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Abstract 

Expression and processing of vagueness, which has many real 

world applications, is not handled effectively in the conventional 

relational model. In this paper we investigate a fuzzy extension to 

the relational data model and propose three fuzzy relational query 

languages. ‘ho of them are the Level-l Fuzzy Relational Algebra and 

Level-l Fmzy Relational Calculus. They are fundamental query 

languages and serve as a theoretical framework for the fuzzy 

relational database. Based on them, the Fuzzy Selective Relational 

AIgebrn is presented to express fuzzy constants and fuzzy 

comparators, which are more effective to represent vagueness in 

user queries. We show that the three proposed query languages 

have the same expressive powers. 

Keywords: fuzzy database, relational algebra, relational calculus, 

relational data model 

1. Introduction 

The relational data model proposed by E.F.Codd has been 

widely used due to its effective data independency and its simple 

mathematical structure[COD70]. However, the relational data 

model has several limitations. One of them is lack of dealing with 

subjective vagueness in user’s data retrieval requests. Many efforts 

to introduce vagueness into the theory of the relational data model 

have been made in the past. They can be classified into two major 

categories, i.e. Crisp Data and Fuzzy Query(CDFQ) and Fuzzy 

Data and Fuzzy Query(FDFQ) categories. In the CDFQ category, 

queries with fuzzy concepts can be processed for database storing 

only crisp values[LEE92, ICH86, KAC86, MOT%, WON90]. In the 

FDFQ category, queries with fuzzy concepts can be processed for 

database which can store fuzzy values[BUC82A, BUC82B, PRA84, 

UMA’)l,ZEM85,ZEM89]. 

To be accepted by most database users, fuzzy database 

systems need to have sufficient compatibilities with conventional 

database systems[MOT90]. Even though the FDFQ approaches can 

greatly enhance database functionalities, they are too far from 

conventional database systems yet. On the other hand, the CDFQ 

approaches are more compatible with conventional database 

systems. They can also enhance database functionalities 

significantly. 

Among the CDFQ approaches, ARES[ICH86] and VAGUE 

[MOT881 are worthy of notice. ARES and VAGUE introduced the 

‘similar-to’ comparator into the relational algebra. They can deal 

with vagueness to some extent but cannot deal with fuzzy 

concepts such as “big”, ” about-5”, etc. In this paper we propose a 

fuzzified relational data model to accomodate vagueness using the 

CDFQ approach. 

The remainder of this paper is organized as follows. In section 

2, we present the Level-l Fuzzy Relational Algebra(FRA-1) and 

Level-l Fuzzy Relational Calculus(FRC-1). They are fundamental 

query languages of the proposed model. In section 3, we define 

the Fuzzy Selective Relational Algebra(FSRA) to express fuzzy 

constants and fuzzy comparators. It is a query language which is 
more effective to represent vagueness in user queries. We also 

show that FRA-1, FRC-1 and FSRA have the same expressve 
powers. Section 4 analyses various aspects of the proposed model. 

Finally we give concluding remarks in section 5. 

2. The Level-l Fuzzy Relational Data Model 

In this section we define two fundamental query languages in 

the proposed level-l fuzzy relational data model. They are Level-l 

Fuzzy Relational Algebra(FRA-1) which is a fuzzy extension of the 

relational algebra, and Level-l Fuzzy Relational Calculus(FRC-1) 



which is a fuzzy extension of the relational calculus. As the 

relational algebra and the relational calculus are defined on 

relations, FRA-1 and FRC-1 are defined on level-l fuzzy relations. 

A level-l fuzzy relation is a subset of Cartesian product of level-l 

fuzzy sets[KLIBB]. 

DEFINITION 1 

Suppose that D,, D,, . . . . D, are domains. Then a leuel-1 fuzzy 

relation R is defined as 

R=((t,p,(t)) I t=<x,,xr I..., x,>,O<l+Jt)c:l,x,e D,,x*E 

D,, . . . . xk E D, 1, 

where uR(t) denotes the degree to which tuple t belongs to the 

level-l fuzzy relation R. 

For simplicity, we will use the term “fuzzy relation” to refer to 

level-l jicz5y relation 

2.1. The Level-l Fuzzy Relational Algebra 

The Level-1 Fuzzy Relational Algebra(FRA-1) is a collection of 

formal OperatOrs acting on fuzzy relations and producing fuzzy 

relations as results. It is an extension of the conventional relational 

algebra by using the extension principle[KLIBB]. 

DEFINITION 2 

The Level-l fuzzy relationnl algebra has six basic operators i.e. 6, 

II, v, n, x, -. Suppose that there are two fuzzy relations R, and 

R2 
(1) Selection : o 

axey(RJ=l(t,~ ox e U(R,)(t) ) 1 X 0 Y with respect to t is 

true, cl,, ycR,Jt) = P,(t) L 

where X is an attribute name, Y is either an attribute name 

or a crisp constant and 0 is a comparator among =, f, $2, 

> and <. 

(2) Projection : II 

WV = i ( t t ~~~~~~ (t) ) I l.tR,(t’) z 0, t = sub-list(t’ I S), 

uns&t) = MAX[ lt&) 1, f = same-project-set(t’ I S) ) , 

where sub-listft’ I S f is a projected tuple of t’ with 

respect to the attribute list S and same-project-set(t’ I S) 

denotes ( t* I sub-list(t* I S) = sub-list(t’ I S) 1 

(3) Union : u 

R, u R, = ( ( t r cL+&) ) 1 vR,vr&) = MAW k,(‘)# htZ(f) 1 I 

(4) Intersection : n 

R, n R, = I ( t s ~R1+(t) ) 1 CL+&) = MN k,(t), cl,(t) 11 

(5) Cartesian Product : x 

R, x R, = ( ( t s +m2W 1 1 k,(tJ ’ 0, F&J ’ 0, t = 

concatenateft,, t2). pRlxR2(t) = MN cLR,(tlh &$,I 1 I 

Here, if t, = c xi, x2, . . . , xr > and t, = c yl, yr, . . . , ys >, 

then concatenate(t,, tJ = < x,, x2, . . . , xr, y,, yz, . , ys >. 

(6) Difference : - 

R, - R, = ( ( t , l.++(t) ) I l&aZ(t) = MIN( ual(t), I - &#) ) ) 

When we restrict the value in lt attribute to be either 0 or 1, it is 

easy to see that FRA-1 is reduced to the relational algebra. Though 

we use MIN and MAX operators to represent AND and OR 

semantics, respectively, they were just for illustrations. 

Depending on the circumstances, we may use any t-norm, t-conorm 

operators[KLIBB] instead of MIN and MAX. Note that unlikely to 

the relational algebra, the intersection operator cannot be 

represented by the combination of the other five operators. 

2.2. The Level-l Fuzzy Relational Calculus 

We define Level-l Fuzzy Relational Calculus(FRC-1) by 

applying the extension principle to the relational calculus. In fact, 

formulas in FRC-1 are syntactically equivalent to those in the 

domain relational calculus. Their interpretations are extended to 

handle fuzzy truth values. 

DEFINITION 3 

A Formula in FRC-1 is either an atomic formula or compound 

formula. 

(1) Atomic formula 

- Every literal p(X,, X,, . . . , X,) is an atomic formula, 

where p is a fuzzy predicate symbol[KLIBB] and 

x,, x,, ... I X, are attribute names. 

- Every arithmetic comparison X 0 Y is an atomic 

formula, where X is an attribure name, Y is either 

a constant or an attribute name and 0 is a 

comparator among =, f, I, >, > and <. 

(2) Compound formula 

Compound formulas are defined recursively. If f, 

and f2 are formulas and X is an attribute name, the 

followings are also formulas. 

f, A f, I f, ” fi, -fi I ( 3x ) f,(X) I wx ) flW. 

As in the relational calculus, each formula in FRC-1 represents 

a fuzzy relation i.e. interpretation. To make domain independent 

interpretations, we adopt the same safety criteria[ULLSS] in FRC-1. 

From now on, we will use the term “FRC-1 formula” to refer to the 

safe FRC-1 formula because unsafe formula is beyond the scope of 

this paper. 
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THEOREM 1 DEFINITION 4 

The followings are interpretations of FRC-2 formulas. We 

use lower-case letters to denote the formulas and upper- 

case letters to denote the corresponding fuzzy relations. 

v(f) denotes the (fuzzy) truth value of the formula f. 

(1) When the formula f is p(X,, X,, . . . , X,), 

F = l ( C Pp(t) ) 1 t = <X,, X, . . . , X,>, j@) = v(p(X,, 

x,, ... , X,)) > 0 1. 

(2) When the formula f is X 0 Y A f, (X,, . . . , X,) , 

F = { ( t, pF(t) ) I t = a list of free variables of f , e(t) 

=v(f)>O), 

wherev(f)=v(XOY A fz)=MIN(v(XOY),v(f,)). 

(3) When the formula f is f, A fz, 

F = ( ( t, wF(t) ) I t = a list of free variables of f , b(t) = v( f ) 

> 0 1, 

where v(f) = v( f, A fi ) = MIN ( v( fJ, v( f,) ). 

(4) When the formula f is f, v fz, 

F = ( ( t, b(t) ) I t = a list of free variables of f , b(t) = v( f ) 

>O), 

where v(f) = v( f, v f, ) = MAX ( v( f,), v( f, ) ). 

(5) When the formula f is -f, h f,, 

F = ( ( t, kLF(t) ) I t = a list of free variables of f , h(t) = v( f ) 

>O), 

where v(f) = v( -f, A f1 ) = MIN ( l- v( f,), v( fz) ). 

(6) When the formula f is ( 3X ) f,(Y,, . . . , Y, X, Z,, . . . . Z4), 

F = ( ( t, /+(t) ) I t = c Y,, . . . I yp, z,, .“I zq >, p,(t) = v( f ) > 0 1 I 

where v(f) = v( ( 3X ) f,(Y,, . . . , Yp, X, Z,, . . . . ZJ ) 

= MAX, ( v(f,(Y,, . . . , Yp, X Z,, . ..x zq)) 1. 

(7) When the formula f is ( VX ) f,(Y,, . . . , Yp, X, Z,, . . . . ZJ, 

F = { ( t, kLF(t) ) I t = < Y,, . . . , Y, Z,, . . . . Zq >, p,(t) = v( f ) > 0 1 , 

where v(f) = v( ( VX ) f,(Y,, . , Yf, X, Z,, . . . . Zs) ) 

= MIN, ( v(f,(Y,, . . . , Yp, X, Z,, . . . . Zq)) ) . 

In (2) and (5) of Defintion 4, we ANDed secondary formula fI 

with the original single formulain Definition 3. In any safe 

formula, such a single formula cannot exist alone. It has to be 

ANDed with another safe formula. As in FRA-1, when we restrict 

the truth value of each formula to be either 0 or 1, FRC-1 can be 

easily shown to be reduced to the relational calculus. 

2.3. The Relationship between FRtl-1 and 
FRC-1 

We show that the expressive power of FRA-1 and FRC-1 is 

equivalent to each other. First, we show that the expressive 

power of FRC-1 is greater than or equal to that of FRA-1. 

Every query expressible in FRA-1 is expressible in FRC-1, 

Proof: 

We show by induction that for every expression t? of 

FRA-1 defining a k-ary fuzzy relation, there is a formula 

,f(X,, X,, ,._ , XJ of FRC-1 defining the same relation. We 

use E, E, and E, to denote the fuzzy relations of FRA-1 

expressions e, e, and e,, respectively. ‘We also use F, F, and 

F, to denote the fuzzy relations corresponding to the FRC- 

1 formulasf,f, andf,, respectively. 

The basis covers the case where e is a single fuzzy 

relation R. If we use a fuzzy predicate Y to represent a 

fuzzy relation R in FRC-1 formula, the corresponding 

formula to e is trivially r( X,, X,, . , XJ. 

For the induction, we consider six cases corresponding 

to the six basic operators of FRA-1. 

Casel:e=e, we, 

We show that the FRC-1 formula,f= f, vfi represents the 

same fuzzy relation as E. By defintions, 

E = [ ( t , /I#, ) I@ = MAX( /@y(t), /.I$) ) 1 . c 1.1 > 

F=l(t,/+W) IpFLF(f)=v(f)=v(f,vf2)) 

= J 1 t , p,(t) J I&,(t) = MAX1 v(f,w, v(f,w ) 1. < 1.2 > 

By the induction hypothesis, we already know that E, and 

E, are the same fuzzy relations as F, and F,, respectively. 

SO, 

pFl(t) = p,,(t) and bp2(t) = ,uE2(t) . . . . . . . . . . . . . . . . . . . . . . . . . < 1.3 > 

Now, by the interpretation of FRC-1, 

pLFt(t) = v&,(t)) and &t(t) = z&,(f)) . . . . . . . . . . . . . . . . . . . . . . . . . . < 1.4> 

From equations cl.l>, <1.2>, <1.3> and <1.4> 

pECf) = MAX( &,(f), @t) ) = MAX{ CL@), 

,q,,w J = MJw vff,W, v(f,ftN J = /.$w. 

Thus, E is equal to F. 

CaseZze=e,ne, 

By the similar procedure to Case 1 except substituting v 

and MAX with n and MIN, respectively, we can easily 

show that the formula, f, A f, represents the same fuzzy 

relation as E. 

Case3:e=e, -e, 

In the same manner as Case 1, we can easily show that the 

formula,f, A -f, represents the same fuzzy relation as E. 

Case4:e=e,xe, 

In the same manner as Case 1, we can easily show that the 

formula,f,(X1, . . . , XJ A f2W,, . . . . YJ represents the same 

fuzzy relation as E when E, = I ( t, , pEl(fJ J I t, = <x1, . , 

x,~IandE,=l(t~, &,lf2J J I t, = <y,, , yqs> 1. 
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Case 5: e = a,Je,) 

In the same manner as Case 1, we can easily show that the 

formula,f, /\ X 0 Y represents the same fuzzy relation as E. 

Case 6: e = I&+,, ,,,, x k,) 

Suppose that attribu:e list of E, is ( X,, X,, . . . , $ Z,, Z,, , 

Zp ). In the same manner as Case 1, we can easily show that 

the formula,J X,, X, . . , X, ) = (3ZJ0ZJ.. .(3ZJf,( XI, X,, 

I Xf z,, z,, .,, I 2,) re resents the same fuzzy relation as E. p 

Q. E. D. 

The next theorem shows that the expressive power of FRA-1 is 

greater than or equal to that of FRC-1. Then by Theorem 1, we can 

conclude that FRA-1 and FRC-1 have equivalent expressive 

powers. 

THEOREM 2 

Every query expressible in safe FRC-1 is expressible in FRA- 1. 

Proof: 

We show that for every query f of FRC-1 representing 

a k-ary fuzzy relation, there is an expression e of FRA-1 

defining the same relation by using induction. In addition 
to the same notational conventions as those in Theorem 1, 

we use Z’,, Z’,, . . . . and Z’* to denote the same attribute 

names Z,, Z,, . . . . and Z, respectively. 

The basis covers the case where f is an atomic formula 

r( x,, x,, I.. ) XJ. If we use fuzzy predicate r to represent 

the fuzzy relation R in FRC-1 formula, the corresponding 

FRA-1 expression is trivially R( X,, Xz, . , XJ. 

For the induction, we consider six cases corresponding 

to the six basic connectives and quantifiers of FRC-1. 

Case 1 :f= X 0 Y n f, (X,, . . . , X2 and FV is a list of 

free variables. 

According to the FV, we can consider three sub-cases. The 

other possibilities are excluded due to the safety criteria. 

If FV = ( X,, , Xp ), 

We’ve already prove that the above formula and the 

expression e = a.&eJ of FRA-I represent the same 

fuzzy relations in Case 5 of Theorem 1. 

If FV = ( X,, , X, , X J, Y is a constant a and 0 = “= “, 

We show that FRA-1 expression, e = e, x I (a, 1.0) ) 

generates the same fuzzy relation as F. By definitions, 

F = I C t , &t) ) I j+LF(f) = v0.J = UC X = a n f, J 1 

=ICt,pJtJJ IH(t)=MIN(u(X=a),v(f;))l 

= I c t , &L,(t) ) 1 pJt) = r.Jcf,, I . . . . . . . . . . . . . . . . . . . . . . <2.1> 

E = I f t , p&f) ) I pJt) = j@fl)J . . . . . . . . . . . . . . . . . . . . <2.2> 
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By the induction hypothesis, we already know that E, 

is the same fuzzy relations as F,. So, 

pF,(tJ = p&) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . <2.3> 

Now, by the interpretation of FRC-1, 

p,,(t,) = v(f,,(t,)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . <2.4> 

From equations 42.1>, ~2.22, <2.3>, and c2.4> 

p&t) = jf& = jf&) = v(f,lt,)) = jf#). 

Thus F is equal to E. 

IfFV=(X,, , X,,X,, Y f[X,, , X,1 and@=“=“, 

By th similar manner, we can easily show that FRA-1 

expression, e = o,.=, ( eI x17 Je,) ) generates the same 

fuzzy relation as F. 

Case 2 : f =fJX,, X2, ,.. , Xd Z,, Z,, . . . . Z,) n f, (Y,, Y,, . . . , Yq, 

z;, z; . ..‘ z*>, 
We show that the FRA-1 expression e = 4,. ,,_, + y,, ,_,, y4’ zI, ,,,, 

z,(~z,=z,.(...(~z,=z~ ( eI x e2 )) ) J, represents the same 

fuzzy relation as F. By defintions, 

F = I C t , j+,(t) ) I j@) = vCQI = df, A f, ) I 

= l C t , j@ ) I j# = MlNC v(f,W, v(f,W J I. . . . <2.5> 

E = I ( t , &U J l&(t) = MINl /.i&, p& J I . . . . . . ~2.6~ 

By the induction hypothesis, we already know that E, and 

E, are the same fuzzy relations to F, and F,, respectively. 

so, 

fir,(f) = 11~~0) and &$tJ = ~~$0 . . . . . . . . . . . <2.7> 

And by the interpretation of FRC-1, 

~~,(f) = u(f,(tJJ and ~~,!t) = v(f,(tJJ . . . . . . . . . <2.8> 

From the equations <2.5>, <2.6>, <2.7>, and <2.8> 

/r,(t) = MAXI/.@, /i&J J = MAXC I.~,~W, pJtJ ) * 
= MAXC u(f,W, v(fW ) = @). 

Thus F is equal to E. 

Case 3 : f = f&X,, X,, . . . , XkJ vfiWg,Xg, . . . , X$, 

We’ve already prove the above formula and the expression 

e1 u e, of FRA-1 represent the same fuzzy relations in the 

Case 1 of Theorem 1. 

Case 4 : f = -f,{ Z,, Z,, . . . . Z) A f, { Y,, Yz, . . . , Y,. Z;, Z>, . . . . 

Z’,), 

By the induction hypothesis, we already know that E, and 

E? are the same fuzzy relations to F, and F?, respectively. 

We denote DOM(f,) to refer to the set of all values that 

appear in the formulaj‘ itself and the corresponding fuzzy 

relation F,, except the rational numbers for the degrees of 

memberships[U1188]. Under the domain independency, 

the corresponding fuzzy relation to -j, is DOklC/,J’- E,. 

So, this is a special case of the Case 1. 

Case 5: f=(ZlX)f,(Y,, . . ..Y.,X,Z,,...,Z,), 

We have already proved the above formula and the 



expression fl, 1, . , Yp z,, . . . . zq fe,) of FRA-1 represent the same 

fuzzy relation at the Case 3 of Theorem 1. 

Case 6 : f = ( t?X )fi(Yz, . . . , Y,, X, Z, .,., Z$, 

It is easy to see that ( VX )fr(Y1, . , Y,, X, Z,, . . . . ZJ = -( 3rx 

) -flCY1, . . , Y,, X, Z,, . . . . Z,& So, this case is already 

covered in Case 4 and Case 5. 

Q. E. D. 
COROLLARY 1 

FRA-1 and FRC-1 have the same expressive powers 

Proof: 

From Theorem 1 and Theorem 2, the collorary 

immediately follows. 

Q. E. D. 

In the conventional relational model, if a query language can 

express all of the basic operators of the relational algebra, we call 

them relationally complete. For the case of the fuzzy relational 

model, we extend the notion of the relational completeness. We 

can regard a query language as a level-1 fuzzy relationally complete 

language if it can express all operators of FRA-1. 

3. Fuzzy Constructs in Fuzzy Relational Query 
Languages 

FRA-1 and FRC-1 are fundamental query languages of the 

proposed level-l fuzzy relational data model. Since they are 

straightforward extensions to the counterparts in the conventional 

relational data model, we do not introduce any new syntactic 

constructs into them. 

In order to introduce constructs expressing vagueness, the 

FUZZY Selective Relational Algebra(FSRA) has been proposed in 

[LEE92]. In this section, we briefly describe FSRA and show that 

its expressive power is equivalent to those of FRA-1 and FRC-1. 

3.1.The Fuzzy Seletiue RelatiOnal Algebra 

Because the vagueness in user’s data requests are mostly 

expressed through selection predicates, the selection operator, i.e. 

o, plays a major role in fuzzy query formulations. We introduce 

fuzzy constants and fuzzy comparators into the selection operator 
to facilitate expression of vagueness. 

In contrast to the conventional (crisp) constant, a fuzzy 

constant is defined as a fuzzy set. Examples of the fuzzy constants 

are “tall”, “small” and “about-5”. While conventional comparators 

are used to represent crisp comparisons, the fuzzy comparators, =, 

!=, are used to represent similarity-based comparisons. 

DEFINITION 5 

As in FRA-1, the Fuzzy Selective Relational AlgebraCFSRA) has 

six basic operators i.e. &, II, u, n, x, -. Only selection operator 

is further extended to express fuzzy constants and fuzzy 

comparators. The other operators are all the same as those of 

FRA-1. 

Selection operator of FSRA is defined as 

where X is an attribute name, 0 is a comparator among =, f, 

I, 2, >, c, =, !- and Y is either an attribute name or a constant. 

Here the constant is either a crisp constant or a pvlzzy 

constant. 

By using FSRA, we can express a vague query such as “Find 

part whose weight is heavy and color is similar to red”. “Heavy” 

and “similar to” are fuzzy terms. Fuzzy constants and fuzzy 

comparators are used to express those fuzzy terms as follows. 

@weigh, = ,,eavy ( @co,,, _ -red” @‘ART) )s 

where PART is a fuzzy relation whose tuples are descriptions of 

parts. Since conventional relations can be considered as fuzzy 

relations whose tuples belong to the relations at degree 1, FSRA 

can also be used on conventional databases. 

To store semantics of the fuzzy constants and fuzzy 

comparators, we need special kinds of relations. We call them 

semnntic relations, which can be classified into three categories. 

fuzzy constant fuzzy comparator 

continuous 
domain 

scattered 
domain t-4 (3) 

Figure 1. Classification of semantic relations 

The classification is based on the domains and structures of 

the stored informations. Because a relation can hold only discrete 

data, we need an approximation to store information on 

continuous domain. But in the case of scattered domain, we do not 

need such an approximation. 

A fuzzy constant is expressed as a fuzzy set(unary fuzzy 

relation), but a fuzzy comparator is expressed as a binary fuzzy 

relation. A fuzzy comparison on continuous domain can be 

substituted by a fuzzy predicate using a fuzzy constant on 

continuous domain. Let’s see an example. The fuzzy comparison 

such that ” X is similar to 5.0” can be substituted by the fuzzy 

predicate such that ” X is about-5.0”. So we exclude the case of 

fuzzy comparators on continuous domains. 
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We present the schema of each semantic relation. 

(1) Fuzzy Constant on Continuous domain 

( ( t, p(t) ) , t = < lower-value, upper-value >, 0 < p(t) < 1) 

where p(t) denotes the degree to which the values in [Ibwer- 

value, upper-value] conforms to the fuzzy concept of this 

semantic relation. An example semantic relation of this type is 

shown in Figure 2. 

Domain of Height = 10, 2001 

p& LowerValue lUpperValue 

F 1.0 ---------.---.---..----.-.---.---.---.-- ~ 
0.9 
0.8 
0.7 t ---___-______.____.________________ d;?il 

Height 

50 85 125 160 185 200 

Figure 2. An example of the semantic relation. 

(2) Fuzzy Constant on Scattered domain 

{ ( t, p(t) ) , t = < value >, 0 c p(t) I 1 ) 

where l(t) denotes the degree to which “value” conforms to the 

fuzzy concept of this semantic relation. 

(3) Fuzzy Comparator on Scattered domain 

( ( t, p(t) ) , t = < A-value , B-value 7,0 < p(t) <- 1 ) 

where p(t) denotes the degree to which “A-value” is 

similar to “B-value”. 

3.2. Relationships among FSRR, FRR-1 and 

FRC- 1 
We have defined FRA-1, FRC-1 and FSRA. The relntionships 

among those three query languages are shown in Figure 3. 

Since we have shown that FRA-1 and FRC-1 have the same 

expressive powers in Corollary 1, the proof that the expressive 

power of FSRA is equal to FRA-l implies that all three query 

languages have the same expressive powers. Clearly, th 

expressive power of FSRA is greater than or equal to that of FRA-1 

because FSRA is a strict extension of FRA-1. If we show that the 

expressive power of FRA-1 is greater than or equal to that of FSRA, 

we can conctude that the two languages have the same expressive 

powers. Note that FSRA ia a level-l fuzzy relationally complete 

language. 
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Equlavalent \ 

expressive powers 

fuzzy constant, 
fuzzy comparator 

J 
extension - 
principle 

Figure 3. Relationships among FRA-1, FRC-1 and FSRA 

THEOREM 3 

Every query expressible in FSRA is expressible in FRA-1. 

Proof: 

We only extenti the selection condition of FRA-1 to 

define FSRA. If we can transform any query in FSRA to 

that of FRA-1, the proof is completed. The following 

investigate each case of the extended features. 
Case 1: Fuzzy Constant on Continuous Domain 

u x, =Jb:ui;r.kml (R) 

= $, , xJ% 2 Lmm”du (4. < lrPpLT”dd~ x s~~zzyMrl~~~ 

=x, cfirry_trrm (lb ’ 

= 4,. xk(=xi 2 Lmrr”a,L!e ‘3, < Uppr”.luc(R x ~Jtmy@lm~)) 

where SRf~rry-lmm is a semantic relation containing the 

information of fuzzy term and m,,y-,- is the complement 

of it. 

Case 2: Fuzzy Constant on Scattered Domain 

u x, =jiuq-!mt (R) = G1, . . . , xpx;= VdJR x qimy~tmn~~ 

OXj ~/urrQl%l (*’ = “x,, ... # Xf”Xi = “dWU(R xxfiZZY-itd) 

where s*,“zzyJmn is a semantic relation containing the 

information of fuzzy term and ?X+,,, is the complement 

of it. 

Case 3: Fuzzy Comparator on Continuous Domain 

ax - JR) = “Al, , ,,(~,.va,w s x (%v.,w JR x SRsd 

ox ,_ Y(R) = “A,. .Ali(~*-“.ld! (%.“dut JR x SXSIM)) 
where SR s1M is a semantic relation containing the similarity 

between two values. 
COROLLARY 2 

FM-l, FRC-1 and FSRA have the same expressive powers. 
Proof: 

From Corollary 1 and Theorem 3, the collorary immediately 

follows. Q.E.D. 



4. Analysis of the Level-l Fuzzy Relational 
Model 

In section 2 and section 3, we have proposed a fuzzy relational 

model by defining fuzzy relations and fuzzy query languages to 
mmnodate vagueness. This section analyses various aspects of 

the proposed model and also describes important functional 

advantages over the conventional relational model. 
Effective retrieval for a vague query 

Requests for data can be classified into specific requests and 

vague requests. Vague requests include fuzzy qualifications. While 

specific requests can be processed effectively in the conventional 

query systems, vague requests are not. To process vague requests 

in conventional query systems, users must retry specific queries 

repeatedly with minor modifications until they match satisfactory 

data. 

As an example, suppose that a user issue a data request such 

as ” Find heavy and long parts” on the database in Figure 5. 

PART 

~~ 

Figure 5. An example database 

First, the user may formulate a query using the relational 

algebra such as, 

Because there is no tuple satisfying the above qualification, the 

result relation is null. Then he may modify the query to relax some 

constraints as follows. 

0 Wgt>M (qm,,an (PART) ) 

Still, the result relation is null. So he may modify the query again 

such as, 

Now, a tuple < 00Gscrew, blue, 17.2, 1000.9 > is retreived. If he 

becomes tired due to repeated trials of similar queries, he may be 

satisfied with this result, which we think is not satisfactory. 

On the other hand, the proposed FSRA comes up with a 

solution effectively. To process queries in FSRA, we need semantic 

relations. Suppose we have semantic relations having semantics of 

“heavy” and “long” as in Figure 6. 
We can express the afore-mentioned data request by using the 

FSRA as follows 

o* wgt = heavy (a* Len _ ,cng (iJA4RT) ) 
ft is transformed to a FRA-1 query as follows. For simplicity, we 

divide the transformed query into two subqueries. 

HEAVY 

LONG 

y=yz; , ralue I- T 

0.0 

IKE 
0.1 
0.5 

_ ..A,. 0.8 
1.0 

Figure 6. Sematic relations “HEAVY” and “LONG” 

TEMP 

After processing the above queries, we have the result as in Figure 

7. 

-T 
- 

0.0 
0.0 
0.8 
0.5 

- 

Figure 7. Result of a FSRA query 

As shown in Figure 7, we get the degree of query conformity 

for each tuple at one time. Clearly, FSRA is much more effective 

and flexible in processing vagueness than the conventional 

relational queries. 

Ranking capability 

In the case of a specific query, every tuple in the database 

either conforms to the query completely or does not conform to the 

query at all, i.e, query conformity is either 1 or 0. However, in the 

case of a vague query, the query conformity is a matter of degree. 

Let’s suppose that an employer wants to find young employees in 

his company. Is an employee of 28 years, Tom fit for the 

employer’s demand? How about the other employee of 30 years, 

John? Though Tom is better fit for the employer’s demand, John is 

also fit for it to some extent. So we must rank the tuples in the 

answer according to their query conformities. Because the values 

in the p attribute represent the query conformities in the proposed 

model, ranking the tuples according to the conformities to the 

given query can be easily achieved. 
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Compatibility with the conventional relational database 

To be accepted by most database users, fuzzy database 

systems should have sufficient compatibilities with conventional 

database systems[MOT90]. FRA-1 and FRC-1 are strict extensions 

to the relational algebra and the relational calculus, respectively. 

The fuzzy relation is also a strict extension to the conventional 

relation. Thus, the proposed model is a strict extension to the 

relational data model and well compatible with the conventional 

database systems. When we restrict values in u attributes to be 

either 0 or 1, the proposed model is reduced to the conventional 

relational model. 

Individual qualifications 

As a vague linguistic term may have different meanings to 

different users, fuzzy query systems must interprete the vague 

queries with individual qualifications. While one think that 1.000 

dollars are big money, the other may think that they are not. Fuzzy 

query systems must support such kinds of individual differences. 

In FSRA, the meanings of vague terms, i.e. fuzzy constants and 

fuzzy comparators, are stored in the forms of semantic relations. 

As semantic relations are handled in the same manner as data 

relations, by using normal database operations, users can easiliy 

adjust semantics by modifying the contents of semantic relations. 

Because mappings from vague terms to the corresponding 

semantic relations reflect the individual qualifications, users can 

easily make the query system interprete the vague terms by using 

their own semantics. 
Measure of expressive powers 

There have been many efforts to accomodate vagueness in the 

relational data model. Some of them can handle a large variety of 

vagueness while the others concentrated on the specific vagueness. 

The proposed model provides a notion of level-l fuzzy relational 

cornpfeteness. As in the relational data model, we can regard a 

query language as a level-l fuzzy relationally complete language if 

it can express all operations in FRA-1. 

5. Concluding Remarks 

In this paper we have proposed a fuzzy relational data model. 

We have presented two fundamental query languages FRA-1 and 

FRC-1, and have presented a derived query language FSRA to 

express fuzzy constants and fuzzy comparators. Fuzzy constants 

and fuzzy comparators in FSRA are effective constructs to deal 

with vagueness in data retrieval requests. We have shown that 

FRA-I, FRC-1 and FSRA have the same expressive powers. 

Unlikely to query systems accepting specific qualifications, the 

proposed fuzzy query systems have efficient ranking capabilities. 

Because the proposed fundamental query languages are Strict 
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extensions to the counterparts of the relational data model, they 

can be directly applicable to conventional relational databases with 

only additional semantic relations. In other words, the proposed 

model is well compatible with the conventional relational database 

systems. As semantic relations are handled in the same manner as 

data relations, the proposed model effectively support individual 

qualifications in query interpretations. We have mentioned the 

notion of level-l fuzzy relational completeness, which is a 

fuzzified version of the conventional one. The notion of level-l 
fuzzy relational completeness can be used as a theoretical measure 

of expressive powers of various fuzzy query languages. 

We can extend the level-l fuzzy relation to level-N fuzzy 

relation, which is a subset of Cartesian product of Level-N fuzzy 

sets[KLI88]. Such extensions need to be investigated to manage 

more fuzziness in the database. 
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