Database Theory VU 181.140, SS 2011

2. Introduction to Datalog

#### **Reinhard Pichler**

Institut für Informationssysteme Arbeitsbereich DBAI Technische Universität Wien

15 March, 2011



# Outline

- 2.1 Motivation
- 2.2 Datalog Syntax
- 2.3 Restrictions on the Datalog Syntax
- 2.4 Logical Semantics of Datalog
- 2.5 Operational Semantics of Datalog
- 2.6 Datalog with negation
- 2.7 Stratification

### Motivation

- SQL, relational algebra, relational calculus (both tuple and domain relational calculus) are "relational complete", i.e., they have the full expressive power of relational algebra.
- But: many interesting queries cannot be formulated in these languages
- Example: no recursive queries (SQL now offers a recursive construct)

### Example

- Relation parents (PARENT, CHILD), gives information on the parent-child relationship of a certain group of people.
- Problem: look for all ancestors of a certain person.
- Solution: define relation ANCESTOR(X,Y): X is ancestor of Y by generating one generation after the other (one join and one projection each) and finally merge all generations (union):

```
grandchild(GRANDPARENT, GRANDCHILD) :=

\pi_{1,4}(parents[CHILD = PARENT]parents)

grandgrandchild(GRANDGRANDPARENT,GRANDGRANDCHILD) :=

\pi_{1,4}(parents[CHILD = GRANDPARENT]grandchild)
```

```
ancestor(ANCESTOR,NAME) := parents \cup grandchild \cup grandgrandchild \cup ...
```

. . .

### **Possible Solution**

Use of a programming language with an embedded relational complete query language:

```
begin<br/>result := \{\};<br/>newtuples := parents;<br/>while newtuples \not\subseteq result do<br/>begin<br/>result := result \cup newtuples;<br/>newtuples := \pi_{1,4}(newtuples[2 = 1]parents);<br/>end;<br/>ancestor := result<br/>end.
```

 procedural, needs knowledge of a programming language, leaves little room for query optimization.

### Better Solution: Datalog

- Prolog-like logical query language,
- allows recursive queries directly to a database (not procedural)
- Example:
  - compute all ancestors on the basis of the relation parents ancestor(X,Y) :- parents(X,Y). ancestor(X,Z) :- parents(X,Y), ancestor(Y,Z).
  - The successors of a certain person (Hans) are computed by:

```
hans_successor(X) :- parents(hans,X).
hans_successor(X) :- hans_successor(Y), parents(Y,X).
```

• or:

```
ancestor(hans,X)?
```

| Datalog - Syntax |                                                     |     |                                                                                                               |  |  |  |  |  |
|------------------|-----------------------------------------------------|-----|---------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                  | <datalog_program></datalog_program>                 | ::= | <datalog_rule>  <br/><datalog_program><datalog_rule></datalog_rule></datalog_program></datalog_rule>          |  |  |  |  |  |
|                  | <datalog_rule></datalog_rule>                       | ::= | <head> :- <body></body></head>                                                                                |  |  |  |  |  |
|                  | <head><br/><body></body></head>                     |     | <literal><br/><literal>   <body>, <literal></literal></body></literal></literal>                              |  |  |  |  |  |
|                  | <literal></literal>                                 | ::= | <relation_id>(<list_of_args>)</list_of_args></relation_id>                                                    |  |  |  |  |  |
|                  | <list_of_args></list_of_args>                       | ::= | <term>   <list_of_args>, <term></term></list_of_args></term>                                                  |  |  |  |  |  |
|                  | <term></term>                                       | ::= | <symb_const>   <symb_var></symb_var></symb_const>                                                             |  |  |  |  |  |
|                  | <symb_const><br/><symb_var></symb_var></symb_const> |     | <number>   <lcc>   <lcc><string><br/><ucc>   <ucc><string></string></ucc></ucc></string></lcc></lcc></number> |  |  |  |  |  |

(lcc = lower\_case\_character; ucc = upper\_case\_character)

# Restrictions on the Datalog Syntax

#### <relation\_id>:

- name of an existing relation of the database (parents) can be used only in rule bodies
- name of a new relation defined by the datalog program (ancestor)
- has always the same number of arguments.

#### comparison predicates:

=, <>, <, > are treated like known database relations.

variables:

- each variable that appears in the head of a rule has to be bound in the body
- variables that appear as arguments of comparison predicates must appear in the same body in literals without comparison predicates
- A datalog query is also called datalog program

### Logical Semantics of Datalog

We consider

R ... datalog rule of the form  $L_0 := L_1, L_2, ..., L_n$ ,  $L_i$  ... literal of the form  $p_i(t_1, ..., t_{n_i})$   $x_1, x_2, ..., x_k$  variables in R P ... datalog program with the rules  $R_1, R_2, ..., R_m$ We construct

$$R^* = \forall x_1 \forall x_2 \dots \forall x_n ((L_1 \land L_2 \land \dots \land L_n) \Rightarrow L_0).$$

We assign to each datalog program P the (semantically) well-defined formula  $P^*$  as follows:

$$P^* = R_1^* \wedge R_2^* \wedge \cdots \wedge R_m^*$$

We consider now

REL ... a relation of the database.

 $\langle t_1, \ldots, t_n \rangle$  ... a tuple of the relation REL.  $rel(t_1, \ldots, t_n)$  ... a **fact** 

 $\mathsf{DB} \ldots$  database with relations  $\mathtt{REL}_1, \mathtt{REL}_2, \ldots \mathtt{REL}_k$ 

We assign to each database relation REL the formula

 $REL^* = conjunction of all facts$ 

- a relation is an unordered set of tuples
- the assignment  $REL \mapsto REL^*$  is therefore not uniquely defined.
- take an arbitrary order (e.g. lexicographical order) since conjunction is commutative.

We assign to each database DB the (semantically) well-defined formula  $DB^*$  as follows:

$$DB^* = REL_1^* \land REL_2^* \land \cdots \land REL_k^*.$$

We have:

 $DB^*$  is a conjunction of facts and

 $P^*$  is a conjunction of formulas with implication

Let G be a conjunction of facts and formulas with implication. Then the set **cons(G)** of facts that follow from G is uniquely defined. In other words, we have **cons(G)** =  $\{A \mid A \text{ is a fact with } G \models A\}$ .

#### Definition

The semantics of a datalog program P is defined as the function M[P], that assigns to each database DB the set of all facts that follow from the formula " $P^* \wedge DB^*$ "

 $M[P]: DB \rightarrow cons(P^* \wedge DB^*)$ 

## Example

Consider the database DB with relations woman(NAME), man(NAME), parents(PARENT, CHILD) and the datalog program:

grandpa(X,Y) :- man(X), parents(X,Z), parents(Z,Y).

| woman (NAME) | man (NAME) | parents (PAREN <sup>-</sup> | T CHILD) |
|--------------|------------|-----------------------------|----------|
| Grete        | Hans       | Hans                        | Linda    |
| Linda        | Karl       | Grete                       | Linda    |
| Gerti        | Michael    | Karl                        | Michael  |
|              |            | Linda                       | Michael  |
|              |            | Karl                        | Gerti    |
|              |            | Linda                       | Gerti    |

Let us compute  $DB^*$ ,  $P^*$  and  $cons(P^* \wedge DB^*)$ :

 $DB^* = REL_1^* \land \cdots \land REL_k^*$  with  $REL_i^* = conjunction$  of all facts

DB\* = woman(grete) ∧ woman(linda) ∧ woman(gerti) ∧ man(hans) ∧ man(karl) ∧ man(michael) ∧ parents(hans, linda) ∧ parents(grete, linda) ∧ parents(karl, michael) ∧ parents(linda, michael) ∧ parents(karl, gerti) ∧ parents(linda, gerti).

 $P^* = R_1^* \wedge \cdots \wedge R_m^*$  with  $R_i^* = \forall x_1 \forall x_2 \dots \forall x_n ((L_1 \wedge \cdots \wedge L_n) \Rightarrow L_0).$ 

 $P^* = orall X orall Y orall Z : ((man(X) \land parents(X, Z) \land parents(Z, Y)) \Rightarrow grandpa(X, Y)).$ 

The new facts in  $cons(P^* \wedge DB^*)$ :

grandpa(hans,michael), grandpa(hans,gerti).

The datalog program P with

P = grandpa(X,Y) :- man(X), parents(X,Z), parents(Z,Y)

defines a new relation grandpa with the following tuples:

# **Operational Semantics of Datalog**

- Datalog rules are seen as inference rules,
- a fact that appears in the head of a rule can be deduced, if the facts in the body of the rule can be deduced.

#### **Example:**

the following fact can be deduced:

siblings(michael,gerti)

#### Rules with variables

- A rule R with variables represents all variable-free rules we get from R by substituting the variables with the constant symbols.
- The constant symbols are taken from the database *DB* and the program *P*.
- A variable-free rule resulting form such a substitution is called ground instance of R with respect to P and DB
- We write *Ground*(*R*, *P*, *DB*) to denote the set of all ground instances over *P* and *DB* of *R*.

### **Example:**

Compute all relations between siblings with the following rule:

siblings(Y,Z) : - parents(X,Y), parents(X,Z), Y <> Z.

All  $6^3$  ground instances of this rule with respect to P and DB from above are (Note that there are 6 constant symbols: {grete, linda, gerti, hans, michael, karl}):

Idea: execution of a datalog program *P* to a database *DB*: iterative deduction of facts until saturation is reached (fixpoint) Idea: execution of a datalog program *P* to a database *DB*: iterative deduction of facts until saturation is reached (fixpoint)

Formalization: define a fixpoint operator

• define Operator  $T_P(DB)$ : augments DB with all facts, that can be deduced in one step by applying the rules from P to DB.

$$T_P(DB) = DB \cup \bigcup_{R \in P} \{L_0 \mid L_0 := L_1, \dots, L_n \in Ground(R; P, DB),$$
  
 $L_1, \dots, L_n \in DB\}$ 

 $T_P$  is called the immediate consequence operator.

Idea: execution of a datalog program *P* to a database *DB*: iterative deduction of facts until saturation is reached (fixpoint)

Formalization: define a fixpoint operator

- define Operator  $T_P(DB)$ : augments DB with all facts, that can be deduced in one step by applying the rules from P to DB.
- $T_P^i(DB) = T_P(T_P^{i-1}(DB))$  iterated application of  $T_P$ .

$$T_P(DB) = DB \cup \bigcup_{R \in P} \{L_0 \mid L_0 := L_1, \dots, L_n \in Ground(R; P, DB), L_1, \dots, L_n \in DB\}$$

 $T_P$  is called the immediate consequence operator.

### $T_P^0(DB) = DB$

$$T_P^0(DB) = DB$$
  

$$T_P^1(DB) = T_P(T_P^0(DB)) = T_P(DB)$$
  

$$= DB \cup \bigcup_{R \in P} \{L_0 \mid L_0 : -L_1, \dots, L_n \in Ground(R; P, DB), L_1, \dots, L_n \in DB\}$$

$$T_P^0(DB) = DB$$
  

$$T_P^1(DB) = T_P(T_P^0(DB)) = T_P(DB)$$
  

$$= DB \cup \bigcup_{R \in P} \{L_0 \mid L_0 : -L_1, \dots, L_n \in Ground(R; P, DB), L_1, \dots, L_n \in DB\}$$
  

$$T_P^2(DB) = T_P(T_P^1(DB)) = T_P(T_P(DB))$$
  
...

$$\begin{array}{rcl} T_P^0(DB) &=& DB \\ T_P^1(DB) &=& T_P(T_P^0(DB)) = T_P(DB) \\ &=& DB \cup \bigcup_{R \in P} \{L_0 \mid L_0 : -L_1, \dots, L_n \in Ground(R; P, DB), \\ && L_1, \dots, L_n \in DB \} \\ T_P^2(DB) &=& T_P(T_P^1(DB)) = T_P(T_P(DB)) \\ &\cdots &\cdots \\ T_P^i(DB) &=& T_P(T_P^{i-1}(DB)) = T_P(\dots T_P(DB)) \\ &\cdots &\cdots \end{array}$$

# Properties of $T_P(DB)$

The set of facts is monotonically increasing e.g.

 $T_P^i(DB) \subseteq T_P^{i+1}(DB)$ 

- the sequence  $\langle T_P^i(DB) \rangle$  converges finitely: there is *n* with  $T_P^m(DB) = T_P^n(DB)$  for all  $m \ge n$ .
- $T_P^{\omega}(DB)$  ... set of facts, to which  $\langle T_P^i(DB) \rangle$  converges is the result of the application of P to DB.
- The operational semantics of a datalog program P assigns to each database DB the set of facts  $T_P^{\omega}(DB)$ :

 $O[P]: DB \rightarrow T^{\omega}_{P}(DB).$ 

It holds that:

$$M[P](DB) = cons(P^* \wedge DB^*) = O[P](DB) = T_P^{\omega}(DB).$$

## Algorithm: INFER

**INPUT**: datalog program *P*, database *DB* **OUTPUT**:  $T_P^{\omega}(DB)$  (=  $cons(P^* \land DB^*)$ )

STEP 1. 
$$GP := \bigcup_{R \in P} Ground(R; P, DB),$$
  
(\*  $GP$  ... set of all ground instances \*)STEP 2.  $OLD := \{\}; NEW := DB;$ STEP 3. while  $NEW \neq OLD$  do begin  
 $OLD := NEW; NEW := ComputeTP(OLD);$   
end;

STEP 4. output OLD.

#### Subroutine ComputeTP

**INPUT**: Set of facts OLD**OUTPUT**:  $T_P(OLD)$ 

> STEP 1. F := OLD; STEP 2. for each rule  $L_0 := -L_1, \dots, L_n$  in GP do if  $L_1, \dots, L_n \in OLD$ then  $F := F \cup \{L_0\}$ ; STEP 3. return F;

### Example

Apply the following program P to calculate all ancestors of the above given database DB.

```
ancestor(X,Y) :- parents(X,Y).
ancestor(X,Z) :- parents(X,Y), ancestor(Y,Z).
```

```
Step 1. (INFER) build GP
GP = \{ ancestor(grete,grete) :- parents(grete,grete), ancestor(grete,linda) :- parents(grete,linda), ...,
ancestor(grete,grete) :- parents(grete,grete), ancestor(grete,grete) :- parents(grete,grete), ancestor(grete,grete) :- parents(grete,linda), ancestor(linda,grete), ... \}.
(There are <math>6^2 + 6^3 = 252 ground instances. )
```

Step 2. OLD := {}, WLW := DD,  
Step 3. 
$$OLD \neq NEW$$
  
Cycle 1:  $OLD := DB, NEW := TP(OLD) = TP(DB)$   
 $TP(OLD) = OLD \cup \{ \texttt{ancestor}(A, B) \mid \texttt{parents}(A, B) \in DB \};$   
Cycle 2:  $OLD := TP(DB), NEW := TP(OLD) = TP(TP(DB))$   
 $TP(OLD) =$   
 $OLD \cup \{ \texttt{ancestor}(\texttt{hans}, \texttt{michael}), \texttt{ancestor}(\texttt{hans}, \texttt{gerti}),$   
 $\texttt{ancestor}(\texttt{grete}, \texttt{michael}), \texttt{ancestor}(\texttt{grete}, \texttt{gerti}) \}.$   
Cycle 3:  $TP(OLD) = OLD$ , there are no new facts

Step 4. Output of *OLD*.

Stop 2 O(D) - 1 NFW - DR.

The result corresponds to the extension of DB with the new table ancestor

| parents | (PARENT | CHILD)  | ancestor | (ANCESTOR | NAME)   |
|---------|---------|---------|----------|-----------|---------|
|         | Hans    | Linda   |          | Hans      | Linda   |
|         | Grete   | Linda   |          | Grete     | Linda   |
|         | Karl    | Michael |          | Karl      | Michael |
|         | Linda   | Michael |          | Linda     | Michael |
|         | Karl    | Gerti   |          | Karl      | Gerti   |
|         | Linda   | Gerti   |          | Linda     | Gerti   |
|         |         |         |          | Hans      | Michael |
|         |         |         |          | Hans      | Gerti   |
|         |         |         |          | Grete     | Michael |
|         |         |         |          | Grete     | Gerti   |

### Datalog with negation

- Without negation, datalog is not relational complete because set difference (R S) cannot be expressed.
- We introduce the negation (**non**) in bodies of rules.
- Restriction on the application of the negation:
  - A relation R must not be defined on the basis of its negation.
- Check for this constraint: with graph-theoretic methods.

### Graph representation

Let P be a datalog program with negated literals in the body of rules

#### Definition: dependency graph

DEP(P) is defined as the directed graph, with:

- nodes ... predicates (predicate symbols) p in P,
- edges ... p → q, if there exists a rule in P where p is the head atom and q appears in the body.

Mark an edge  $p \rightarrow q$  of DEP(P) with a star "\*", if q in the body is negated.

#### Definition

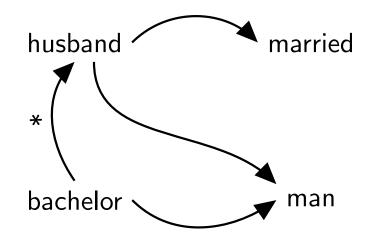
An extended datalog program P with negation is called valid if the graph DEP(P) has no directed cycle that contains an edge marked with "\*".

Such programs are called **stratified**, since they can be divided into strata with respect to the negation.

### Example

The following program P with the rules:

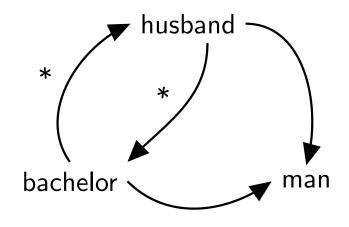
husband(X) :- man(X), married(X). bachelor(X) :- man(X), non husband(X).



is stratified.

The program P with the rules:

```
husband(X) :- man(X), non bachelor(X).
bachelor(X) :- man(X), non husband(X).
```



is not stratified.

## Stratification

#### Definition

A stratum is composed by the maximal set of predicates for which the following holds:

- 1 if a predicate p appears in the head of a rule, that contains a negated predicate q in the body, then p is in a higher stratum than q.
- if a predicate p appears in the head of a rule, that contains an unnegated (positive) predicate q in the body, then p is in a stratum at least as high as q.

### Algorithm

INPUT: A set of datalog rules.

OUTPUT: the decision whether the program is stratified and the classification of the predicates into strata.

**METHOD**:

**1** initialize the strata for all predicates with 1.

**2 do** for all rules *R* with predicate *p* in the head:

if (i) the body of *R* contains a negated predicate *q*,
(ii) the stratum of *p* is *i*, and

(iii) the stratum of q is j with  $i \leq j$ , then set i := j + 1.

if (i) the body of R contains an unnegated predicate q,
 (ii) the stratum of p is i, and

(iii) the stratum of q is j with i < j, then set i := j.

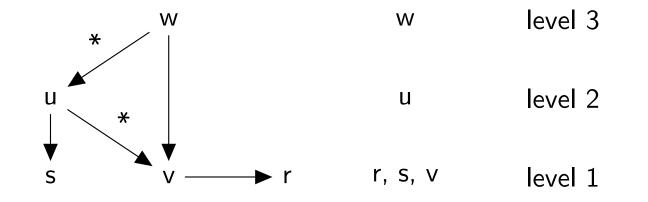
until:

- status is stable  $\Rightarrow$  program is stratified.
- stratum  $n \ge \#$  predicates  $\Rightarrow$  not stratified.

### Example

Consider R, S relations of the database DB, P:

v(X,Y) :- r(X,X), r(Y,Y). u(X,Y) :- s(X,Y), s(Y,Z), non v(X,Y). w(X,Y) :- non u(X,Y), v(Y,X).



## Semantics of datalog with negation

- Note: when calculating the strata of a datalog program with negation the following holds:
  - Step 1: computation of all relations of the first stratum.
  - Step *i*: computation of all relations that belong to stratum *i*.
    - $\Rightarrow$  the relations computed in step i 1 are known in step i.

Semantics of datalog with negation is therefore uniquely defined.

Computation of P from the last example above:

Step 1: compute V from R
Step 2: compute U from S and V
Step 3: compute W from U and V

# Properties of datalog with negation

- Datalog with negation is relational complete:
  - The difference D = R S of two (e.g. binary) relations R and S:

d(X,Y) := r(X,Y), non s(X,Y).

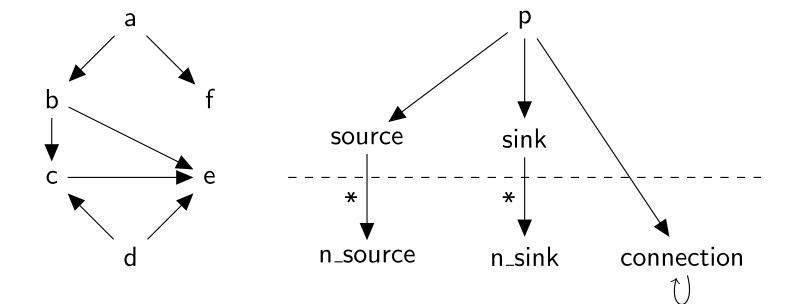
syntactical restrictions of datalog with negation:

all variables that appear in the body within a negated literal must also appear in a positive (unnegated) literal

### Example

Let DB be a database that contains information on graphs, with relations v(X), saying X is a node and e(X,Y) saying there is an edge from X to Y. Write a datalog program that computes all pairs of nodes (X,Y), where X is a source, Y is a sink and X is connected to Y.

```
p(X,Y) := source(X), sink(Y), connection(X,Y).
connection(X,X) := v(X).
connection(X,Y) := e(X,Z), connection(Z,Y).
n_source(X) := e(Y,X).
source(X) := v(X), non n_source(X).
n_sink(X) := e(X,Y).
sink(X) := v(X), non n_sink(X).
```



# Learning objectives

- Motivation for Datalog (recursive queries)
- Syntax of Datalog
- Semantics of Datalog:
  - logical semantics,
  - operational semantics.
- Datalog with negation:
  - the need for negation,
  - the notions of dependency graph and stratification,
  - semantics of Datalog with negation.