
Optimizing Disjunctive Queries with Expensive Predicates*

A. Kernper~ G. Moerkotte$ K. Peithnert M. Steinbrunn t

tufiv~~~itatp~~au $ufiverBitatK=lgmhe

Fakultat fiir Mathematik und Informatik Fakultat fir Informatik
94o3o Passau, Germany

(lastname)@db.fmi. uni-pmsau.de

76128 Karlsruhe, Germany
moer@Mu.uka. de

Abstract

In this work, we propose and assess a technique called by-
pass processing for optimizing the evaluation of dkjunctive
queries with expensive predicates. The technique is partic-
ularly useful for optimizing selection predicates that con-
tain terms whose evaluation costs vary tremendously; e.g.,
the evaluation of a nested subquery or the invocation of a
user-defined function in an object-oriented or extended re-
lational model may be orders of magnitude more expensive
than an attribute access (and comparison). The idea of by-
pass processing consists of avoiding the evaluation of such
expensive terms whenever the out come of the entire selec-
tion predicate can already be induced by testing other, less
expensive terms. In order to v~date the viability of by-

pass evaluation, we extend a previously developed optimizer
architecture and incorporate three alternative optimization
algorithms for generating bypass processing plans.

1 Introduction

During the past few years we have witnessed tremen-

dous efforts in optimizing “next-generation” database

systems—see, e.g., ~MV93]. One particularly impor-

tant aspect is the optimization and efficient process-

ing of declarative queries. ~e87, GD87, Loh88] made

rule-based query optimization popular, which was later

adopted in the object-oriented context [0S90, KM90,

CD92]. Many researchers have worked on optimizer

architectures that facilitate flexibility: [GD87, Bat86,

BMG93, GM93] are proposals for optimizer genera-

tors; ~G92, HFLP89] described extensible optimizers
in the extended relational context; [MDZ93, KMP93]

proposed architectural frameworks for query optimiza-

tion in object bases.

*This work was supported by the German Research Council

under contracts DFG Ke 401/6-1 and SFB 346.

Permission to copy without fee all or pari of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copyin is by permission of the Association of Computing

+Machinery. o copy otherwise, or to republish, requires a fee
and/or specific permission.

~S93] pointed out that the ordering of the selec-

tion predicate evaluation is particularly important in

the presence of expensive conditions. These may occur

in relational systems in the form of nested subqueries

or in extended relational and object-oriented systems

in the form of user-defined functions. [HS93]’S work

is based on ordering the conditions in a sequence ac-

cording to their relative selectivity and evaluation cost 1.

This approach yields the optimal evaluation sequence

for (purely) conjunctive selection predicates [MS79]. An

obvious extension towards predicates containing dis-

junctions is to convert the entire selection predicate into

conjunctive normal form (CNF) and apply the sorting

on the resulting Booleam factors [SAC+ 79]. Further-

more, the disjuncts within one Boolean factor could

be ordered according to selectivity and evaluation cost.

Then, the evaluation within a Boolean factor can be

stopped as soon as one condition evaluates to true, and

the evaluation of the predicate is “exited” as soon as one

Boolean factor evaluates to /al.se-or, as soon as the last

Boolean factor in the sequence evaluates to true.

Another proposed technique (e.g., [0S90, JK84]) of

evaluating disjunctive selection predicates consists of
transforming the predicate into disjunctive normal form

(DNF). Then, the m-’s are usually transformed into a

multiway union, and each resulting stream is optimized

as usual. This approach facilitates parallel processing.

However, the top union necessitates the computation-

ally expensive duplicate elimination—because the same

object may qualify in more than one stream.

In this paper, we investigate an evaluation technique,

called “bypass processing,” which generalizes the idea

of avoiding the evaluation of expensive and/or non-

selective predicates whenever possible. In comparison to

the CNF- and DNF-based evaluation, the search space

for an efficient bypass plan is expanded. The CNF-

(DNF-) based optimization cannot rearrange conditions

across Boolean factors (conjunction terms). Therefore,

lIn the pre8ence of joins the work relies on a pre-determined

join order and sorts the conditions wittiln the join tree.

SIGMOD 94- 5/94 Minneapolis, Minrwsota, USA
@ 1994 ACM 0-89791 -639-5/9410005..$3.50

336

the search space is limited because the granules of the

optimization, i.e., the Boolean factors (CNF) or the

conjunction terms (DNF), are non-atomic, On the other

hand, the “bypass optimization” consists of determining
a (near) optimal evaluation sequence on the basis of

atomic conditions (not restricted to Boolean factors or

conjunction terms).

As an example, consider the predicate P which

consists of three conditions PI, P2, and P3: P(o) =

(Pz(o)V~I(o))A (P3(0) VP’’(O)). For simplicity, assume

that all three predicates have the same (high) evaluation

cost and the same selectivity. Then, the bypass

technique will first try to determine the outcome of the

predicate P solely on the basis of P1, which is the most

influential in this example. That is, those objects o for

which PI(o) is satisfied are to be included into the result

and only those objects o’ for which PI (o’) is not satisfied

are further processed. Let us assume that they are next

checked on the basis of Pz. Objects not satisfying P2

can be discarded since they did satisfy neither PI nor

P2 and therefore cannot satisfy P, Only those objects

o“ that satisfy Pz are further processed by P3. This way

the condition P3 is ewduated on only those objects not

satisfying PI but satisfying P2—which is the minimal

set of objects that have to be tested on P3. For all

other objects, the evaluation of P3 is bypassed. In this

paper, we present techniques for efficiently generating

such bypass plans that are based on atomic predicates.

In order to verify the viability of the approach, we

developed an optimizer for generating query evalua-

tion plans for bypass processing. This optimizer is

an instantiation of our previously developed architec-

tural framework for object-oriented query optimization

~MP93], This architecture is centered around a black-

board structure divided into regions-an idea also pro-

posed by [MDZ93]-which contain incomplete query

evaluation plans (QEPs). QEPs are composed from

basic building blocks ~oh88] which are, step by step,

augmented to complete evaluation plans. This building

block approach-also used for global query optimiza-

tion [Se186]—incorporates the factorization of common

subexpressions (cf. [CD92]) and the early pruning of

non-promising alternatives. Local optimization algo-

rithms (in our terminology called knowledge sources)

are associated with the regions and carry out the aug-

mentation of the (still incomplete) QEPs until, at the

top-most region, complete QEPs are generated. Each

knowledge source is allowed to restrict its search space

and to use its own search strategy as it is also sug-

gested by [LV91]. The (global) optimization process is
controlled by A* search [Pea84], which advances the al-

ternative which has the least expected cost. In contrast

to the approaches [GD87, GM93], where an expected

cost factor is assigned to the transformation rules, the

olegs

I (O,*)

(1, 1)

(o, *)

Airport

1

C5name

Figure 1: ER schema of the Airline Reservation System

building block approach allows us to derive the expected

cost of an alternative from the state of its completion,

For purpose of comparison, we devised four alternw

tive knowledge sources—three of which generate QEPs

for bypass processing and one for DNF-based process-

ing, In one of these knowledge sources we apply a for-

merly developed heuristic based on the Boolean Differ-

ence Calculus ~MS92], which ranks conditions on the

basis of their evahation cost and their significrmce for

obtaining the predicates’ outcome.

In Section 2 the idea of bypass evaluation is illumi-

nated on an illustrative example. In comparison to con-

ventional selection processing, the advantages of bypass

processing are shown, Then, in Section 3 our optimiza-

tion framework, into which the bypass optimization is

integrated, is described. In Section 4 the four above-

mentioned knowledge sources are explained. In Sec-

tion 5 we assess the quality of these four optimization

techniques bssed on a set of generated example queries,

Section 6 concludes this paper,

2 The Bypass Technique

We illustrate the bypass technique by an example

taken from the airline reservation domain; the entity

relationship schema is shown in Figure 1.

Consider the following example query retrieving those

flights which are extremely tiring. These can be

characterized as eastward journeys spanning more than

three time zones and consisting of more than three

connections or with a total transit time (sum of all

the times the passenger spends waiting in transit) of
more than four hours. In the query language GOMql

~M94], this query can be expressed as in Figure 2,

where the total transit time is computed by the function

total.transit-timeo associated with the type Flight.

337

range fi Flight

retrieve f

where

f .legs,last ().tootimezone - f .legs.first ().from.timezone ~ 3

and f.legs.lengtho ~ 3
or f.total.transit.timeo ~ 4

Figure 2: Example Query “Tiring Flights”

Table 1: Costs and selectivities for “Tiring Flights”

This function adds up all the transit times (time

difference between arrival of a flight and the departure

of the succeeding flight) in order to determine the total.

As this computation requires iteration over the entire set

of connections that make up the complete journey, this

function is more expensive to evaluate than the other

two,

The functions first, lust, and length are built-in

operations on list-structured types. For brevity, we

denote the conditions of the selection predicate by P~z,

Plength ~d Ptime:

Pti := f .legs.lsst ().to.timezone –

f .legs.first () ,fiom.timezone >3

Plength := f.legs.lengtho >3

l’time := f.total-transit.timeo >4

Consequently, the query’s selection predicate becomes

(pt. A l’,engti) ~ Ptime. Apart from the query and the

schema, we assume costs and selectivities to be available

to the optimizer. The evaluation costs per object are

denoted by c, and the selectivities bys, For the example

query, these figures are given in Table 1.

Let us now contrast the bypass technique with

evaluation plans breed on transforming the selection

predicate into the disjunctive normal form (DNF) or

the conjunctive norm”al form (CNF) [JK84]. The

evaluation plans for both alternatives are depicted in
Figure 3a-c, For the DNF-based plan, the set of

objects that are to be processed is duplicated such

that one of the copies of the object set is directed

to the path on the left-hand side (starting with the

condition Ptime), the other to the path on the right-

hand side (starting with ple~~~h). Those objects that

satisfy a condition are moved onwards; those that do

not are immediately discarded. If t he object set initially

consists of 1000 objects, on average 700 pass Ptime and

400 paSS Piengfi . From these 400 objects, 240 pass Ptz

and are subsequently united with the 700 objects that

have satisfied Ptime. Because these two remaining sets

are generally not disjunct, the final union operation

must eliminate duplicate objects in order to generate

the result set that consists of an average of 772 objects.

The average cost per object can be computed as

c(Ptifne) + c(P/ength) + ~(plength) . c(ptz) =50.2,

the cost for eliminating the duplicates not included.

The second approach, based on the conjunctive nor-

mal form, avoids the costly elimination of duplicates.

Two possible CNF-based plans for the example predi-

cate are depicted in Figure 3b and 3c. An object moves

on to the next stage (i.e., the next “Boolean factory

cf. [SAC+ 79]) as soon as it is certain that it quali-

fies. For instance, if an object does not pass Pk.fagth,

Ptime is evaluated. If it does not pass Ptime as well,

it is discarded-otherwise, it is an element of the re-

sult because Ptime also appears in the second stage. If

Ptime’s evaluation results are not saved, the sorting of

Boolean factors and conditions within Boolean factors

as in plan 3b is the optimum (cf. ~an77]). The average

cost per object for plan 3b can be computed as

c(plength) + (1 – S(f’ienpth)) . (C(piim.) +

S(Ptime) . (C(Pt.) + (1 – S(Ptz)) . C(Ptim.))) +

$(plenath) o (C(ptz) +(1 _ S(pti)) . C(ptime)) = 54.88,

that is higher than the DNF plan’s cost (neglecting du-

plicate elimination) chiefly because it may be necessary

to evaluate Ptifne twice (namely if PIengfi is false, Pti~e

is true and Ptz is ~alse),

However, if a cache for Ptime’s evaluation results is

available as proposed in ~S93], plan 3C is the optimum,

and the cost can—at best—be reduced to an average per

object of

c(plength) + c(ptime) +

S(piength) . (1 – S(ptime)) . c(Ptz) = 45.16

if zero lookup and maintenance cost for cached results

is essumed.

The advantage compared to the DNF-based plan

is not only the lower evaluation cost average, but
also the avoidance of a duplicate-eliminating union

operation. Furthermore, the optimaJ ordering of

Boolean factors and conditions within a Boolean factor

can be determined efficiently [Han77]. Objects that

are not elements of the result set can be eliminated

early, namely as soon as one Boolean factor evaluates

to “false.” However, for elements of the result set,

it may be necessary to evaluate certain conditions

repeatedly. For instance, if an

neither Plemgth nor Ptz,l’time

object satisfies Ptime but

must be evaluated twice

338

7?2 Objects
(168 Duplicates allminated)

t

f

L
\

240
Object.

700
Object. Pti

1

400
Object.

Ptifne Rength

v1000 1000

Object. Object.

1000

Obiects

(a)

DNF-based plan

772 Objects
(No Duplicate

Elimination Required)

I

Pt. v Ptime

1.s20
Object.

l’length v Ptime

11000
Object.

(b)
CNF-based pkl

without result caching

772 Objects
(No Duplicate

Eiiminmticm Required)

t

t
820

Object.

Plength v Ptime

t
1000

Objeetm

(c)

CNF-based plan

with result caching

772 Object-
(No Duplimta

Elimination Required)

—- I-J A--

I
I

1
420 112 240

Objactc Objects Object.

P;me

I
A

Ptime ,60 L........ ptz

A ObJectt

600 :

I

400
Objmts ! Object-

Figure 3: Various evaluation plans for (Ptz A Plengti) V ptime

because it appears in both Boolean ikwtors. This is an

inherent problem of both CNF- and DNF-based plans

and makes a result cache indispensable if competitive

performance is desired.

The fourth evaluation plan, employing the bypsss

technique, pursues a similar idea as the CNF technique,

namely to discard objects that are not elements of the

result set as early ss possible, but to avoid the CNF

plans’ drawbacks. In order to achieve this goal, the

plan makes use of a special selection operator that does

not merely determine those objects that satisfy the

selection predicate, but distinguishes the input object

set into two output sets consisting of objects that satisfy

the predicate and those that do not, respectively. In

Figure 3d, the “false” set is output on the left-hand

side (dotted line), the “true” set on the right-hand side

(broken line), For instance, an object that satisfies

condition &@h moves on to condition Ptz. If it

satisfies Pti, too, it is certain to be an element of the

result set. Otherwise, Ptime has to be evaluated, whose

out come finally determines the object’s fate, In the last

step of the evaluation plan, the three streams are united

in order to compute the result set. In contrast to the

union operation in Figure 3a, this one does not need to

eliminate duplicates, because its operand sets are always

disjunct. To distinguish these two types of unions, the

duplicate-eliminating set union is denoted as ~ and the

merge union as ~. The average cost per object for the
bypass evaluation plan is

C(pfength) + (1 - ~(Plen@h)) “ C(ptinte) +

8(p~en@h . (C(ptz) + (1 – s(Ptz)) . c(p~me)) = 40.6,

:,...........~.engti-..~

(d)
Bypass technique

that is the lowest of the alternative plans. Furthermore,

no result cache is required because at each node of the

evaluation plan, the results of all prior evaluations are

implicitly known, The set of these specialized bypass

plans is a superset of the set of CNF-based plans: every

CNF-based plan implicitly specifies a bypass plan, but

not every bypass plan can be expressed as a CNF plan.

Restricting the evaluation to CNF-based plans one can

order Boolean factors and, in addition, the disjuncts

within each Boolean factor, However, it is not possible

to rearrange the atomic conditions globnlly “across”

Boolean factors. On the other hand, an optimal

bypass plan treats Boolean conditions as atomic units

that are ordered globally for minimum average cost.

Consequently, well-designed bypass plans are at Ienst

as good as conventional CNF- or DNF-based evaluation

plans.

This example motivates the enhancement of the query

optimizer such that it can generate optimized bypass

plans. During the rest of the paper, we will consider

several strategies to find optimized bypass plans and

compare their performance in terms of the costs of their

generated evaluation plans and their (optimization)

running times.

3 Optimization Framework

In [KMP93], a (generic) architectural framework for
query optimization was introduced. This framework is
based on a blackboani architecture which achieves de

sirable characteristics of a query optimizer as extensi-

bility, adaptability, and evolutionary improvement. Es-

pecially, the integration of new optimization techniques

339

can be carried out with acceptable effort. This allows us

to test several algorithms for optimizing selection pred-

icates for the bypass processing technique.

The blackboard query optimizer is based on a budding

block approa$h ~oh88], The entire query is decomposed

into building blocks, and alternative query evaluation

plans are obtained by composing these blocks. The

former-usuzdly called simplification-normalizes and

reduces the query to a set of atomic building blocks.

The latter step-(re-)assembling by composing the

blocks to different query evaluation plans-is actually

the optimization process which is well supported by our

blackboard architecture.

We will first sketch the building block approach, and

then describe an instantiation of the generic framework

tailored for optimizing disjunctive queries.

3.1 Building Block Approach

In order to obtain an unambiguous notation, each term
factor and each condition is assigned an identifier——
denoted by T, To, TI, P, Po, PI, etc.2 This
facilitates a decomposition into building blocks, and a

factorization of common subexpressions. For example,

the condition j.legs.lengtho a 3 will be decomposed

into two term factors Ts: f. legs and TZ: length(T3) and

one condition plen~tb: Tz ? 3. Thereby, the term

f.legs appearing three times in the query of Figure 2

is implicitly factored into only one algebraic operation

T3: j legs.

Thus, the selection predicate of the entire query will

be decomposed into atomic operations. The operations

are applied on intermediate results that are maintained

in relations whose columns can be denoted by the term

identifiers, For this presentation, the following algebraic

operations will be sufficient:

1!

2.

Selections up,i~r where P identifies the condition,

1 and r are constants or term identifiers, and @ is

a comparison operator (=, #, <, z, >, <, =, $7!).

The outputs of a selection are two (complementary)

streams of tuples of the input relation corresponding

to the evaluation of the condition l@r; that is, a true-

stream and a false-stream.

Function invocations XTg(.wsJ where T identifies
the function term, g is the function name, and args

is a list of term identifiers and constants. The

semantics of a function invocation is a mapping

horn the input relations to the result relation

containing all previous columns and, in addition, one

newly generated column identified by T, For type-

associated functions, the receiver object is specified

by the first parameter of args.

2Fo~ the rurmhg example, we will use the (mnemonic)

subscripts introduced in Section 2.

Anchor Sets
Expansions

Selections

Control
Function

3.

4.

Buildimz

Blocks-

{ef=4doW’~~9W)}
XT3: f. legs

XT12 :jht(Ts)

xT7:kast(TJ

XT2 :length(T8)

xTIa :TIZ .f?vm

XTIO :Tlg .timezone

xTs:T7.to

XTS :Ta .timezone

xTI:-(~ TIO)

xT15:totaidransit.time (f)

‘Plength :T2 >3

uPtz :Tl >3

‘Ptime :T15~4

(pt. A plen@h) v Ptime

Single
costs
1,000.0

1.0
1.0
10.0
1.0
1.0
1.0
1.0
1.0
1.0

39.0

1.0

1.0

1.0

—

Table 2: The running example’s MCNF

5electi-
vities

—
—

—
—

—

0.4

0.6
0.7

—

Attribute accesses XT,:T1.. where T1 and T2 are

term identifiers, and a is the name of the accessed

attribute. The input relation will be augmented by

the column T2 containing the values obtained by the

attribute access TI .a.

Union operators which will be distinguished into

unions L with duplicate elimination and unions ~

only merging the disjoint input streams (without the

need for duplicate elimination).

The algorithms presented in the next section will only

consider queries decomposed into operations using the

algebraic operators listed above. The complete set of

operators in our algebra also contains a join, an unnest,

a projection, and a set di#erence operator. The function

invocations and the attribute accesses are generfllzed

to expansions X—an operator similar to the materialize

operator as proposed in [BMG93].

The simplification step decomposes the query into

its building blocks, and enriches them with statistical

data, called basic values, For the purpose of the paper,

we are mainly interested in selectivities and evaluation
costs for function invocations. Among other things

(explained below) building blocks and the basic values

are stored in a (normalized) tabular format—called

MCNF3 [KM93]—as presented for the running example

in Table 2.

A minimal (i.e., non-redundant) set of building blocks

used for scanning the base relations, e.g., extensions of

3 &fcNF Standg for Most Costly Normal Form indicating that
this form of a query represents the initial-most coztlyatate of

the optimization.

340

object types or index structures, is called an anchor set.

To simplify this discussion, only one alternative anchor
set, namely {@f=#o(oid(Fiight))}, is considered—the
“real” optimizer has to consider alternative anchor sets
to exploit index structures (JWIP93]. This anchor set
creates a new temporsry relation with one column,
called ~, scans the extension of Flight, and associates the
object identifiers (OIDS) with the attribute ~. In total,

the decomposition of the example query contains ten

expansions and three selections. The evaluation costs

for processing one single tuple and the selectivities of the

selections are reported in the columns Sing/e Cow% and

Se2ectivities of Table 2. If the costs of the expansions

necessary for evaluating one selection are summed up

and added to the costs of the selection itself, the costs we

nssumed in Section 2 will be obtained, For example, the

selection marked by &@k presupposes the evaluation

of the expansions XTZ:/efi@k(Ta) and X!rs ;~.lee, such that

its costs amount to 1 + 1 + 1 = 3. The Control Function

is derived from the selection predicate by substituting
the conditions with their corresponding identifiers.

3.2 Composition

Query ewduation plans are assembled bottom-up where
the anchor sets form the basis. We call a not necessarily
complete query evaluation plan a current expression.

Hence, anchor sets are the smallest current expressions.

The assembly process continues by adding selections

and expansions to a current expression. Different

applicable operations ‘give rise to different alternatives.

For the optimization problem considered here, adding a

union, either ~ or ~, typicslly ends the assembly.

The composition process is “directed” by control

functions assigned to the current expressions. At the
beginning of the optimization, the control function
of oid(~pe) is taken from the MCIVF. Every time
a selection is appended to an expression the control
function is updated, i.e., for the false-branch, the
concerned identifier P is substituted by faZse, and for

the true-branch by true. Then, the control function

is simplified by the common algebraic simplification

rules such as false A P = false, For example, if

Wf3 add Uplength:TZ>3 to an expression with control

function (Pti A P1.n~tA) v Pti~=, we will obt sin two
current expressions corresponding to the two evaluation

streams. The true-stream is controlled by (Pt. A true) V

Pti~e, which is simplified to PtZ V Pti~e and the false-

stream by (Ptz A false) V Pti~e, which simplifies to Pti~e.

Looking at the control function, the optimizer is
able to decide which selections and, furthermore, which

expansions are necessary for completing each expression

such that, finally, its control function equals true. This

is the precondition for the final merge by the ~ operator.

Region 2

Region 1

E @

DNF

BDC

Random

Region O A*
I 1

regions knowledge sources

Figure 4: Blackboard architecture

3.3 Blackboard Architecture

The composition process is reflected by a blackboard ar-

chitecture which is an instantiation of our generic black-

board framework ~MP93], As sketched in Figure 4, the

blackboard for this presentation consists of four regions

between which the query evaluation plans are com-

posed step by step. Each region symbolizes one state of

the optimization process where the alternatives-called

item—are temporarily maintained. Each item may

contain several current expressions which will be en-

hanced and composed to a query evaluation plan, The

propagation of the items from one region to the next re-

gion is performed by knowledge souwes which might be

atomic rules or sophisticated algorithms. Each knowl-

edge source is aIlowed to generate alternative items. It

is possible to sssociate more than one knowledge source

between two regions. Then, the characteristics of an

item determines which knowledge source will be applied.

The first region contains the MCNF of the entire

query. Adding some selections to the current expres-

sions is tried first-thereby transferring the item ilom

Region O to Region 1. For that, four alternative knowl-

edge sources called A*, Random, BDC, and DNF spec-

ified in the following section were developed. If a selec-

tion depends on an expansion, the item will be propa-

gated to Region 1 such that the knowledge source intro-

x can enhance this item by adding the necessary expan-

sions, The generated items are put back to Region O as

long as any of the control functions indicates—by not

being reduced to true or false-that some conditions

still have to be integrated. Finally, the item leaves the

iteration and, after incorporating the final union oper-

ator by the knowledge source intm~/~, an (altern&
tive) query evaluation plan is generated and stored into

Region 3. This instantiation of the generic blackboard

framework can easily be extended by further optimiza-

tion heuristics, as e.g., the determination of a good join

341

order (cf. [SMK93]), if some more regions with the ap-
propriate knowledge sources are integrated into the it-
eration.

The optimization process is controlled by the global
search strategy .4* ~ea84]-also used for global query

optimization [Se186]. For that, historyand future costs

derived from the state of the composition are assigned
to each item. The current expressions determine the
history, and the remaining operations-called future

work—the future costs. At all times, the item for which

the sum of history and future costs is minimal over all

items is further processed.

4 Disjunctive Predicate Optimization

In this section, we introduce three algorithms for

optimizing queries for bypass processing—A*, Random,

and BDC—and one algorithm based on the DNF

selection processing, All these algorithms determine an

order of how the selections should be evaluated. Their

placement within the blackboard architecture is shown

in Figure 4. Random and BDC integrate all conditions

within one Blackboard iteration, wherens A* and DNT

require some more iterations in general. The results of

these four search algorithms are demonstrated on the

running example.

4.1 A* Search

Since the global search strategy is based on the A*

search algorithm, a knowledge source using A* is

easy to integrate. It is sufficient to establish one

knowledge source which generates all possibilities of

adding selections to the current expressions. The global

A* search then controls which alternatives are further

processed.

This simple knowledge source can easily be combined

with further knowledge sources that optimize the orders

of other algebraic operators. Furthermore, since the

A* algorithm will always find the optimal solution

in a given search space if the estimated future costs

constitute lower bounds of the actually arising costs—

a constraint which is fulfilled by our cost model—the

optimal bypass evaluation plan is obtained for each

query. Consequently, for the running example, the A*
strategy computes the optimal evaluation plan as it was

sketched in Figure 3d (Section 2),

4.2 Random Search

The knowledge source called Random uses a very simple

procedure to order the conditions into a bypass plan.

It iterates over the future work of the entire item, and

integrates an operation whenever possible. Since at each

iteration at least one operation of the future work is

integrated into the current expressions, the worst case

772
Objects

f

,U7,~.
7 Object,

Pti

I

120
Objects

Ple.gth

?00 :

t

Soo
Obje.$. ! Objet.

‘..Pt~~.-

t

true-
1000

Object. fml.m--..>

Figure 5: Random search

complexity is O (nz) with n being the number of building

blocks.

The query evaluation plan generated by Random

is sketched in Figure 5, The condition Pt~~e is

integrated first since it depends on the least number of
expansions and, therefore, it can be added to the current
expressions in an early iteration. The condition Ptz

requires the most expansions, so it is integrated lsst.

The generated plan induces an average cost of 43,06

per object,

4.3 Boolean Difference Calculus Heuristic

In contrast to the algorithms described so far, the

Boolean Difference Calculus heuristic (BDC heuristic

for short) does not employ any search. Instead, the

heuristic determines a good evaluation order of the

selection predicate’s conditions in one step. The basic

idea is to assign “weights” to the conditions, depending

on the respective influence on the result (e.g., in Z1 V

(q A w A Z4 A Z5), $1 k more influential than any one

Ofzz, ,.. , Z5) and on the evaluation cost per object.

The tool for computing the influence of a condition is

the so-called Boolean Difference Calculus. The Boolean

difference of the Boolean function ~ for the variable xi

is defined analogously to the differential in “ordinary”

calculus, namely:

A=if(~l,>~j-l?~i+l?->~-)=f
f (xl, -f.,. ,z+l, Q- alse, z~+l, ..$, x.) #

f(xl, Z~_l. Zi=tWe, Z~+l, Zn)

The probability for the Boolean difference being true

is a measure of the influence of the variable xi on the

result of the function ~, similarly to the gradient of

a continuous function: the higher the gradient, the
higher the “leverage” of the variable xi with respect

to the function’s value. The same principle applies

342

to the Boolean difference: the higher the probability

(selectivity) g(A.,t) of A=, i being true, the higher
the influence of the variable ~i on the value of the
Boolean function ~. This idea is employed to construct
an evaluation plan for the Boolean function ~, where
the above-mentioned weight Wmi of a condition xi is
the quotient of its Boolean difference probability and
its evaluation cost c(~i): W$i = s(A*~,f)/C(~i). The

algorithm for constructing the evaluation plan reads as

follows (cf. ~MS92]):

1.

2.

3,

4.

Compute the weights w,, for all conditions Zi in the
predicate ~.

Choose xi with the highest weight w=, as the first
(next) processing node.

● If ~(Zi := @se) = fdae, omit the emanating
“fidse” arc of the processing node Zi (objects are
certain not to be elements of the result and can
be discarded);
stop

● If ~(~i := fube) = true, draw the “false” arc from

processing node Zi to the final union operation ~

(objects are certain to be elements of the result);

stop

● Otherwise, draw the “false” arc from processing

node xi to the first processing node for the

predicate ~(~i := fake) that is determined

recursively as in Step 1 and Step 2.

Exactly ss in Step 3, but for f(~i := true) (i.e., the

“true” arc).

Applying this algorithm to the selection predicate

“Tiring Flights” (cf. Figure 2) yields (in this case) the

optimsl evaluation plan as depicted in Figure 3d with

an average cost per object of 40.6.

4.4 Generation of DNF-based Plans

For the purpose of comparison, we have also imple-

mented a knowledge source called DNF which optimizes

the queries according to the DNF-based selection pro-

cessing technique. This knowledge source presupposes

that the selection predicate is transformed into disjunc-

tive normal form, first. Then, each and-connected sub-

predicate of the normal form can be evaluated by the

conventional type of selection processing. Because of

transforming the or’s into unions (~) we obtain evalu-

ation plans with at least two subbranches. Usually, the

subbranches are very similar to each other such that

factorization of common subexpressions is expected to

gain performance. Since, in generaJ, there are several

selections that may be integrated, alternatives are gen-

erated which are assessed by the global search strategy,

F&jure

6a

6b
7a
7b
8

Conditions

3-1o
5

*1O

5
~

o-loo% 30
66.67% 30
o-loo% 30
66.67% 30

Table 3: Benchmark parameters

The query evaluation plan for the running example gen-

erated by DNF is sketched in Figure 3% it induces an

average cost per object of 50.02. For this plan, factoriza-

tion fails since the initial selection predicate is already

in disjunctive normal form wit bout any common subex-

pressions,

5 Assessment

5.1 Generated Benchmark Queries

The benchmarks described in this section were carried

out with synthetic queries from a query generator. We

want to point out that the generated queries are based

on a realistic schema and object base, The schema

models an airline reservation schema a part of which

is sketched in Figure 1 of Section 2. It has 13 types

with average numbers of 3,69 attributes and 0.46 type-

sssociated functions per type and 7 free (not type-

associated) functions. In order to be able to add costs

to the query evaluation plans some characteristics, w

e.g., the cardinalities of the types and the range sizes

of the attributes and functions, of the object base are

necessary. In addition, some system-dependent values

have to be provided. For example, the average costs

for an attribute access is 1.0 and the invocation of a

type-associated function is 110.0. For our benchmarks,

the selectivities of the conditions were derived from the

cardinalities of the types and the range sizes of the

attributes and functions by simple calculations. The

derived selectivities of the conditions of the generated

queries varied from O to 1. The basic structure of a

generated query is

range var: type

retrieve var

where var, attrl,o, . -. .attrl,~l @l constl and/or

var.attrz,o.attrz,nz % constz and/or

!.,

var.attr~,o. . . o.attrm,mm % const=

That means, a set of objects of a single type is retrieved.

None of the attributes in the query is set- or list-

typed, i.e., all attributes are references to single objects.

343

Furthermore, as the structure of the queries indicates,
there are no join operations, because all conditions
of the selection predicate are simple comparisons with
constants (@i c {=, #, <, >,.. .}). However, the
selection predicate itself may be an arbitrary Boolean
expression. The following parameters can be adjusted
for the query generation:

● The number m of conditions in the selection predi-
cate

● The ratio of the number of and-operations to the

number of or-operations in the selection predicate

● The maximum total number n of attribute accesses
and function calls, i.e., n~ s n.

The third parameter, the maximum total number of

attribute accesses and function calls, is the same for

rdl benchmarks we carried out, namely four times the

number of selection predicate conditions. This ensures

a sufficient variety of queries and, thus, of costs and

selectivities. The first two parameters, the number of

selection predicate conditions and the and/ or ratio, are

subject to variation in the benchmarks.

5.2 Quality Assessment

Bssically, two characteristic features of optimization

strategies are of paramount interest: first, the quality

of the optimization, i.e., the execution cost of the

optimized query compared to the optimsJ solution, and

second, the cost incurred by the optimization process

itself compared to the straightforward translation of the

query into an evaluation plan without any optimization.

The execution costs are estimated by the cost model of

the blackboard hrnework that only assesses the costs of

scan operations, the expansions, and the selections, and

ignores the costs of the unions. The optimization costs

are the running times needed for the optimization.

In order to determine these figures, we carried out two

series of benchmarks, one for the optimization quality

and one for the optimization cost. The parameters for

all benchmarks are listed in Table 3. In addition, the

plot points are computed as the median of all thirty

queries with that particular parameter set. The reason

for using the median and not the average for combining

is the comparatively small number of samples that have

been taken, where the expressive power of the median

is higher than that of the average.

In Figure 6a and 6b, the optimization qusXty of

DNF optimization, BDC optimization and the Bandom

strategy are compared with the A* algorithm. Firstly,

we observe that the bypass plans generated by A* are

far better than the “conventional” plans generated by

DNF. In some cases, the optimization to a conventional

plan accomplishes evaluation plans even worse than a

bypass plan generated by the Random search. Secondly,

we notice that the BDC heuristics performs almost as

well M the A* optimization.

Figure 6a shows the median of the scaled (with

respect to the cost of the A* optimized query) costs for

the knowledge sources Random, BDC, and DNF. The

BDC optimization produces plans almost as well as the

A* optimization regardless of the number of selection

predicate conditions (at lesst within the interval 3-10),

whereas the quality of DNF optimization decreases with

increasing number of conditions. For ten conditions,

DNF optimization is only slightly better than the

Random strategy. However, both are no worse than

twice the cost of the optimal solution.

In Figure 6b, the number of selection predicate con-

ditions is always five, but the and/or ratio varies. On

the left-hand side, the predicates consist entirely of

or operations, but their number is reduced in favour

of and operations from left to right until the predi-

cates for the rightmost plot points consist entirely of

ands. Again, BDC optimization performs for the en-

tire range of and/or ratios equally well (and as well

as A*), whereas the DNF optimization yields rather

bad results for pure disjunctive predicates—many dis-

junctions lead to many different data streams in DNF--

based plans, and, thus, to multiple evaluations of the

same conditions in different streams, The quality in-

creases with increasing number of and operations, until

for mainly conjunctive predicates the DNF optimiza-

tion works as well as BDC and A* optimization. For

the Random strategy, there is no clear tendency per-

ceivable, although the graph indicates a slight favour-

ing of predicates with roughly equal numbers of andf or

operations.

These results indicate clearly that disjunctive queries,

especially if many conditions are involved, are not han-

dled very well by the conventional DNF optimization

strategy, i.e., the generated evaluation plan based on

conventional selection processing is quite bad, A* as

well as BDC outperform DNF optimization by a cost

factor of about two to three. Thus, paying special at-

tention to disjunctive queries is certainly well worth the

effort. However, as BDC and A* show a similar per-

formance in optimizing the kind of query, the cost for

performing the optimization itself plays a decisive r~le.

If the cost for the well-performing optimization strate-

gies itself proves to be prohibitively high, even the worse

DNF strategy may be preferable. This question is ad-

dressed in the second benchmark series, where the run-

ning times oft he A*, DNF and BDC optimizations are

compared with the running time of the Random strat-

egy. The graphs in Figures 7a and 7b correspond to

Figures 6a and 6b, respectively.

In Figure 7a, the impact of an increasing number

344

,—. *_..+ -._* -__+ __+___ *-_..
a 4 5 6

S.31edd
8 e

(a)

10
Rmdc.m +-

DNF 0p6ri?a6m -
BDC .+

:

$
L

J

i

,, ,.-+._*__* _-____-_.-+._
4

0 10
Paw&e At!?Oper%nap?Sd.& P& (f% OR?

102%

(b)

Increasing number of selection predicate conditions Varying ratio”of andlor operations

10QO

- (66% and/33% or operations) (five s~ection predicate conditions)

Figure 6: Execution costs of optimized queries

11 I
3 4 5 6

Sddd
8 9 10

(a)

Increasing number of selection predicate conditions

(66% artd/33% or operations)

i
J ----—”-,.--—-.—-.———_.._—.—.—...—.———+—’— .——’m———

4

(b)

Varying ratio of and/or operations

(five selection predicate conditions)

Figure 7: Running time for optimization rdgorithms

of selection predicate conditions is shown. All the and DNF optimization are about the same.

algorithms plotted reveal the same exponential time

complexity with respect to the number of selection

predicate conditions. However, the graph shows that

the BDC optimization has a running time that is

throughout this range about five times lower, wherezs

the running times of the A* and DNl? optimization are

roughly equal.

Figure 7b shows the algorithms’ behaviour with

respect to varying ratios of and/or operations in

the selection predicate. BDC runs almost as fast

as the Random strategy favouring disjunctive queries
also in running time, whereas A* and the DNF

optimization take a factor of about four longer to

complete, For disjunctive queries, A* is faster than the

DNF optimization, but as soon as conjunctions take a

share of more than about 65Y0, the running times of A*

In Figure 8, the impact of varying selectivities on the

QEPs’ quslity is shown. 80% of the generated queries’

conditions have a selectivity factor as indicated by the

z-axis, and the remaining 20% have a random selectivity

factor (uniform distribution in the interval [0, l]). As in

Figure 6, the costs of the Random strategy, DNF and

BDC optimization scaled with respect to the cost of A*

are depicted in the graphs. While the BDC strategy

is not affected by the variation, the performances of

the Random as well as the DNF strategy depend on

the prevailing selectivity: the Random strategy works
better for high selectivity factors, whereas the DNF

strategy yields better results for low selectivity y factors,
If 80% of all conditions have a selectivity ibctor that is

close to zero, the early evaluation of one of the other 20%

is particularly “nasty” ibr a bypass QEP’s evrduation

345

10
FadOm+’

DNF 0P8rdzat!uI ---
Bffi *-

~
:
E

1

i

11. P~4—+...+.+ ,

0 0.2
FIBWIi#SekdMty F% (80%1

0,8 1

Figure 8: Variation of Si3ectivities

cost, which explains why the Random strategy performs

poorly in this case. On the other hand, if most

conditions have selectivity factors close to one, this

consideration is much less an issue, but the performance

of a DNF QEP with many parallel data streams suffers

because only few objects can be eliminated early. This

results in multiple evaluations of the same conditions in

different streams, which, in turn, leads to higher average

costs.

These results strongly suggest that optimizers should

generate bypass plans for disjunctive queries. The use

of the BDC strategy is recommended since-although

BDC cannot outperform A* in terms of quality-the

running time for BDC is much lower, and, in turn, both

are superior to the conventional DNF optimization and

the Random strategy. However, the BDC strategy is a

specialized knowledge source that cannot be applied,

for instance, to queries containing join operations—

this requires an appropriate generalization, such as

described in [SMK93].

6 Conclusion

In this paper we addressed the problem of optimiz-

ing the evaluation of disjunctive queries. The pro-

posed technique-called bypaiw processing-is particu-

larly advantageous when the evaluation costs of the con-

ditions dominate the query processing costs. As pointed
out in [HS93], such expensive conditions may occur in

object-oriented as well as in (extended and pure) rela-

tional systems.

The bypass technique tries to derive the outcome

of the selection predicate without evaluating such

expensive conditions whenever possible. A speci~lzed

form of bypass evaluation can be identified in existing

systems where the selection predicate is transformed
into disjunctive (DNF) or conjunctive normal form

(CNF). Within the CNF the evaluation of a sequence

of disjunctions can be stopped w soon as one element

evaluates to true and the evaluation of the sequence

of conjuncts (i.e., the Boolean Factors) can be stopped

as soon as one conjunct evaluates to false. Within

the DNF the evaluation of a sequence of conjuncts can

be stopped ss soon as one element evaluates to fake

and the evaluation of the sequence of disjuncts can be

stopped as soon as one disjunct evaluates to true.

As illustrated in the running example of the paper,

this kind of bypassing limited to either CNF or DNF

does not suffice, because restrictions on the search space

are imposed such that the optimal plan is likely to

be missed. Therefore, we remove these restrictions

by globally ordering atomic conditions, which leads to

generalized bypass plans,

Then, the viability of our more general approach was

assessed by incorporating four algorithms classified EW

follows into our formerly developed query optimization

ilamework:

● Three algorithms generating query evaluation plans

for bypass processing, namely

1. A*: This aJgorithm basically covers the entire

solution space and directs its search by A*.

2. BDC: A heuristic that was originally developed

for finding near-optimal decision trees for Boolean

predicates ~MS92].

3. Random: A random construction of bypass eval-

uation plans.

● DNF: An algorithm starting with the disjunctive

normal form of the selection predicate and producing

a DNF-based query evaluation plan,

On a set of automatically-generated queries based

upon a “real” schema we quantified the performance

gains. Among the three optimization algorithms the

one denoted A* derives optimal bypass query evaluation

plans for an arbitrary query, Nevertheless, BDC could

be identified as the “winner in almost all classes” since

it produces near-optimal query evacuation plans under

very low (optimization) running time for a quite large

number of queries. In our future research we want to

extend this heuristic to queries also containing joins,
which cannot be handled by the BDC heuristic as

employed in this work and, therefore, up to now have

to be optimized by the time-consuming A* search. We

are currently working on augmenting the BDC heuristic

in order to cover arbitrary relational algebra operators,

such as the join [SMK93].

Acknowledgements We thank Barbara Hartmann
for implementing the query generator and for carrying
out the benchmarks. We gratefully acknowledge Guy
Lehman’s constructive help in revising the paper,

346

~at86]

~G92]

pMG93]

[CD92]

~MV93]

~e87]

[GD87]

[GM93]

@l177]

D. S. Batory. Extensible cost models and
query optimization in GENESIS. IEEE Database
Engineering, 9(4), December 1986.

L. Becker end R. H. Giiting. Rule-based opti-
mization and query processing in an extensible
geometric database system. ACM WM. on Da-

tabase Systems, 17(2):247–303, June 1992.

J. A. Blakeley, W. J. McKenna, and G. Graefe.
Experiences building the Open 00DB Query
Optimiier. In Pmt. of the ACM SIGMOD

Conf. on Management of Data, pages 287-295,
Washington, DC, USA, May 1993.

S. Cluet and C. Delobel. A general framework for
the optimization of object-oriented queries. In
Pmt. of the ACM SIGMOD Conf. on Manage-

ment of Data, pages 383–392, San Diego, USA,
June 1992.

J.-C. Freytag, D, Maier, and G. Vossen, edi-
tors. Query Pmces8ing for Advanced Applica-
tion. Morgan Kaufmaun, Sau Mateo, USA, 1993.

J.-C. Freytag. A rule-based view of query
optimization. In Proc. of the ACM SIGMOD

Conf. on Management of Data, pages 173-180,
San Francisco, USA, 1987.

G. Graefe end D. J. DeWkt. The EXODUS
optimizer generator. In Pmt. of the ACM

SIGMOD Conf, on Management of Data, pages

160-172, San Francisco, USA, 1987.

G. Graefe and W. J. McKenna. The Volcano
optimiier generato~ Extensibility and eflicient
sear&. In Proc. IEEE Conf. on Data Engineer-

ing, pages 209-218, VtGen, Austria, April 1993.

M. Z. Hanani. An optimal evaluation of boolean
expressions in w online query system. Commu-

nications of the ACM, 20:344-347, May 1977.

~LP891 L. M. Haas, J. C. Iikeytag, G. M. Lohmam
and H. Pir&esh. Extensible query processin~

p3s93]

[JK84]

(’KM90]

in starburst. In Proc. of the ‘A CM- SIGMOD

Conf. on Management of Data, pages 377-388,
Portland, Or, June 1989.

J. M. Hellerstein and M. Stonebraker. Predicate
migratiom Optimizkg queries with expensive
predicates. In Pmt. of the ACM SIGMOD

Conf. on Management of Data, pages 267–276,
Washington, DC, USA, May 1993.

M. Jarke and J. Koch. Query optimization in
database systems. ACM Computing Surveys,

16(2):111-152, June 1984.

A. Kemper aad G. Moerkotte. Advanced query
processing in object bases using access support
relations. In Proc. of the Conf. on Very Laqe

Data Bases (VLDB), pages 290-301, Brisbane,
Australia, August 1990.

~M93]

~M94]

@MP93]

~MS92]

&oh88]

~v91]

~DZ93]

~s79]

[0s90]

~ea84]

[SAC+ 79]

[se186]

[sMK93]

A. Kemper and G. Moerkotte. QUW optimiza-
tion in object bases: Exploiting the relational
techniques. In @MV93].

A. Kemper and G. Moerkotte. Object-oriented

Database Management: Applicutwns in En~”-

ncering and Computer Science. Prentice Hall,
Englewood Clitb, NJ, USA, 1994.

A. Kemper, G. Moerkotte, and K. Peithner. A
blackboard artiltecture for query optimization. in
object bases. In Pmt. of the Conf. on Very Lwye

Data Bases (VLDB), pages 543-554, Dublin,
Ireland, August 1993.

A. Kemper, G. Moerkotte, and M. Steinbrunn.
Optimizing Boolean expressions in object bases.
In Pmt. of the Conf. on Very Large Data Bm?e8

(VLDB), pages 79-90, Wmcouver, B.C., Canada,
August 1992.

G. M. Lohrnan. Grammar-like functional rules
for representing query optimiition alternatives.
In Pmt. of the ACM SIGMOD Conf. on Manage-

ment of Data, pages 18-27, Chkago, USA, 1988.

R. S. G. Lanzelotte and P. Valduriez. Ex-
tending the search strategy in a query opti-
mizer. In Ptvc. of the Conf. on Very Lqe Data

Ba8e8 (VLDB), pages 363-373, Barcelona, Spain,
September 1991.

G. Mitchell, U. DayaJ, and S. B. Zdonik. Control
of an extensible query optimizer: A planning-
baaed approach. In Proc. of the Conf. on

Very La~e Data Bases (VLDB), pages 517-528,
Dublin, Ireland, August 1993.

C. Monma and J. Sidney. Sequencing with series-
pardlel precedence constraints. Math. Oper.

&8., 4:215–224, 1979.

M. T. Ozsu and D. D. Straube. Queries and query
processing in object-oriented database systems.
ACM fins, Ofjice Inf. Syst., 8(4):387430, Oc-

tober 90.

J. Pearl. Heuristics. Addison-Wesley, Reading,
Massachusetts, 1984.

P. G. %linger, M. M. Astrahan, D. D. Chamber-
lain, R. A. Lorie, amd T. G. Price. Access path se
lection m a relational database management sys-
tem. In Proc. of the ACM SIGMOD Conf. on

Management of Data, pages 23-34, Boston, USA,
June 1979.

T. K. Sellis. Glcibal query optimization. In PTOC.

of the ACM SIGMOD Conf. on Management of

Data, pages 191-205, Washington, USA, June
1986.

M. Steinbrunn, G. Moerkotte, end A. Kemper.
Opttilzing join orders. Technical report MIP-
9307, Universitiit Passau, 94030 Passau, Ger-
many, 1993.

347

