Database Theory VU 181.140, SS 2011

6. Conjunctive Queries

Reinhard Pichler

Institut für Informationssysteme Arbeitsbereich DBAI Technische Universität Wien

17 May, 2011

Outline

6. Conjunctive Queries

- 6.1 Query Equivalence and Containment
- 6.2 Homomorphism Theorem
- 6.3 Query Minimization
- 6.4 Acyclic Conjunctive Queries

Query Optimization

The common approach to (first-order) query optimization is via equivalence preserving transformations in relational algebra. E.g.:

- ⋈ is commutative and associative, hence applicable in any order
- Cascaded projections may be simplified: If the attributes A_1, \ldots, A_n are among B_1, \ldots, B_m , then

$$\pi_{A_1,...,A_n}(\pi_{B_1,...,B_m}(E)) = \pi_{A_1,...,A_n}(E)$$

• Cascaded selections might be merged:

$$\sigma_{c_1}(\sigma_{c_2}(E)) = \sigma_{c_1 \wedge c_2}(E)$$

 Commuting selection with join. If c only involves attributes in E₁, then

$$\sigma_c(E_1 \bowtie E_2) = \sigma_c(E_1) \bowtie E_2$$

We do not treat such transformations in this course.

Beyond Standard Equivalences

The known equivalences are not always sufficient:

- e.g.: none of the equivalences reduces the number of joins!
- For further optimization, the following decision problems are crucial:

Definition (Query Equivalence and Containment)

We say a query Q_1 is equivalent to a query Q_2 (in symbols, $Q_1 \equiv Q_2$) if $Q_1(D) = Q_2(D)$ for every database instance D. Similarly, we say Q_1 is contained in Q_2 (written $Q_1 \subseteq Q_2$) if $Q_1(D) \subseteq Q_2(D)$ for every D.

QUERY-EQUIVALENCE

INSTANCE: A pair Q_1, Q_2 of queries. QUESTION: Does $Q_1 \equiv Q_2$ hold?

QUERY-CONTAINMENT

INSTANCE: A pair Q_1, Q_2 of queries. QUESTION: Does $Q_1 \subseteq Q_2$ hold? In the following we concentrate w.l.o.g. on query containment because

$$egin{aligned} Q_1 &\equiv Q_2 \Leftrightarrow Q_1 \subseteq Q_2 \ \text{and} \ Q_2 \subseteq Q_1 \ \text{and} \ Q_1 &\subseteq Q_2 \Leftrightarrow Q_1 \equiv (Q_1 \cap Q_2). \end{aligned}$$

- Observe that if Q_1, Q_2 are formulated in relational algebra, then deciding $Q_1 \subseteq Q_2$ (and thus also $Q_1 \equiv Q_2$) is undecidable!
 - Indeed, Q is empty over all databases $\Leftrightarrow Q \subseteq \emptyset$.
 - By Traktenbrots Theorem, checking emptiness is undecidable for RA!
- Good news: $Q_1 \subseteq Q_2$ is decidable for conjunctive queries!
- The decidability comes from the Homomorphism Theorem (see below).
- The theorem also gives rise to optimization of conjunctive queries that reduces the number of joins.

Datalog-like notation for CQs

- Next we use Datalog notation for CQs!
- E.g.: the conjunctive query

$$\{\langle x,y\rangle \mid \exists z,w.B(x,y) \land R(y,z) \land R(y,w) \land R(w,y)\}$$

is written as the rule

$$Q(x, y):=B(x, y), R(y, z), R(y, w), R(w, y).$$

Conjunctive Queries into Tableaux

- **Tableau:** representation of a conjunctive query as a database
- A tableau for a CQ Q is just a database where variables can appear in tuples, plus a set of distinguished variables.
- Assume a query Q such that

$$Q(x, y):=B(x, y), R(y, z), R(y, w), R(w, y)$$

• Then the tableau of Q is:

• Variables in the answer line are called distinguished

Tableau homomorphisms

Definition (Tableau homomorphism)

A homomorphism of two tableaux $f: T_1 \rightarrow T_2$ is a mapping

 $f: \{ \text{variables of } T_1 \} \rightarrow \{ \text{variables of } T_2 \} \bigcup \{ \text{constants} \}$

such that:

- For every distinguished x, f(x) = x
- For every relation R in T_1 and row x_1, \ldots, x_k in R, $f(x_1), \ldots, f(x_k)$ is a row of R in T_2

Theorem (Homomorphism Theorem)

Let Q_1, Q_2 be two conjunctive queries, and T_{Q_1}, T_{Q_2} their tableaux. Then $Q_1 \subseteq Q_2 \iff$ there exists a homomorphism $f: T_{Q_2} \to T_{Q_1}$.

Applying the Homomorphism Theorem

- We first consider queries over a single relation:
- $Q_1(x, y) := R(y, x), R(x, z)$ $Q_2(x, y) := R(y, x), R(w, x), R(x, u)$

Tableau for Q_1 :	Tableau for Q_2 :		
A B	A B		
$R: \frac{A}{y} \frac{B}{x}$	R: y ×		
X Z	W X		
x y	<u> </u>		
	х у		

 $\bullet f(w) = y,$

•
$$f(w) = y$$
,
• $f(u) = z$,

• f(w) = y,

•
$$f(u) = z$$
,

•
$$f(x) = x$$
 and $f(y) = y$.

• f(w) = y,

•
$$f(u) = z$$
,

•
$$f(x) = x$$
 and $f(y) = y$.

• Hence $Q_1 \subseteq Q_2!$

•
$$f(z) = u$$
,
• $f(x) = x$ and $f(y) = y$.

• f(z) = u,

•
$$f(x) = x$$
 and $f(y) = y$.

• Hence $Q_2 \subseteq Q_1!$

• f(z) = u,

•
$$f(x) = x$$
 and $f(y) = y$.

- Hence $Q_2 \subseteq Q_1!$
- Since $Q_1 \subseteq Q_2$ and $Q_2 \subseteq Q_1$, we have $Q_2 \equiv Q_1!$

Proof of the Homomorphism Theorem.

Observation. A tuple \vec{c} is in the answer to a CQ Q over a database D iff there is a homomorphism f from the tableau of Q to the database Dsuch that $f(\vec{x}) = \vec{c}$, where \vec{x} is the tuple of distinguished variables of Q.

Assume a pair Q_1 , Q_2 of CQs with variables V_1 , V_2 , respectively. Assume that \vec{x} is the tuple of answer variables of Q_1 and Q_2 .

Suppose there exists a homomorphism $f: T_{Q_2} \to T_{Q_1}$. Assume a database D and an arbitrary tuple $\vec{c} \in Q_1(D)$. By the above observation there is a homomorphism g from T_{Q_1} to D such that $g(\vec{x}) = \vec{c}$. Observe that the composition $h = g \circ f$ is a homomorphism from T_{Q_2} to D such that $h(\vec{x}) = \vec{c}$. Hence $\vec{c} \in Q_2(D)$.

Suppose $Q_1 \subseteq Q_2$. Then, by assumption, $Q_1(D) \subseteq Q_2(D)$ for all instances D. Take the tableau T_{Q_1} as database instance D. Clearly, \vec{x} is in the answer to Q_1 over T_{Q_1} . Then using the assumption we get $\vec{x} \in Q_2(T_{Q_1})$. By the observation above, then there is a homomorphism f from T_{Q_2} to T_{Q_1} such that $f(\vec{x}) = \vec{x}$.

Existence of a Homomorphism: Complexity

Theorem

Given two tableaux, deciding the existence of a homomorphism between them is NP-complete.

Proof.

NP-membership. Guess a candidate mapping f and check in polynomial time whether f is a homorphism.

NP-hardness. By a straightforward reduction from the NP-complete problem **BQE** for CQs. Let the Boolean CQ Q be an arbitrary instance of **BQE**. We define the following tableaux T_1 and T_2 :

 T_1 : tableau of the Boolean CQ Q.

 T_2 : consider D as tableau of a Boolean CQ

We clearly have: Query Q over DB D is non-empty \Leftrightarrow there exists a homomorphism from T_1 to T_2 .

CQ Containment and Equivalence: Complexity

Corollary

Given two conjunctive queries Q_1 and Q_2 , both deciding $Q_1 \subseteq Q_2$ and $Q_1 \equiv Q_2$ are NP-complete.

Proof.

The NP-completeness of CQ Containment follows immediately from the Homomorphism Theorem together with the above theorem.

From this, we may conclude the NP-completeness of CQ Equivalence via the following equivalences:

$$egin{aligned} Q_1 &\equiv Q_2 \Leftrightarrow Q_1 \subseteq Q_2 \ ext{and} \ Q_2 \subseteq Q_1 \ ext{and} \ Q_1 &\subseteq Q_2 \Leftrightarrow Q_1 \equiv (Q_1 \cap Q_2). \end{aligned}$$

Minimizing Conjunctive Queries

Goal: Given a conjunctive query Q, find an equivalent conjunctive query Q' with the minimum number of joins.

More formally:

Definition

A conjunctive query Q is minimal if there does not exist a conjunctive query Q' such that

- $Q \equiv Q'$, and
- Q' has fewer atoms than Q.

Minimization by Deletion

- The following is an easy consequence of the Homomorphism theorem:
 - Assume *Q* is

$$Q(\vec{x}) := R_1(\vec{u}_1), \ldots, R_k(\vec{u}_k)$$

• Assume that there is an equivalent conjunctive query Q' of the form

$$Q'(\vec{x}) := S_1(\vec{v}_1), \ldots, S_l(\vec{v}_l), \qquad l < k.$$

• Then Q is equivalent to a query of the form

$$Q'(\vec{x}) := R_1(\vec{u}_{i_1}), \ldots, R_i(\vec{u}_{i_i})$$

In other words, to minimize a conjunctive query, it suffices to consider deletions of atoms on the right of :-

Minimization Procedure

- Given a conjunctive query Q, transform it into the tableau T_Q .
- Algorithm to obtain a minimal equivalent query:

```
T' := T_Q;

repeat until no change

choose a row t in T';

if there is a homomorphism f: T' \rightarrow T' \setminus \{t\}

then T' := T' \setminus \{t\}

end;

return (the query defined by) T';
```

Note: If a homomorphism T' → T' \ {t} exists, then T', T' \ {t} define equivalent queries, as a homomorphism from T' \ {t} to T' exists. (Why?)

Minimizing Conjunctive Queries: example

• Conjunctive query with one relation *R* only:

$$Q(x, y, z) := R(x, y, z_1), R(x_1, y, z_2), R(x_1, y, z), y = 4$$

• Tableau T_Q (relation R omitted):

А	В	С
X	4	<i>Z</i> 1
X_1	4	<i>Z</i> 2
<i>x</i> ₁	4	Ζ
X	4	Ζ

• Minimization, step 1: Is there a homomorphism from T_Q to

$$\begin{array}{c|ccc} A & B & C \\ \hline x_1 & 4 & z_2 \\ \hline x_1 & 4 & z \\ \hline x & 4 & z \end{array}$$

Answer: No. For any homomorphism f, f(x) = x (why?), thus the image of the first row is not in the small tableau.

• Step 2: Is T_Q equivalent to $\begin{array}{c|c} A & B & C \\ \hline x & 4 & z_1 \\ \hline x_1 & 4 & z \\ \hline x & 4 & z \end{array}$

- Answer: Yes. Homomorphism $f: f(z_2) = z$, all other variables stay the same.
- The new tableau is not equivalent to

Because f(x) = x, f(z) = z, and the image of one of the rows is not present.

$\blacksquare \text{ Minimal tableau:} \begin{array}{c|c} A & B & C \\ \hline x & 4 & z_1 \\ \hline x_1 & 4 & z \\ \hline x & 4 & z \end{array}$

Back to conjunctive query. CQ Q is equivalent to CQ Q' with

$$Q'(x,4,z) := R(x,4,z_1), R(x_1,4,z)$$

Complexity of Minimization (1)

Theorem

Given a tableau T and a tuple t in T, checking whether there is a homomorphism from T to $T \setminus \{t\}$ is NP-complete.

Proof.

Membership in NP is immediate. For the hardness part, we provide a reduction from 3-**COLORABILITY**. We exploit a well-known trick: a graph is 3-colorable iff it can be homomorphically embedded into a "triangle". Assume a graph G = (V, E), where $V = \{1, ..., n\}$. W.I.o.g., G is assumed to be connected. Take the Boolean CQ Q_G with the following atoms:

1
$$V_1(x_1), \ldots, V_n(x_n),$$

2
$$E(x_i, x_j)$$
 for each edge $(i, j) \in E$,

3
$$R(y_r), G(y_g), B(y_b),$$

4
$$E(y_r, y_g), E(y_g, y_r), E(y_g, y_b), E(y_b, y_g)$$
 and $E(y_r, y_b), E(y_b, y_r).$

5 $V_i(y_c)$ for all $i \in V$ and $c \in \{r, g, b\}$.

Proof (continued).

It is not difficult to see that G is 3-colorable iff there is a homomorphishm from T_{Q_G} to $T_{Q_G} \setminus \{V_1(x_1)\}$.

(\Rightarrow) Assume G is 3-colorable with $\mu \colon V \to \{r, g, b\}$ a witnessing coloring. Then the following function f is a homomorphism from T_{Q_G} to $T_{Q_G} \setminus \{V_1(x_1)\}$:

•
$$f(x_i) = y_{\mu(i)}$$
, for all $i \in V$,

•
$$f(y_c) = y_c$$
, for all $c \in \{r, g, b\}$.

(\Leftarrow) Assume there is a homomorphishm f from T_{Q_G} to $T_{Q_G} \setminus \{V_1(x_1)\}$. Then $f(x_1) \in \{y_r, y_g, y_b\}$ due to the atom $V_1(x_1)$ of Q_G . Since G is connected, we must also have $f(x_i) \in \{y_r, y_g, y_b\}$ for all $i \in V$.

Take the function $\mu: V \to \{r, g, b\}$ such that (a) $\mu(i) = r$ if $f(x_i) = y_r$, (b) $\mu(i) = g$ if $f(x_i) = y_g$, and (c) $\mu(i) = b$ if $f(x_i) = y_b$.

We claim that μ is a valid 3-coloring of G. Let (i, j) be an arbitrary edge in E. Then $E(x_i, x_j)$ is an atom in Q_G . Since f is a homomorphism, we have $\langle f(x_i), f(x_j) \rangle$ in the relation E of $T_{Q_G} \setminus \{V_1(x_1)\}$. Then by construction of Q_G , we have $f(x_i) \neq f(x_j)$ and thus $\mu(i) \neq \mu(j)$. \Box

Complexity of Minimization (2)

Theorem

Given a conjunctive query Q, checking whether Q is minimal is co-NP-complete.

Proof.

We prove by showing that checking whether a query is not minimal is NP-complete. NP-Membership of the latter problem is immediate. For the hardness part, we observe that the query Q_G obtained from G in the previous proof can be reused. We show below that G is 3-colorable iff Q_G is not minimal.

(\Rightarrow) Assume G is 3-colorable with $\mu \colon V \to \{r, g, b\}$ a witnessing coloring. Then the following function f (also used in the previous proof) is a homomorphism from T_{Q_G} to $T_{Q_G} \setminus \{V_1(x_1)\}$:

•
$$f(x_i) = y_{\mu(i)}$$
, for all $i \in V$,

•
$$f(y_c) = y_c$$
, for all $c \in \{r, g, b\}$.

Hence, Q_G is not minimal.

Proof (continued).

(\Leftarrow) Assume Q_G is not minimal. Then there is $M \subset T_{Q_G}$ such that $M \neq \emptyset$ and there is a homomorphism f from T_{Q_G} to $T_{Q_G} \setminus M$. Let us analyze f. The domain of f is $\{y_r, y_g, y_b\} \cup \{x_1, \ldots, x_n\}$. The atoms $R(y_r), G(y_g), B(y_b)$ in Q_G are the only atoms with leading symbol R, G, and B, respectively. Hence, none of the atoms $R(y_r), G(y_g), B(y_b)$ can be in M. Moreover, we must have $f(y_r) = y_r$, $f(y_g) = y_g$ and $f(y_b) = y_b$.

Since f is a homomorphism from T_{Q_G} to $T_{Q_G} \setminus M$, f cannot be the identity function and thus there exists $k \in V$ such that $f(x_k) \neq x_k$. Recall that for all $i \in V$ and all $V_i(t)$ of Q_G we have $t = x_i$, $t = y_r$, $t = y_g$ or $t = y_b$. Then we must have $f(x_k) \in \{y_r, y_g, y_b\}$.

Since G is connected, we must also have $f(x_i) \in \{y_r, y_g, y_b\}$ for all $i \in V$. Analogously to the proof of the theorem, we can define a valid 3-coloring of G as follows: $\mu: V \to \{r, g, b\}$ such that (a) $\mu(i) = r$ if $f(x_i) = y_r$, (b) $\mu(i) = g$ if $f(x_i) = y_g$, and (c) $\mu(i) = b$ if $f(x_i) = y_b$.

Uniqueness of Minimal Queries

A natural question: does the order in which we remove tuples from the tableaux matter? The answer is "no" by the following theorem.

Theorem

If Q_1, Q_2 are two minimal queries equivalent to a query Q, then the tableaux T_{Q_1} and T_{Q_2} are isomorphic.

Proof.

The proof proceeds in several steps.

Homomorphisms. By the equivalences $Q_1 \equiv Q \equiv Q_2$, there exists a homomorphism $f: T_{Q_1} \to T_{Q_2}$ and a homomorphism $g: T_{Q_2} \to T_{Q_1}$. Let $h = g \circ f$. Clearly, $h: T_{Q_1} \to T_{Q_1}$ is also a homomorphism.

 $|\mathcal{T}_{Q_1}| = |\mathcal{T}_{Q_2}|$. Suppose that $|\mathcal{T}_{Q_2}| < |\mathcal{T}_{Q_1}|$ (the case $|\mathcal{T}_{Q_1}| < |\mathcal{T}_{Q_2}|$ is symmetric). Then $|h(\mathcal{T}_{Q_1})| < |\mathcal{T}_{Q_1}|$ and, hence, $h(\mathcal{T}_{Q_1}) \subset \mathcal{T}_{Q_1}$. Thus the query corresponding to $h(\mathcal{T}_{Q_1})$ is strictly smaller than Q_1 . This contradicts the assumption that Q_1 is a minimal CQ equivalent to Q.

Proof (continued).

h preserves the number of variables. Consider *h* as a mapping from the variables in T_{Q_1} to terms (i.e., variables and constants) in T_{Q_1} . We claim that $|Var(h(T_{Q_1}))| = |Var(T_{Q_1})|$. Suppose to the contrary that $Var(h(T_{Q_1})) < Var(T_{Q_1})$. Then $h(T_{Q_1}) \subset T_{Q_1}$ and again we get a contradiction since this would mean that the query corresponding to $h(T_{Q_1})$ is strictly smaller than Q_1 .

h is a permutation of the variables in T_{Q_1} . $|Var(h(T_{Q_1}))| = |Var(T_{Q_1})|$ implies that *h* maps every variable in $Var(T_{Q_1})$ to a variable in $Var(T_{Q_1})$ (and not to a constant). Hence, *h* is a function $h: Var(T_{Q_1}) \rightarrow Var(T_{Q_1})$. Moreover, $|Var(h(T_{Q_1}))| = |Var(T_{Q_1})|$ also implies that *h* is bijective.

Isomorphism. Every multiple application of h (i.e., h, h^2 , h^3 , ...) again yields a permutation on $Var(T_{Q_1})$ and a homomorphism $T_{Q_1} \to T_{Q_1}$. For every permutation, there exists an $n \ge 1$ with $h^n = id$, i.e., $(g \circ f)^n = id$. Let $f^* = f \circ h^{n-1}$. Clearly, f^* is a homomorphism and $g \circ f^* = id$. In other words, $f^* \colon T_{Q_1} \to T_{Q_2}$ is bijective with inverse function g. Hence, f^* is an isomorphism.

Acyclic Conjunctive Queries

- Many CQs in practice enjoy the so-called acyclicity property
- Acyclic CQs can be evaluated efficiently (in polynomial time)

Definition

A conjunctive query Q is acyclic if it is has a join tree.

A join tree can be seen as (an efficiently executable) query plan

Definition (Join Tree)

Let
$$Q(\vec{x}):-R_1(\vec{z}_1), ..., R_n(\vec{z}_n)$$
 be a CQ.

A join tree T = (V, E) is a tree where

- $V = \{R_1(\vec{z}_1), \ldots, R_n(\vec{z}_n)\}$, i.e. V is the set of atoms in Q
- E satisfies for all variables z of Q:

 $\{R_j(\vec{z}_j) \in V \mid z \text{ occurs in } R_j(\vec{z}_j)\}$ induces a connected subtree in T

Join Tree – Example

Example

```
\begin{array}{c} Q(x_1, x_2, x_3, x_4, x_5, x_6):-\\ R_3(x_3) \land R_4(x_2, x_4, x_3) \land R_1(x_1, x_2, x_3) \land R_2(x_2, x_3) \land R_2(x_5, x_6) \end{array}
```

Join Tree – Example

Example

 $\begin{array}{c}Q(x_1, x_2, x_3, x_4, x_5, x_6):-\\R_3(x_3) \wedge R_4(x_2, x_4, x_3) \wedge R_1(x_1, x_2, x_3) \wedge R_2(x_2, x_3) \wedge R_2(x_5, x_6)\end{array}$

Join Tree – Example

Example

Example

 $\begin{array}{c}Q(x_1, x_2, x_3, \underbrace{x_4}_{X_5}, x_6):-\\R_3(x_3) \wedge R_4(x_2, \underbrace{x_4}_{X_4}, x_3) \wedge R_1(x_1, x_2, x_3) \wedge R_2(x_2, x_3) \wedge R_2(x_5, x_6)\end{array}$

Example

 $\begin{array}{c}Q(x_1, x_2, x_3, x_4, \textcolor{red}{x_5}, x_6):=\\R_3(x_3) \land R_4(x_2, x_4, x_3) \land R_1(x_1, x_2, x_3) \land R_2(x_2, x_3) \land R_2(x_5, x_6)\end{array}$

Example

 $\begin{array}{c}Q(x_1, x_2, x_3, x_4, x_5, \textcolor{red}{\textbf{x_6}}):-\\R_3(x_3) \land R_4(x_2, x_4, x_3) \land R_1(x_1, x_2, x_3) \land R_2(x_2, x_3) \land R_2(x_5, \textcolor{red}{\textbf{x_6}})\end{array}$

Finding Join Trees

Remarks:

- Existence of a join tree can be efficiently decided
- Join tree can be efficiently computed (if one exists)

 \rightarrow **GYO-reduction** (Graham, Yu, and Ozsoyoglu)

- Tests for acyclicity of hypergraphs
- Reduction sequence allows to build a join tree efficiently
- Easy to identify a query with a hypergraph
- Two equivalent definitions exist

Define

- Atom $R(\vec{z})$ is empty if $|\vec{z}| = 0$, and
- Atom $R_1(\vec{z}_1)$ is contained in atom $R_2(\vec{z}_2)$ if $\vec{z}_1 \subseteq \vec{z}_2$

GYO-Reduction

Definition (GYO/GYO'-reduction)

Let $Q(\vec{x}):-R_1(\vec{z}_1), \ldots, R_n(\vec{z}_n)$ be a CQ. Apply the following rules until no longer possible.

- GYO-reduction:
 - Eliminate variables that are contained in at most one atom.
 - Eliminate atoms that are empty or contained in another atom.

• GYO'-reduction:

- Eliminate atoms that share no variables with other atoms.
- Eliminate atoms R if there exists a witness R' s.t. each variable in R either appears in R only, or also appears in R'.

Theorem

- $GYO'(Q) = \emptyset$ iff $GYO(Q) = \emptyset$
- $GYO'(Q) = \emptyset$ iff Q has a join tree (iff Q is acyclic)

GYO-Reduction: Proof

Proof.

We only prove the second equivalence:

 $GYO'(Q) = \emptyset \Rightarrow Q$ has a join tree: Consider the sequence (R_1, \ldots, R_n) of atoms removed during the reduction. Create a join tree as follows:

• Whenever R_i was the witness for R_i , then make R_i a child node of R_j

Merge the resulting forest to a tree "arbitrarily"

It is easy to check that this indeed gives a valid join tree.

Q has a join tree \Rightarrow GYO'(Q) = \emptyset : Consider a join tree T for Q. Removing leaf nodes from T in arbitrary order gives a sequence of valid GYO'-reduction steps that eliminates all atoms:

- Either a leaf node shares no variable with its parent \Rightarrow First rule
- All variables occuring not only in the leaf node must be contained in the parent node (connectedness condition) ⇒ parent node is witness

Deciding ACQs Efficiently (Yannakakis)

Dynamic Programming Algorithm over the join tree T = (V, E)

Algorithm by Yannakakis

Let T = (V, E) be a join tree of a query Q.
Given database instance D, decide Q(D) = Ø as follows:
1 Assign to each R_j(z_j) ∈ V the corresponding relation R_j^D of D.
2 In a bottom up traversal of T: compute semijoins of R_j^D
3 If the resulting relation at root node is empty, then Q(D) = Ø, nonempty, then Q(D) ≠ Ø.

Theorem

For ACQs Q:

- Deciding $Q(D) = \emptyset$ is feasible in polynomial time.
- Computing Q(D) can be done in output polynomial time.

Pichler

Yannakakis Algorithm – Enumeration

Two additional traversals allow us to enumerate all answers.

Theorem

Let Q be an acyclic conjunctive query. Given some database instance D, Q(D) can be computed in output polynomial time, i.e., in time $O((||D|| + ||Q(D)||)^k)$ for some constant $k \ge 1$.

Enumeration Algorithm

Given a join tree of query Q; a database instance D. Compute Q(D):
1 1st bottom-up traversal: semijoins as before (upwards propagation)
2 top-down traversal: "reverse" semijoins (downwards propagation)
3 2nd bottom-up traversal: compute solutions using joins.

Proof sketch.

Correctness of the algorithm follows from the following propositions: Given join tree T, for $t \in V(T)$ let T_t be the subtree of T rooted at t, R_t the relation computed by semijois and R'_t the one by joins:

Proof sketch.

Correctness of the algorithm follows from the following propositions: Given join tree T, for $t \in V(T)$ let T_t be the subtree of T rooted at t, R_t the relation computed by semijois and R'_t the one by joins:

1 After the 1^{st} bottom-up traversal:

$$R_t = \pi_{vars(t)}(\Join_{v \in V(T_t)} v)$$
 for each $t \in T$

Proof sketch.

Correctness of the algorithm follows from the following propositions: Given join tree T, for $t \in V(T)$ let T_t be the subtree of T rooted at t, R_t the relation computed by semijois and R'_t the one by joins:

1 After the 1^{st} bottom-up traversal:

$$R_t = \pi_{vars(t)}(\Join_{v \in V(T_t)} v)$$
 for each $t \in T$

2 After the top-down traversal:

$$R_t = \pi_{vars(t)}(\Join_{v \in V(T)} v)$$
 for each $t \in T$

Proof sketch.

Correctness of the algorithm follows from the following propositions: Given join tree T, for $t \in V(T)$ let T_t be the subtree of T rooted at t, R_t the relation computed by semijois and R'_t the one by joins:

1 After the 1^{st} bottom-up traversal:

$$R_t = \pi_{vars(t)}(\Join_{v \in V(T_t)} v)$$
 for each $t \in T$

2 After the top-down traversal:

$$R_t = \pi_{vars(t)}(\Join_{v \in V(T)} v)$$
 for each $t \in T$

3 After the 2^{nd} bottom-up traversal:

$$R'_t = \pi_{vars(T_t)}(\Join_{v \in V(T)} v)$$
 for each $t \in T$

Proof sketch.

Correctness of the algorithm follows from the following propositions: Given join tree T, for $t \in V(T)$ let T_t be the subtree of T rooted at t, R_t the relation computed by semijois and R'_t the one by joins:

1 After the 1^{st} bottom-up traversal:

$$R_t = \pi_{vars(t)}(\Join_{v \in V(T_t)} v)$$
 for each $t \in T$

2 After the top-down traversal:

$$R_t = \pi_{vars(t)}(\Join_{v \in V(T)} v)$$
 for each $t \in T$

3 After the 2nd bottom-up traversal: $R'_t = \pi_{vars(T_t)}(\bowtie_{v \in V(T)} v)$ for each $t \in T$ $\Rightarrow R'_r$ at root r contains all results

Example

 We have already performed the 1st bottom-up traversal

- We have already performed the 1st bottom-up traversal
- **2** Top-down semijoins

- We have already performed the 1st bottom-up traversal
- **2** Top-down semijoins

- We have already performed the 1st bottom-up traversal
- **2** Top-down semijoins

- We have already performed the 1st bottom-up traversal
- **2** Top-down semijoins

- We have already performed the 1st bottom-up traversal
- **2** Top-down semijoins

- We have already performed the 1st bottom-up traversal
- **2** Top-down semijoins

- We have already performed the 1st bottom-up traversal
- **2** Top-down semijoins

- We have already performed the 1st bottom-up traversal
- **2** Top-down semijoins
- Compute result in 2nd
 bottom-up traversal

<i>x</i> 2	<i>x</i> 3	<i>x</i> 5	<i>x</i> 6
<i>c</i> ₁	<i>b</i> ₂	<i>c</i> ₁	<i>b</i> ₂
c_1	<i>b</i> ₂	<i>c</i> ₁	b_1
c_1	<i>b</i> ₂	<i>c</i> 4	<i>b</i> 6
c_1	b_1	<i>c</i> ₁	<i>b</i> ₂
c_1	b_1	<i>c</i> ₁	b_1
c_1	b_1	c ₄	<i>b</i> 6

Learning Objectives

- The notions of query equivalence and containment,
- The Homomorphism theorem,
- The complexity of query equivalence and containment,
- Minimization of conjunctive queries,
- Acyclic conjunctive queries,
- The Yannakakis algorithm.