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Database Theory 6. Conjunctive Queries 6.1. Query Equivalence and Containment

Query Optimization

The common approach to (first-order) query optimization is via
equivalence preserving transformations in relational algebra. E.g.:

on is commutative and associative, hence applicable in any order

Cascaded projections may be simplified: If the attributes A1, . . . ,An

are among B1, . . . ,Bm, then

πA1,...,An (πB1,...,Bm (E )) = πA1,...,An (E )

Cascaded selections might be merged:

σc1(σc2(E )) = σc1∧c2(E )

Commuting selection with join. If c only involves attributes in E1,
then

σc(E1 on E2) = σc(E1) on E2

We do not treat such transformations in this course.
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Beyond Standard Equivalences
The known equivalences are not always sufficient:

• e.g.: none of the equivalences reduces the number of joins!

For further optimization, the following decision problems are crucial:

Definition (Query Equivalence and Containment)

We say a query Q1 is equivalent to a query Q2 (in symbols, Q1 ≡ Q2) if
Q1(D) = Q2(D) for every database instance D. Similarly, we say Q1 is
contained in Q2 (written Q1 ⊆ Q2) if Q1(D) ⊆ Q2(D) for every D.

QUERY-EQUIVALENCE

INSTANCE: A pair Q1,Q2 of queries.
QUESTION: Does Q1 ≡ Q2 hold?

QUERY-CONTAINMENT

INSTANCE: A pair Q1,Q2 of queries.
QUESTION: Does Q1 ⊆ Q2 hold?
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In the following we concentrate w.l.o.g. on query containment
because

Q1 ≡ Q2 ⇔ Q1 ⊆ Q2 and Q2 ⊆ Q1 and
Q1 ⊆ Q2 ⇔ Q1 ≡ (Q1 ∩ Q2).

Observe that if Q1,Q2 are formulated in relational algebra, then
deciding Q1 ⊆ Q2 (and thus also Q1 ≡ Q2) is undecidable!

• Indeed, Q is empty over all databases ⇔ Q ⊆ ∅.
• By Traktenbrots Theorem, checking emptiness is undecidable for RA!

Good news: Q1 ⊆ Q2 is decidable for conjunctive queries!

The decidability comes from the Homomorphism Theorem
(see below).

The theorem also gives rise to optimization of conjunctive queries
that reduces the number of joins.
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Datalog-like notation for CQs

Next we use Datalog notation for CQs!

E.g.: the conjunctive query

{〈x , y〉 | ∃z ,w .B(x , y) ∧ R(y , z) ∧ R(y ,w) ∧ R(w , y)}

is written as the rule

Q(x , y):–B(x , y),R(y , z),R(y ,w),R(w , y).
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Conjunctive Queries into Tableaux

Tableau: representation of a conjunctive query as a database

A tableau for a CQ Q is just a database where variables can appear
in tuples, plus a set of distinguished variables.

Assume a query Q such that

Q(x , y):–B(x , y),R(y , z),R(y ,w),R(w , y)

Then the tableau of Q is:

B:
A B
x y

R:

A B
y z
y w
w y

x y ← answer line

Variables in the answer line are called distinguished
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Tableau homomorphisms

Definition (Tableau homomorphism)

A homomorphism of two tableaux f : T1 → T2 is a mapping

f : {variables of T1} → {variables of T2}
⋃
{constants}

such that:

For every distinguished x , f (x) = x

For every relation R in T1 and row x1, . . . , xk in R, f (x1), . . . , f (xk)
is a row of R in T2

Theorem (Homomorphism Theorem)

Let Q1,Q2 be two conjunctive queries, and TQ1 ,TQ2 their tableaux. Then

Q1 ⊆ Q2 ⇔ there exists a homomorphism f : TQ2 → TQ1 .
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Applying the Homomorphism Theorem

We first consider queries over a single relation:

Q1(x , y) :– R(y , x),R(x , z)

Q2(x , y) :– R(y , x),R(w , x),R(x , u)

Tableau for Q1:

R:
A B
y x
x z

x y

Tableau for Q2:

R:

A B
y x
w x
x u

x y
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TQ1 TQ2

R:

A B
y x

x z
x y

R:

A B
y x
w x
x u

x y
Take f such that:

f (w) = y ,

f (u) = z ,

f (x) = x and f (y) = y .

Hence Q1 ⊆ Q2!
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TQ1 TQ2
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Take f such that:

f (z) = u,
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Proof of the Homomorphism Theorem.

Observation. A tuple ~c is in the answer to a CQ Q over a database D iff
there is a homomorphism f from the tableau of Q to the database D
such that f (~x) = ~c , where ~x is the tuple of distinguished variables of Q.

Assume a pair Q1,Q2 of CQs with variables V1,V2, respectively. Assume
that ~x is the tuple of answer variables of Q1 and Q2.

Suppose there exists a homomorphism f : TQ2 → TQ1 . Assume a
database D and an arbitrary tuple ~c ∈ Q1(D). By the above observation
there is a homomorphism g from TQ1 to D such that g(~x) = ~c . Observe
that the composition h = g ◦ f is a homomorphism from TQ2 to D such
that h(~x) = ~c . Hence ~c ∈ Q2(D).

Suppose Q1 ⊆ Q2. Then, by assumption, Q1(D) ⊆ Q2(D) for all
instances D. Take the tableau TQ1 as database instance D. Clearly, ~x is
in the answer to Q1 over TQ1 . Then using the assumption we get
~x ∈ Q2(TQ1). By the observation above, then there is a homomorphism f
from TQ2 to TQ1 such that f (~x) = ~x .
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Existence of a Homomorphism: Complexity

Theorem

Given two tableaux, deciding the existence of a homomorphism between
them is NP-complete.

Proof.

NP-membership. Guess a candidate mapping f and check in polynomial
time whether f is a homorphism.

NP-hardness. By a straightforward reduction from the NP-complete
problem BQE for CQs. Let the Boolean CQ Q be an arbitrary instance
of BQE. We define the following tableaux T1 and T2:

T1: tableau of the Boolean CQ Q.
T2: consider D as tableau of a Boolean CQ

We clearly have: Query Q over DB D is non-empty ⇔ there exists a
homomorphism from T1 to T2.
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CQ Containment and Equivalence: Complexity

Corollary

Given two conjunctive queries Q1 and Q2, both deciding Q1 ⊆ Q2 and
Q1 ≡ Q2 are NP-complete.

Proof.

The NP-completeness of CQ Containment follows immediately from the
Homomorphism Theorem together with the above theorem.

From this, we may conclude the NP-completeness of CQ Equivalence via
the following equivalences:

Q1 ≡ Q2 ⇔ Q1 ⊆ Q2 and Q2 ⊆ Q1 and
Q1 ⊆ Q2 ⇔ Q1 ≡ (Q1 ∩ Q2).
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Minimizing Conjunctive Queries

Goal: Given a conjunctive query Q, find an equivalent conjunctive query
Q ′ with the minimum number of joins.

More formally:

Definition

A conjunctive query Q is minimal if there does not exist a conjunctive
query Q ′ such that

Q ≡ Q ′, and

Q ′ has fewer atoms than Q.
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Minimization by Deletion

The following is an easy consequence of the Homomorphism
theorem:

• Assume Q is
Q(~x) :– R1(~u1), . . . , Rk(~uk)

• Assume that there is an equivalent conjunctive query Q ′ of the form

Q ′(~x) :– S1(~v1), . . . , Sl(~vl), l < k.

• Then Q is equivalent to a query of the form

Q ′(~x) :– R1(~ui1 ), . . . , Rl (~uil )

In other words, to minimize a conjunctive query, it suffices to
consider deletions of atoms on the right of :–
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Minimization Procedure

Given a conjunctive query Q, transform it into the tableau TQ .

Algorithm to obtain a minimal equivalent query:

T ′ := TQ ;
repeat until no change

choose a row t in T ′;
if there is a homomorphism f : T ′ → T ′ \ {t}
then T ′ := T ′ \ {t}

end;
return (the query defined by) T ′;

Note: If a homomorphism T ′ → T ′ \ {t} exists, then T ′, T ′ \ {t}
define equivalent queries, as a homomorphism from T ′ \ {t} to T ′

exists. (Why?)
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Minimizing Conjunctive Queries: example

Conjunctive query with one relation R only:

Q(x , y , z) :–R(x , y , z1), R(x1, y , z2), R(x1, y , z), y = 4

Tableau TQ (relation R omitted):

A B C

x 4 z1

x1 4 z2

x1 4 z

x 4 z

Minimization, step 1: Is there a homomorphism from TQ to

A B C

x1 4 z2

x1 4 z

x 4 z

Answer: No. For any homomorphism f , f (x) = x (why?), thus the image
of the first row is not in the small tableau.
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Step 2: Is TQ equivalent to

A B C
x 4 z1
x1 4 z
x 4 z

Answer: Yes. Homomorphism f : f (z2) = z , all other variables stay
the same.

The new tableau is not equivalent to

A B C
x 4 z1

x 4 z
or

A B C
x1 4 z
x 4 z

Because f (x) = x , f (z) = z , and the image of one of the rows is not
present.
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Minimal tableau:

A B C
x 4 z1

x1 4 z
x 4 z

Back to conjunctive query. CQ Q is equivalent to CQ Q ′ with

Q ′(x , 4, z) :– R(x , 4, z1),R(x1, 4, z)
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Complexity of Minimization (1)

Theorem

Given a tableau T and a tuple t in T , checking whether there is a
homomorphism from T to T \ {t} is NP-complete.

Proof.

Membership in NP is immediate. For the hardness part, we provide a
reduction from 3-COLORABILITY. We exploit a well-known trick:
a graph is 3-colorable iff it can be homomorphically embedded into a
“triangle”. Assume a graph G = (V ,E ), where V = {1, . . . , n}.
W.l.o.g., G is assumed to be connected. Take the Boolean CQ QG with
the following atoms:

1 V1(x1), . . . ,Vn(xn),

2 E (xi , xj) for each edge (i , j) ∈ E ,

3 R(yr ),G (yg ),B(yb),

4 E (yr , yg ),E (yg , yr ), E (yg , yb),E (yb, yg ) and E (yr , yb),E (yb, yr ).

5 Vi (yc) for all i ∈ V and c ∈ {r , g , b}.
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Database Theory 6. Conjunctive Queries 6.3. Query Minimization

Proof (continued).

It is not difficult to see that G is 3-colorable iff there is a
homomorphishm from TQG

to TQG
\ {V1(x1)}.

(⇒) Assume G is 3-colorable with µ : V → {r , g , b} a witnessing
coloring. Then the following function f is a homomorphism from TQG

to
TQG
\ {V1(x1)}:
f (xi ) = yµ(i), for all i ∈ V ,

f (yc) = yc , for all c ∈ {r , g , b}.

(⇐) Assume there is a homomorphishm f from TQG
to TQG

\ {V1(x1)}.
Then f (x1) ∈ {yr , yg , yb} due to the atom V1(x1) of QG . Since G is
connected, we must also have f (xi ) ∈ {yr , yg , yb} for all i ∈ V .

Take the function µ : V → {r , g , b} such that (a) µ(i) = r if f (xi ) = yr ,
(b) µ(i) = g if f (xi ) = yg , and (c) µ(i) = b if f (xi ) = yb.

We claim that µ is a valid 3-coloring of G . Let (i , j) be an arbitrary edge
in E . Then E (xi , xj) is an atom in QG . Since f is a homomorphism, we
have 〈f (xi ), f (xj)〉 in the relation E of TQG

\ {V1(x1)}. Then by
construction of QG , we have f (xi ) 6= f (xj) and thus µ(i) 6= µ(j). �
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Complexity of Minimization (2)

Theorem

Given a conjunctive query Q, checking whether Q is minimal is
co-NP-complete.

Proof.

We prove by showing that checking whether a query is not minimal is
NP-complete. NP-Membership of the latter problem is immediate. For
the hardness part, we observe that the query QG obtained from G in the
previous proof can be reused. We show below that G is 3-colorable iff
QG is not minimal.

(⇒) Assume G is 3-colorable with µ : V → {r , g , b} a witnessing
coloring. Then the following function f (also used in the previous proof)
is a homomorphism from TQG

to TQG
\ {V1(x1)}:

f (xi ) = yµ(i), for all i ∈ V ,

f (yc) = yc , for all c ∈ {r , g , b}.
Hence, QG is not minimal.
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Proof (continued).

(⇐) Assume QG is not minimal. Then there is M ⊂ TQG
such that

M 6= ∅ and there is a homomorphism f from TQG
to TQG

\M.
Let us analyze f . The domain of f is {yr , yg , yb} ∪ {x1, . . . , xn}.
The atoms R(yr ),G (yg ),B(yb) in QG are the only atoms with leading
symbol R, G , and B, respectively. Hence, none of the atoms
R(yr ),G (yg ),B(yb) can be in M. Moreover, we must have f (yr ) = yr ,
f (yg ) = yg and f (yb) = yb.

Since f is a homomorphism from TQG
to TQG

\M, f cannot be the
identity function and thus there exists k ∈ V such that f (xk) 6= xk .
Recall that for all i ∈ V and all Vi (t) of QG we have t = xi , t = yr ,
t = yg or t = yb. Then we must have f (xk) ∈ {yr , yg , yb}.
Since G is connected, we must also have f (xi ) ∈ {yr , yg , yb} for all
i ∈ V . Analogously to the proof of the theorem, we can define a valid
3-coloring of G as follows: µ : V → {r , g , b} such that (a) µ(i) = r if
f (xi ) = yr , (b) µ(i) = g if f (xi ) = yg , and (c) µ(i) = b if f (xi ) = yb.
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Uniqueness of Minimal Queries
A natural question: does the order in which we remove tuples from the
tableaux matter? The answer is “no” by the following theorem.

Theorem

If Q1,Q2 are two minimal queries equivalent to a query Q, then the
tableaux TQ1 and TQ2 are isomorphic.

Proof.

The proof proceeds in several steps.

Homomorphisms. By the equivalences Q1 ≡ Q ≡ Q2, there exists a
homomorphism f : TQ1 → TQ2 and a homomorphism g : TQ2 → TQ1 .
Let h = g ◦ f . Clearly, h : TQ1 → TQ1 is also a homomorphism.

|TQ1 | = |TQ2 |. Suppose that |TQ2 | < |TQ1 | (the case |TQ1 | < |TQ2 | is
symmetric). Then |h(TQ1)| < |TQ1 | and, hence, h(TQ1) ⊂ TQ1 . Thus the
query corresponding to h(TQ1) is strictly smaller than Q1. This
contradicts the assumption that Q1 is a minimal CQ equivalent to Q.
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Proof (continued).

h preserves the number of variables. Consider h as a mapping from the
variables in TQ1 to terms (i.e., variables and constants) in TQ1 . We claim
that |Var(h(TQ1))| = |Var(TQ1)|. Suppose to the contrary that
Var(h(TQ1)) < Var(TQ1). Then h(TQ1) ⊂ TQ1 and again we get a
contradiction since this would mean that the query corresponding to
h(TQ1) is strictly smaller than Q1.

h is a permutation of the variables in TQ1 . |Var(h(TQ1))| = |Var(TQ1)|
implies that h maps every variable in Var(TQ1) to a variable in Var(TQ1)
(and not to a constant). Hence, h is a function h : Var(TQ1)→ Var(TQ1).
Moreover, |Var(h(TQ1))| = |Var(TQ1)| also implies that h is bijective.

Isomorphism. Every multiple application of h (i.e., h, h2, h3, . . . ) again
yields a permutation on Var(TQ1) and a homomorphism TQ1 → TQ1 . For
every permutation, there exists an n ≥ 1 with hn = id , i.e., (g ◦ f )n = id .
Let f ∗ = f ◦ hn−1. Clearly, f ∗ is a homomorphism and g ◦ f ∗ = id .
In other words, f ∗ : TQ1 → TQ2 is bijective with inverse function g .
Hence, f ∗ is an isomorphism. �
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Acyclic Conjunctive Queries

Many CQs in practice enjoy the so-called acyclicity property

Acyclic CQs can be evaluated efficiently (in polynomial time)

Definition

A conjunctive query Q is acyclic if it is has a join tree.

A join tree can be seen as (an efficiently executable) query plan

Definition (Join Tree)

Let Q(~x):–R1(~z1), . . . ,Rn(~zn) be a CQ.

A join tree T = (V ,E ) is a tree where

V = {R1(~z1), . . . ,Rn(~zn)}, i.e. V is the set of atoms in Q

E satisfies for all variables z of Q:

{Rj(~zj) ∈ V | z occurs in Rj(~zj)} induces a connected subtree in T
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Join Tree – Example

Example

Q(x1, x2, x3, x4, x5, x6):–
R3(x3) ∧ R4(x2, x4, x3) ∧ R1(x1, x2, x3) ∧ R2(x2, x3) ∧ R2(x5, x6)

R2(x2, x3)

R2(x5, x6) R1(x1, x2, x3)

R3(x3) R4(x2, x4, x3)
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Finding Join Trees

Remarks:

Existence of a join tree can be efficiently decided

Join tree can be efficiently computed (if one exists)

→ GYO-reduction (Graham, Yu, and Ozsoyoglu)

Tests for acyclicity of hypergraphs

Reduction sequence allows to build a join tree efficiently

Easy to identify a query with a hypergraph

Two equivalent definitions exist

Define

Atom R(~z) is empty if |~z | = 0, and

Atom R1(~z1) is contained in atom R2(~z2) if ~z1 ⊆ ~z2
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GYO-Reduction

Definition (GYO/GYO’-reduction)

Let Q(~x):–R1(~z1), . . . ,Rn(~zn) be a CQ. Apply the following rules until no
longer possible.

GYO-reduction:
• Eliminate variables that are contained in at most one atom.
• Eliminate atoms that are empty or contained in another atom.

GYO’-reduction:
• Eliminate atoms that share no variables with other atoms.
• Eliminate atoms R if there exists a witness R ′ s.t. each variable in R

either appears in R only, or also appears in R ′.

Theorem

GYO’(Q) = ∅ iff GYO(Q) = ∅
GYO’(Q) = ∅ iff Q has a join tree (iff Q is acyclic)
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GYO-Reduction: Proof

Proof.

We only prove the second equivalence:

GYO’(Q) = ∅ ⇒ Q has a join tree: Consider the sequence (R1, . . . ,Rn)
of atoms removed during the reduction. Create a join tree as follows:

Whenever Rj was the witness for Ri , then make Ri a child node of Rj

Merge the resulting forest to a tree “arbitrarily”

It is easy to check that this indeed gives a valid join tree.

Q has a join tree ⇒ GYO’(Q) = ∅: Consider a join tree T for Q.
Removing leaf nodes from T in arbitrary order gives a sequence of valid
GYO’-reduction steps that eliminates all atoms:

Either a leaf node shares no variable with its parent ⇒ First rule

All variables occuring not only in the leaf node must be contained in
the parent node (connectedness condition) ⇒ parent node is witness
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GYO-reduction: Example

Example

Consider again Q(x1, x2, x3, x4, x5, x6):–
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r1 r2 r3 r4 r5

A0 = {r1, r2, r3, r4, r5}
A1 = {r1, r2, r3, r4}
A2 = {r2, r3, r4}
A3 = {r3, r4}
A4 = {r4}
A5 = {}

R2(x2, x3)
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Deciding ACQs Efficiently (Yannakakis)
Dynamic Programming Algorithm over the join tree T = (V ,E )

Algorithm by Yannakakis

Let T = (V ,E ) be a join tree of a query Q.
Given database instance D, decide Q(D) = ∅ as follows:

1 Assign to each Rj(~zj) ∈ V the corresponding relation RD
j of D.

2 In a bottom up traversal of T : compute semijoins of RD
j

3 If the resulting relation at root node is
empty, then Q(D) = ∅,
nonempty, then Q(D) 6= ∅.

Theorem

For ACQs Q:

Deciding Q(D) = ∅ is feasible in polynomial time.

Computing Q(D) can be done in output polynomial time.
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Yannakakis Algorithm – Example

t1 : R2(x2, x3)

x2 x3

c1 b2

c1 b1

c4 b6

t2 : R2(x5, x6)

x5 x6

c1 b2

c1 b1

c4 b6

t3 : R1(x1, x2, x3)

x1 x2 x3

s1 c1 b1

s1 c1 b2

s3 c3 b1

s3 c1 b4

s2 c2 b3

t4 : R3(x3)

x3

b1

b2

t5 : R4(x2, x4, x3)

x2 x4 x3

c1 a1 b1

c1 a1 b2

c1 a2 b2
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Yannakakis Algorithm – Enumeration

Two additional traversals allow us to enumerate all answers.

Theorem

Let Q be an acyclic conjunctive query. Given some database instance D,
Q(D) can be computed in output polynomial time, i.e., in time

O
(

(||D||+ ||Q(D)||)k
)

for some constant k ≥ 1.

Enumeration Algorithm

Given a join tree of query Q; a database instance D. Compute Q(D):

1 1st bottom-up traversal: semijoins as before (upwards propagation)

2 top-down traversal: “reverse” semijoins (downwards propagation)

3 2nd bottom-up traversal: compute solutions using joins.
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Yannakakis Algorithm – Proof

Proof sketch.

Correctness of the algorithm follows from the following propositions:
Given join tree T , for t ∈ V (T ) let Tt be the subtree of T rooted at t,
Rt the relation computed by semijois and R ′t the one by joins:

1 After the 1st bottom-up traversal:
Rt = πvars(t)(onv∈V (Tt) v) for each t ∈ T

2 After the top-down traversal:
Rt = πvars(t)(onv∈V (T ) v) for each t ∈ T

3 After the 2nd bottom-up traversal:
R ′t = πvars(Tt)(onv∈V (T ) v) for each t ∈ T

⇒ R ′r at root r contains all results
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Enumeration – Example

Example

1 We have already performed the
1st bottom-up traversal

2 Top-down semijoins

3 Compute result in 2nd

bottom-up traversal

t1 : R2(x2, x3)

x2 x3

c1 b2

c1 b1

c4 b6

t2 : R2(x5, x6)

x5 x6

c1 b2

c1 b1

c4 b6

t3 : R1(x1, x2, x3)

x1 x2 x3

s1 c1 b1

s1 c1 b2

s3 c3 b1

s3 c1 b4

s2 c2 b3

t4 : R3(x3)

x3

b1

b2

b3

t5 : R4(x2, x4, x3)

x2 x4 x3

c1 a1 b1

c1 a1 b2

c1 a2 b2

Pichler 17 May, 2011 Page 102



Database Theory 6. Conjunctive Queries 6.4. Acyclic Conjunctive Queries

Enumeration – Example

Example

1 We have already performed the
1st bottom-up traversal

2 Top-down semijoins

3 Compute result in 2nd

bottom-up traversal

t1 : R2(x2, x3)

x2 x3

c1 b2

c1 b1

c4 b6

t2 : R2(x5, x6)

x5 x6

c1 b2

c1 b1

c4 b6

t3 : R1(x1, x2, x3)

x1 x2 x3

s1 c1 b1

s1 c1 b2

s3 c3 b1

s3 c1 b4

s2 c2 b3

t4 : R3(x3)

x3

b1

b2

b3

t5 : R4(x2, x4, x3)

x2 x4 x3

c1 a1 b1

c1 a1 b2

c1 a2 b2

Pichler 17 May, 2011 Page 103



Database Theory 6. Conjunctive Queries 6.4. Acyclic Conjunctive Queries

Enumeration – Example

Example

1 We have already performed the
1st bottom-up traversal

2 Top-down semijoins

3 Compute result in 2nd

bottom-up traversal

t1 : R2(x2, x3)

x2 x3

c1 b2

c1 b1

c4 b6

t2 : R2(x5, x6)

x5 x6

c1 b2

c1 b1

c4 b6

t3 : R1(x1, x2, x3)

x1 x2 x3

s1 c1 b1

s1 c1 b2

s3 c3 b1

s3 c1 b4

s2 c2 b3

t4 : R3(x3)

x3

b1

b2

b3

t5 : R4(x2, x4, x3)

x2 x4 x3

c1 a1 b1

c1 a1 b2

c1 a2 b2
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Enumeration – Example

Example

1 We have already performed the
1st bottom-up traversal

2 Top-down semijoins

3 Compute result in 2nd

bottom-up traversal

t1 : R2(x2, x3)

x2 x3

c1 b2

c1 b1

c4 b6

t2 : R2(x5, x6)

x5 x6

c1 b2

c1 b1

c4 b6

t3 : R1(x1, x2, x3)

x1 x2 x3

s1 c1 b1

s1 c1 b2

s3 c3 b1

s3 c1 b4

s2 c2 b3

t4 : R3(x3)

x3

b1

b2

b3

t5 : R4(x2, x4, x3)

x2 x4 x3

c1 a1 b1

c1 a1 b2

c1 a2 b2
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Enumeration – Example

Example

1 We have already performed the
1st bottom-up traversal

2 Top-down semijoins

3 Compute result in 2nd

bottom-up traversal

t1 : R2(x2, x3)

x2 x3

c1 b2

c1 b1

c4 b6

t2 : R2(x5, x6)

x5 x6

c1 b2

c1 b1

c4 b6

t3 : R1(x1, x2, x3)

x1 x2 x3

s1 c1 b1

s1 c1 b2

s3 c3 b1

s3 c1 b4

s2 c2 b3

t4 : R3(x3)

x3

b1

b2

b3

t5 : R4(x2, x4, x3)

x2 x4 x3

c1 a1 b1

c1 a1 b2

c1 a2 b2
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Example

1 We have already performed the
1st bottom-up traversal

2 Top-down semijoins

3 Compute result in 2nd

bottom-up traversal

t1 : R2(x2, x3)

x2 x3

c1 b2

c1 b1

c4 b6

t2 : R2(x5, x6)

x5 x6

c1 b2

c1 b1

c4 b6

t3 : R1(x1, x2, x3)

x1 x2 x3

s1 c1 b1

s1 c1 b2

s3 c3 b1

s3 c1 b4

s2 c2 b3

t4 : R3(x3)

x3

b1

b2

b3

t5 : R4(x2, x4, x3)

x2 x4 x3

c1 a1 b1

c1 a1 b2

c1 a2 b2
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Example

1 We have already performed the
1st bottom-up traversal

2 Top-down semijoins

3 Compute result in 2nd

bottom-up traversal

t1 : R2(x2, x3)

x2 x3

c1 b2

c1 b1

c4 b6

t2 : R2(x5, x6)

x5 x6

c1 b2

c1 b1

c4 b6

t3 : R1(x1, x2, x3)

x1 x2 x3

s1 c1 b1

s1 c1 b2

s3 c3 b1

s3 c1 b4

s2 c2 b3

t4 : R3(x3)

x3

b1

b2

b3

t5 : R4(x2, x4, x3)

x2 x4 x3

c1 a1 b1

c1 a1 b2

c1 a2 b2
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Enumeration – Example

Example

1 We have already performed the
1st bottom-up traversal

2 Top-down semijoins

3 Compute result in 2nd

bottom-up traversal

t1 : R2(x2, x3)

x2 x3

c1 b2

c1 b1

c4 b6

t2 : R2(x5, x6)

x5 x6

c1 b2

c1 b1

c4 b6

t3 : R1(x1, x2, x3)

x1 x2 x3

s1 c1 b1

s1 c1 b2

s3 c3 b1

s3 c1 b4

s2 c2 b3

t4 : R3(x3)

x3

b1

b2

b3

t5 : R4(x2, x4, x3)

x2 x4 x3

c1 a1 b1

c1 a1 b2

c1 a2 b2
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Enumeration – Example

Example

1 We have already performed the
1st bottom-up traversal

2 Top-down semijoins

3 Compute result in 2nd

bottom-up traversal

t1 : R2(x2, x3)

x2 x3

c1 b2

c1 b1

c4 b6

t2 : R2(x5, x6)

x5 x6

c1 b2

c1 b1

c4 b6

t3 : R1(x1, x2, x3)

x1 x2 x3

s1 c1 b1

s1 c1 b2

s3 c3 b1

s3 c1 b4

s2 c2 b3

t4 : R3(x3)

x3

b1

b2

b3

t5 : R4(x2, x4, x3)

x2 x4 x3

c1 a1 b1

c1 a1 b2

c1 a2 b2
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Enumeration – Example

t1 : R2(x2, x3)

x2 x3

c1 b2

c1 b1

c4 b6

t2 : R2(x5, x6)

x5 x6

c1 b2

c1 b1

c4 b6

t3 : R1(x1, x2, x3)

x1 x2 x3

s1 c1 b1

s1 c1 b2

s3 c3 b1

s3 c1 b4

s2 c2 b3

t4 : R3(x3)

x3

b1

b2

b3

t5 : R4(x2, x4, x3)

x2 x4 x3

c1 a1 b1

c1 a1 b2

c1 a2 b2

x1 x2 x3

s1 c1 b1

s1 c1 b2
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Enumeration – Example

t1 : R2(x2, x3)

x2 x3

c1 b2

c1 b1

c4 b6

t2 : R2(x5, x6)

x5 x6

c1 b2

c1 b1

c4 b6

t3 : R1(x1, x2, x3)

x1 x2 x3

s1 c1 b1

s1 c1 b2

s3 c3 b1

s3 c1 b4

s2 c2 b3

t4 : R3(x3)

x3

b1

b2

b3

t5 : R4(x2, x4, x3)

x2 x4 x3

c1 a1 b1

c1 a1 b2

c1 a2 b2

x1 x2 x3 x4

s1 c1 b1 a1

s1 c1 b2 a1

s1 c1 b2 a2
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Enumeration – Example

t1 : R2(x2, x3)

x2 x3

c1 b2

c1 b1

c4 b6

t2 : R2(x5, x6)

x5 x6

c1 b2

c1 b1

c4 b6

t3 : R1(x1, x2, x3)

x1 x2 x3

s1 c1 b1

s1 c1 b2

s3 c3 b1

s3 c1 b4

s2 c2 b3

t4 : R3(x3)

x3

b1

b2

b3

t5 : R4(x2, x4, x3)

x2 x4 x3

c1 a1 b1

c1 a1 b2

c1 a2 b2

x1 x2 x3 x4

s1 c1 b1 a1

s1 c1 b2 a1

s1 c1 b2 a2

x2 x3 x5 x6

c1 b2 c1 b2

c1 b2 c1 b1

c1 b2 c4 b6

c1 b1 c1 b2

c1 b1 c1 b1

c1 b1 c4 b6
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Enumeration – Example

t1 : R2(x2, x3)

x2 x3

c1 b2

c1 b1

c4 b6

t2 : R2(x5, x6)

x5 x6

c1 b2

c1 b1

c4 b6

t3 : R1(x1, x2, x3)

x1 x2 x3

s1 c1 b1

s1 c1 b2

s3 c3 b1

s3 c1 b4

s2 c2 b3

t4 : R3(x3)

x3

b1

b2

b3

t5 : R4(x2, x4, x3)

x2 x4 x3

c1 a1 b1

c1 a1 b2

c1 a2 b2

x1 x2 x3 x4

s1 c1 b1 a1

s1 c1 b2 a1

s1 c1 b2 a2

x1 x2 x3 x4 x5 x6

s1 c1 b2 a1 c1 b2

s1 c1 b2 a1 c1 b1

s1 c1 b2 a1 c4 b6

s1 c1 b2 a2 c1 b2

s1 c1 b2 a2 c1 b1

s1 c1 b2 a2 c4 b6

s1 c1 b1 a1 c1 b2

s1 c1 b1 a1 c1 b1

s1 c1 b1 a1 c4 b6
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Learning Objectives

The notions of query equivalence and containment,

The Homomorphism theorem,

The complexity of query equivalence and containment,

Minimization of conjunctive queries,

Acyclic conjunctive queries,

The Yannakakis algorithm.
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