting NP-completeness

• Worst case analysis. Algorithms that are efficient “on average” are

possible.

• Heuristic methods to limit the exponential number of cases that need

to be examined.

• Approximate solutions for optimisation problems.

• The “usual” instances of problems can satisfy constraints that reduce

to polynomial the complexity of the problem that actually has to be

solved.
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8.9 Other complexity classes

The class co-NP is the class of languages L whose complement (Σ∗ − L)

is in NP.

The class EXPTIME is the class of languages decided by a deterministic

Turing machine whose complexity function is bounded by an exponential

function (2p(n) where p(n) is a polynomial).
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The class PSPACE is the class of languages decided by a deterministic

Turing machine whose space complexity (the number of tape cells used) is

bounded by a polynomial.

The class NPSPACE is the class of languages accepted by a

nondeterministic Turing machine whose space complexity is bounded by a

polynomial.

P ⊆ NP
co-NP

⊆ PSPACE ⊆ EXPTIME.
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