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Abstract
Source code querying tools are of growing importance. They
help software engineers explore a system, or find code in
need of refactoring as coding standards evolve. They also
enable languages designers to understand the practical uses
of language features and idioms over a software corpus.

Existing systems are implemented on top of relational
or deductive databases and make ad-hoc tradeoffs between
scalability, amount of source-code detail held in the database,
and expressiveness of queries.

We argue both that a graph data model is a better con-
ceptual fit for querying source code and also that graph
databases provide an efficient scalable implementation even
when storing full source-code detail. We show that a graph
query language can naturally express queries over source
code. Moreover, graph databases, with their emphasis on re-
lations, support overlays allowing queries to be posed at a
mixture of syntax-tree, type, control-flow-graph or dataflow
levels.

We describe and evaluate our prototype source-code
query system built on top of Neo4j using its CYPHER graph
query language. Experiments confirm that our system scales
to programs with millions of lines of code while also storing
full source-code detail.

Categories and Subject Descriptors D.2.0 [Software En-
gineering]; D.3.0 [Programming Languages]

General Terms Languages

Keywords source code, query, graph, database

1. Introduction
Large programs are difficult to maintain. Different modules
are written by different software engineers with different
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programming styles. However, enhancements to a system
often require modifying several parts at the same time. As
a consequence, software engineers spend a large amount of
their time understanding the system they are working on.

Various automated tools have been developed to as-
sist programmers to analyse their programs. For example,
several code browsers have been developed to help pro-
gram comprehension through hyperlinked code and sim-
ple queries such as viewing the type hierarchy of a class,
or finding the declaration of a method. These facilities are
nowadays available in mainstreams IDEs but are limited to
fixed query forms and lack flexibility.

Recently, several source-code querying tools have been
developed to provide flexible analysis of source code [1, 5,
15, 17, 20, 21]. They let programmers compose queries writ-
ten in a domain specific language to locate code of inter-
est. For instance, they can be used to enforce coding stan-
dards (e.g. do not have empty blocks) [7], locate potential
bugs (e.g. a method returning a reference type Boolean and
that explicitly returns null) [3], code to refactor (e.g. use of
deprecated features), or simply to explore the codebase (e.g.
method call hierarchy).

Such tools are also useful for programming language de-
signers to perform program analysis on corpora of software
to learn whether a feature is prevalent enough to influence
the evolution of the language. For example, a recent empir-
ical study made use of a source-code query language to in-
vestigate the use of overloading in Java programs [19].

Typically, source-code querying tools make use of a re-
lational or deductive database to store information about
the program because it is inconvenient to store information
about large programs in main memory. However, they typi-
cally let users query only a subset of the source-code infor-
mation (e.g. class and method declarations but not method
bodies) because storing and exposing further information af-
fects the scalability of the querying system. As a result, ex-
isting querying facilities have different trade-offs. We dis-
tinguish between two categories. On one hand, some sys-
tems scale to programs with millions of lines of code but
provide limited information about the source code. For ex-
ample, statement level information is discarded. On the other
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hand, some systems store more information about the source
code but do not scale very well to large programs.

In this paper, we argue that it is possible to build a system
that overcomes these tradeoffs.

We observe that programmers are familiar with compiler-
like graph structures such as the parse tree, control flow
graph and type hierarchy. We therefore suggest that the
graph data model [12] is a natural conceptual fit for rep-
resenting source-code information. We present a model for
Java source code that can be queried for expressive queries
involving full structural, type and flow information. For ex-
ample, we can query statement level information, the actual
type of any expression, the type hierarchy, the call graph of
any method, read/write dependencies of variables and fields
as well as liveness information. In addition, we explain how
our model can be easily extended via overlays and queried
using graph traversal operations.

We implemented a source-code querying system based
on this model using a graph database (i.e a database spe-
cialised for storing and traversing graph-like structures). Ex-
periments show that our prototype based on Neo4j [9] scales
to programs with millions of lines of code and compares well
to existing work.

The main contributions of this paper are as follows:

• The identification of different views of a program that are
useful to query for common software engineering tasks
and language design questions (Section 3). We make
these available as graph overlays (Section 4).

• A model for representing Java source-code information
based on the graph data model that can support structural,
type and flow queries (Section 4 and 5).

• An implementation of a source-code query system based
on this model using a graph database (Section 6).

• A detailed set of experiments that demonstrates that our
prototype is expressive and scales with increased pro-
gram sizes (Section 7).

2. Background
In this section, we describe the graph data model and graph
databases.

2.1 Graph Data Model
The graph data model encodes entities and relationships
amongst them using a directed graph structure [12]. It con-
sists of sets of nodes and edges, where nodes represent enti-
ties and the edges represent binary1 relationships between
these entities. Nodes and edges can be labelled, typically
with the name of the entity they represent, but possibly with
a tuple of name and further values, such as “weight:3”. For

1 In principle the formulation allows hyper-graphs with hyperedges of hav-
ing more than two nodes, but we only find the need to use ordinary directed
edges.

our purpose, we will refer to such tuples as properties on
nodes or edges.

As an example, a node may have a property nodeType

holding the string/enumeration value JCBinary to represent
a binary expression. This node would typically be connected
to two other nodes via two distinct edges labelled LEFT and
RIGHT to connect the left and right child nodes of a binary
expression.

By contrast, the relational model represents entities as
tuples that are grouped into formal relations. Relationships
between entities are encoded by combining relations based
on a common attribute.

2.2 Graph Databases
Databases supporting the graph data model are often referred
to as graph databases. They can be accessed via queries ex-
pressing graph operations such as traversal, pattern match-
ing and graph metrics. In Section 5 we discuss a graph query
language called CYPHER, which is used by the Neo4j graph
database.

By contrast databases supporting the relational model
are referred to as relational databases. They are typically
accessed using SQL as the query language.

There are two fundamental differences between relational
and graph databases which we exploit in our work: index-
free adjacency and semi-structured data.

First, graph databases provide index-free adjacency. In
other words, records themselves contain direct pointers to
list of connected nodes. This obviates the need to combine
relations based on a common attribute to retrieve connected
records. Vicknair et al. evaluated the performance of a graph
database against a relational database [31]. They report that
graph databases executed better for traversing connected
data, sometimes by a factor of ten.

Second, relational databases depend on a schema to struc-
ture the data whereas graph databases typically do not have
this requirement (i.e. they support semi-structured data).
In practice, it means that in a graph database all records
need to be examined to determine their structures, while
this is known ahead of time in a relational database. This
potential source of inefficiency is addressed in some graph
databases which provide index facilities to map certain struc-
tures known ahead of time to a list of records. In addition,
because graph databases do not depend on a schema, they
can be more flexible when the structure of records needs to
be changed. In fact, additional properties can be added to
or removed from records seamlessly, which facilitates the
addition of user-defined overlays. In relational databases, a
modification of the schema is required before altering the
structure of records.

3. Program Views
In this section, we identify various syntactic and semantic
properties of programs which are useful in searches. We
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make these available as overlays in the graph model (see
Section 5) so we can form queries combining various con-
cepts, such as “find a local variable which is declared in
a method called recursively and which has multiple live
ranges”. These overlay properties can be seen as database
views. For each property, we discuss their use for common
software engineering tasks and language design questions.

• Text/lexical
These queries express grep-like queries to match pat-
tern on the source code. They have an expressive power
limited to regular expressions. Such queries are useful
to check certain coding standards (e.g. check whether
variable declarations follow a naming convention) and
also for program comprehension (e.g. track certain iden-
tifiers in the code base). There exist many regular-
expression-based code search facilities such as Google
code search [4].

• Structure
Structural structural queries operate on the abstract syn-
tax tree (AST). These queries can be classified into
two categories: global structure (e.g. querying for ab-
stract method declarations within a specific class) and
statement-level (e.g. querying for a chain of if state-
ments to refactor into a switch) [24].

• Semantic Hierarchy
These queries explore semantic hierarchies among pro-
gram entities. For example, a query language could pro-
vide support for the overriding or implementation hier-
archy of methods. In addition, it could provide support
for the type hierarchy defined in the code base. This is
useful both for program comprehension (e.g. to find all
concrete classes of an interface) and optimisation (e.g.
perform class hierarchy analysis and eliminate dynamic
dispatches).

• Type
Here we effectively query a type-decorated AST of the
program. For example, in the context of program compre-
hension one could query method calls on a variable that
has a particular type. Such a query requires the availabil-
ity of the declared types of variables. In addition, some
coding standards require type information (e.g. “avoid
using arrays covariantly”).

• Control Flow
Control flow queries investigate the possible execution
paths of a program. Such information can be useful in the
context of program comprehension. For instance, to get a
high-level overview of an algorithm or to compute soft-
ware metrics such as the cyclomatic complexity. In addi-
tion, one may wish to explore a codebase by querying for
all method calls made inside a program entry point (e.g.
main()) or to analyse which parts of a module are call-
ing methods from a database API. Such query requires
access to the method call graph of a program.

• Data Flow
Data flow queries examine the flow of values in a pro-
gram. For example, one could query whether a variable
is used in the future by inspecting the liveness set of each
statement. This is useful for optimisation and for remov-
ing unused variables. In addition, in the context of pro-
gram comprehension one could query whether a method
reads or write a specific field, the reaching definition of
an assignment, or the number of items a variable may
point to.

• Compiler Diagnostics
It is sometimes useful to access extra information gener-
ated by the compiler. For example, one may want to query
the list of warnings associated with a specific block of
code. In addition, in the context of program comprehen-
sion it could be useful to query various decisions made
by two versions of a compiler to identify incompatibil-
ities. For example, Java 8 brings more aggressive type
inference compared to Java 7. There has been discussion
about how to identify possible incompatibilities by in-
specting the inference resolutions log generated by the
Java compiler [6].

• Run-time Information
Run-time information is useful in order to investigate
the impact of code at run time such as its memory con-
sumption and CPU usage. For example, synchronized
blocks are often responsible for performance bottlenecks.
In fact, there are query technologies that can analyse Java
heaps to facilitate application troubleshooting [8].

• Version History
Certain type of queries can only be answered by analysing
the version history of a codebase. For example, in the
context of program comprehension it could be useful to
query for methods that have been updated the most, to
find all modifications made by a specific committer or
simply to perform code diffs [22]. Such information is
also useful for programming language research to inves-
tigate the adoption of certain development practices, new
libraries or language features over time [23]. In addition,
recent work suggested the use of version history to mine
aspects from source code [14].

4. A Graph Model for Source Code
Our model to represent source-code information consists
of several compiler-like graph structures. We enhance these
structures with additional relations, which we call overlays,
to enable and facilitate queries over multiple program views.

In our model, source-code elements are represented as
nodes and the relationships amongst them as edges. We fo-
cus on Java. However, our methodology can be applied to
any object-oriented language. The design of our model was
guided by our motivation to support full structural informa-
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tion about the source code as well as type and flow informa-
tion.

We provide some examples on how to query our model.
Data manipulation is explained in more detail in Section 5.

4.1 Abstract Syntax Tree
The AST of a program is a directed acyclic graph where the
nodes represent source-code entities and the edges represent
directed parent to child relationships. The AST fits therefore
naturally with the graph data model.

The Java compiler defines different types of AST node
types to represent different source-code elements. For ex-
ample, a method declaration is represented by a class named
JCMethodDecl, a wildcard by a class named JCWildcard.
We map the AST nodes into nodes in our graph model and
we use these class names to identify the nodes. We store the
names in a property called nodeType (an enumeration con-
taining JCMethodDecl etc.) attached to each node.

Some AST node have fields pointing to other AST nodes
to represent parent-child relationships. For example, a binary
expression is represented by a JCBinary class, which con-
tains a field named lhs pointing to its left child expression
and another field named rhs pointing to its right child ex-
pression. We map these names to labelled edges. As an ex-
ample, in our model JCBinary is mapped to a node with a
property (nodeType:"JCBinary"), two edges labelled re-
spectively LHS and RHS connecting two separate nodes with
a property (nodeType:"JCExpression").

The complete list of relationships consists of around 120
different labelled edges and can be accessed on the project
home page [11]. It includes IF THEN to represent the re-
lationship of an if statement and its first branch, IF ELSE

to represent the relationship of an if statement with its last
branch, STATEMENTS to represent a block enclosing a list of
statements etc. Note that we also add a relation ENCLOSES

on top of these (i.e. an overlay) to represent the general rela-
tionship of a node enclosing another one.

This model lets us retrieve source-code elements using
the nodeType property as a search key. Searching for cer-
tain source-code patterns becomes a graph traversal prob-
lem with the correct sequence of labelled edges and nodes.
For example, finding a while loop within a specific method
can be seen as finding a node JCMethodDecl connected to
a JCWhileLoop with a directed labelled edge ENCLOSES.

Additionally, we define two properties on the nodes that
are useful for software engineering metrics queries: size
(e.g. number of lines of code or character count that this node
represent in the source file) and position (e.g. starting line
number and/or offset of this node in the source file). These
are implemented easily as the javac front-end provides them
for every syntactic object.

4.2 Overlays
The most obvious graph model of source code is the abstract
syntax tree. However, even finding the source-language type

of a node representing a variable use is difficult as we need
an iterative search outwards through scopes to find its bind-
ing occurrence in a definition which is where the type is
specified.

What we need is an additional edge between a variable
use and its binding occurrence—this additional relation is
an overlay. For example, we connect method and construc-
tor invocations to their declarations with a labelled edge
HAS DECLARATION and variables and field uses to their re-
spective definitions with a labelled edge HAS DEFINITION

to access these directly. Similarly we might want to pre-
compute a program’s call graph and store it as an overlay
relation instead of searching for call nodes on demand.

Sometimes it is also desirable to distinguish different in-
stances of a same labelled edge. For example, while a class
declaration contains a list of definitions, it is useful to distin-
guish between field method definitions to facilitate querying.
This is why we distinguish these with DECLARES FIELD and
DECLARES METHOD overlays.

Similarly, it is difficult to know ahead of time all possible
information that users may want to query. For example, users
may want to query for overloaded methods. Such a query
could be defined by processing all methods nodes available
in our model and grouping them by fully qualified name and
returning the groups that occur more than once. However,
this query would be much more efficient if method nodes
had a pre-computed (overlay) property indicating whether
or not they are overloaded methods.

As explained earlier, the graph data model relies on semi-
structured data so new overlays can be added without the
schema to change. As a result, our model can easily cache
results of queries as additional (overlay) relations or nodes.

We now describe the pre-computed overlays in our model
corresponding to the program views described in Section 3.

Type Hierarchy
We overlay the type hierarchy defined in the program
on top of the AST. We connect nodes that represent a
type declaration with a directed edge to show a type re-
lation. These edges are labelled to distinguish between an
IS SUBTYPE IMPLEMENTS or IS SUBTYPE EXTENDS rela-
tion. These overlays let us map the problem of finding the
subtypes of a given type as a graph path-finding query. As
a result, we do not need to examine class and interface dec-
larations to extract the information. Note that we prefer to
add overlays for one-step relations (e.g. direct subtype) as
transitive closure can be simply expressed and computed by
a graph query language (see Section 5).

Override Hierarchy
Similarly, we overlay the override hierarchy of methods de-
fined in the program on top of the AST. We connect method
declaration nodes in the AST with the parent method they
override using labelled edges OVERRIDES. As a result, we
can query the override hierarchy directly instead of examin-
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ing each class and method declaration to extract the infor-
mation.

Type Attribution
We overlay a property called actualType on each ex-
pression node in the AST. It holds the string representa-
tion of the resolved type of an expression. This facilitates
common source-code queries such as finding a method
call on a receiver of a specific type. Indeed, this query
would simply retrieve the method invocation nodes (la-
belled JCMethodInvocation) and check that the prop-
erty actualType is equal to the desired type. Similarly,
one can find covariant array assignments by comparing the
actualType property of the left-hand and right-hand side
of an assignment node (labelled JCAssign).

The Java compiler also defines an enumeration of differ-
ent type kinds that an expression can have. These include
ARRAY, DECLARED (a class or interface type), INT, LONG. We
store these values in a typeKind property.

Method Call Graph
We construct the method call graph by extracting the method
invocations from the body of each method declaration. Each
method invocation is resolved and associated with its method
declaration based on two filters: the static type of the receiver
(weak call graph) and all possible subtypes of the receiver
static type (rich call graph). We connect a method invocation
node with its resolved method declaration(s) with a labelled
edge CALLS for the weak call graph and CALLS DYN for the
rich call graph.

Typical source-code queries such as finding all the meth-
ods called within the entry point of a class can be seen as a
traversal query on the generated call graph. In addition, we
can easily find recursive methods by finding method decla-
rations nodes with a CALLS loop.

Data Flow
Dataflow analysis is a a vast topic; this work describes only
a simple set of data flow queries. We connect each expres-
sion with the declaration of the variables that they use using
a GEN edge. Similarly, variables that are necessarily written
to are connected to the expression with a KILLS edge. Such
information is useful for performing certain data flow anal-
ysis such as live variable analysis; the definitions above are
conservative for this—we consider the conservative set of
variables that must be written to, but only these which may
be read.

Next, we construct the read and write dependency graphs
for each block. We inspect each block declarations (e.g
method declarations, loops) to extract any field and vari-
able accesses. We connect the blocks to the field or variable
declarations that they read from or write to using READS and
WRITES edges. The READS set of a block can be seen as the
union of all the outgoing nodes connected with a GEN edge
from all the expressions contained inside that block. Simi-

larly, the WRITES set can be seen as the union of all outgoing
nodes connected with a KILLS edge from all the expressions
contained inside that block. This additional overlay is useful
to easily compose program comprehension queries such as
finding out which fields are written to by a given method
declaration.

5. Source Code Queries via Graph Search
In this section, we describe how one can write source-code
queries using our model. We show that a query language
specialised for graph traversal that supports graph pattern
matching, path finding, filtering and aggregate functions
can express all queries expressible in existing Datalog ap-
proaches.

Hajiyev et al. highlighted that a source-code query lan-
guage needs to support recursive queries to achieve high ex-
pressiveness [20]. Indeed, certain queries such as traversing
the subtype hierarchy or walking tree structures require re-
cursion. To this end, they suggested Datalog, which supports
built-in transitive closure. Graph pattern matching (i.e the
ability to match certain parts of a graph in a variable) can be
seen as binding a set of nodes in a variable based on the val-
ues of node properties and labelled edges. Path finding oper-
ations have also built-in transitive closure in order to traverse
the full graph.

We show examples of source-code queries using CYPHER,
a graph query language for the Neo4j database [9]. Its
use obviates the need to for complex translation to other
database query languages such as Codequest [20]. CYPHER
also supports aggregate functions such as COUNT(), SUM(),
which appear only as extensions to Datalog. Such operations
are useful to express software metric queries because they
often need to apply arithmetic operations on a group of data.

The next subsections describe in detail several of source-
code queries written in CYPHER.

5.1 Implementing java.lang.Comparator
We introduce the syntax of CYPHER by showing a sim-
ple query to retrieve all classes implementing the interface
java.util.Comparator in Figure 1 (Listing 1).

The START clause indicates a starting point in the graph.
We then iteratively bind in the variable p to all the nodes that
have a property nodeType equal to ClassType by looking
up the index of nodes called node auto index. Next, we
use the MATCH clause to generate a collection of subgraphs
matching the given graph pattern. Specifically, we look for
subgraphs starting at a node bound to a variable n which
has an outgoing edge labelled IS SUBTYPE IMPLEMENTS

connected to p. Next, we eliminate any subgraphs where p

is not of type java.util.Comparator by using a WHERE

clause on the property fullyQualifiedName. Finally, we
return the elements of all the matched subgraph as a list of
tuples.
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Listing 1
START p=node : n o d e a u t o i n d e x ( nodeType = ’ ClassType ’ )
MATCH n−[: IS SUBTYPE IMPLEMENTS]−>p
WHERE p . f u l l y Q u a l i f i e d N a m e = ’ j a v a . u t i l . Comparator ’
RETURN n , p ;

Listing 2
START m=node : n o d e a u t o i n d e x ( nodeType = ’ ClassType ’ )
MATCH p a t h =n−[ r : IS SUBTYPE EXTENDS∗]−>m
WHERE m. f u l l y Q u a l i f i e d N a m e = ’ j a v a . l a n g . Excep t ion ’
RETURN p a t h ;

Listing 3
START m=node : n o d e a u t o i n d e x ( nodeType = ’ JCMethodDecl ’ )
MATCH c −[:DECLARES METHOD]−>m−[:CALLS]−>m
RETURN c ,m;

Listing 4 START n=node : n o d e a u t o i n d e x ( nodeType = ’ JCWildcard ’ )
RETURN n . typeBoundKind , c o u n t (∗ )

Listing 5

START n=node : n o d e a u t o i n d e x ( nodeType = ’ JCAssign ’ )
MATCH l h s <−[:ASSIGNMENT LHS]−n−[:ASSIGNMENT RHS]−> r h s
WHERE

has ( l h s . typeKind ) AND l h s . typeKind = ’ARRAY’ AND
has ( r h s . typeKind ) AND r h s . typeKind = ’ARRAY’ AND
l h s . a c t u a l T y p e <> r h s . a c t u a l T y p e

RETURN n ;

Listing 6

START m=node : n o d e a u t o i n d e x ( nodeType = ’ JCMethodDecl ’ )
MATCH c −[:DECLARES METHOD]−>m
WHERE m. name <> ’< i n i t >’
WITH

c . f u l l y Q u a l i f i e d N a m e +” :”+m. name as f u l l y Q u a l i f i e d M e t h o d ,
c o u n t (∗ ) a s o v e r l o a d e d C o u n t

WHERE o v e r l o a d e d C o u n t > 1
RETURN f u l l y Q u a l i f i e d M e t h o d , o v e r l o a d e d C o u n t
ORDER BY o v e r l o a d e d C o u n t DESC ;

Figure 1. Examples of source-code queries written in CYPHER

Start node (n) End node (p)
{nodeType:"JCClassDecl",
lineNumber:36,
position:1654,size:473,
simpleName:"StringComparator",
fullyQualifiedName:"org.hsqldb.lib.StringComparator"}

{nodeType:"ClassType",
fullyQualifiedName:"java.util.Comparator"}

{nodeType:"JCClassDecl",
lineNumber:56,
position:2444,size:9564,
simpleName:"SubQuery",
fullyQualifiedName:"org.hsqldb.SubQuery"}

{nodeType:"ClassType",
fullyQualifiedName:"java.util.Comparator"}

{nodeType:"JCClassDecl",
lineNumber:86,
position:3576,size:417,
simpleName:"",
fullyQualifiedName:"<anonymous java.util.Comparator>"}

{nodeType:"ClassType",
fullyQualifiedName:"java.util.Comparator"}

Figure 2. Example output for the query implementing java.lang.Comparator on the program Hsqldb

Figure 2 shows an extract of the output from executing
this query on the source code of the program Hsqldb.

5.2 Extending java.lang.Exception
We can modify this query to find all classes that are directly
or indirectly subtypes of java.lang.Exception as shown
in Figure 1 (Listing 2). We generate a collection of all sub-
graphs starting at a node bound to the variable n that is con-
nected to a node m that represents java.lang.Exception.
We use the asterisk (*) to specify a form of transitive
closure: here that the path to reach m can be of arbitrary
length as long as it is solely composed of edges of type

IS SUBTYPE EXTENDS. Finally, we bind all the subgraphs
that were matched into a variable path, which we return.

Figure 3 shows an extract of the output from executing
this query on Hsqldb. The class FileCanonicalizationException
extends BaseException, which itself extends
java.lang.Exception

5.3 Recursive Methods with their Parent Classes
In Figure 1 (Listing 3) we show how to search for classes
containing recursive methods. First, we look up the in-
dex of nodes to find all method nodes that have the prop-
erty nodeType equal to JCMethodDecl and iteratively bind
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Node (n) Outgoing relationship (r)
{nodeType:"JCClassDecl",
lineNumber:2002,
position:83668,size:1388,
simpleName:"FileCanonicalizationException",
fullyQualifiedName:"org.hsqldb.persist.LockFile.FileCanonicalizationException"}

:IS_SUBTYPE_EXTENDS

{nodeType:"JCClassDecl",
lineNumber:1937,
position:81667,size:1684,
simpleName:"BaseException",
fullyQualifiedName:"org.hsqldb.persist.LockFile.BaseException"}

:IS_SUBTYPE_EXTENDS

{nodeType:"ClassType",fullyQualifiedName:"java.lang.Exception"}

Figure 3. Example output for the query directly or indirectly extending java.lang.Exception on the program Hsqldb

them to the variable m. Next we specify a graph pattern using
the MATCH clause that generates a collection of all subgraphs
starting at a node c (a class declaration) that is connected to
m. In addition, we specify that the method m is calling itself
by specifying an edge CALLS from m to m (weak call graph).

5.4 Wildcards
Parnin et al. investigated the use of generics by undertaking a
corpus analysis of Java code [23]. In this example, we show
how a query can investigate the use of generic wildcards.
We would like to group the different kinds of wildcards
by the number of their occurrences which appear in the
source code. CYPHER provides aggregate functions such
as count(*) to count the number of matches to a grouping
key. We can use this function in a RETURN clause to count the
number of occurrences based on typeBoundKind property of
nodes of type JCWildcard as shown in Figure 1 (Listing 4).
Figure 4 shows a possible output of running this query.

n.typeBoundKind count(*)
UNBOUNDED WILDCARD 67

EXTENDS WILDCARD 32

Figure 4. Result for grouping Java wildcards by kinds

5.5 Covariant Array Assignments
We recently conducted a corpus analysis to investigate the
use of covariant arrays and found that these are rarely used
in practice [30]. In Figure 1 (Listing 5), we show how one
could find uses of covariant arrays in assignment context.

First, we look up nodes of type JCAssign, which rep-
resent an assignment in the AST. We iteratively bind them
to the variable n. Next, we use a MATCH clause to decom-
pose an assignment into its left and right children, which we
bind respectively in the lhs and rhs variable. We ensure that
these nodes are both tagged as holding an expression of type
ARRAY by restricting the typeKind property using a WHERE

clause. Finally, we also ensure that the resolved type (e.g.
Object[]) and String[] of the left hand side and right
hand side of the assignment are different by checking the

actualType property, which holds the string representation
of the type of expression.

5.6 Overloaded Methods
Gil et al. investigated how Java programmers make use
of overloading by undertaking a corpus analysis of Java
code [19]. This research question can be partially answered
by composing a query which retrieves overloaded methods.
Figure 1 (Listing 6) shows how to generate a report of which
method names in which classes are overloaded along with
the degree of overloading.

First, we bind all nodes of type JCMethodDecl to vari-
able v. We then generate all subgraphs connecting m with
a node c (a class declaration) with a DECLARES METHOD

relation. We add an additional constraint using a WHERE
clause to eliminate subgraphs where the method nodes are
constructors (methods named <init>). Next, we generate
the fully qualified name of the method by concatenating the
fully qualified class declaration name with the method name.
We use this as the grouping key for the count(*) aggre-
gate function. Finally, we return the fully qualified method
names that appear more than once (i.e overloaded methods)
together with how many times they occur.

6. Implementation
In this section, we give an overview of the implementation
of our source-code querying system.

Our current prototype consists of a Java compiler plug-
in to analyse source-code files and a Neo4j graph database
to store the source-code information converted in our graph
model. We selected Neo4j [9] as our database back end
because it is established in the community, has a Java API
and also provides a graph query language that supports the
necessary features described in Section 5. The source code
of our prototype (1300 lines of Java code) can be accessed
on the project homepage [11].

The first part of our system is responsible for parsing Java
source-code files, analysing them and converting them into
our graph model. To this end, we developed a Java compiler
plug-in that accesses the Java compiler structures and func-
tionalities via API calls [29]. We used this mechanism be-
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cause a compiler plug-in interacts in harmony with existing
building tools such as ant and maven that rely on the Java
compiler. Users of our tool can therefore compile their pro-
grams normally without running external tools. However, the
Java compiler requires the entire project to compile before
it can be processed. There are alternatives such as Eclipse
JDT [2] that do not have this requirement but that do not
integrate so smoothly with standard building tools.

Our compiler plug-in traverses the Abstract Syntax Tree
(AST) of each source-code file. It translates the AST ele-
ments and their properties to graph nodes in Neo4j. Links
between AST elements are translated to labelled edges be-
tween the created nodes. We retain the full AST and do not
throw away any information. Additionally, we implemented
the type hierarchy, type attribution and call graph overlays
described in Section 4.

Neo4j provides indexing facilities that map a key to a
set of records. We use these facilities to index nodes based
on the nodeType property in order to improve the speed
of specific AST-node-retrieval queries. Finally, source-code
queries can be executed by writing CYPHER queries through
the shell interface provided with the Neo4j server.

7. Experiments
In this section, we evaluate the scalability and performance
of our system. We describe a set of experiments and their
results demonstrate that our system scales well.

First, we evaluate the performance of queries related to
code exploration. Next, we investigate the performance of
queries related to language design research that make use
of richer source-code information. Finally, we also compare
performance of certain queries supported by JQuery [21].

7.1 Setup
We intercept all calls to javac by replacing its binary on the
standard search path with an executable file that calls javac
with our compiler plug-in. As a result, any Java build tools
(such as ant or maven) that use javac to compile files will
automatically process the source code in the graph database.

We selected four Java open source programs of various
sizes. We summarise them in Figure 5. In addition, we cre-
ated a corpus of 12 Java projects totalling 2.04 million lines
of code, which can be accessed on the project home page. It
includes Apache Ant, Apache Ivy, AoI, HsqlDB, jEdit, Jsp-
wiki, Junit, Lucene, POI, Voldemort, Vuze and Weka.

We ran the experiments on two machines with Neo4j
standalone server 1.9.M04 and OpenJDK 1.7.0:

• A typical personal computer used for programming tasks:
a MacBook Pro with 2.7GHz Intel Core i7, 8GB of mem-
ory and running OSX 10.8.2

• An Amazon EC2 instance (m3.2xlarge) with 30GB and
EBS storage running Linux. We provide the virtual image
on the project homepage for reproducibility.

We ran the database server with default settings. How-
ever, it is possible to tune certain configuration parameters
such as memory usage to gain additional performance.

Our experiments consists of running different queries on
the programs and report the response time. We distinguish
between a cold system and a warm system to investigate the
impact of caching on performance.

• We report the response time of a query after restarting the
querying system each time (cold).

• We run the same queries twice and report the faster re-
sponse time (warm).

In a real scenario, it is possible for a developer to run the
same query several times. In practice, a production source
querying system could even warm the cache ahead of time
with common queries to enhance performance. Queries hav-
ing similar sub-queries in common will also benefit from the
cache.

Application Description # of Java files LoC
Junit 4.2 Java unit test framework 79 3206

Apache Ivy 4.2.5 Dependency manager 601 67989

Hsqldb 2.2.8 Relational database engine 520 160250

Vuze Bitorrent client 3327 509698

Corpus 12 open source software 13559 2038832

Figure 5. Summary of Java projects used for the experi-
ments

7.2 Queries
Code Exploration Queries
Source code querying systems are useful to developers in
order to rapidly explore a codebase by retrieving some el-
ements. We ran the following queries that explore a given
codebase (the syntax for them is described in Section 5):

1. Find all classes that directly implement
java.util.Comparator (Figure 1, Listing 1)

2. Find all classes that directly or indirectly extend
java.lang.Exception (Figure 1, Listing 2)

3. Find all recursive methods together with their parent
classes (Figure 1, Listing 3)

Research Queries
Source code querying systems can also be used by pro-
gramming language researchers to retrieve usage informa-
tion about certain features or patterns. For each project, we
ran the following research queries as these were investigated
in previous work (the syntax for them is described in Sec-
tion 5):

1. Report a ratio of the usage of generic wildcards (Figure 1,
Listing 4)

2. Find all covariant array assignments (Figure 1, Listing 5)
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3. Find all overloaded methods (Figure 1, Listing 6)

7.3 Results
We show the absolute response time to the queries in Fig-
ure 7. Queries 4 and 6 have a response time less than half a
tenth of a second. This shows that while our system can ef-
ficiently traverse graph structures, aggregate operations are
also efficiently executed. Figure 6 presents the execution
time expressed as ratios relative to the program Hsqldb. The
results shows that the query response times scale linearly
with increasing program size.

We found that running queries with a hot cache decreases
response time by a factor of 3x to 5x compared to a cold
cache. Finally, we also found that a larger machine (EC2
versus MacBook even on millions of lines of code) does
not directly improve performance of queries. We note a net
improvement for the largest programs (Corpus) for Queries 3
and 5 with a cold cache.

Figure 6. Queries times on MacBook relative to Hsqldb
(cold)

7.4 Comparison with Other Systems
Unfortunately, we could not find a working implementation
for recent system such as Codequest and JTL. However,
the authors reported absolute times of general source-code
queries executed on their system, which we briefly compare
with. The reader should note that it is difficult to make a
fair comparison since the queries were executed on slower
machines than what we used for our experiments. However,
our system stores more information about the source code
of programs, which also impacts performance. For example,
CodeQuest, JTL and JQuery do not support method bodies,
generics or types of expressions.

JTL The authors reported execution times between 10s
and 18s for code exploration queries carried out on 12,000
random classes taken from the Java standard library. How-
ever, it is unclear whether the experiment were performed
with a cold or warm system.

/ / 1 . r e c u r s i v e methods
method ( ?C , ?M) , c a l l s ( ?M, ?M, ? L ) ;

/ / 2 . c l a s s e s d e c l a r i n g p u b l i c f i e l d s
c l a s s ( ?C) , f i e l d ( ?C , ? F ) , m o d i f i e r ( ? F , p u b l i c ) ;

/ / 3 . o v e r l o a d e d methods
method ( ? C1 , ?M1) , method ( ? C2 , ?M2) ,
l i k e T h i s ( ?M1, ?M2)

Figure 8. Test queries for JQuery

We reported times of 0s to 12s running on a cold sys-
tem and 0s to 3s with a warm system by running queries
on a larger data set (a Corpus of over 13,000 Java source
files and 2.04 million lines of code). Note that our setup is
given an advantage because the JTL experiments were re-
ported on a 3GHz Pentium 4 processor with 3GB of mem-
ory whereas we used a more modern machine (MacBook Pro
with 2.7GHz Intel Core i7 with 8GB of memory).

Codequest The authors ran various queries on different
database systems. We compare with the fastest times they
report, which were found on a quad Xeon 3.2GHz CPU
with 4GB of memory and using XSB (a state of the art
deductive database). The authors reported times between
0.1s and 100s. The slowest query is looking for methods
overriding a parent method defined as abstract. In the
Codequest system, the overriding relation between methods
is computed on the fly. In our system, the override relation is
already pre-computed as an overlay on the AST.

JQuery We created three queries in JQuery: finding re-
cursive methods, classes declaring public fields and over-
loaded methods as shown in Figure 8. We tested them on
the ivy program (68kLoC) because JQuery failed to index
larger projects such as Hsqldb. This deficiency was already
reported by other work [15, 20]. All queries executed in a
couple of seconds except that for overloaded methods which
took over 30s on our MacBook machine.

8. Related work
In this section, we review existing source-code querying
systems and highlight what information about the program
is lost and the consequential restrictions on source-code
queries.

Source code querying systems can be classified in two
categories:

1. software: query the source code of one piece of software
in particular.

2. repository: query the source code of multiple projects at
the same time.

We provide a detailed comparison of software-level
source-code querying languages in a previous paper [28]. We
evaluated whether their expressiveness suffices for language
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Figure 7. Absolute queries times on MacBook and EC2. (Notice the varying y-axis scale)

design research. To this end, we studied several use cases of
recent Java features and their design issues—investigating
their expressibility as queries in the source-code querying
languages we examined. For example, one use case queries
for covariant array assignments. We found that only two
query languages (Soul and .QL) listed below provide the
minimal features required to express all our use cases.

8.1 Software Querying Systems
Java Tools Language (JTL) is a logic-paradigm query lan-
guage to select Java elements in a code base and compose
data-flow queries [15]. The implementation analyses Java
bytecode classes. Since JTL is based on bytecode analysis
rather than source-code analysis, several queries are inher-
ently restricted. For example, Java generics are compiled to
casts during the bytecode translation.

Browse-By-Query (BBQ) reads Java bytecode files and
creates a database representing only classes, method calls,
fields, field references, string constants and string con-
stant references [1]. This database can then be interrogated
through English-like queries.

SOUL is a logic-paradigm query language [17]. It con-
tains an extensive predicate library called CAVA that matches
queries against AST nodes of a Java program generated by
the Eclipse JDT .

JQuery is a logic-paradigm query language built on top of
the logic programming language TyRuBa [21]. It analyses
the AST of a Java program by making calls to the Eclipse
JDT. JQuery includes a library of predicates that lets the user
query Java elements and their relationships.

Codequest is a source-code querying tool combining Dat-
alog as a query language and a relational database to store
source-code facts [20]. Datalog queries are translated to opti-
mised SQL statements. The authors report that this approach
scales better compared to JQuery. However, only a subset of
Java constructs are supported and types of expressions are
not available. For example, one could not locate assignments
to local variables of a certain type.

.QL is an object-oriented query language. It enables pro-
grammers to query Java source code with queries that re-
semble SQL [16]. This design choice is motivated as reduc-
ing the learning curve for developers. In addition, the authors
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argue that object-orientation provides the structure necessary
for building reusable queries. A commercial implementation
is available, called SemmleCode, which includes an editor
and various code transformation.

Jackpot is a module for the NetBeans IDE for querying
and transforming Java source files [5]. Jackpot lets the user
query the AST of a Java program by means of a template
representing the source code to match. However, Jackpot
does not provide any type information for AST nodes

PMD is a Java source-code analyser that identifies bugs
or potential anomalies including dead code, duplicated code
or overcomplicated expressions [10]. One can also compose
custom rules via an XPath expression that queries the AST
of the program. However, types of expressions are not avail-
able.

8.2 Repository Querying Systems
Sourcerer is an infrastructure for performing source-code
analysis on open source projects [13]. It consists of a repos-
itory of Java projects downloaded from Apache, Java.net,
Google Code and Sourceforge. Source code facts of the
projects in the repository are extracted and stored in a rela-
tional database that can be queried. Information available in-
clude program entities such as classes or local variable dec-
larations. It also includes relations between entities such as
CONTAINS (e.g. a class containing a method) or OVERRIDES
(e.g. a method overrides a method).

Sourcerer focuses on storing structural information; we
consider this as an overlay to the AST, but in sourcerer
the AST is then discarded meaning that queries involving
statements within a method or types of expressions are not
possible.

Boa is an infrastructure for performing metadata mining
on open source software repositories [18]. It indexes meta-
data information about projects, authors, revision history and
files. However, it stores no source-code facts. The infrastruc-
ture provides a query language to mine information about
the repositories. For example, one can query the reposito-
ries to find out the ten most used programming languages.
Currently Boa indexes more than a million projects from
Github, Google Code and Sourceforge. Overall scalability
is achieved by using a Hadoop as a map-reduce framework
to process the data in parallel.

9. Discussion and Further Work
In this section we discuss further work as well as an applica-
tion of our work that aims to facilitate corpus analysis.

9.1 Specifying and Implementing Overlays
At the moment, our system stores as overlays those relations
corresponding to compiler data structures, such as control-
flow graph successors and predecessors, call graph and the
like as the authors felt useful. However, this is rather ad-hoc

and we now turn to a more disciplined approach. Ideally, we
would like overlays to be seen as cached results of queries—
thus we specify the binding occurrence of a variable use as
the result of a search; this can be implemented either in terms
of an additional pre-computation for every variable at start-
up time, or in terms of a cached search result.

This exposes an expressiveness question: suppose we
wish to provide overlay information for data-flow purposes
(e.g. which assignments reach a given variable use, or which
variables may alias at a given variable use). In general such
data-flow analysis involves fixed-point computations; these
are in general rather more complex than simple transitive
closure (e.g. Andersen’s simple points-to analysis is equiv-
alent to dynamic transitive closure). We plan to investigate
whether the query language can be refined to permit di-
rect representation of data-flow computations along the lines
of [26].

This would be very attractive, in that a user query may
then consist of a number of definitions followed by one
or more queries as before. The definitions can then be
implemented not as simple function calls during search
(which could be slow if they are used many times), but
as pre-calculating and storing overlay relations before the
query(ies) themselves are evaluated.

9.2 A Corpus Querying Platform
Empirical studies are useful to understand how program-
ming language features or idioms are used in practice. They
provide answers to questions and hypotheses that can in-
fluence the evolution of programming languages. There are
several proposals such as Qualitas Corpus (a corpus of open
source software) that aim to help language researchers ex-
amine code [27]. However, conducting studies can be diffi-
cult, time consuming and difficult to replicate by the research
community. For example, analysing the usage frequency of
a specific idiom requires complex static analysis and report-
ing tools. Source-code querying infrastructures can ease the
process: researchers can express a research question as a
source-code query over a corpus of software. However, as
discussed above, current solutions make ad-hoc tradeoffs be-
tween scalability, amount of source-code detail held in the
database, and expressiveness of queries.

We are therefore developing an infrastructure based on
our work, called Wiggle, which tackles these problems. Re-
searchers can express programming language research ques-
tions acting over a corpus of Java software and get a gener-
ated report to their queries. Currently, queries are expressed
via CYPHER. However, certain queries such as finding co-
variant array assignments can be difficult to write. Hence,
we are also designing a user-friendly source-code query lan-
guage which compiles to CYPHER. It inspired from query-
by-example [32] and SQL forms in order to make it intuitive
to use. For example, one can query for covariant array as-
signments by first composing a structural query which finds
assignments between two array expressions and bind their
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element types into two variables S and T as follows: T[] =

S[]. Next, we filter the set of results where the right hand-
side element type is a subtype of the left hand-side using
semantic constraints: S <: T.

We also plan to extend our infrastructure with support
for version history [25]. This would enable researchers to
ask a wider range of questions on corpus and language
evolution—such as adoption of certain development prac-
tices, new libraries or language features over time.

9.3 Query Optimisation and Cost
On large source-code corpora it is important to restrict
queries to near-linear time, O(n). This is more subtle than
first appears, as while corpora may contain many classes and
methods (O(n)), each method is itself effectively bounded in
size and hence O(1). Thus while the query: “find all method
names p and method names q” is likely to be quadratic in
n because of the effective join, the query: “find all method
names p and method names q such that p calls q” is likely
to be linear. There are two issues: one is that we wish to
optimise queries like the above so that they are calculated
in linear time whenever possible (and perhaps to warn if
this is not possible). The other concerns more program-wide
queries which are not in general linear in n, such as points-
to analysis. An approach here is to use a less-accurate algo-
rithm initially (e.g. Stensgard’s algorithm which is almost
linear) and then to refine its results on demand.

10. Conclusion
This paper presented the design and implementation of a
source-code querying system using a graph database that
stores full source-code detail and scales to program with
millions of lines of code.

First, we described a model for Java source code based
on the graph data model. We introduced the concept of over-
lays, allowing queries to be posed at a mixture of syntax-tree,
type, control-flow-graph and dataflow levels (Section 4).

Next, we showed that a graph query language can natu-
rally express queries over source code by showing examples
of code exploration and language research queries written in
CYPHER (Section 5).

Finally, we evaluated the performance of our systems
over programs of various size (Section 7). Our results con-
firmed that graph databases provide an efficient implemen-
tation for querying programs with millions of lines of code
while also storing full source-code detail.
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