
A Performance Study of Big Data on Small Nodes

Dumitrel Loghin, Bogdan Marius Tudor, Hao Zhang, Beng Chin Ooi, Yong Meng Teo
Department of Computer Science
National University of Singapore

{dumitrel,bogdan,zhangh,ooibc,teoym}@comp.nus.edu.sg

ABSTRACT

The continuous increase in volume, variety and velocity of
Big Data exposes datacenter resource scaling to an energy
utilization problem. Traditionally, datacenters employ x86-
64 (big) server nodes with power usage of tens to hundreds
of Watts. But lately, low-power (small) systems originally
developed for mobile devices have seen significant improve-
ments in performance. These improvements could lead to
the adoption of such small systems in servers, as announced
by major industry players. In this context, we systemati-
cally conduct a performance study of Big Data execution on
small nodes in comparison with traditional big nodes, and
present insights that would be useful for future development.
We run Hadoop MapReduce, MySQL and in-memory Shark
workloads on clusters of ARM big.LITTLE boards and In-
tel Xeon server systems. We evaluate execution time, en-
ergy usage and total cost of running the workloads on self-
hosted ARM and Xeon nodes. Our study shows that there
is no one size fits all rule for judging the efficiency of ex-
ecuting Big Data workloads on small and big nodes. But
small memory size, low memory and I/O bandwidths, and
software immaturity concur in canceling the lower-power
advantage of ARM servers. We show that I/O-intensive
MapReduce workloads are more energy-efficient to run on
Xeon nodes. In contrast, database query processing is al-
ways more energy-efficient on ARM servers, at the cost of
slightly lower throughput. With minor software modifica-
tions, CPU-intensive MapReduce workloads are almost four
times cheaper to execute on ARM servers.

1. INTRODUCTION
The explosion of Big Data analytics is a major driver for

datacenter computing. As the volume, variety and veloc-
ity of the data routinely collected by commercial, scientific
and governmental users far exceeds the capacity of a single
server, scaling performance in the Big Data era is primarily
done via increasing the number of servers. But this approach
of scaling performance leaves Big Data computing exposed

This work is licensed under the Creative Commons Attribution
NonCommercialNoDerivs 3.0 Unported License. To view a copy of this li
cense, visit http://creativecommons.org/licenses/byncnd/3.0/. Obtain per
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 41st International Conference on
Very Large Data Bases, August 31st September 4th 2015, Kohala Coast,
Hawaii.
Proceedings of the VLDB Endowment, Vol. 8, No. 7
Copyright 2015 VLDB Endowment 21508097/15/03.

to an energy utilization problem, and mounting operational
overheads related to the datacenter costs such as hosting
space, cooling and manpower costs.

Concomitantly with the explosion of Big Data, the past
few years have seen a spectacular evolution of the processing
speed of ARM-based mobile devices such as smartphones
and tablets. Most high-end mobile devices routinely have
processors with four or eight cores and clock frequencies
exceeding 2 GHz, memory sizes of up to 4 GB, and fast
flash-based storage reaching up to 128 GB. Moreover, the
latest generations of mobile hardware can run full-fledged
operating systems such as Linux, and the entire stack of
user-space applications that is available under Linux. Due
to their smaller size, smaller power requirements, and lower
performance, these systems are often called small nodes or
wimpy nodes [14].

As a result of the fast-evolving landscape of mobile hard-
ware, and in a bid to reduce the energy-related costs, many
companies and research projects are increasingly looking at
using non-traditional hardware as server platforms [27, 31].
For example, Barcelona Supercomputing Center is looking
at using ARM-based systems as the basis for their exas-
cale platform [23]. Key hardware vendors such as Dell, HP
and AppliedMicro have launched server prototypes based on
ARM processors [28], and a plethora of startups are looking
into adopting ARM solutions in the enterprise computing
landscape. Even AMD, which historically has only shipped
server processors based on x86/x64 architecture, targets to
launch ARM-based servers [2].

Scaling Big Data performance requires multiple server
nodes with good CPU and I/O resources. Intuitively, high-
end ARM-based servers could fit this bill well, as they have
a relatively good balance of these two resources. Further-
more, their low energy consumption, low price, and small
physical size make them attractive for cluster deployments.
This naturally raises the research question of the feasibil-
ity of low-power ARM servers as contenders for traditional
Intel/AMD x64 servers for Big Data processing. If an ARM-
based cluster can match the performance of a traditional In-
tel/AMD cluster with lower energy or cost, this could usher
in a new era of green computing that can help Big Data an-
alytics reach new levels of performance and cost-efficiency.

Energy-efficient data processing has long been a common
interest across the entire landscape of systems research. The
bulk of related work can be broadly classified in two main
categories: energy-proportionality studies, which aims to im-
prove the correlation between server power consumption and
the server utilization [19, 17, 10, 26], and building blocks for

762

energy-efficient servers, where various software and hard-
ware techniques are used to optimize bottleneck resources
in servers [8, 26, 31, 24, 27]. As the dominating architec-
ture in datacenters has traditionally been Intel/AMD x64,
most of the studies are geared toward these types of servers.
In the database community, studies on Big Data workloads
almost always use Intel/AMD servers, with a few works us-
ing Intel Atom systems as low-power servers [8, 1, 31, 24].
The shift to ARM-based servers is a game-changer, as these
systems have different CPU architectures, embedded-class
storage systems, and a typically lower power consumption
than even the most energy-efficient Intel systems [25]. As the
basic building blocks of servers are changing, this warrants
a new look at the energy-efficiency of Big Data workloads.

In this paper, we conduct a measurement-driven analy-
sis of the feasibility of executing data analytics workloads
on ARM-based small server nodes, and make the following
contributions:

• We present the first comparative study of Big Data
performance on ARM big.LITTLE small nodes versus
traditional Intel Xeon nodes. This analysis covers the
performance, energy-efficiency and total cost of owner-
ship (TCO) of data analytics. Our analysis shows that
there is no one size fits all rule regarding the efficiency
of the two server systems: sometimes ARM systems
are better, other times Intel systems are better. Sur-
prisingly, deciding which workloads are more efficient
on small nodes versus traditional systems is not pri-
marily affected by the bottleneck hardware resource,
as observed in high-performance computing and tradi-
tional server workloads [27]. Instead, software imma-
turity and the challenges imposed by limited RAM size
and bandwidth are the main culprits that compromise
the performance on current generation ARM devices.
Due to these limitations, Big Data workloads on ARM
servers often cannot make full use of the native CPU or
I/O performance. During this analysis, we identify a
series of features that can improve the performance of
ARM devices by a factor of five, with minor software
modifications.

• Using Google’s TCO model [15], our analysis shows
that ARM servers could potentially lead to four times
cheaper CPU-intensive data analytics. However, I/O-
intensive jobs may incur higher cost on these small
server nodes.

The rest of the paper is organized as follows. In Sec-
tion 2 we provide a detailed performance comparison be-
tween single-node Xeon and ARM systems. In Section 3
we present measurement results of running MapReduce and
query processing on clusters of Xeon and ARM nodes. We
discuss our TCO analysis in Section 4 and present the re-
lated work in Section 5. Finally, we conclude in Section 6.

2. SYSTEMS CHARACTERIZATION

This section provides a detailed performance characteri-
zation of an ARM big.LITTLE system by comparison with a
server-class Intel Xeon system. We employ a series of widely
used micro-benchmarks to assess the static performance of
the CPU, memory bandwidth, network and storage.

2.1 Setup

2.1.1 ARM Server Nodes

The ARM server node analyzed throughout this paper is
the Odroid XU development board with Samsung Exynos
5410 System on a Chip (SoC). This board is representative
for high-end mobile phones. For example, Samsung Exynos
5410 is used in the international version of the Samsung
Galaxy S4 phones. Other high end contemporary mobile
devices employ SoCs with very similar performance charac-
teristics, such as Qualcomm Snapdragon 80x and NVIDIA
Tegra 4.

Specific to the Exynos 5410 SoC is that the CPU has
two types of cores: ARM Cortex-A7 little cores, which con-
sume a small amount of power and offer slow in-order execu-
tion, and ARM Cortex-A15 big cores which support faster
out-of-order execution, but with a higher power consump-
tion. This heterogeneous CPU architecture is termed ARM

big.LITTLE. The CPU has a total of eight cores, split in two
groups1 of cores: one group of four ARM Cortex-A7 little
cores, and one group of four ARM Cortex-A15 big cores.
Each core has a pair of dedicated L1 data and instruction
caches, and each group of cores has an L2 unified cache.

Although the CPU has eight cores, Exynos 5410 allows
either the four big cores, or the four little cores to be active
at one moment. To save energy, when one group is active,
the other one is powered down. Thus, a program cannot
execute on both the big and the little cores at the same
time. Instead, the operating system (OS) can alternate the
execution between them. Switching between the two groups
incurs a small performance price, as the L2 and L1 caches
of the newly activated group must warm up.

The core clock frequency of the little cores ranges from 250
to 600 MHz, and that of big cores ranges from 600 MHz to
1.60 GHz. Dynamic voltage and frequency scaling (DVFS)
is employed to increase the core frequency in response to
the increase in CPU utilization. On this ARM big.LITTLE
architecture, the OS can be instructed to operate the cores
in three configurations:

1. little: only use the ARM Cortex-A7 little cores, and
their frequency is allowed to range from 250 to 600
MHz.

2. big : only use the ARM Cortex-A15 big cores, and their
frequency is allowed to range from 600 to 1600 MHz.

3. big.LITTLE : when the OS is allowed to switch be-
tween the two types of cluster. The switching fre-
quency is 600 MHz.

Each Odroid XU node has 2 GB of low-power DDR3 mem-
ory, a 64 GB eMMC flash-storage and a 100 Mbit Ethernet
card. However, to improve the network performance, we
connect a Gbit Ethernet adapter on the USB 3.0 interface.

2.1.2 Intel Server Nodes

We compare the Odroid XU nodes with server-class Intel
x86-64 nodes. We use Supermicro 813M 1U server system
based on two Intel Xeon E5-2603 CPUs with four cores each.
This system has 8 GB DDR3 memory, 1 TB hard disk and

1In the computer architecture literature, this group of cores
is termed cluster of cores. However, due to potential confu-
sion with cluster of nodes encountered in distributed com-
puting, we shall use the term group of cores.

763

Table 1: Systems characterization

Xeon
ARM (Odroid XU)

Cortex-A7 (LITTLE) Cortex-A15 (big)

Specs

ISA x86-64 ARMv7l ARMv7l
Cores 4 4 4
Frequency 1.20 - 1.80 GHz 250 - 600 MHz 0.60 - 1.60 GHz
L1 Data Cache 128 KB 32 KB 32 KB
L2 Cache 1 MB 2 MB 2 MB
L3 Cache 10 MB N/A N/A
Dhrystone [MIPS/MHz] 5.8 3.7 3.1
CPU power [W] 15.0 0.5 3.4
System power [W] 50.0 4.4 7.3

CPU CoreMark [iterations/MHz] 5.3 5.0 3.52
(one core, CPU power [W] 15.6 0.3 2.5
max frequency) System power [W] 50.6 4.2 6.4

Java [MIPS/MHz] 0.36 0.40 0.38
CPU power [W] 16.5 0.3 3.4
System power [W] 51.5 3.0 6.1

Storage

Write throughput [MB/s] 165.0 32.6 39.2
Read throughput [MB/s] 173.0 118.0 121.0
Buffered read throughput [GB/s] 4.6 0.8 1.2
Write latency [ms] 9.8 14.2 14.6
Read latency [ms] 2.7 0.9 0.8

Network
TCP bandwidth [Mbits/s] 942 199 308
UDP bandwidth [Mbits/s] 811 295 420
Ping latency [ms] 0.2 0.7 0.7

1 Gbit Ethernet network card. For a fair comparison with
the 4-core ARM nodes, we remove one of the Xeon CPUs
from each node. The idle power of the 4-core Xeon node is
35 W, and its peak power is around 55 W. Hence, this node
has a lower power profile compared to traditional nodes.

2.1.3 Software Setup

The ARM-based Odroid XU board runs Ubuntu 13.04
operating system with Linux kernel 3.4.67, which is the lat-
est kernel version working on this platform. For compil-
ing native C/C++ programs, we use gcc 4.7.3 arm-linux-

gnueabihf. The Xeon server runs Ubuntu 13.04 with Linux
kernel 3.8.0 for x64 architecture. The C/C++ compiler
available on this system is gcc 4.7.3. We install on both sys-
tems Oracle’s Java Virtual Machine (JVM) version 1.7.0 45.

2.2 Benchmark Results
Big Data applications stress all system components, such

as CPU cores, memory, storage and network I/O. Hence,
we first evaluate the individual peak performance of these
components, before running complex data-intensive work-
loads. For this evaluation, we employ benchmarks that are
widely used in industry and systems research. For exam-
ple, we measure how many Million Instructions per Second
(MIPS) a core can deliver using traditional Dhrystone [29,
5] and emerging CoreMark [4] benchmarks. For storage and
network throughput and latency, we use Linux tools such as
dd, ioping, iperf and ping. Because Odroid XU is a hetero-
geneous system, we individually benchmark both little and
big cores configurations. Table 1 summarizes system char-
acteristics in terms of CPU, storage and network I/O, and
Figure 1 compares the memory bandwidth of Xeon and all
three Odroid XU configurations.

We measure CPU MIPS native performance by initially
running traditional Dhrystone benchmark [29]. We com-
pile the code with gcc using maximum level of optimiza-

tion, -O3, and tuning the code for the target processor (e.g.
-mcpu=cortex-a7 -mtune=cortex-a7 for little cores). In
terms of Dhrystone MIPS per MHz, we obtain a surpris-
ing result: little cores perform 21% better than big cores,
as per MHz. This is unexpected because ARM reports that
Cortex-A7 has lower DhrystoneMIPS per MHz than Cortex-
A15, but they use internal armcc compiler [5]. We conclude
that it is the gcc way of generating machine code that leads
to these results. To check our results, we run newer Core-
Mark CPU benchmark which is being increasingly used by
embedded market players, including ARM [4]. We use com-
piler optimization flags to match those employed in the re-
ported performance results for an ARM Cortex-A15. More
precisely, we activate NEON SIMD (-mfpu=neon), hardware
floating point operations (-mfloat-abi=hard) and aggresive
loop optimizations (-faggressive-loop-optimizations). We
obtain a score of 3.52 per core per MHz, as opposed to the
reported 4.68. We attribute this difference to different com-
piler and system setup. However, little cores are again more
energy efficient, obtaining more than half the score of big
cores with only 0.3 W of power. The difference between
ARM cores and Xeon cores is similar for both Dhrystone
and CoreMark benchmarks. Xeon cores obtain almost two
times higher scores per MHz than ARM cores.

Since Big Data frameworks, such as Hadoop and Spark,
run on top of Java Virtual Machine, we also benchmark
Java execution. We develop a synthetic benchmark per-
forming integer and floating point operations such that it
stresses core’s pipeline. As expected, the little Cortex-A7
cores obtain less than half the MIPS of Cortex-A15 cores.
On the other hand, the big Cortex-A15 cores achieve just 7%
fewer MIPS than Xeon cores, but using quarter the power.
Thus, in terms of core performance-per-power, little cores
are the best with around 800 MIPS/W, big cores come sec-
ond with 180 MIPS/W and Xeon cores are the worst with
40 MIPS/W.

764

 4

 16

 64

 256

 1024

1kB 32kB 1MB 32MB 1GB

B
a

n
d

w
id

th
 [

G
B

/s
]

Memory Access Size

Xeon E5-2603

ARM Cortex-A7

ARM Cortex-A15

ARM big.LITTLE

Figure 1: Memory bandwidth comparison

To measure memory bandwidth we use pmbw 0.6.2 (Par-
allel Memory Bandwidth Benchmark) [7]. Figure 1 plots
the memory bandwidth of Xeon and the three ARM config-
urations, in log-log scale. When data fits into cache, Xeon
has a bandwidth of 450 GB/s when using eight cores and
225 GB/s when using only four cores. The four Cortex-
A15 cores have around ten times less bandwidth than Xeon,
while Cortex-A7 cores have 20 times less. When accessing
the main memory, the gap decreases. Main memory band-
width for Cortex-A15 cores and Cortex-A7 cores is two and
four times, respectively, less than Xeon’s.

We measure storage I/O read and write throughput and
latency using dd (version 8.20), and ioping (version 0.7),
respectively. Write throughput when using big cores is four
times worse than for Xeon node. When using little cores,
the throughput is even smaller, suggesting that disk driver
and file system have important CPU usage. Since modern
operating systems tend to cache small files in memory, we
also measured buffered read. The results are correlated with
memory bandwidth values considering that only one core is
used. For example, buffered read on big cores has 1.2 GB/s
throughput, while the main memory bandwidth when using
all four cores is 4.9 GB/s. One surprising result is that
eMMC write latency is bigger even than traditional hard-
disk latency. This can be explained by the fact that (i)
eMMC uses NAND flash which has big write latency and (ii)
modern hard-disks have caches and intelligent controllers to
hide the write latency.

Lastly, we measure networking subsystem bandwidth and
latency using iperf (version 2.0.5) and ping (from iputils-

sss20101006 on Xeon and iputils-s20121221 on Odroid XU).
We measure both TCP and UDP bandwidth since mod-
ern server software may use both. TCP bandwidth is three
times lower on Odroid XU when using big cores and more
than four times lower when using little cores. For UDP, the
gap is smaller since ARM bandwidth is two and three times
lower on big and little cores, respectively. On the one hand,
the difference can be explained by the fact that we use an
adapter connected through USB 3.0. Even if USB 3.0 has
a theoretical bandwidth of 5 Gbit/s, the actual implemen-
tation can be much slower. Moreover, the communication
path is longer, a fact shown by the three times bigger la-
tency of Ondroid XU. On the other hand, the difference
when using little and big cores is explained by the fact that

Table 2: Workloads
Workload Input Type Input Size

TestDFSIO synthetic 12 GB
Terasort synthetic 12 GB
Pi - 16 Gsamples
Kmeans Netflix 4 GB
Wordcount Wikipedia 12 GB
Grep Wikipedia 12 GB
TPC-C Benchmark TPC-C Dataset 12 GB
TPC-H Benchmark TPC-H Dataset 2 GB
Shark Scan Query Ranking 21 GB

Shark Join Query Ranking/UserVisit
43 MB/1.3 GB
86 MB/2.5 GB

Cluster under test

(Xeon/Odroid XU)
Controller system

Yokogawa WT210

power meter

240V AC

outlet

1Gbps Ethernet

Serial interface

Figure 2: Experimental setup

TCP/IP stack has significant CPU usage. Moreover, there
are frequent context switches between user and kernel space
which lower the overall system performance.

Summary. Our characterization shows that Odroid XU
ARM-based platform has lower overall performance than a
representative server system based on Intel Xeon proces-
sor. The ARM system is significantly vulnerable at memory
level, with its only 2 GB of RAM and its four to twenty
times lower memory bandwidth.

3. MEASUREMENTSDRIVEN ANALYSIS

3.1 Methodology
We characterize Big Data execution on small nodes in

comparison with traditional server-class nodes, by evalu-
ating the performance of Hadoop Distributed File System
(HDFS), Hadoop MapReduce and query processing frame-
works such as MySQL and Shark. Our analysis is based on
measuring execution time and total energy at cluster level.

We run well known MapReduce applications on Hadoop,
the widely-used open-source implementation for MapReduce
framework [20]. We use Hadoop 1.2.1 running on top of
Oracle Java 1.7.0 45. We choose workloads that stress all
systems components (CPU, memory, I/O) as described in
Table 2. All workloads are part of Hadoop examples, ex-
cept Kmeans which was adapted from PUMA benchmark
suite [1]. For all workloads, except Pi and Kmeans, we use
12 GB input size such that, even when running on a 6-node
cluster, each node processes 2 GB of data which cannot be
accommodated by Odroid XU RAM. For Pi with 12 billion
samples, execution time on Xeon nodes is too small, thus,
we increase the input size to 16 billion samples. For Kmeans
with 12 GB input, execution on Odroid XU takes too long,
thus, we reduce the input size to 4 GB. For Wordcount and
Grep, we use the latest dump of Wikipedia articles and trim
it to 12 GB.

765

 0

 50

 100

 150

 0

 10

 20

 30
1 node Throughput

Energy

 0

 50

 100

W
rite(Xeon)

W
rite(big)

W
rite(little)

W
rite(big.LITTE)

Read(Xeon)

Read(big)

Read(little)

Read(big.LITTE)

 0

 100

 200

T
h
ro

u
g
h
p
u
t
[M

B
/s

]

E
n
e
rg

y
 [
k
J
]

6 nodes

Figure 3: HDFS performance

We evaluate disk-based query processing frameworks by
running TPC-C [11] and TPC-H [12] benchmarks on MySQL
(version 5.6.16). For TPC-C, we populate the database with
130 warehouses, which occupy about 12 GB of storage. We
set the scale factor of TPC-H data generator to 2, thus cre-
ating 2 GB in total for all the 8 tables. To evaluate dis-
tributed, in-memory query processing, we choose scan and
join queries from AMPLab Big Data Benchmark [3] running
on Shark [32]. We use Ranking and UserVisit datasets from
S3 where the benchmark prepares datasets of different sizes.
We use Shark 0.9.1 running on top of Oracle’s Java 1.7.0 45.

We run the workloads on clusters of Odroid XU and Intel
Xeon E5-2603-based nodes. For power and energy measure-
ments, we use Yokogawa WT210 power monitor connected
to cluster’s AC input line. A controller system is used to
start the benchmarks and collect all the logs. This setup
is summarized in Figure 2. Since we want to analyze the
behavior of Big Data applications and their usage of differ-
ent subsystems, we use dstat tool (version 0.7.2) to log the
utilization of CPU, memory, storage and network. All the
experiments are repeated three times and the average values
are reported. For Hadoop measurements on Xeon, the stan-
dard deviation (SD) is less than 10% and 16% of the average
for time and energy respectively. On ARM nodes, the SD is
less than 24% and 26% of the average for time and energy
respectively. We observe that the biggest SD values are ob-
tained by I/O-intensive workloads, such as TestDFSIO. On
the other hand, CPU-intensive workloads have lower SDs.
For example, some of the measurements for Pi have a SD
of zero. For the query processing measurements, the SD on
Xeon nodes is less than 9% and 6% of the average for time
and energy respectively, while for ARM nodes it is less than
13% and 14%, respectively.

3.2 HDFS
HDFS is the underlying file system for many Big Data

frameworks such as Hadoop, Hive, Spark, among others.
We measure the throughput and energy usage of HDFS read

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

big little
big.LITTLE

Xeon
big little

big.LITTLE

Xeon
big little

big.LITTLE

Xeon

T
im

e
 [

s
]

1 node

2 nodes 6 nodes

Pi Java

Pi C++

Figure 4: MapReduce Pi estimator in Java and C++

and write distributed operations using Hadoop’s TestDFSIO

benchmark with 12 GB input. Figure 3 plots the through-
put, as reported by TestDFSIO, and measured energy con-
sumption of write and read on single node and 6-node clus-
ters. The throughput significantly decreases when writing
on multiple nodes, especially for Xeon nodes. This decrease
occurs because of HDFS replication mechanism, which, by
default, replicates each block three times. The additional
network and storage operations due to replication increase
the execution time and lower the overall throughput. This
observation is validated by the less visible degradation of
throughput for read operation. The increasing execution
time of write on multiple nodes leads to higher energy con-
sumption, especially for Xeon nodes. On a 6-node cluster,
the write throughput of Xeon is two times higher compared
to ARM, but the energy usage is more than four times big-
ger. For read, Xeon’s throughput is three times better that
ARM’s big.LITTLE, while the energy ratio is five. On ARM
nodes with little cores, the execution times of HDFS write
and read operations increase due to lower JVM performance.
Hence, the energy consumption is higher compared to run-
ning on big and big.LITTLE configurations.

Summary. ARM big.LITTLE is more energy-efficient
than Xeon when executing HDFS read and write operations,
at the cost of 2-3 times lower throughput.

3.3 Hadoop
We evaluate time performance and energy-efficiency of

Hadoop by running five widely used workloads, as shown in
Table 2. We use default Hadoop settings, except that we set
the number of slots to four such that it equals the number of
cores on each node. Using this configuration, all workloads
run without errors, except for Terasort and Kmeans which
fail on Odroid XU due to insufficient memory. After experi-
menting with more alternative configurations, we found two
that allow both programs to finish without failure. Firstly,
we decrease the number of slots to two on Odroid XU. Sec-
ondly, we keep using four slots but limit the io.sort.mb to
50 MB, half of its default value. These two settings have
different effects on the two programs. For example, on 4-
node cluster, Terasort running on two slots is 10-20% faster
than using a limited io.sort.mb. This result is due to the
fact that Terasort is data-intensive, hence, it benefits less

766

 10

 100

 1000

 10000

 100000
T

im
e

 [
s
]

Pi Java Pi C++ Grep

Xeon

ARM big

ARM LITTLE

ARM big.LITTLE

 10

 100

 1000

 10000

 100000

1 2 4 6

Kmeans

1 2 4 6

Nodes

Terasort

1 2 4 6

Wordcount

Figure 5: MapReduce scaling

 100

 500

 1000

 1500

 2000

Pi Java Pi C++ Grep Kmeans Terasort Wordcount

 10

 50

 100

 150

 200

T
im

e
 [
s
]

E
n
e
rg

y
 [
k
J
]

Xeon Time

ARM Time

6 ARMs

2 ARMs

2 ARMs

6 ARMs

6 ARMs

8 ARMs*

Xeon Energy

ARM Energy

Figure 6: Xeon-ARM performance equivalence

form using more cores but having limited memory buffer.
On the other hand, Kmeans benefits more from running on
four slots, being 20% faster on big cores and 35% faster on
little cores, compared to running on two slots. Kmeans is a
CPU-intensive workload executing a large number of float-
ing point operations in both map and reduce phases. Thus,
it benefits from running on higher core counts. In the re-
mainder of this paper, we present the results on two slots
for Terasort, and on four slots with io.sort.mb of 50 for
Kmeans, when running on ARM big.LITTLE nodes.

When running the experiments, we observe low perfor-
mance of Pi on Odroid XU. Compared to Xeon, Pi on big
and big.LITTLE runs 7-9 times slower, and on little cores
up to 20 times slower. This is surprising because Pi is CPU-
intensive and we show in Section 2 that the performance ra-
tio between Xeon and ARM cores is at most five. We further
investigate the cause of this result. Firstly, we profile Task-
Tracker execution on Odroid XU. We observed that JVM
spends 25% of the time in __udivsi3. This function emu-
lates 32-bit unsigned integer division in software, although
the Exynos 5410 SoC on Odroid XU board supports UDIV

hardware instruction. But other SoCs may not implement
this instruction, since it is defined as optional in ARMv7-A
ISA [6]. Thus, JVM uses the safer approach of emulating it
in software. Secondly, we port Pi in C++ and run it using
Hadoop Pipes mechanism. We use the same gcc compilation
flags as for native benchmarks in Section 2. The compar-
ison between Java and C++ implementations is shown in
Figure 4. Compared to original Java version, C++ imple-

10

100

1000

10000

T
im

e
 [
s
]

Xeon

ARM big

ARM LITTLE

ARM big.LITTLE

 10

 100

P
o
w

e
r

[W
]

 0.01

 0.1

 1

 10

 100

Pi Java Pi C++ Grep Kmeans Terasort Wordcount

E
n
e
rg

y
 [
k
J
]

Figure 7: MapReduce on 6-node cluster

mentation is around five times faster on ARM nodes and
only 1.2 times faster on Xeon-based nodes. With this minor
software porting, we obtain a significant improvement in ex-
ecution time which leads to energy savings, as we further
show. In the remainder of this section, we shall show the
results for both Pi Java and Pi C++ implementations.

We present time and energy performance of the six work-
loads on Xeon and ARM clusters. First, since scalability
is a main feature of MapReduce framework, we investigate
how Hadoop scales on clusters of small nodes. We show
time scaling in log scale on four cluster sizes in Figure 5.
All workloads exhibit sublinear scaling on both Intel and
ARM nodes, which we attribute to housekeeping overheads
of Hadoop when running on more nodes. When the over-
heads dominate the useful work, the scaling degrades. For Pi
workload running on six nodes there is too little useful work
for mappers to perform, hence, there is not much improve-
ment in the execution time on both types of servers. On the
other hand, Kmeans and Grep exhibit higher speedup on the
6-node ARM cluster compared to Xeon because the slower
ARM cores have enough CPU-intensive work to perform.

Secondly, Figure 6 shows how many ARM-based nodes
can achieve the execution time of one Xeon node. We select
ARM big.LITTLE configuration which exhibits the closest
execution time compared to one Xeon. For Wordcount, the
difference between six ARM nodes and one Xeon node is
large, and thus, we estimate based on the scaling behavior
that eight ARM nodes exhibit a closer execution time.

Thirdly, Figure 7 shows the time, power and energy of
6-node clusters using log scale. Based on the energy usage,
the workloads can be categorized into three classes:

• Pi Java and Kmeans execution times are much larger
on ARM compared to Xeon. Both workloads incur
high CPU usage on ARM, which results in high power
usage. The combined effect is a slightly higher energy
usage on ARM nodes.

• Pi C++ and Grep exhibit a much smaller execution

767

Table 3: MapReduce Performance-to-power Ratio

Workload Unit
Xeon

ARM (Odroid XU)
big LITTLE big.LITTLE

1 2 4 6 1 2 4 6 1 2 4 6 1 2 4 6

Pi Java Msamples/J 1.44 1.58 0.88 0.63 0.68 0.60 0.60 0.56 0.78 0.83 0.80 0.58 0.67 0.60 0.61 0.57
Pi C++ Msamples/J 2.51 1.89 1.04 0.71 3.23 3.03 2.95 2.64 4.56 4.37 4.01 2.78 3.33 2.95 2.78 2.56
Grep MB/J 0.56 0.46 0.27 0.21 1.03 0.93 0.92 0.92 1.47 1.34 1.31 1.27 1.03 0.93 0.86 0.92
Kmeans MB/J 0.50 0.41 0.25 0.22 0.21 0.19 0.19 0.20 0.28 0.25 0.23 0.23 0.21 0.19 0.18 0.20
Terasort MB/J 0.28 0.22 0.15 0.14 0.31 0.25 0.30 0.27 0.35 0.28 0.35 0.30 0.32 0.25 0.30 0.27
Wordcount MB/J 0.17 0.14 0.09 0.08 0.12 0.11 0.10 0.09 0.18 0.16 0.12 0.10 0.12 0.11 0.10 0.10

time gap. Both are CPU-intensive and have high power
usage, but overall, their energy usage is significantly
lower on ARM.

• Wordcount and Terasort are I/O-intensive workloads,
as indicated by lower power usage on ARM compared
to the other workloads. They obtain better execution
time on Xeon due to higher memory and storage band-
widths. However, time improvement does not offset
the higher power usage of Xeon, therefore, energy on
ARM is lower.

Summary. We sum up by showing the performance-to-
power ratio (PPR) of all workloads on all cluster configu-
rations as a heat-map in Table 3. PPR is defined as the
amount of useful work performed per unit of energy. For
workloads that scan all input, we compute the PPR as the
ratio between input size and energy. For Pi, the input file
contains the number of samples to be generated during the
map phase. Hence, we express the PPR as millions of sam-
ples (Msamples) per unit of energy. Higher (green) PPR
represents a more energy-efficient execution. In correlation
with our classification, Pi Java and Kmeans exhibit better
PPR on Xeon, while all other workloads have the highest
PPR on ARM little cores. As indicated in Table 3, 1-node
cluster achieves maximum PPR because there is no com-
munication overhead and fault-tolerance mechanism as on
multi-node clusters.

3.4 Query Processing

3.4.1 MySQL

To show the performance of OLTP and OLAP workloads
on Odroid XU and Xeon nodes, we run TPC-C (for OLTP)
and TPC-H (for OLAP) benchmarks on MySQL, the widely-
used database system in both academia and industry. We
use the default MySQL configuration and conduct the ex-
periments on a single node cluster. Input dataset settings
are shown in Table 2.

3.4.1.1 TPCC Benchmark.
TPC-C workload is data-intensive and mostly incurs ran-

dom data access with 1.9:1 read-to-write ratio [9]. In TPC-C
benchmark experiment, we tune the configuration by mod-
ifying the number of simultaneous connections to achieve
the best throughput and response time on each type of
server. Hence, we set one connection on ARM server and
64 connections on Xeon server. We summarize TPC-C re-
sults in Table 4 and plot cumulative distribution function
(CDF) of response time in Figure 8, from which we can see
that TPC-C throughput (tmpC) on Xeon is more than two
times higher than on each Odroid XU configuration, while
the transactions response time (RT) is similar on Xeon and

Table 4: TPC-C performance

System tpmC
90th-Percentile/

RT < 5s
Average

Max RT [s] Power [W]

Xeon 315.5 2.75/6.6 99.6% 38.2
ARM big 125.1 4.2/7.1 93.2% 4.9
ARM LITTLE 112.1 8.2/16.5 33.4% 4.2
ARM big.LITTLE 130.8 4.1/7.3 98.4% 4.9

 0

 20

 40

 60

 80

 100

 0 5 10 15 20

C
D

F
 [

%
]

Response time [s]

Xeon
ARM big

ARM LITTLE
ARM big.LITTLE

Figure 8: MySQL TPC-C CDF of response time

ARM big/big.LITTLE. On ARM little cores, however, re-
sponse time performance is about two times worse. Our key
observations are:

• Although storage read latency on Odroid XU is about
3.5 times lower than on Xeon, file system cache hides
this, and, Xeon’s lower memory latency leads to better
response time.

• Write performance is affected by 1.5 times higher stor-
age write latency on Odroid XU, as shown in Table 1.

Nevertheless, average power consumption of Xeon is around
ten times higher than Ordoid XU, compared to only two
times throughput performance gain.

3.4.1.2 TPCH Benchmark.
TPC-H queries are read-only, I/O bounded, and represent

the most common analytics scenarios in databases. We run
all 22 queries of TPC-H benchmark, and attempt to elim-
inate experimental variations by flushing file system cache
before running each query. We plot the TPC-H time per-
formance and energy usage for both Xeon and ARM in Fig-
ure 9. We observe two opposing performance results for
different queries.

• For scan-based queries (e.g. Q1, Q6, Q12, Q14, Q15,
Q21) and long-running queries with a large working
set (e.g. Q9, Q17 and Q20), Xeon performs 2 to 5
times better than all three ARM configurations. This
behavior is due to higher read throughput and larger
memory on Xeon node. Moreover, the higher amount
of free memory used as file cache can significantly re-
duce read latency in subsequent accesses.

768

 1

10

100

1000

10000

T
im

e
 [

s
]

Xeon
ARM big

ARM LITTLE
ARM big.LITTLE

 0.01

 0.1

 1

 10

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22

E
n

e
rg

y
 [

k
J
]

Query #

Figure 9: MySQL TPC-H performance

 0

 200

 400

 600

 800

 1000

 1 2 4 6

T
im

e
 [

s
]

Nodes

 1 2 4 6
 0

 10

 20

 30

 40

 50

 60

E
n

e
rg

y
 [

k
J
]

Xeon
ARM big

ARM LITTLE
ARM big.LITTLE

Figure 10: Shark scan query performance

• For random access queries with small working set (e.g.
Q3, Q5, Q7, Q8, Q11, Q16, Q19, Q22), ARM has
1.2–6.9 times better performance, which we mainly at-
tribute to lower read latency of Odroid XU flash-based
storage.

Summary. In terms of energy, Xeon node consumes
1.4 to 44 times more than ARM-based node. Overall, the
energy-efficiency of ARM executing queries is higher com-
pared to traditional Xeon.

3.4.2 Shark

We investigate the performance of in-memory Big Data
analytics using Shark framework [32]. This is an open source
distributed SQL query engine built on top of Spark [33],
a distributed in-memory processing framework. With the
increasing velocity of Big Data analytics, Shark and Spark
are increasingly used because of their low-latency and fault-
tolerance. In this experiment, we evaluate the performance
of scan and join queries. We list the scan query:

SELECT pageURL, pageRank
FROM rankings WHERE pageRank > X

and join query:

 0

 200

 400

 600

 1 2 4 6

T
im

e
 [

s
]

Nodes

 1 2 4 6
 0

 10

 20

 30

E
n

e
rg

y
 [

k
J
]

Xeon
ARM big

ARM LITTLE
ARM big.LITTLE

Figure 11: Shark join query performance

SELECT sourceIP, totalRevenue, avgPageRank FROM
(SELECT sourceIP,

AVG(pageRank) as avgPageRank,
SUM(adRevenue) as totalRevenue

FROM Rankings AS R, UserVisits AS UV
WHERE R.pageURL = UV.destURL

AND UV.visitDate BETWEEN Date(‘1980-01-01’)
AND Date(‘X’)

GROUP BY UV.sourceIP)
ORDER BY totalRevenue DESC LIMIT 1

from the Big Data Benchmark provided by AMPLab [3].
We set cache size of Shark at 896 MB for both types of
nodes to leave enough memory for other processes, such as
Spark master, worker, and HDFS daemons, on Odroid XU.
To show the potential of unrestricted system, we conduct
an experiment with Spark cache set to 5 GB on Xeon node.
We observe that for scan query, cache size does not affect
the performance, hence, we present the results with identical
cache size configuration. For join query, we use two datasets
as shown in Table 2. We choose these two sets to investi-
gate three scenarios: (i) both servers have enough memory,
(ii) Xeon has enough memory while ARM does not, (iii)
both servers do not have enough memory. These scenarios
cover memory management issues in modern database sys-

769

tems [34]. The join query is both memory and I/O bounded,
as the smaller table is usually used to build an in-memory
structure and the other table is scanned once from the stor-
age. The in-memory structure is either a hash table for hash
join implementation, or a table kept in memory for nested
join implementation. Moreover, Spark swaps data between
memory and disk, thus, it benefits from larger cache sizes.
The results for scan query are shown in Figure 10. For join
query, we only plot the third scenario in Figure 11 due to
space limitation. Based on these results, we formulate the
following comments.

• For scan query, ARM big and big.LITTLE are just
1.1-1.7 times slower than Xeon, but more than three
times better in energy usage. ARM little cores are
twice slower, but more than four times better in energy
usage. Therefore, in terms of PPR, ARM is much
better for this kind of query.

• For join query, when both types of server nodes have
enough cache, ARM big/big.LITTLE are about 2–4
times slower than Xeon node, and 1–3.6 times better
in energy usage. ARM LITTLE is 3–7 times slower
than Xeon at runtime, and just 1.5–2.9 times better in
energy usage.

• For join query, when both servers do not have enough
cache, runtime and energy ratios are slightly decreas-
ing. For runtime, ARM is slower by up to 2.4 times
on big and big.LITTLE, and 4.2 times on little cores.
However, ARM has up to 4 times better energy us-
age, meaning a better PPR compared to Xeon. This
happens because Xeon has to read data from storage,
hence, it does not benefit from its much higher memory
bandwidth.

• For join query, when Xeon node has enough memory,
runtime gap increases, leading to high energy usage
on ARM. The ratio between Xeon and ARM energy
usage is between 1.4 and 2.5, thus, increasing the PPR
of traditional server systems.

Summary. We conclude that ARM has much better en-
ergy efficiency when processing I/O bounded scan queries.
Nevertheless, for memory and I/O bounded join queries, tra-
ditional servers are more suitable because of larger memory
and higher memory and I/O bandwidths.

4. TCO ANALYSIS
We analyze the total cost of ownership (TCO) of exe-

cuting Big Data applications on emerging low-power ARM
servers, in comparison with traditional x86-64 servers. We
derive lower and upper bounds for per hour cost of CPU- and
I/O-intensive workloads on a single nodes. We consider Pi
and Terasort as representatives for CPU- and I/O-intensive
workloads, respectively, as discussed in Section 3.3. More-
over, we use execution time and energy results of Pi C++
implementation because it better exploits ARM nodes.

Throughout this section we use a series of notations and
default values as summarized in Table 5. All costs are ex-
pressed in US dollars. The values in Table 5 are either based
on our direct measurements or taken from the literature, as
indicated 2. For example, we assume three years of typical
2Listed values are marked with ∗ if they are taken from the
literature, with + if they are based on our measurements,
and with # if they represent output values.

Table 5: TCO notations and values

Notation Value Description

Cs,Xeon $1100 + cost of Xeon-based server node
Cs,ARM $280 + cost of ARM-based server node
Ts 3 years ∗ server lifetime
Ul 10% ∗ low server utilization
Uh 75% ∗ high server utilization

Cd
datacenter total costs

Td 12 years ∗ datacenter lifetime

Cp
electricity total costs

Cph
∗ electricity cost per hour

Pa
+ average server power

Pp,Xeon 55 W + Xeon-based node peak power
Pp,ARM 16 W + ARM-based node peak power
Pi,Xeon 35 W + Xeon-based node idle power
Pi,ARM 4 W + ARM-based node idle power

server lifetime and 12 years lifetime for a datacenter [15].
For typical server utilization, we consider a lower bound of
10%, typical for cloud servers [21], and an upper bound of
75% as exhibited by Google datacenters [15].

The cost of electricity is a key factor in the overall dat-
acenter costs. But electricity price is not the same all-over
the world. Thus, we consider more alternatives for servers’
location and electricity price [30]. Among these alternatives,
we select a lower bound of 0.024 $/kWh (price of electricity
in Russia) and an upper bound of 0.398 $/kWh (price in
Australia). Although we acknowledge that datacenter loca-
tion may also influence equipment, hosting and manpower
costs, throughout this study we consider only the difference
in electricity price.

4.1 Marginal Cost
We begin by describing a simple cost model which incorpo-

rates equipment and electricity costs. This model estimates
the marginal cost of self-hosted systems, being suitable for
small, in-house computing clusters. Total cost is

C = Cs + Cp (1)

where electricity cost for server lifetime period is:

Cp = Ts · Cph · (U · Pa + (1− U) · Pi) (2)

We further investigate the effects of server utilization and
idle power on marginal cost. As we define lower and up-
per bounds for server utilization, there are two scenarios for
evaluating electricity costs. Firstly, given a low Xeon server
utilization of 10% and the execution times of Pi and Terasort
workloads on Xeon and ARM nodes, we obtain two ARM-
based server utilizations. For Pi, ARM server exhibits 20%
utilization, while for Terasort, the utilization increases to al-
most 50%. Secondly, given the upper bound of 75% for Xeon
server utilization, we obtain over 100% utilization for ARM
server. Thus, we must employ more than one ARM server
to execute the workload of one Xeon. We use server substi-
tution ratios derived in Section 3.3 and depicted in Figure 6.
For CPU-intensive Pi, we use two ARM servers with 82%
utilization to achieve the performance of one Xeon server.
For I/O-intensive Terasort, we use six ARM servers with
86% utilization to execute the same workload as one 75%-
utilized Xeon. The six ARM servers occupy less space than
one rack-mounted traditional server but may have a higher
equipment cost. We present the results for both scenarios

770

Table 6: Effect of server utilization on marginal cost
Job Utilization Server Min cost [$/h] Max cost [$/h]
type ratio [%] ratio Xeon ARM Xeon ARM

CPU-int. 10:20 1:1 0.043 0.011 0.044 0.013
I/O-int. 10:49 1:1 0.043 0.011 0.056 0.013
CPU-int. 75:82 1:2 0.043 0.022 0.060 0.031
I/O-int. 75:86 1:6 0.043 0.065 0.059 0.079

 0

 0.02

 0.04

 0.06

 0.08

 0.1

Xeon, CPU-int.

ARM, CPU-int.

Xeon, I/O-int.

ARM, I/O-int.

Xeon, CPU-int.

ARM, CPU-int.

Xeon, I/O-int.

ARM, I/O-int.

C
o
s
t
[$

/h
]

low utilization

high utilization
with idle power

no idle power

Figure 12: Effect of idle power on marginal cost

as cost per hour in Table 6. For low utilization, the cost per
hour of ARM is almost four times lower compared to Xeon.
Moreover, CPU- and I/O-intensive jobs have the same cost.
On the other hand, the cost of highly utilized servers is
slightly higher. Surprisingly, for I/O-intensive jobs, ARM
incurs up to 50% higher cost because six ARM servers are
required to perform the work of one Xeon.

Next, we investigate the influence of idle power, as a key
factor in total electricity costs. This influence may be alle-
viated by employing energy-saving strategies, such as All-In
Strategy [17]. This strategy assumes that servers can be
inducted to a low-power state during inactive periods. At
certain intervals, they are woken-up to execute the jobs, and
afterwards put back to sleep. In reality, servers consume a
small amount of power in deep-sleep or power-off mode and
may incur high power usage during wake-up phase. How-
ever, we assume that during inactive periods servers draw
no power, and perform the study on both utilization scenar-
ios described above. With these assumptions, the influence
of idle power is more visible on low-utilized Xeon servers, as
shown in Figure 12. In this case, putting Xeon servers to
sleep can reduce hourly cost by 22%. For ARM servers, cost
reduction is 6–10% since idle power is much lower. At high
utilization, the reductions are smaller because the servers
are active most of the time.

4.2 TCO
We analyze a more complex TCO model which includes

datacenter costs. We use Google TCO calculator which im-
plements the model described in [15]. For this model, total
cost is

C = Cd + Cs + Cp (3)

We conduct our study based on the following assumptions
regarding all three components of the TCO model. Firstly,

Table 7: Effect of server utilization on TCO
Job Utilization Server Min cost [$/h] Max cost [$/h]
type ratio [%] ratio Xeon ARM Xeon ARM

CPU-int. 10:20 1:1 0.066 0.018 0.086 0.025
I/O-int. 10:49 1:1 0.066 0.017 0.085 0.021
CPU-int. 75:82 1:2 0.066 0.035 0.086 0.051
I/O-int. 75:86 1:6 0.066 0.104 0.085 0.127

 0

 20

 40

 60

 80

 100

 120

Xeon, Min

ARM, Min

Xeon, Max

ARM, Max

0 Xeon, Min

ARM, Min

Xeon, Max

ARM, Max

C
o

s
t

[$
]

CPU-intensive I/O-intensive

datacenter

server

power

Figure 13: Costs per month

datacenter costs include capital and operational expenses.
Capital expenses represent the cost for designing and build-
ing a datacenter. This cost depends on datacenter power
capacity, and it is expressed as price per Watt. We use a
default value of 15 $/W as in [15]. Operational expenses rep-
resent the cost for maintenance and security, and depend on
datacenter size which, in turn, is proportional to its power
capacity. We use a default value of 0.04 $/kWmonth [15].
Secondly, for server costs, beside the equipment itself, there
are operational expenses related to maintenance. These ex-
penses are expressed as overhead per Watt per year. We use
the default value of 5% for both types of servers. Moreover,
for building a real datacenter, the business may take loan.
The model includes the interest rate for such a loan. We use
a value of 8% per year, although for building a datacenter
with emerging ARM systems this rate may be higher due
to potential risk associated with this emerging server plat-
form. Thirdly, electricity expenses are modeled based on
the average power consumption. In addition, the overhead
costs, such as those for cooling, are expressed based on the
Power Usage Effectiveness (PUE) of the servers. For the
employed Xeon servers, we use the lowest PUE value of 1.1
representing the most energy-efficient Google servers [15].
For ARM servers, we use a higher PUE of 1.5 to incorpo-
rate less energy-efficient power supply and the power drawn
by the fan, which is up to 1.5 W and represents ∼10% of
the 16 W peak power.

In Figure 13 we present TCO values for high utilization
scenario. We show these values as break-down of monthly
cost into datacenter, server equipment and power costs, as
defined in Equation 3. The cost is dominated by equip-
ment expenses. For I/O-intensive workloads, equipment
and power expenses of the six ARM nodes make low-power
servers more expensive than traditional Xeon. We summa-
rize TCO values for both utilization scenarios in Table 7.

771

5. RELATED WORK
Related work analyzing energy efficiency of Big Data exe-

cution focuses mostly on traditional x86/x64 architecture,
with some projects considering heterogeneous clusters of
low-power Intel Atom and high-performance Intel Xeon pro-
cessors [8, 1, 31, 24]. More generally, the related work can
be classified in two categories: energy-proportionality stud-
ies [19, 17, 26, 10] and building blocks for energy-efficient

servers [8, 16, 31, 24, 27], as we further present.

5.1 Energy Proportionality
The survey in [18] highlights two techniques for saving

energy in Hadoop MapReduce deployments: Covering Set
(CS) [19] and All-In Strategy (AIS) [17]. Both techniques
propose shutting-down or hibernating the systems when the
cluster is underutilized. CS proposes to shut-down all the
nodes but a small set (the Covering Set) which keeps at
least one replica of each HDFS block. On the other hand,
AIS shows it is more energy-efficient to use the entire cluster
and finish the MapReduce jobs faster and then shut-down
all nodes. Berkeley Energy Efficient MapReduce (BEEMR)
[10], proposes to split MapReduce cluster into interactive
and batch zones. The nodes in batch zone are kept in a low-
power state when inactive. This technique is appropriate for
MapReduce with Interactive Analysis (MIA) workloads. For
this kind of workloads, interactive MapReduce jobs tend to
access only a fragment of the whole data. Hence, an interac-
tive cluster zone is obtained by identifying these interactive
jobs and their required input data. The rest of the jobs are
executed on the batch zone at certain time intervals. Using
both simulation and validation on Amazon EC2, BEEMR
reports energy savings of up to 50%. Feller et al. study time
performance and power consumption of Hadoop on clusters
with collocated and separated data and compute nodes [13].
Two unsurprising results are highlighted, namely, that (i)
PPR of collocated nodes is better compared to separated
data and compute deployment, and (ii) power varies across
job phases. Tarazu [1] optimizes Hadoop on a heteroge-
neous cluster with nodes based on Intel Xeon and Atom
processors. It proposes three optimizations for reducing the
imbalance among low-power and high-performance, which
lead to a speedup of 1.7. However, no energy usage study
is conducted. Tsirogiannis et al. propose a study on perfor-
mance and power of database operators on different system
configurations [26]. One of the conclusions is that, almost
always, the best-performing configuration is also the most
energy-efficient. However, our study shows that this may
not be the case, especially if the performance gain cannot
offset the high power usage.

5.2 Energyefficient Servers
With the evolution of low-power processors and flash stor-

age, many research projects combine them to obtain fast,
energy-efficient data processing systems [8, 24]. For exam-
ple, Gordon [8] uses systems with Intel Atom processors and
flash-based storage to obtain 2.5 times more performance-
per-power than disk-based solutions. For energy evaluation,
they use a power model, whereas we directly measure the
power consumption. The study in [16] investigates the en-
ergy efficiency of a series of embedded, notebook, desktop
and server x86-64 systems. This work shows that high-
end notebooks with Intel Core processors are 300% and
80% more energy-efficient than low-power server systems

and low-power embedded systems, respectively. Moreover,
embedded systems based on Intel Atom processors suffer
from poor I/O subsystem. This is in concordance with our
findings on recent high-end ARM-based systems. Knight-
Shift [31] is a heterogeneous server architecture which cou-
ples a wimpy Atom-based node with a brawny Xeon-based
node to achieve energy proportionality for datacenter work-
loads. This architecture can achieve up to 75% energy sav-
ings which also leads to cost savings. WattDB [24] is an
energy-efficient query processing cluster. It uses nodes with
Intel Atom and SSDs, and dynamically powers them on or
off depending on load. Running TPC-H queries, the authors
show that dynamic configurations achieve the performance
of static configurations while saving energy.

The impressive evolution of ARM-based systems leads to
their possible adoption as servers [2, 28]. In this context,
Tudor and Teo investigate the energy-efficiency of ARM
Cortex-A9 based server executing both compute- and data-
intensive server workloads [27]. The study shows that ARM
system is unsuitable for network I/O- and memory-intensive
jobs. This is correlated with our evaluation showing that
even for newer, ARM big.LITTLE-based servers, small mem-
ory size and low memory and I/O bandwidths lead to ineffi-
cient data-intensive processing. Mühlbauer et al. show the
performance of ARM big.LITTLE systems executing OLTP
and OLAP workloads, in comparison with Xeon servers [22].
They show a wider performance gap between small and big
nodes executing TPC-C and TPC-H benchmarks. How-
ever, they run these benchmarks on a custom, highly opti-
mized, in-memory database system, while we use disk-based
MySQL.

In summary, related work lacks a study of Big Data ex-
ecution on the fast evolving high-end ARM systems. Our
work addresses this by investigating how far are these types
of systems from efficient data analytics processing.

6. CONCLUSIONS
In this paper, we present a performance study of execut-

ing Big Data analytics on emerging low-power nodes in com-
parison with traditional server nodes. We build clusters of
Odroid XU boards representing high-end ARM big.LITTLE
architecture, and Intel Xeon systems as representative of
traditional server nodes. We evaluate time, energy and
cost performance of well-known Hadoop MapReduce and
MySQL database system, and emerging in-memory query
processing using Shark. We run workloads exercising CPU
cores, memory and I/O in different proportion. The results
show that there is no one size fits all rule for the efficiency
of the two types of server nodes. However, small memory
size, low memory and I/O bandwidth, and software immatu-
rity concur in canceling the lower-power advantage of ARM
nodes. For CPU-intensive MapReduce Pi estimator imple-
mented in Java, a software-emulated instruction results in
ten times slower execution time on ARM. Implementing this
workload in C++ improves the execution time by a factor
of five, leading to almost four times cheaper data analyt-
ics on ARM servers compared to Xeon. For I/O-intensive
workloads, such as Terasort, six ARM nodes are required
to perform the work of one 75%-utilized Xeon. This sub-
stitution leads to 50% higher TCO of ARM servers. Lastly,
for query processing, ARM servers are much more energy
efficient, at the cost of slightly lower throughput. More-
over, small, random database accesses are even faster on

772

ARM due to lower I/O latency. On the other hand, sequen-
tial database scan benefit more from bigger memory size
of Xeon servers, which acts as cache. In future, with the
development of 64-bit ARM server systems having bigger
memory and faster I/O, and with software improvements,
ARM-based servers are well positioned to become a serious
contender for traditional Intel/AMD server systems.

7. ACKNOWLEDGMENTS
This work was in part supported by the National Research

Foundation, Prime Minister’s Office, Singapore, under its
Competitive Research Programme (CRP Award No. NRF-
CRP8- 2011-08). We thank the anonymous reviewers for
their insightful comments and suggestions, which helped us
improve this paper.

8. REFERENCES

[1] F. Ahmad, S. T. Chakradhar, A. Raghunathan, T. N.
Vijaykumar, Tarazu: Optimizing MapReduce on
Heterogeneous Clusters, Proc. of 17th International
Conference on Architectural Support for Programming
Languages and Operating Systems, pages 61–74, 2012.

[2] AMD, AMD to Accelerate the ARM Server Ecosystem with
the First ARM-based CPU and Development Platform
from a Server Processor Vendor,
http://www.webcitation.org/6PgFAdEFp, 2014.

[3] AMPLab, Big Data Benchmark,
https://amplab.cs.berkeley.edu/benchmark, 2014.

[4] ARM, ARM Announces Support For EEMBC CoreMark
Benchmark, http://www.webcitation.org/6RPwNECop,
2009.

[5] ARM, Dhrystone and MIPs Performance of ARM
Processors, http://www.webcitation.org/6RPwC2TUb,
2010.

[6] ARM, ARM Architecture Reference Manual. ARMv7-A
and ARMv7-R edition, ARM, 2012.

[7] T. Bingmann, Parallel Memory Bandwidth Benchmark /
Measurement, http://panthema.net/2013/pmbw/, 2013.

[8] A. M. Caulfield, L. M. Grupp, S. Swanson, Gordon: Using
Flash Memory to Build Fast, Power-efficient Clusters for
Data-intensive Applications, Proc. of 14th International
Conference on Architectural Support for Programming
Languages and Operating Systems, pages 217–228, 2009.

[9] S. Chen, A. Ailamaki, M. Athanassoulis, P. B. Gibbons,
R. Johnson, I. Pandis, R. Stoica, TPC-E vs. TPC-C:
Characterizing the New TPC-E Benchmark via an I/O
Comparison Study, SIGMOD Record, 39(3):5–10, 2011.

[10] Y. Chen, S. Alspaugh, D. Borthakur, R. Katz, Energy
Efficiency for Large-scale MapReduce Workloads with
Significant Interactive Analysis, Proc. of 7th ACM
European Conference on Computer Systems, pages 43–56,
2012.

[11] T. P. P. Council, TPC-C benchmark specification,
http://www.tpc.org/tpcc, 2010.

[12] T. P. P. Council, TPC-H benchmark specification,
http://www.tpc.org/tpch, 2013.

[13] E. Feller, L. Ramakrishnan, C. Morin, On the Performance
and Energy Efficiency of Hadoop Deployment Models,
Proc. of 2013 IEEE International Conference on Big Data,
pages 131–136, 2013.

[14] V. Gupta, K. Schwan, Brawny vs. Wimpy: Evaluation and
Analysis of Modern Workloads on Heterogeneous
Processors, Proc. of 27th International Symposium on
Parallel and Distributed Processing Workshops and PhD
Forum, pages 74–83, 2013.

[15] U. Hoelzle, L. A. Barroso, The Datacenter As a Computer:
An Introduction to the Design of Warehouse-Scale

Machines, Morgan and Claypool Publishers, 1st edition,
2009.

[16] L. Keys, S. Rivoire, J. D. Davis, The Search for
Energy-efficient Building Blocks for the Data Center, Proc.
of 2010 International Conference on Computer
Architecture, pages 172–182, 2012.

[17] W. Lang, J. M. Patel, Energy Management for MapReduce
Clusters, Proc. of VLDB Endowment, 3(1-2):129–139, 2010.

[18] K.-H. Lee, Y.-J. Lee, H. Choi, Y. D. Chung, B. Moon,
Parallel Data Processing with MapReduce: A Survey,
SIGMOD Record, 40(4):11–20, 2012.

[19] J. Leverich, C. Kozyrakis, On the Energy (in)Efficiency of
Hadoop Clusters, SIGOPS Oper. Syst. Rev., 44(1):61–65,
2010.

[20] F. Li, B. C. Ooi, M. T. Özsu, S. Wu, Distributed Data
Management Using MapReduce, ACM Computing Surveys,
46(3):31:1–31:42, 2014.

[21] H. Liu, A Measurement Study of Server Utilization in
Public Clouds, Proc. of IEEE Ninth International
Conference on Dependable, Autonomic and Secure
Computing, pages 435–442, 2011.

[22] T. Mühlbauer, W. Rödiger, R. Seilbeck, A. Reiser,
A. Kemper, T. Neumann, One DBMS for All: The Brawny
Few and the Wimpy Crowd, Proc. of ACM SIGMOD
International Conference on Management of Data, pages
697–700, 2014.

[23] N. Rajovic, L. Vilanova, C. Villavieja, N. Puzovic,
A. Ramirez, The Low Power Architecture Approach
Towards Exascale Computing, Journal of Computational
Science, 4(6):439–443, 2013.

[24] D. Schall, T. Härder, Energy-proportional Query Execution
Using a Cluster of Wimpy Nodes, Proc. of the Ninth
International Workshop on Data Management on New
Hardware, pages 1:1–1:6, 2013.

[25] A. L. Shimpi, The ARM vs x86 Wars Have Begun:
In-Depth Power Analysis of Atom, Krait & Cortex A15,
http://www.webcitation.org/6RIqMPQKg, 2013.

[26] D. Tsirogiannis, S. Harizopoulos, M. A. Shah, Analyzing
the Energy Efficiency of a Database Server, Proc. of ACM
SIGMOD International Conference on Management of
Data, pages 231–242, 2010.

[27] B. M. Tudor, Y. M. Teo, On Understanding the Energy
Consumption of ARM-based Multicore Servers, Proc. of
SIGMETRICS, pages 267–278, 2013.

[28] S. J. Vaughan-Nichols, Applied Micro, Canonical claim the
first ARM 64-bit server production software deployment,
http://www.webcitation.org/6RLczwpch, 2014.

[29] R. P. Weicker, Dhrystone: A Synthetic Systems
Programming Benchmark, Commun. of ACM,
27(10):1013–1030, 1984.

[30] Wikipedia, Electricity Pricing,
http://www.webcitation.org/6R9bgVRLG, 2013.

[31] D. Wong, M. Annavaram, KnightShift: Scaling the Energy
Proportionality Wall through Server-Level Heterogeneity,
Proc. of 45th International Symposium on
Microarchitecture, pages 119–130, 2012.

[32] R. S. Xin, J. Rosen, M. Zaharia, M. J. Franklin,
S. Shenker, I. Stoica, Shark: SQL and Rich Analytics at
Scale, Proc. of ACM SIGMOD International Conference
on Management of Data, pages 13–24, 2013.

[33] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauley, M. J. Franklin, S. Shenker, I. Stoica,
Resilient Distributed Datasets: A Fault-Tolerant
Abstraction for In-Memory Cluster Computing, Proc. of
the 9th USENIX Conference on Networked Systems Design
and Implementation, pages 15–28, 2012.

[34] H. Zhang, G. Chen, W.-F. Wong, B. C. Ooi, S. Wu, Y. Xia,
”Anti-Caching”-based Elastic Data Management for Big
Data, Proc. of 31th International Conference on Data
Engineering, 2015.

773

	Introduction
	Systems Characterization
	Setup
	ARM Server Nodes
	Intel Server Nodes
	Software Setup

	Benchmark Results

	Measurements-driven Analysis
	Methodology
	HDFS
	Hadoop
	Query Processing
	MySQL
	Shark

	TCO Analysis
	Marginal Cost
	TCO

	Related Work
	Energy Proportionality
	Energy-efficient Servers

	Conclusions
	Acknowledgments
	References

