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Database Theory 3. Codd’s Theorem 3.1. Domain Independence

What is Codd’s Theorem?

Domain Independence: Some queries are “unsafe” and must be
avoided.

Range Restriction: A syntactic condition for domain independence.

Codd’s Theorem: relational algebra and range-restricted calculus are
equally expressive.

We prove the theorem: show how to translate back and forth
between the two languages.
• use of relativization: bounding the ranges of quantifiers using finite

domains.

Strengthening of Codd’s Theorem: the following languages are
equally expressive:
• domain independent calculus,
• relational algebra,
• non-recursive Datalog with negation, and
• calculus under the active domain semantics.
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Database Theory 3. Codd’s Theorem 3.1. Domain Independence

Domain Independence

Domain Independence: Given a query and a database, the query
must evaluate to the same result on the database no matter what
the domain is assumed to be.

Idea: exclude “unsafe” queries, i.e., in particular, queries that may
yield an infinite answer.

Let QB(A) denote the result of evaluating query Q on database A
assuming domain B.

Definition (domain independence)

A query Q is domain independent iff there do not exist

a database instance A and

two sets B, C that contain all constants that appear in A or in Q
(also known as the active domain),

such that QB(A) 6= QC (A).

Pichler 29 March, 2011 Page 4



Database Theory 3. Codd’s Theorem 3.1. Domain Independence

Queries Violating Domain Independence

Example (Unsafe Queries)

{x | ¬R(x)}
• R = ∅, 1 ∈ B, 1 6∈ C : 1 ∈ QB(R), 1 6∈ QC (R).

{x | R(x) ∨ R(y)}
{y | R(x)}
{x | R(x) ∨ ¬R(x)}

Remark. Over infinite domains, these queries may yield an infinite result.
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Database Theory 3. Codd’s Theorem 3.1. Domain Independence

Undecidability of Domain Independence
We would like to require domain independence in queries.

Domain independence is an undecidable property for FO queries.

Usual solution: syntactic restrictions, e.g. range-restricted queries.
Sufficient condition for domain independence.

We shall use the following theorem without a proof:

Theorem (A)

For every domain-independent FO query, there is an equivalent
range-restricted FO query.

See Abiteboul, Hull, Vianu, “Foundations of Databases”, Chapter 5.

We show here that RR FO and rel. algebra have the same expressive
power. For Theorem A, it suffices to show that also rel. algebra and
domain-independent FO have the same expressive power.

From rel. algebra to domain independent calculus: Lemma 5.3.11.

From domain independent calculus via active domain semantics to
rel. algebra: Lemma 5.3.12.

Pichler 29 March, 2011 Page 6



Database Theory 3. Codd’s Theorem 3.2. Syntactic Criterion for Domain Independence

Range-restricted Queries

Preprocessing. A formula is turned into safe-range normal form (SRNF)
by the following steps:

1 Variable substitution: no distinct pair of quantifiers may employ the
same variable and no variable may occur both bound and free.
Example: (∃x ϕ(x)) ∨ (∃x ψ(x)) ` (∃x ϕ(x)) ∨ (∃x ′ ψ(x ′)).

2 Remove universal quantifiers: ∀x ϕ ` ¬∃x ¬ϕ.
3 Remove implications: ϕ⇒ ψ ` ¬ϕ ∨ ψ.
4 Remove double negation: ¬¬ϕ ` ϕ.

5 Flatten and/or, e.g.: (ϕ ∧ ψ) ∧ π ` ϕ ∧ ψ ∧ π.
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Database Theory 3. Codd’s Theorem 3.2. Syntactic Criterion for Domain Independence

Range-restriction Check

Definition
Given: Input formula π in SRNF.

rr(x = a) := {x}
rr(R(t1, . . . , tn)) := Vars({t1, . . . , tn})

rr(ϕ ∧ ψ) := rr(ϕ) ∪ rr(ψ)

rr(ϕ ∨ ψ) := rr(ϕ) ∩ rr(ψ)

rr(ϕ ∧ x = y) :=


rr(ϕ) . . . {x , y} ∩ rr(ϕ) = ∅
rr(ϕ) ∪ {x , y} . . . otherwise

rr(¬ϕ) := ∅

rr(∃x ϕ) :=


rr(ϕ)− {x} . . . x ∈ rr(ϕ)
fail . . . otherwise

If free(π) ⊆ rr(π), then π is range-restricted (RR).
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Database Theory 3. Codd’s Theorem 3.2. Syntactic Criterion for Domain Independence

Range-restriction Examples

Example (in SRNF)

rr(·)={x,y}︷ ︸︸ ︷

∃z :

rr(·)={x,y ,z}︷ ︸︸ ︷

rr(·)={x,y ,z}︷ ︸︸ ︷
P(x , y , z) ∨

rr(·)={x,y ,z}︷ ︸︸ ︷

(

rr(·)={x,y}︷ ︸︸ ︷
R(x , y) ∧

rr(·)={z}︷ ︸︸ ︷
(

rr(·)={z}︷ ︸︸ ︷
(

rr(·)={z}︷︸︸︷
S(z) ∧

rr(·)=∅︷ ︸︸ ︷
¬T (x , z))∨T (y , z)))

rr(∗) = free(∗) = {x , y} ⇒ range-restricted!
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Database Theory 3. Codd’s Theorem 3.3. Codd’s Theorem

Main Theorem

Theorem (Codd)

A query is definable in relational algebra if and only if it is definable in
the range-restricted domain calculus.

Proof (details on the following slides):

1 From the Algebra to RR FO: almost by definition.

2 From RR FO to the Algebra:

1 Put into SRNF.
2 Put into Relational-Algebra NF (RANF):

RANF: Each subformula is range-restricted. (Exception: In a
subformula π = ϕ1 ∧ · · · ∧ ϕk ∧ ¬ψ, π has to be RR and the ϕi and
ψ have to be in RANF, but ¬ψ does not have to be RR).

3 Translate the RANF formula into relational algebra. This can be
done inductively from the leaves to the root of the parse tree of the
formula.

Query languages of this expressive power are called relationally complete.
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Database Theory 3. Codd’s Theorem 3.3. Codd’s Theorem

From the Algebra to RR FO

R := {~x | R(~x)}
σx=y ({~x | ϕ(~x)}) := {~x | ϕ(~x) ∧ x = y}
π~y ({~x | ϕ(~x)}) := {~y | ∃~z ϕ(~x)} (~x = ~y~z)

{~x | ϕ(~x)} × {~y | ψ(~y)} := {~x~y | ϕ(~x) ∧ ψ(~y)}
{~x | ϕ(~x)} ∪ {~x | ψ(~x)} := {~x | ϕ(~x) ∨ ψ(~x)}
{~x | ϕ(~x)} − {~x | ψ(~x)} := {~x | ϕ(~x) ∧ ¬ψ(~x)}
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Database Theory 3. Codd’s Theorem 3.3. Codd’s Theorem

From SRNF to RANF: Active Domain

Active domain contains precisely the union of all the atomic/field
values occurring anywhere in the database (or the query).

A unary active domain relation can be assumed: It is definable in
relational algebra.

Example

For schema R(A,B,C ),S(B,D),T (E ), the active domain relation is

πAR ∪ πBR ∪ πC R ∪ πBS ∪ πDS ∪ T .

We assume a single domain here; in the real-world case with values
of different types (e.g. strings, integers), we can compute an active
domain relation for each type.
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Database Theory 3. Codd’s Theorem 3.3. Codd’s Theorem

From SRNF to RANF

Given a formula in SRNF.

The formula is in RANF if each subformula is range-restricted.

Possible obstacles: subformulae of the form ϕ ∨ ψ or ¬ϕ.

Only these remove possibly relevant variables from rr.

Solution: relativize using the active domain relation D:

ϕ ∨ ψ ` (ϕ ∧
∧

x∈(free(ψ)−free(ϕ))

D(x)) ∨ (ψ ∧
∧

x∈(free(ϕ)−free(ψ))

D(x))

︸ ︷︷ ︸
rr(∗)=free(∗)=free(ϕ)∪free(ψ)

¬ϕ ` (¬ϕ ∧
∧

x∈free(ϕ)

D(x))

Shorter (=better) RANF queries can be achieved by rewriting the
input formula using equivalences we already know.
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Database Theory 3. Codd’s Theorem 3.3. Codd’s Theorem

From RANF to Relational Algebra

RANF formulae can be translated to relational algebra using the
following rules:

Alg(ϕ ∧ ψ) := Alg(ϕ) ./ Alg(ψ)

Alg(ϕ ∧ ¬ψ) := Alg(ϕ)− Alg(ψ)

. . . ϕ and ψ have the same schema

Alg(∃y ϕ(~x , y)) := π~xAlg(ϕ(~x , y))

Alg(ϕ ∧ xϑt) := σxϑtAlg(ϕ)

. . . ϑ is either = or 6= and t is a term.

Alg(R(x1, . . . , xk)) := ρA1...Ak→x1...xk
R

. . . relation R has schema R(A1, . . . ,Ak)
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Database Theory 3. Codd’s Theorem 3.3. Codd’s Theorem

From RR Queries to the Algebra

Example

Let D be the active domain relation with schema D(D) and let R have
schema R(A,B). The formula

∃x
(

D(x) ∧ ∃y (D(y) ∧ ¬R(x , y))
)

corresponds to the RANF formula

∃x ∃y
(

(D(x) ∧ D(y)) ∧ ¬R(x , y)
)
.

An equivalent relational algebra expression looks as follows.

Alg(∃x ∃y ((D(x) ∧ D(y)) ∧ ¬R(x , y)))

` π∅
(
Alg((D(x) ∧ D(y))− Alg(R(x , y))

)
` π∅(ρxD ./ ρy D − ρxy R)
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Database Theory 3. Codd’s Theorem 3.3. Codd’s Theorem

From RR Queries to the Algebra

Example

In SRNF but not in RANF (i.e., not locally range-restricted):

{(x , y) | ∃z : P(x , y , z) ∨ (R(x , y) ∧ (

rr(∗)={z}︷ ︸︸ ︷
(S(z) ∧ ¬T (x , z))∨T (y , z)))}

We transform this formula using the rewrite rule

ϕ ∧ (ψ1 ∨ ψ2) ` (ϕ ∧ ψ1) ∨ (ϕ ∧ ψ2)

into RANF:

{(x , y) | ∃z : P(x , y , z) ∨ (R(x , y) ∧ S(z) ∧ ¬T (x , z))∨
(R(x , y) ∧ T (y , z))}
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Database Theory 3. Codd’s Theorem 3.3. Codd’s Theorem

From RR Queries to the Algebra

Example (in RANF)

{(x , y) | ∃z :

e1=ρxyzP︷ ︸︸ ︷
P(x , y , z) ∨

(

e2=(·)−((ρyD)./(·))︷ ︸︸ ︷
(·)./(·)︷ ︸︸ ︷

ρxyR︷ ︸︸ ︷
R(x , y)∧

ρzS︷︸︸︷
S(z)∧¬

e21=ρxzT︷ ︸︸ ︷
T (x , z)) ∨

e3=(·)./(·)︷ ︸︸ ︷
(

ρxyR︷ ︸︸ ︷
R(x , y)∧

ρyzT︷ ︸︸ ︷
T (y , z))}

Equivalent relational algebra expression: πxy (e1 ∪ e2 ∪ e3).
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Database Theory 3. Codd’s Theorem 3.3. Codd’s Theorem

From RR Queries to the Algebra

Example

“Select all professors (P) who only give lectures (L) in the field of
computer science (C ).” The schemata are P(P), L(P,C ),C (C ) and the
active domain is given by a relation D with schema D(D).

{x | P(x) ∧ ∀y : L(x , y)→ C (y)}
to SRNF

` {x | P(x) ∧ ¬∃y : L(x , y) ∧ ¬C (y)}
to RANF

` {x | P(x) ∧ ¬∃y : L(x , y) ∧ (D(y) ∧ ¬C (y)︸ ︷︷ ︸
(ρC D)−C

)

︸ ︷︷ ︸
L ./ ((ρC D)−C)︸ ︷︷ ︸

πP (L ./ ((ρC D)−C))︸ ︷︷ ︸
P−πP (L ./ ((ρC D)−C))

}
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Database Theory 3. Codd’s Theorem 3.3. Codd’s Theorem

From RR Queries to the Algebra

Example

The schemata are L(P,C),C(C) and the domain is given by D(D).

{〈x , y〉 | L(x , y) ∧ ¬C(y)} ≡ {〈x , y〉 | L(x , y) ∧ (D(y) ∧ ¬C(y)| {z }
L ./ ((ρC D)−C)

)}

≡ {〈x , y〉 | L(x , y) ∧ ¬(D(x) ∧ C(y)| {z }
L−((ρC D)×C)

)}

D D

1
2
3
4

L P C

1 2
3 4

C C

2

(ρCD)− C C

1
3
4

L ./ (ρCD)− C P C

3 4

(ρCD)× C P C

1 2
2 2
3 2
4 2
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Database Theory 3. Codd’s Theorem 3.3. Codd’s Theorem

From RR Queries to the Algebra

Example

Schema R(AB), S(C ), T (AC ); active domain D(D).

{〈x , y , z〉 | R(x , y) ∧ (S(z) ∧ ¬T (x , z))}
` {〈x , y , z〉 | R(x , y) ∧ ((D(x) ∧ S(z)︸ ︷︷ ︸

D×S

) ∧ ¬T (x , z)

︸ ︷︷ ︸
(D×S)−T

)

︸ ︷︷ ︸
R./((D×S)−T )

}
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Database Theory 3. Codd’s Theorem 3.3. Codd’s Theorem

From RR Queries to the Algebra

Example

Schema R(AB), S(AC ), T (BC ); active domain D(D).

{〈x , y , z〉 | R(x , y) ∧ (S(x , z) ∨ T (y , z))}
` {〈x , y , z〉 | (R(x , y) ∧ S(x , z)︸ ︷︷ ︸

R ./ S

) ∨ (R(x , y) ∧ T (y , z)︸ ︷︷ ︸
R ./T

)

︸ ︷︷ ︸
(R ./ S)∪(R ./T )

}

or {〈x , y , z〉 | R(x , y) ∧ (S(x , z) ∨ T (y , z))}
` {〈x , y , z〉 | R(x , y) ∧ ((S(x , z) ∧ D(y)) ∨ (T (y , z) ∧ D(x)))︸ ︷︷ ︸

R ./ ((S×ρBD)∪(T×D))

}

This is correct because
R(x , y) ∧ (ϕ ∨ ψ) ≡ R(x , y) ∧ D(x) ∧ D(y) ∧ (ϕ ∨ ψ) ≡
R(x , y) ∧ ((D(x) ∧ D(y) ∧ ϕ) ∨ (D(x) ∧ D(y) ∧ ψ)).
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Database Theory 3. Codd’s Theorem 3.4. Strengthening of Codd’s Theorem

Strengthening of Codd’s Theorem

Theorem

Domain independent calculus and relational algebra are equally
expressive.

A direct consequence of Theorem (A) and Codd’s Theorem.

In fact, “Codd’s Theorem” usually refers to the above formulation.

By the above theorem and a transtion via relational algebra the
following holds:

Theorem

Domain independent calculus and aggregation-free SQL queries are
equally expressive.
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Database Theory 3. Codd’s Theorem 3.4. Strengthening of Codd’s Theorem

Strengthening of Codd’s Theorem (2)

Nonrecursive Datalog with negation (nr-Datalog¬) prohibits cycles
in the dependency graph DEP(P) of a program P.

• nonrecursiveness means that negation is trivially stratified!

Theorem

Domain independent domain calculus and non-recursive Datalog with
negation are equally expressive.

Easiest way to see: provide a translation between nr-Datalog¬ and
relational algebra; then apply the theorem from the previous slide.

See Abiteboul, Hull, Vianu, “Foundations of Databases”, Chapter 5.
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Database Theory 3. Codd’s Theorem 3.4. Strengthening of Codd’s Theorem

Strengthening of Codd’s Theorem (3)

Active domain semantics for domain calculus: quantified variables
range over the active domain, i.e. over values occurring in the
database (or the query).

Example

• Assume a database D with R = {〈1, 1〉} and dom(R) = {1, 2}.
• Consider the Boolean query q = {〈〉 | ∀x , y .R(x , y).}:

q is false in D under the standard semantics, but
q is true in D under the active domain semantics.

Theorem

Domain independent domain calculus and domain calculus under the
active domain semantics are equally expressive.

See Abiteboul, Hull, Vianu, “Foundations of Databases”, Chapter 5.
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Database Theory 3. Codd’s Theorem 3.4. Strengthening of Codd’s Theorem

Learning objectives

Understanding:

the notion of domain independence,

the active domain,

the notion of range restricted queries,

the formulation and the proof of Codd’s Theorem,

the strengthening of Codd’s Theorem.
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