Database Theory
 VU 181.140, SS 2011

6. Conjunctive Queries

Reinhard Pichler

Institut für Informationssysteme
Arbeitsbereich DBAI
Technische Universität Wien

17 May, 2011
醅! d dbai

Outline

6. Conjunctive Queries
6.1 Query Equivalence and Containment
6.2 Homomorphism Theorem
6.3 Query Minimization
6.4 Acyclic Conjunctive Queries

Query Optimization

The common approach to (first-order) query optimization is via equivalence preserving transformations in relational algebra. E.g.:

■ \bowtie is commutative and associative, hence applicable in any order
■ Cascaded projections may be simplified: If the attributes A_{1}, \ldots, A_{n} are among B_{1}, \ldots, B_{m}, then

$$
\pi_{A_{1}, \ldots, A_{n}}\left(\pi_{B_{1}, \ldots, B_{m}}(E)\right)=\pi_{A_{1}, \ldots, A_{n}}(E)
$$

- Cascaded selections might be merged:

$$
\sigma_{c_{1}}\left(\sigma_{c_{2}}(E)\right)=\sigma_{c_{1} \wedge c_{2}}(E)
$$

■ Commuting selection with join. If c only involves attributes in E_{1}, then

$$
\sigma_{c}\left(E_{1} \bowtie E_{2}\right)=\sigma_{c}\left(E_{1}\right) \bowtie E_{2}
$$

We do not treat such transformations in this course.

Beyond Standard Equivalences

- The known equivalences are not always sufficient:
- e.g.: none of the equivalences reduces the number of joins!

■ For further optimization, the following decision problems are crucial:

Definition (Query Equivalence and Containment)

We say a query Q_{1} is equivalent to a query Q_{2} (in symbols, $Q_{1} \equiv Q_{2}$) if $Q_{1}(D)=Q_{2}(D)$ for every database instance D. Similarly, we say Q_{1} is contained in Q_{2} (written $Q_{1} \subseteq Q_{2}$) if $Q_{1}(D) \subseteq Q_{2}(D)$ for every D.

QUERY-EQUIVALENCE

INSTANCE: A pair Q_{1}, Q_{2} of queries.
QUESTION: Does $Q_{1} \equiv Q_{2}$ hold?

QUERY-CONTAINMENT

INSTANCE: A pair Q_{1}, Q_{2} of queries.
QUESTION: Does $Q_{1} \subseteq Q_{2}$ hold?

■ In the following we concentrate w.l.o.g. on query containment because

$$
\begin{aligned}
& Q_{1} \equiv Q_{2} \Leftrightarrow Q_{1} \subseteq Q_{2} \text { and } Q_{2} \subseteq Q_{1} \text { and } \\
& Q_{1} \subseteq Q_{2} \Leftrightarrow Q_{1} \equiv\left(Q_{1} \cap Q_{2}\right) .
\end{aligned}
$$

- Observe that if Q_{1}, Q_{2} are formulated in relational algebra, then deciding $Q_{1} \subseteq Q_{2}$ (and thus also $Q_{1} \equiv Q_{2}$) is undecidable!
- Indeed, Q is empty over all databases $\Leftrightarrow Q \subseteq \emptyset$.
- By Traktenbrots Theorem, checking emptiness is undecidable for RA!

■ Good news: $Q_{1} \subseteq Q_{2}$ is decidable for conjunctive queries!
■ The decidability comes from the Homomorphism Theorem (see below).

- The theorem also gives rise to optimization of conjunctive queries that reduces the number of joins.

Datalog-like notation for CQs

■ Next we use Datalog notation for CQs!

- E.g.: the conjunctive query

$$
\{\langle x, y\rangle \mid \exists z, w \cdot B(x, y) \wedge R(y, z) \wedge R(y, w) \wedge R(w, y)\}
$$

is written as the rule

$$
Q(x, y):-B(x, y), R(y, z), R(y, w), R(w, y)
$$

Conjunctive Queries into Tableaux

- Tableau: representation of a conjunctive query as a database
- A tableau for a CQ Q is just a database where variables can appear in tuples, plus a set of distinguished variables.
- Assume a query Q such that

$$
Q(x, y):-B(x, y), R(y, z), R(y, w), R(w, y)
$$

- Then the tableau of Q is:

$$
B: \begin{array}{cc}
A & B \\
\hline x & y
\end{array}
$$

$$
x \quad y \quad \leftarrow \text { answer line }
$$

- Variables in the answer line are called distinguished

Tableau homomorphisms

Definition (Tableau homomorphism)

A homomorphism of two tableaux $f: T_{1} \rightarrow T_{2}$ is a mapping

$$
f:\left\{\text { variables of } T_{1}\right\} \rightarrow\left\{\text { variables of } T_{2}\right\} \cup\{\text { constants }\}
$$

such that:

- For every distinguished $x, f(x)=x$

■ For every relation R in T_{1} and row x_{1}, \ldots, x_{k} in $R, f\left(x_{1}\right), \ldots, f\left(x_{k}\right)$ is a row of R in T_{2}

Theorem (Homomorphism Theorem)

Let Q_{1}, Q_{2} be two conjunctive queries, and $T_{Q_{1}}, T_{Q_{2}}$ their tableaux. Then

$$
Q_{1} \subseteq Q_{2} \Leftrightarrow \text { there exists a homomorphism } f: T_{Q_{2}} \rightarrow T_{Q_{1}} \text {. }
$$

Applying the Homomorphism Theorem

■ We first consider queries over a single relation:

- $Q_{1}(x, y):-R(y, x), R(x, z)$
- $Q_{2}(x, y)$:- $R(y, x), R(w, x), R(x, u)$

Tableau for Q_{1} :

$$
\begin{gathered}
\mathrm{R}: \begin{array}{c}
\mathrm{A} \\
\cline { 2 - 3 } \\
\mathrm{y} \\
\mathrm{y} \\
\mathrm{x} \\
\mathrm{x} \\
\mathrm{z}
\end{array} \\
\mathrm{xy} \quad \mathrm{y}
\end{gathered}
$$

Tableau for Q_{2} :

Take f such that:

- $f(w)=y$,

Take f such that:

- $f(w)=y$,
- $f(u)=z$,

Take f such that:
■ $f(w)=y$,

- $f(u)=z$,
- $f(x)=x$ and $f(y)=y$.

Take f such that:
■ $f(w)=y$,

- $f(u)=z$,
- $f(x)=x$ and $f(y)=y$.
- Hence $Q_{1} \subseteq Q_{2}$!

Take f such that:

- $f(z)=u$,

Take f such that:

- $f(z)=u$,
- $f(x)=x$ and $f(y)=y$.

Take f such that:

- $f(z)=u$,
- $f(x)=x$ and $f(y)=y$.
- Hence $Q_{2} \subseteq Q_{1}$!

Take f such that:
■ $f(z)=u$,

- $f(x)=x$ and $f(y)=y$.
- Hence $Q_{2} \subseteq Q_{1}$!
- Since $Q_{1} \subseteq Q_{2}$ and $Q_{2} \subseteq Q_{1}$, we have $Q_{2} \equiv Q_{1}$!

Proof of the Homomorphism Theorem.

Observation. A tuple \vec{c} is in the answer to a CQ Q over a database D iff there is a homomorphism f from the tableau of Q to the database D such that $f(\vec{x})=\vec{c}$, where \vec{x} is the tuple of distinguished variables of Q.

Assume a pair Q_{1}, Q_{2} of $C Q s$ with variables V_{1}, V_{2}, respectively. Assume that \vec{x} is the tuple of answer variables of Q_{1} and Q_{2}.

Suppose there exists a homomorphism $f: T_{Q_{2}} \rightarrow T_{Q_{1}}$. Assume a database D and an arbitrary tuple $\vec{c} \in Q_{1}(D)$. By the above observation there is a homomorphism g from $T_{Q_{1}}$ to D such that $g(\vec{x})=\vec{c}$. Observe that the composition $h=g \circ f$ is a homomorphism from $T_{Q_{2}}$ to D such that $h(\vec{x})=\vec{c}$. Hence $\vec{c} \in Q_{2}(D)$.
Suppose $Q_{1} \subseteq Q_{2}$. Then, by assumption, $Q_{1}(D) \subseteq Q_{2}(D)$ for all instances D. Take the tableau $T_{Q_{1}}$ as database instance D. Clearly, \vec{x} is in the answer to Q_{1} over $T_{Q_{1}}$. Then using the assumption we get $\vec{x} \in Q_{2}\left(T_{Q_{1}}\right)$. By the observation above, then there is a homomorphism f from $T_{Q_{2}}$ to $T_{Q_{1}}$ such that $f(\vec{x})=\vec{x}$.

Existence of a Homomorphism: Complexity

Theorem

Given two tableaux, deciding the existence of a homomorphism between them is NP-complete.

Proof.

NP-membership. Guess a candidate mapping f and check in polynomial time whether f is a homorphism.
NP-hardness. By a straightforward reduction from the NP-complete problem BQE for CQs. Let the Boolean CQ Q be an arbitrary instance of BQE. We define the following tableaux T_{1} and T_{2} :
T_{1} : tableau of the Boolean CQ Q.
T_{2} : consider D as tableau of a Boolean CQ
We clearly have: Query Q over DB D is non-empty \Leftrightarrow there exists a homomorphism from T_{1} to T_{2}.

CQ Containment and Equivalence: Complexity

Corollary

Given two conjunctive queries Q_{1} and Q_{2}, both deciding $Q_{1} \subseteq Q_{2}$ and $Q_{1} \equiv Q_{2}$ are NP-complete.

Proof.

The NP-completeness of CQ Containment follows immediately from the Homomorphism Theorem together with the above theorem.
From this, we may conclude the NP-completeness of CQ Equivalence via the following equivalences:

$$
\begin{aligned}
& Q_{1} \equiv Q_{2} \Leftrightarrow Q_{1} \subseteq Q_{2} \text { and } Q_{2} \subseteq Q_{1} \text { and } \\
& Q_{1} \subseteq Q_{2} \Leftrightarrow Q_{1} \equiv\left(Q_{1} \cap Q_{2}\right) .
\end{aligned}
$$

Minimizing Conjunctive Queries

Goal: Given a conjunctive query Q, find an equivalent conjunctive query Q^{\prime} with the minimum number of joins.

More formally:

Definition

A conjunctive query Q is minimal if there does not exist a conjunctive query Q^{\prime} such that

- $Q \equiv Q^{\prime}$, and
- Q^{\prime} has fewer atoms than Q.

Minimization by Deletion

- The following is an easy consequence of the Homomorphism theorem:
- Assume Q is

$$
Q(\vec{x}):-R_{1}\left(\vec{u}_{1}\right), \ldots, R_{k}\left(\vec{u}_{k}\right)
$$

- Assume that there is an equivalent conjunctive query Q^{\prime} of the form

$$
Q^{\prime}(\vec{x}):-S_{1}\left(\vec{v}_{1}\right), \ldots, S_{l}\left(\vec{v}_{l}\right), \quad I<k .
$$

- Then Q is equivalent to a query of the form

$$
Q^{\prime}(\vec{x}):-R_{1}\left(\vec{u}_{i_{1}}\right), \ldots, R_{l}\left(\vec{u}_{i_{i}}\right)
$$

- In other words, to minimize a conjunctive query, it suffices to consider deletions of atoms on the right of :-

Minimization Procedure

■ Given a conjunctive query Q, transform it into the tableau T_{Q}.

- Algorithm to obtain a minimal equivalent query:

$$
\begin{aligned}
& T^{\prime}:=T_{Q} ; \\
& \text { repeat until no change } \\
& \quad \text { choose a row } t \text { in } T^{\prime} ; \\
& \quad \text { if there is a homomorphism } f: T^{\prime} \rightarrow T^{\prime} \backslash\{t\} \\
& \text { then } T^{\prime}:=T^{\prime} \backslash\{t\} \\
& \text { end; } \\
& \text { return (the query defined by) } T^{\prime} ;
\end{aligned}
$$

■ Note: If a homomorphism $T^{\prime} \rightarrow T^{\prime} \backslash\{t\}$ exists, then $T^{\prime}, T^{\prime} \backslash\{t\}$ define equivalent queries, as a homomorphism from $T^{\prime} \backslash\{t\}$ to T^{\prime} exists. (Why?)

Minimizing Conjunctive Queries: example

- Conjunctive query with one relation R only:

$$
Q(x, y, z):-R\left(x, y, z_{1}\right), R\left(x_{1}, y, z_{2}\right), R\left(x_{1}, y, z\right), y=4
$$

- Tableau T_{Q} (relation R omitted):

A	B	C
x	4	z_{1}
x_{1}	4	z_{2}
x_{1}	4	z
x	4	z

- Minimization, step 1: Is there a homomorphism from T_{Q} to

$$
\begin{array}{ccc}
\mathrm{A} & \mathrm{~B} & \mathrm{C} \\
\hline x_{1} & 4 & z_{2} \\
x_{1} & 4 & z \\
\hline x & 4 & z
\end{array}
$$

- Answer: No. For any homomorphism $f, f(x)=x$ (why?), thus the image of the first row is not in the small tableau.
- Step 2: Is T_{Q} equivalent to

A	B	C
x	4	z_{1}
x_{1}	4	z
x	4	z

■ Answer: Yes. Homomorphism $f: f\left(z_{2}\right)=z$, all other variables stay the same.

- The new tableau is not equivalent to

A	B	C
x	4	z_{1}
x	4	z

- Because $f(x)=x, f(z)=z$, and the image of one of the rows is not present.
- Minimal tableau:

$$
\begin{array}{ccc}
\mathrm{A} & \mathrm{~B} & \mathrm{C} \\
\hline x & 4 & z_{1} \\
x_{1} & 4 & z \\
\hline x & 4 & z
\end{array}
$$

■ Back to conjunctive query. $C Q Q$ is equivalent to $C Q Q^{\prime}$ with

$$
Q^{\prime}(x, 4, z):-\quad R\left(x, 4, z_{1}\right), R\left(x_{1}, 4, z\right)
$$

Complexity of Minimization (1)

Theorem

Given a tableau T and a tuple t in T, checking whether there is a homomorphism from T to $T \backslash\{t\}$ is NP-complete.

Proof.

Membership in NP is immediate. For the hardness part, we provide a reduction from 3-COLORABILITY. We exploit a well-known trick: a graph is 3-colorable iff it can be homomorphically embedded into a "triangle". Assume a graph $G=(V, E)$, where $V=\{1, \ldots, n\}$. W.I.o.g., G is assumed to be connected. Take the Boolean $C Q Q_{G}$ with the following atoms:
$1 V_{1}\left(x_{1}\right), \ldots, V_{n}\left(x_{n}\right)$,
$2 E\left(x_{i}, x_{j}\right)$ for each edge $(i, j) \in E$,
$3 R\left(y_{r}\right), G\left(y_{g}\right), B\left(y_{b}\right)$,
$4 E\left(y_{r}, y_{g}\right), E\left(y_{g}, y_{r}\right), E\left(y_{g}, y_{b}\right), E\left(y_{b}, y_{g}\right)$ and $E\left(y_{r}, y_{b}\right), E\left(y_{b}, y_{r}\right)$.
$5 V_{i}\left(y_{c}\right)$ for all $i \in V$ and $c \in\{r, g, b\}$.

Proof (continued).

It is not difficult to see that G is 3-colorable iff there is a homomorphishm from $T_{Q_{G}}$ to $T_{Q_{G}} \backslash\left\{V_{1}\left(x_{1}\right)\right\}$.
(\Rightarrow) Assume G is 3 -colorable with $\mu: V \rightarrow\{r, g, b\}$ a witnessing coloring. Then the following function f is a homomorphism from $T_{Q_{G}}$ to $T_{Q_{G}} \backslash\left\{V_{1}\left(x_{1}\right)\right\}:$

■ $f\left(x_{i}\right)=y_{\mu(i)}$, for all $i \in V$,

- $f\left(y_{c}\right)=y_{c}$, for all $c \in\{r, g, b\}$.
(\Leftarrow) Assume there is a homomorphishm f from $T_{Q_{G}}$ to $T_{Q_{G}} \backslash\left\{V_{1}\left(x_{1}\right)\right\}$. Then $f\left(x_{1}\right) \in\left\{y_{r}, y_{g}, y_{b}\right\}$ due to the atom $V_{1}\left(x_{1}\right)$ of Q_{G}. Since G is connected, we must also have $f\left(x_{i}\right) \in\left\{y_{r}, y_{g}, y_{b}\right\}$ for all $i \in V$.
Take the function $\mu: V \rightarrow\{r, g, b\}$ such that (a) $\mu(i)=r$ if $f\left(x_{i}\right)=y_{r}$, (b) $\mu(i)=g$ if $f\left(x_{i}\right)=y_{g}$, and (c) $\mu(i)=b$ if $f\left(x_{i}\right)=y_{b}$.

We claim that μ is a valid 3-coloring of G. Let (i, j) be an arbitrary edge in E. Then $E\left(x_{i}, x_{j}\right)$ is an atom in Q_{G}. Since f is a homomorphism, we have $\left\langle f\left(x_{i}\right), f\left(x_{j}\right)\right\rangle$ in the relation E of $T_{Q_{G}} \backslash\left\{V_{1}\left(x_{1}\right)\right\}$. Then by construction of Q_{G}, we have $f\left(x_{i}\right) \neq f\left(x_{j}\right)$ and thus $\mu(i) \neq \mu(j)$.

Complexity of Minimization (2)

Theorem

Given a conjunctive query Q, checking whether Q is minimal is co-NP-complete.

Proof.

We prove by showing that checking whether a query is not minimal is NP-complete. NP-Membership of the latter problem is immediate. For the hardness part, we observe that the query Q_{G} obtained from G in the previous proof can be reused. We show below that G is 3 -colorable iff Q_{G} is not minimal.
(\Rightarrow) Assume G is 3 -colorable with $\mu: V \rightarrow\{r, g, b\}$ a witnessing coloring. Then the following function f (also used in the previous proof) is a homomorphism from $T_{Q_{G}}$ to $T_{Q_{G}} \backslash\left\{V_{1}\left(x_{1}\right)\right\}$:

■ $f\left(x_{i}\right)=y_{\mu(i)}$, for all $i \in V$,

- $f\left(y_{c}\right)=y_{c}$, for all $c \in\{r, g, b\}$.

Hence, Q_{G} is not minimal.

Proof (continued).

(\Leftarrow) Assume Q_{G} is not minimal. Then there is $M \subset T_{Q_{G}}$ such that $M \neq \emptyset$ and there is a homomorphism f from $T_{Q_{G}}$ to $T_{Q_{G}} \backslash M$. Let us analyze f. The domain of f is $\left\{y_{r}, y_{g}, y_{b}\right\} \cup\left\{x_{1}, \ldots, x_{n}\right\}$.
The atoms $R\left(y_{r}\right), G\left(y_{g}\right), B\left(y_{b}\right)$ in Q_{G} are the only atoms with leading symbol R, G, and B, respectively. Hence, none of the atoms $R\left(y_{r}\right), G\left(y_{g}\right), B\left(y_{b}\right)$ can be in M. Moreover, we must have $f\left(y_{r}\right)=y_{r}$, $f\left(y_{g}\right)=y_{g}$ and $f\left(y_{b}\right)=y_{b}$.
Since f is a homomorphism from $T_{Q_{G}}$ to $T_{Q_{G}} \backslash M, f$ cannot be the identity function and thus there exists $k \in V$ such that $f\left(x_{k}\right) \neq x_{k}$. Recall that for all $i \in V$ and all $V_{i}(t)$ of Q_{G} we have $t=x_{i}, t=y_{r}$, $t=y_{g}$ or $t=y_{b}$. Then we must have $f\left(x_{k}\right) \in\left\{y_{r}, y_{g}, y_{b}\right\}$.
Since G is connected, we must also have $f\left(x_{i}\right) \in\left\{y_{r}, y_{g}, y_{b}\right\}$ for all $i \in V$. Analogously to the proof of the theorem, we can define a valid 3-coloring of G as follows: $\mu: V \rightarrow\{r, g, b\}$ such that (a) $\mu(i)=r$ if $f\left(x_{i}\right)=y_{r}$, (b) $\mu(i)=g$ if $f\left(x_{i}\right)=y_{g}$, and (c) $\mu(i)=b$ if $f\left(x_{i}\right)=y_{b}$.

Uniqueness of Minimal Queries

A natural question: does the order in which we remove tuples from the tableaux matter? The answer is "no" by the following theorem.

Theorem

If Q_{1}, Q_{2} are two minimal queries equivalent to a query Q, then the tableaux $T_{Q_{1}}$ and $T_{Q_{2}}$ are isomorphic.

Proof.

The proof proceeds in several steps.
Homomorphisms. By the equivalences $Q_{1} \equiv Q \equiv Q_{2}$, there exists a homomorphism $f: T_{Q_{1}} \rightarrow T_{Q_{2}}$ and a homomorphism $g: T_{Q_{2}} \rightarrow T_{Q_{1}}$. Let $h=g \circ f$. Clearly, $h: T_{Q_{1}} \rightarrow T_{Q_{1}}$ is also a homomorphism.
$\left|T_{Q_{1}}\right|=\left|T_{Q_{2}}\right|$. Suppose that $\left|T_{Q_{2}}\right|<\left|T_{Q_{1}}\right|$ (the case $\left|T_{Q_{1}}\right|<\left|T_{Q_{2}}\right|$ is symmetric). Then $\left|h\left(T_{Q_{1}}\right)\right|<\left|T_{Q_{1}}\right|$ and, hence, $h\left(T_{Q_{1}}\right) \subset T_{Q_{1}}$. Thus the query corresponding to $h\left(T_{Q_{1}}\right)$ is strictly smaller than Q_{1}. This contradicts the assumption that Q_{1} is a minimal CQ equivalent to Q.

Proof (continued).

h preserves the number of variables. Consider h as a mapping from the variables in $T_{Q_{1}}$ to terms (i.e., variables and constants) in $T_{Q_{1}}$. We claim that $\left|\operatorname{Var}\left(h\left(T_{Q_{1}}\right)\right)\right|=\left|\operatorname{Var}\left(T_{Q_{1}}\right)\right|$. Suppose to the contrary that $\operatorname{Var}\left(h\left(T_{Q_{1}}\right)\right)<\operatorname{Var}\left(T_{Q_{1}}\right)$. Then $h\left(T_{Q_{1}}\right) \subset T_{Q_{1}}$ and again we get a contradiction since this would mean that the query corresponding to $h\left(T_{Q_{1}}\right)$ is strictly smaller than Q_{1}.
h is a permutation of the variables in $T_{Q_{1}} .\left|\operatorname{Var}\left(h\left(T_{Q_{1}}\right)\right)\right|=\left|\operatorname{Var}\left(T_{Q_{1}}\right)\right|$ implies that h maps every variable in $\operatorname{Var}\left(T_{Q_{1}}\right)$ to a variable in $\operatorname{Var}\left(T_{Q_{1}}\right)$ (and not to a constant). Hence, h is a function $h: \operatorname{Var}\left(T_{Q_{1}}\right) \rightarrow \operatorname{Var}\left(T_{Q_{1}}\right)$. Moreover, $\left|\operatorname{Var}\left(h\left(T_{Q_{1}}\right)\right)\right|=\left|\operatorname{Var}\left(T_{Q_{1}}\right)\right|$ also implies that h is bijective.

Isomorphism. Every multiple application of h (i.e., h, h^{2}, h^{3}, \ldots) again yields a permutation on $\operatorname{Var}\left(T_{Q_{1}}\right)$ and a homomorphism $T_{Q_{1}} \rightarrow T_{Q_{1}}$. For every permutation, there exists an $n \geq 1$ with $h^{n}=i d$, i.e., $(g \circ f)^{n}=i d$. Let $f^{*}=f \circ h^{n-1}$. Clearly, f^{*} is a homomorphism and $g \circ f^{*}=i d$. In other words, $f^{*}: T_{Q_{1}} \rightarrow T_{Q_{2}}$ is bijective with inverse function g. Hence, f^{*} is an isomorphism.

Acyclic Conjunctive Queries

■ Many CQs in practice enjoy the so-called acyclicity property

- Acyclic CQs can be evaluated efficiently (in polynomial time)

Definition

A conjunctive query Q is acyclic if it is has a join tree.

- A join tree can be seen as (an efficiently executable) query plan

Definition (Join Tree)

Let $Q(\vec{x}):-R_{1}\left(\vec{z}_{1}\right), \ldots, R_{n}\left(\vec{z}_{n}\right)$ be a CQ.
A join tree $T=(V, E)$ is a tree where
■ $V=\left\{R_{1}\left(\vec{z}_{1}\right), \ldots, R_{n}\left(\vec{z}_{n}\right)\right\}$, i.e. V is the set of atoms in Q

- E satisfies for all variables z of Q : $\left\{R_{j}\left(\vec{z}_{j}\right) \in V \mid z\right.$ occurs in $\left.R_{j}\left(\vec{z}_{j}\right)\right\}$ induces a connected subtree in T

Join Tree - Example

Example

$$
\begin{aligned}
& Q\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right):- \\
& \quad R_{3}\left(x_{3}\right) \wedge R_{4}\left(x_{2}, x_{4}, x_{3}\right) \wedge R_{1}\left(x_{1}, x_{2}, x_{3}\right) \wedge R_{2}\left(x_{2}, x_{3}\right) \wedge R_{2}\left(x_{5}, x_{6}\right)
\end{aligned}
$$

Join Tree - Example

Example

$$
\begin{aligned}
& Q\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right):- \\
& \quad R_{3}\left(x_{3}\right) \wedge R_{4}\left(x_{2}, x_{4}, x_{3}\right) \wedge R_{1}\left(x_{1}, x_{2}, x_{3}\right) \wedge R_{2}\left(x_{2}, x_{3}\right) \wedge R_{2}\left(x_{5}, x_{6}\right)
\end{aligned}
$$

Join Tree - Example

Example

$$
\begin{aligned}
& Q\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right):- \\
& \quad R_{3}\left(x_{3}\right) \wedge R_{4}\left(x_{2}, x_{4}, x_{3}\right) \wedge R_{1}\left(x_{1}, x_{2}, x_{3}\right) \wedge R_{2}\left(x_{2}, x_{3}\right) \wedge R_{2}\left(x_{5}, x_{6}\right)
\end{aligned}
$$

Join Tree - Example

Example

$$
\begin{aligned}
& Q\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right):- \\
& \quad R_{3}\left(x_{3}\right) \wedge R_{4}\left(x_{2}, x_{4}, x_{3}\right) \wedge R_{1}\left(x_{1}, x_{2}, x_{3}\right) \wedge R_{2}\left(x_{2}, x_{3}\right) \wedge R_{2}\left(x_{5}, x_{6}\right)
\end{aligned}
$$

Join Tree - Example

Example

$$
\begin{aligned}
& Q\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right):- \\
& \quad R_{3}\left(x_{3}\right) \wedge R_{4}\left(x_{2}, x_{4}, x_{3}\right) \wedge R_{1}\left(x_{1}, x_{2}, x_{3}\right) \wedge R_{2}\left(x_{2}, x_{3}\right) \wedge R_{2}\left(x_{5}, x_{6}\right)
\end{aligned}
$$

Join Tree - Example

Example

$$
\begin{aligned}
& Q\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right):- \\
& \quad R_{3}\left(x_{3}\right) \wedge R_{4}\left(x_{2}, x_{4}, x_{3}\right) \wedge R_{1}\left(x_{1}, x_{2}, x_{3}\right) \wedge R_{2}\left(x_{2}, x_{3}\right) \wedge R_{2}\left(x_{5}, x_{6}\right)
\end{aligned}
$$

Join Tree - Example

Example

$$
\begin{aligned}
& Q\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right):- \\
& \quad R_{3}\left(x_{3}\right) \wedge R_{4}\left(x_{2}, x_{4}, x_{3}\right) \wedge R_{1}\left(x_{1}, x_{2}, x_{3}\right) \wedge R_{2}\left(x_{2}, x_{3}\right) \wedge R_{2}\left(x_{5}, x_{6}\right)
\end{aligned}
$$

Join Tree - Example

Example

$$
\begin{aligned}
& Q\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right):- \\
& \quad R_{3}\left(x_{3}\right) \wedge R_{4}\left(x_{2}, x_{4}, x_{3}\right) \wedge R_{1}\left(x_{1}, x_{2}, x_{3}\right) \wedge R_{2}\left(x_{2}, x_{3}\right) \wedge R_{2}\left(x_{5}, x_{6}\right)
\end{aligned}
$$

Join Tree - Example

Example

$$
\begin{aligned}
& Q\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right):- \\
& \quad R_{3}\left(x_{3}\right) \wedge R_{4}\left(x_{2}, x_{4}, x_{3}\right) \wedge R_{1}\left(x_{1}, x_{2}, x_{3}\right) \wedge R_{2}\left(x_{2}, x_{3}\right) \wedge R_{2}\left(x_{5}, x_{6}\right)
\end{aligned}
$$

Finding Join Trees

Remarks:

- Existence of a join tree can be efficiently decided
- Join tree can be efficiently computed (if one exists)
\rightarrow GYO-reduction (Graham, Yu, and Ozsoyoglu)
- Tests for acyclicity of hypergraphs
- Reduction sequence allows to build a join tree efficiently
- Easy to identify a query with a hypergraph
- Two equivalent definitions exist

Define

- Atom $R(\vec{z})$ is empty if $|\vec{z}|=0$, and
- Atom $R_{1}\left(\vec{z}_{1}\right)$ is contained in atom $R_{2}\left(\vec{z}_{2}\right)$ if $\vec{z}_{1} \subseteq \vec{z}_{2}$

GYO-Reduction

Definition (GYO/GYO'-reduction)

Let $Q(\vec{x}):-R_{1}\left(\vec{z}_{1}\right), \ldots, R_{n}\left(\vec{z}_{n}\right)$ be a CQ. Apply the following rules until no longer possible.

- GYO-reduction:
- Eliminate variables that are contained in at most one atom.
- Eliminate atoms that are empty or contained in another atom.
- GYO'-reduction:
- Eliminate atoms that share no variables with other atoms.
- Eliminate atoms R if there exists a witness R^{\prime} s.t. each variable in R either appears in R only, or also appears in R^{\prime}.

Theorem

- $G Y O^{\prime}(Q)=\emptyset$ iff $G Y O(Q)=\emptyset$
- $G Y O^{\prime}(Q)=\emptyset$ iff Q has a join tree (iff Q is acyclic)

GYO-Reduction: Proof

Proof.

We only prove the second equivalence:
$\mathrm{GYO}^{\prime}(Q)=\emptyset \Rightarrow Q$ has a join tree: Consider the sequence $\left(R_{1}, \ldots, R_{n}\right)$ of atoms removed during the reduction. Create a join tree as follows:

- Whenever R_{j} was the witness for R_{i}, then make R_{i} a child node of R_{j}
- Merge the resulting forest to a tree "arbitrarily"

It is easy to check that this indeed gives a valid join tree.
Q has a join tree $\Rightarrow \mathrm{GYO}^{\prime}(Q)=\emptyset$: Consider a join tree T for Q.
Removing leaf nodes from T in arbitrary order gives a sequence of valid GYO'-reduction steps that eliminates all atoms:

■ Either a leaf node shares no variable with its parent \Rightarrow First rule

- All variables occuring not only in the leaf node must be contained in the parent node (connectedness condition) \Rightarrow parent node is witness

GYO-reduction: Example

Example

Consider again $Q\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)$:-

$$
R_{3}\left(x_{3}\right) \wedge R_{4}\left(x_{2}, x_{4}, x_{3}\right) \wedge R_{1}\left(x_{1}, x_{2}, x_{3}\right) \wedge r_{2} R_{2}\left(x_{2}, x_{3}\right) \wedge r_{2}\left(x_{5}, x_{6}\right)
$$

$$
R_{2}\left(x_{2}, x_{3}\right)
$$

$$
R_{2}\left(x_{5}, x_{6}\right) \quad R_{1}\left(x_{1}, x_{2}, x_{3}\right)
$$

$$
R_{3}\left(x_{3}\right) \quad R_{4}\left(x_{2}, x_{4}, x_{3}\right)
$$

GYO-reduction: Example

Example

Consider again $Q\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)$:-

$$
R_{3}\left(x_{3}\right) \wedge R_{4}\left(x_{2}, x_{4}, x_{3}\right) \wedge R_{1}\left(x_{1}, x_{2}, x_{3}\right) \wedge \underset{r_{3}}{r_{1}} R_{2}\left(x_{2}, x_{3}\right) \wedge R_{2}\left(x_{5}, x_{6}\right)
$$

GYO-reduction: Example

Example

Consider again $Q\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)$:-

$$
R_{3}\left(x_{3}\right) \wedge R_{4}\left(x_{2}, x_{4}, x_{3}\right) \wedge R_{1}\left(x_{1}, x_{2}, x_{3}\right) \wedge \underset{r_{3}}{r_{1}} R_{2}\left(x_{2}, x_{3}\right) \wedge r_{2}\left(x_{5}, x_{6}\right)
$$

$$
\begin{aligned}
\mathcal{A}_{0} & =\left\{r_{1}, r_{2}, r_{3}, r_{4}, r_{5}\right\} \\
\mathcal{A}_{1} & =\left\{r_{1}, r_{2}, r_{3}, r_{4}\right\}
\end{aligned}
$$

GYO-reduction: Example

Example

Consider again $Q\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)$:-

$$
R_{3}\left(x_{3}\right) \wedge R_{4}\left(x_{2}, x_{4}, x_{3}\right) \wedge R_{1}\left(x_{1}, x_{2}, x_{3}\right) \wedge \underset{r_{3}}{r_{1}} R_{2}\left(x_{2}, x_{3}\right) \wedge r_{2}\left(x_{5}, x_{6}\right)
$$

$$
\mathcal{A}_{0}=\left\{r_{1}, r_{2}, r_{3}, r_{4}, r_{5}\right\}
$$

$$
\mathcal{A}_{1}=\left\{r_{1}, r_{2}, r_{3}, r_{4}\right\}
$$

$$
\mathcal{A}_{2}=\left\{r_{2}, r_{3}, r_{4}\right\}
$$

GYO-reduction: Example

Example
Consider again $Q\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)$:-

$$
\begin{aligned}
& \quad R_{3}\left(x_{3}\right) \wedge R_{4}\left(x_{2}, x_{4}, x_{3}\right) \wedge R_{1}\left(x_{1}, x_{2}, x_{3}\right) \wedge R_{2}\left(x_{2}, x_{3}\right) \wedge R_{2}\left(x_{5}, x_{6}\right) \\
& \mathcal{A}_{0}=\left\{r_{1}, r_{2}, r_{3}, r_{4}, r_{5}\right\} \\
& \mathcal{A}_{1}=\left\{r_{1}, r_{2}, r_{3}, r_{4}\right\} \\
& \mathcal{A}_{2}=\left\{r_{2}, r_{3}, r_{4}\right\} \\
& \mathcal{A}_{3}=\left\{r_{3}, r_{4}\right\} \\
& R_{2}\left(x_{5}, x_{6}\right)
\end{aligned}
$$

GYO-reduction: Example

Example

Consider again $Q\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)$:-

$$
R_{3}\left(x_{3}\right) \wedge R_{4}\left(x_{2}, x_{4}, x_{3}\right) \wedge r_{1}\left(x_{1}, x_{2}, x_{3}\right) \wedge \underset{r_{3}}{\left(R_{2}\left(x_{2}, x_{3}\right)\right.} \wedge r_{2}\left(x_{5}, x_{6}\right)
$$

$$
\begin{aligned}
& \mathcal{A}_{0}=\left\{r_{1}, r_{2}, r_{3}, r_{4}, r_{5}\right\} \\
& \mathcal{A}_{1}=\left\{r_{1}, r_{2}, r_{3}, r_{4}\right\} \\
& \mathcal{A}_{2}=\left\{r_{2}, r_{3}, r_{4}\right\} \\
& \mathcal{A}_{3}=\left\{r_{3}, r_{4}\right\} \\
& \mathcal{A}_{4}=\left\{r_{4}\right\}
\end{aligned}
$$

GYO-reduction: Example

Example

Consider again $Q\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)$:-

$$
R_{3}\left(x_{3}\right) \wedge R_{4}\left(x_{2}, x_{4}, x_{3}\right) \wedge r_{1}\left(x_{1}, x_{2}, x_{3}\right) \wedge \underset{r_{3}}{\left(R_{2}\left(x_{2}, x_{3}\right)\right.} \wedge r_{2}\left(x_{5}, x_{6}\right)
$$

$$
\begin{aligned}
\mathcal{A}_{0} & =\left\{r_{1}, r_{2}, r_{3}, r_{4}, r_{5}\right\} \\
\mathcal{A}_{1} & =\left\{r_{1}, r_{2}, r_{3}, r_{4}\right\} \\
\mathcal{A}_{2} & =\left\{r_{2}, r_{3}, r_{4}\right\} \\
\mathcal{A}_{3} & =\left\{r_{3}, r_{4}\right\} \\
\mathcal{A}_{4} & =\left\{r_{4}\right\} \\
\mathcal{A}_{5} & =\{ \}
\end{aligned}
$$

Deciding ACQs Efficiently (Yannakakis)

Dynamic Programming Algorithm over the join tree $T=(V, E)$

Algorithm by Yannakakis

Let $T=(V, E)$ be a join tree of a query Q.
Given database instance D, decide $Q(D)=\emptyset$ as follows:
1 Assign to each $R_{j}\left(\vec{z}_{j}\right) \in V$ the corresponding relation R_{j}^{D} of D.
2 In a bottom up traversal of T : compute semijoins of R_{j}^{D}
3 If the resulting relation at root node is empty, then $Q(D)=\emptyset$, nonempty, then $Q(D) \neq \emptyset$.

Theorem

For $A C Q s Q$:

- Deciding $Q(D)=\emptyset$ is feasible in polynomial time.
- Computing $Q(D)$ can be done in output polynomial time.

Yannakakis Algorithm - Example

Yannakakis Algorithm - Enumeration

Two additional traversals allow us to enumerate all answers.

Theorem

Let Q be an acyclic conjunctive query. Given some database instance D, $Q(D)$ can be computed in output polynomial time, i.e., in time $O\left((\|D\|+\|Q(D)\|)^{k}\right)$ for some constant $k \geq 1$.

Enumeration Algorithm

Given a join tree of query Q; a database instance D. Compute $Q(D)$:
$11^{\text {st }}$ bottom-up traversal: semijoins as before (upwards propagation)
2 top-down traversal: "reverse" semijoins (downwards propagation)
$32^{\text {nd }}$ bottom-up traversal: compute solutions using joins.

Yannakakis Algorithm - Proof

Proof sketch.

Correctness of the algorithm follows from the following propositions: Given join tree T, for $t \in V(T)$ let T_{t} be the subtree of T rooted at t, R_{t} the relation computed by semijois and R_{t}^{\prime} the one by joins:

Yannakakis Algorithm - Proof

Proof sketch.

Correctness of the algorithm follows from the following propositions: Given join tree T, for $t \in V(T)$ let T_{t} be the subtree of T rooted at t, R_{t} the relation computed by semijois and R_{t}^{\prime} the one by joins:
1 After the $1^{\text {st }}$ bottom-up traversal:

$$
R_{t}=\pi_{v a r s(t)}\left(\bowtie_{v \in V\left(T_{t}\right)} v\right) \text { for each } t \in T
$$

Yannakakis Algorithm - Proof

Proof sketch.

Correctness of the algorithm follows from the following propositions: Given join tree T, for $t \in V(T)$ let T_{t} be the subtree of T rooted at t, R_{t} the relation computed by semijois and R_{t}^{\prime} the one by joins:
1 After the $1^{\text {st }}$ bottom-up traversal:

$$
R_{t}=\pi_{v a r s(t)}\left(\bowtie_{v \in V\left(T_{t}\right)} v\right) \text { for each } t \in T
$$

2 After the top-down traversal:

$$
R_{t}=\pi_{\operatorname{vars}(t)}\left(\bowtie_{v \in V(T)} v\right) \text { for each } t \in T
$$

Yannakakis Algorithm - Proof

Proof sketch.

Correctness of the algorithm follows from the following propositions: Given join tree T, for $t \in V(T)$ let T_{t} be the subtree of T rooted at t, R_{t} the relation computed by semijois and R_{t}^{\prime} the one by joins:
1 After the $1^{\text {st }}$ bottom-up traversal:

$$
R_{t}=\pi_{v a r s(t)}\left(\bowtie_{v \in V\left(T_{t}\right)} v\right) \text { for each } t \in T
$$

2 After the top-down traversal:

$$
R_{t}=\pi_{\operatorname{vars}(t)}\left(\bowtie_{v \in V(T)} v\right) \text { for each } t \in T
$$

3 After the $2^{\text {nd }}$ bottom-up traversal:

$$
R_{t}^{\prime}=\pi_{\operatorname{vars}\left(T_{t}\right)}\left(\bowtie_{v \in V(T)} v\right) \text { for each } t \in T
$$

Yannakakis Algorithm - Proof

Proof sketch.

Correctness of the algorithm follows from the following propositions: Given join tree T, for $t \in V(T)$ let T_{t} be the subtree of T rooted at t, R_{t} the relation computed by semijois and R_{t}^{\prime} the one by joins:
1 After the $1^{\text {st }}$ bottom-up traversal:

$$
R_{t}=\pi_{v a r s(t)}\left(\bowtie_{v \in V\left(T_{t}\right)} v\right) \text { for each } t \in T
$$

2 After the top-down traversal:

$$
R_{t}=\pi_{\operatorname{vars}(t)}\left(\bowtie_{v \in V(T)} v\right) \text { for each } t \in T
$$

3 After the $2^{\text {nd }}$ bottom-up traversal:

$$
R_{t}^{\prime}=\pi_{v a r s(}\left(T_{t}\right)\left(\bowtie_{v \in V(T)} v\right) \text { for each } t \in T
$$

$\Rightarrow R_{r}^{\prime}$ at root r contains all results

Enumeration - Example

Example

1 We have already performed the $1^{\text {st }}$ bottom-up traversal

Enumeration - Example

Example

1 We have already performed the $1^{\text {st }}$ bottom-up traversal

2 Top-down semijoins

Enumeration - Example

Example

1 We have already performed the $1^{\text {st }}$ bottom-up traversal

2 Top-down semijoins

Enumeration - Example

Example

1 We have already performed the $1^{\text {st }}$ bottom-up traversal

2 Top-down semijoins

Enumeration - Example

Example

1 We have already performed the $1^{\text {st }}$ bottom-up traversal

2 Top-down semijoins

Enumeration - Example

Example

1 We have already performed the $1^{\text {st }}$ bottom-up traversal

2 Top-down semijoins

Enumeration - Example

Example

1 We have already performed the $1^{\text {st }}$ bottom-up traversal

2 Top-down semijoins

Enumeration - Example

Example

1 We have already performed the $1^{\text {st }}$ bottom-up traversal

2 Top-down semijoins

Enumeration - Example

Example

1 We have already performed the $1^{\text {st }}$ bottom-up traversal

2 Top-down semijoins
3 Compute result in $2^{\text {nd }}$ bottom-up traversal

Enumeration - Example

Enumeration - Example

Enumeration - Example

x_{2}	x_{3}	x_{5}	x_{6}
c_{1}	b_{2}	c_{1}	b_{2}
c_{1}	b_{2}	c_{1}	b_{1}
c_{1}	b_{2}	c_{4}	b_{6}
c_{1}	b_{1}	c_{1}	b_{2}
c_{1}	b_{1}	c_{1}	b_{1}
c_{1}	b_{1}	c_{4}	b_{6}

Enumeration - Example

Learning Objectives

- The notions of query equivalence and containment,

■ The Homomorphism theorem,
■ The complexity of query equivalence and containment,

- Minimization of conjunctive queries,

■ Acyclic conjunctive queries,

- The Yannakakis algorithm.

