Selectivity-Based Partitioning: A Divide-and-Union
Paradigm For Effective Query Optimization

Neoklis Polyzotis
Univ. of California Santa Cruz

alkis@cs.ucsc.edu

ABSTRACT

Modern query optimizers select an efficient join orderinggfphys-
ical execution plan based essentially onadlheragejoin selectivity
factors among the referenced tables. In this paper, we dgue
this “monolithic” approach can miss important opportwstfor the
effective optimization of relational queries. We propsséectivity-
based partitioning a novel optimization paradigm that takes into
account the join correlations amorglation fragmentsn order to
essentially enable multiple (and more effective) join esder the
evaluation of a single query. In a nutshell, the basic idéa tare-
fully partition a relation according to the selectivitiebtbe join
operations, and subsequently rewrite the query as a unicorof
stituent queries over the computed partitions. We provitteraal
definition of the related optimization problem and derivegerties
that characterize the set of optimal solutions. Based orapaly-
sis, we develop a heuristic algorithm for computing effidig@an
effective partitioning of the input query. Results from alpn-
inary experimental study verify the effectiveness of thepmsed
approach and demonstrate its potential as an effectivenagatiion
technique.

Categories and Subject Descriptors:H.2.4 [Database Manage-
ment]: Query Processing, Relational Databases

General Terms: Algorithms, Performance

1. INTRODUCTION

Effective query optimization techniques have played a kéyin
the success of relational database systems as they havecbtiabd
efficient evaluation of high-level, declarative queriegmornassive
data stores. At an abstract level, the outcome of query agim
tion is a low-cost physical execution plan for accessingstioeed
data and computing the results of the input declarativeyquene
complexity of the problem clearly makes this a challengiaskt
and the query optimizer has naturally evolved to one of thetmo
complex (and most important) modules of a modern DBMS.

A central issue in relational query optimization remains se-
lection of an effective join ordering, i.e., an order for kenaing
efficiently the join predicates of a given query. This impaitprob-
lem has been the focus of active research from the first yéaes o

Permission to make digital or hard copies of all or part o twork for
personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoofherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

CIKM'05, October 31-November 5, 2005, Bremen, Germany.
Copyright 2005 ACM 1-59593-140-6/05/001055.00.

720

lational database development and earlier studies hanalirted

a host of effective optimization techniques [3, 9, 13, 17, 19.
At an abstract level, the proposed methods follow the sarsi ba
approach of exploring the joint space of join orders andrtimei
plementations in physical plans, and selecting the onetiviteast
estimated cost. Typically, the cost factors of a candidéda de-
pend on the average selectivity of the involved join opestthat
is, the total number of tuples that are generated when the-cor
sponding tables are joined. An effective plan intuitivelinimizes
the number of intermediate results, thus reducing the amoiun
work that is required to produce the answer to a query.

Low fan-out: few E per D

\

—/

>

High fan-out: Many P per D

D1

|

Figure 1: Statistical correlation among join attributes in £ X
DX P.

A key observation on existing optimization techniques iatth
they adopt a “monolithic” approach to the problem of join erd
ing: for any query, the optimizer selectsimglejoin order that is
based on thaveraggoin selectivities among different tables. In ef-
fect, the optimized physical plan depends on the averagjstital
profile of the data and essentially ignores the details aviddal
frequency distributions. To illustrate this point, coresida sim-
ple database schema consisting of three tables, naBrajyloyee,
Department, andProject, and assume th# and P have foreign
key relationships td). Let us assume that these two relationships
are correlated in the following manner: either a departnhaista
few big-budget projects that employ a large number of enggey
or it has many small budget projects and a few employees tk wor
on them. This correlation is shown pictorially in Figure lheve
D can be separated in two partitiod3; and D-, according to the
‘fan-out’ of department tuples to tablgs and P. Consider now
the queryE X D X P, that pairs each employee with the projects
he/she works on. A conventional query optimizer will basedi-
cisions on the overall selectivity factors for the joiAsX D and
D X P, which essentially assign the same average fan-out factor
to every tuple inD even if the detailed statistical characteristics are
very different.

In this paper, we argue that this monolithic approach cars mis
important opportunities for optimizing queries more effiesly. Re-
turning to our example, consider the option of partitioningo D1

the clause of equi-join predicates.) In our model we alscitkan
arbitrary selection predicates on any subset of the at&tbaf the
joined relations. This class of chain queries occurs fratiyén

and D-, based on the statistical dependencies of these partitionsreal-world applications, and hence presents an integestise for

to the other relations, and essentially rewriting the o@diquery
EXDMXPas(ENXD; XP)U(ENX Dy X P). The key idea
is that each constituent query can be optimized indepelydamd,
due to the correlation of the join attributes, the genergtiegsi-
cal plans can be evaluated more efficiently than a single fitbito
plan for the whole query. One option, for instance, woulddede
different join orders for each plan as follow& X D;) X P and
(P X Dy) X E. Itis clear that these different join orders are likely
to generate less intermediate result tuples than a singte which
might have a significant impact on query response time.

The previous example illustrates the crux s#lectivity-based
partitioning, the novel query optimization technique that we in-
troduce in this paper. Contrary to the conventional mohialiap-
proach, our proposed technique employs a novel paradigiwidéd
and-union for the effective optimization of relational ges: it
carefully partitions the base data by examining join saléets at
a finer level of granularity, namely amomelation fragmentsand
rewrites an input query to a union of constituent queries¢ha be
optimized separately and more effectively. Overall, tieisults in
a partition-based plan that may improve query response sige
nificantly as it takes into account more detailed informatno the
join dependencies among relations. We define formally thg-pa
tioning problem and present an analysis on the propertiepif
mal solutions for a simple, yet intuitive cost model thatyides
useful insights on the characteristics of good partitigrénhemes.
Based on this model, we develop effective partitioning athms
that enable an initial solution to the integration of seléwgt-based
partitioning within an existing query optimizer. More coatzly,
the key contributions of our work can be summarized as fatow

e Selectivity-based partitioning. We introduce selectivity-based
partitioning and provide a formal definition of the relatqedimiza-
tion problem. Based on our formulation, we present an aisatys
the space of possible solutions and derive properties éooptimal
partitioning of a given query.

e Effective Partitioning Algorithm. Using the results of our anal-
ysis, we describe an efficient algorithm for exploring thacpof
possible solutions and identifying an effective partitian Our al-
gorithm is based on the conceptltdrative Partitioning a method
that efficiently computes an effective partition while ciolesing
only a limited fraction of the total search space.

e Experimental evaluation of the effectiveness of selectiyi-
based partitioning. We present the results of a preliminary exper-
imental study that evaluates the effectiveness of our megdtech-
niques on real-life and synthetic data sets. The resulisatelthat
selectivity-based partitioning can offer significant iropements
compared to a monolithic evaluation plan, while being afédile
in terms of optimization time.

To the best of our knowledge, this is the first work that pro-
poses a horizontal partitioning scheme based on the joattat
ties among relation fragments.

2. BACKGROUND

Query Model. In this paper, we focus athainqueries that join re-
lationsRyo, R1, . .., R, with equality predicates of the foriRy. A1 =
Ry1.A1 AND R1.A2 = R2.A2 AND...Ry_1.An = Ry.A,.
That is, every relatioRR;, (exceptRo and R,,) participates in two
joins, with attributesA4,, and Ax+1. (When no confusion arises,
we will use the shorthand notatioRy X R; X ... X R, for

721

the development of our optimization techniques. We stressit
is possible to extend our proposed framework to the morergene
case oftree-join queries, where the join-graph forms essentially a
tree. The required mathematical machinery gets hairigr,(gen-
sors are required instead of matrices), but the essence ¢échr
nigues remains the same.

We assume that the values of each attribdiel < k£ < n,
are drawn from a domai®, = {vi; | 1 < j < My}. We note
that we do not make use of any ordering within the domain, i.e.
1 < j does not implyvk; < vi;. Ar x cmatrixE = (fi;) is
a table ofr rows andc columns, where each elemefy} is a real
number. Given a relatio®;, we define itfrequency matrixas a
My x M1 matrix R, where each elemernf; is the number
of tuples in relationR;, with Ar, = v and Ax11 = vty
1 <i< Mg, 1 <5< Mgg1. We note that the matrices fdt
and R,,, which participate in the query with a single attribute, are
essentially vectors of dimensioths M and M., x 1 respectively.
Itis a well-known result [15] that the produB, - R, , yields the
frequency matrix of the joined tupld®, X Ry on attributesdy
andAx4 o, whileR, - R, -...R, computes the number of tuples in
the result of the query.

ExAMPLE 2.1: Consider aquery) = RoRiR2, whereM; =
2 for all domains (i.e., each join attribute takes only twoues).
Assume that the frequency matrices are as follows:

R=(10 20) &= %) r=(1)

20 40
The result size of quer can be computed 48)| = |R, - R, -
R,| = 55000. 1

We note that it is straightforward to incorporate selectiwadi-
cates in this model, as a predicate on relafiynessentially scales
down the entries of the frequency matR. To simplify our pre-
sentation, we will assume that all selection predicate® Hmen
incorporated in the corresponding frequency matrices attédn
the producR; R, -. .. R, correctly computes the result cardinality
of a query.

We note that a real system stores only an approximatiaR; of
in the form of a summaryd; (typically, a histogram) and hence
all computations on frequency matrices are carried outgusioh-
niques for approximate query processing [2, 14]. For siaitgliwe
present our techniques assuming that the query optimizecdra-
plete knowledge of the true frequency matrices; an extertsithe
more general case of summarized distributions is straghtfrd
and omitted in the interest of space.

Query Evaluation Model. We restrict our attention to left-deep
evaluation plans as they have become the norm in relatiatabdse
systems. We represent a left-deep plan as an ordering
O = RyyRy,...Rk,, WhereRkj is the inner relation that joins
with the result ofRy, X Ry, X --- X Ry, _,. Asan example, the
orderingR1 Ro R» represents the left-deep plaR; X Roy) X Rs.
Following common practice, we only consider orderings ithat
not generate cross-products, i.e., every prefix of an ardds a
chain query. An immediate result of this property is thakjf; is
the last relation of the ordering, thébvrl or Ry, +1 must appear
in the prefix. We denote the set of all such ordering®4g) and
usecost(O) for the evaluation cost of plaf® under a suitable cost
model. The cost of a query can be naturally defined as the mini-
mum over all possible plans, i.egst(Q) oggx(lQ)(cost(O)).

We extend the definition of frequency matrices to the case of is to “match” the distributions among the partitions andrémain-

evaluation plans as follows. The frequency matdxof the or-
deringO = Ry, Rk, ... Ry, (I < n) is defined as the product
Ry Ry -~~Bk;: where (kg, k1, ..., k;) is the sorted order of the
indices{ko, k1, ...,k }. Clearly,Qis aMy, x My matrix that
records the distribution of joined tuples along attribu&’qsi, Akg-

Given a frequency matrif = (f;;), we uselF| = >_ f;; to
denote the number of tuples that exist in the corresponditagion.

If we consider a specific join pla@ = Ry, Rk, .. .Rk,, then the
total number of intermediate results that are producedhdutie
evaluation ofO can be computed 0| = >/, |Q'|, where

< denotes the prefix relation. (We note that the above expnessi
does not include the count of result tup|€4.) Similar to thecost
function, we define the number of intermediate results fouery

Q as the minimum number of intermediate results over all jbessi
plans, i.e.Ql| = min (|O]).

EXAMPLE 2.2: Consider the query) of Example 2.1. Under
our evaluation model, there are two possible plans , nant2ly=
RoR1R2 andO2 = Rz R1 Ry. (01 is equivalent taR Ro R2 since
both plans generate the same number of intermediate tughes;
same holds folO2 and R1R2Ry.) The number of intermediate
results in each case is computed as follows:

011l = |RoR1| = IRy - Ry|
|02]] = [R2R1| = [Ry - Ry

1
Partitioning Model. A partitioning of relation R € @ is defined
as the sePx,. = {Rk1,. .., Ric}, WhereRy,; are disjoint subsets

of R, and|J Rk; = Ry. We will refer to R, as thepivot relation
of partitioning Py,.. (When no confusion arises, we will drépc
and useP to denote a partition.) IQ[Ry;] is the query that results
from @ by substitutingR;. with partition Ry;, then the following
holds:

Q= |J QIR

1<j<e

We note that the identity holds in multi-set semantics a$, silce
the partitions are disjoint. A partitioning, thereforefides a set
of queriesQ[Ry;] that produce the answers@without requiring
duplicate elimination. Assuming that the constituent (qseare
evaluated independently, i.e., no computation is sharedywil
denote the total number of intermediate results acrossualties
as follows:

1Prcll = > IQ[Rk]l

1<j<e

By definition, || Q[Rx:]|| corresponds to an ordering 6 Rx;] that
minimizes the number of intermediate results. Since &dRy;]
is evaluated independently, our model essentially alloifferént
join orders to be used for the constituent queries.

3. SELECTIVITY-BASED PARTITIONING

3.1 Problem Definition

The key idea behind selectivity-based partitioning is tevrée
the input query as a union of queries that can be optimizee efor
fectively and hence evaluated more efficiently. In paracugiven
a queryQ, we seek a relatiof®,, and a partitioning®;,. = { R },
such that the combined evaluation of the constituent qsi€&; |
is more efficient than a single monolithic plan. The goal,@irse,

722

ing relations so that the constituent queries can be optidnizore
effectively than the single monolithic plan. More formaiye de-
fine the following optimization problem:

[Query Partition] Consider a quer®) = {Ru,..., R.} and let
N > 0 be a positive integer. We wish to find a pivot relatiBp, a
partition budget < N, and a partitioning®+ = {Ry1, - .., Rk},
so that the total execution cost of the resulting queriesngmized.

The previous formulation defines the partitioning probleiative
to aspecificquery Q. We consider this as a necessary step in or-
der to gain insights on selectivity-based partitioning apgly our
techniques in the more general problem of partitioning foea-
pected workload of queries, or workload-independent fpaming.

A second important point is that our formulation involves thar-
titioning of asinglerelation. Conceptually, it would be possible to
partition multiple relations and then define the constitugreries
on combinations of partitions. As our analysis shows, hamev
the problem is not trivial even for the simplified variant ofiagle
partitioned relation. The generalization to partitiongiomultiple
relations is an interesting direction for future work.

Computing a solution to the partitioning problem obviousty
quires knowledge of the cost model for query execution. Tée d
tails of a real cost model, however, are not trivial to defind are
highly dependent on system configuration. In addition, ibds
clear if a solution for a particular cost model will yield geal in-
tuitions on the partitioning problem, that will enable ifgpdication
in a different context. In our approach, we opt for a simplifo®st
function that enables a more general solution, but at thegame
maintains an intuitive (and theoretically sound) conrmttio the
cost factors used in real optimizers. More specifically, wére
the cost of a query) to be equal to the number of intermediate
result tuples that are computed during the evaluation affiténal
ordering:

cost(Q) = COSTT(Q) = Q||

Clearly, the proposed function ignores many of the detditgiery
evaluation in a real system, such as the existence of indice®m-
terialized views, or the use of different physical join aggers. As
an earlier study [5] has shown, however, optimizing a queryHe
number of intermediate tuples is equivalent to using motailgel
cost metrics that take into account the characteristicsffdrent
join operators. These results essentially verify the tignithat an
effective execution plan minimizes the number of interragziie-
sults, and justify the use of the proposed function as a genest
model.

Based on our proposed cost function, we can define the cost of a

partition P, as follows:
CoSTT(P)= > COSTT(Q[Rki]) = > [Q[Ruxill
1<i<e 1<i<e
At this point, we can provide a more concrete definition ofghe
titioning problem that we address in this paper:

[Query Partition] Consider a quer®) = {Rs,..., R.} and let
N > 0 be a positive integer. We wish to find a relatiéh, a
partition budget < N, a partitioningP* = {Ry1, ..., Rk.}, and
join orders for querie§)[Ry,], so that the total cost of the resulting
queries is minimized, i.e.:

Px = argmin (Z lQ[R:]I)

k,c 1<i<c
1<k<n,c<N — —

Clearly, the optimization problem involves two inter-rteld com-
ponents: computing the partitioning of a relation, and eieing

the join orders that essentially minimize the total numtfenter-
mediate result tuples for the constituent queries. Thedigidual
problems, namely, partitioning and query optimizatior kanown

to be computationally hard in general and, even though weotlo n
provide formal results, our analysis indicates that the lwoed
problem is likely to be hard as well.

An important factor in our proposed approach is the model of
processingpartitioned queries. Consider, for instance, quéry=
Ri1R2R3R4 and its partitioned formQ (R1R21R3R4)U
(R3R4R22Ry1). Clearly, the joinRs R4 is common in both queries
and it would be beneficial to evaluate it only once and use the
cached result in the individual plans. In a more generalednt
the specific form of partitioned queries may enable otheesypf
run-time optimizations that can increase the effectiverséparti-
tioned query processing. We consider this an importanttine
for future research, but we do not address this issue in #pep
Here, we focus solely on the important first stegleferminingan
effective partitioning.

3.2 Partitioning Algorithm

Overview of our approach. At an abstract level, our partition-
ing algorithm, termed GMPUTEPARTITION, computes a solution
by exploring a space of possible join orderings for the dturest
queries and determining an effective partition for eacheond).
More formally, letL R, T be an evaluation plan for the input query
Q, whereL andT are orderings for the relations @ — { R }. We
will call L theleadingjoin ordering, andl" thetrailing join order-
ing. Aconfigurationfor R isasetLT = {(L1,T1), ..., (Le, Te)},
wherec is the partition count oL7" and each(L;, T;) defines a
valid pair of leading and trailing join orderings. Intuigily, a con-
figuration represents the join plans for the constituentigaéf R
were partitioned ire subsets, i.e., the plan for que{Rx;] would
be L; RT3, 1 < i < ¢. Given a partitioningP, we will use
COSTT (P, LT) to denote the cost of evaluating the constituent
queries given the join plans specified b§". Using the definition
of our COST” metric, this can be written as follows:

COSTT(P,LT) = Y |LiRyTi|
1<i<e

Our proposed partitioning algorithm is based on the conoépt
an Optimal Split which is defined as the optimal partitioning of
a pivot relation for a specifid.T. As we discuss later, @v-
PUTEPARTITION explores a space of different configurations and
computes optimal splits as the candidate solutions. To rtake
process more efficient, our algorithm uses an effective ibgeir
termedlterative Partitioning that limits significantly the number
of configurations that need to be examined. In what follows, w
first define the optimal split for a given configuration, aneirthlis-
cuss the details of Iterative Partitioning and@PUTEPARTITION.

Optimal Split. The optimal splitfor a given configuratior.T", de-
noted a0ptSplit(Ry, LT), is simply defined as the partition of
R;. that minimizes the cost metric for the specific join ordesing
defined inLT"

OptSplit(Ry, LT) = argmin (Y ||LiRg;Til)
e Bre} 1<i<e

Intuitively, an optimal split is the optimal solution to tipartition-
ing problem when two of the free parameters are fixed, namely,
the number of partitions and the join orderings of the comstit
queries.

We now describe a method for computing the optimal split of a
specific configuration. The key idea of our technique is thplets

723

in Ri haveindependentontributions to the total number of inter-
mediate results and hence can be distributed to differetitipas
using a localized partitioning criterion. We illustratéstidea with
a simple example and then state the general formal results.

ExAMPLE 3.1: Consider the query) = R; R2R3R4 and the
configurationLT' = (R1, R3R4), (Rs3, R1 R4) with respect to the
pivot relation Ry. We will assume that; = M, = 2, i.e., the
frequency matrix oR2 looks as follows:

me(2)

The partitioning ofR> can be represented in terms of the frequency
matrices of the two partitions:

(2 1) ma

The number of intermediate result tuples for the first subrgu
Ri1R21 R3 R4 can be computed as follows:
)

(2 1) o

Using algebraic manipulations, this can be rewritten asdats:
0

0

1

o)|+

)|+ r

" Xity- itz Zi+w-Wy

X Y
z W

X -z
Z —z

Y-y
W —w

Y
w

Y
w

Y

|R1R21 R3R4|| = w

[|R1R21 R3R4||

1o

)

)
)
)

As seen by the expression, the block tiiples fromR2 generates
a number of intermediate results that is independent of timérc
butions of otherR: tuples. In particular, the factorX; depends
solely on the leading and trailing join sets, and on the posiof
the z tuples in the frequency matrix,RA similar expression can
be derived for the intermediate results of the second pantit

<
ey

+
™
I

3

+

g

T

|RsR22R1Ral| = (X —z) - X2+ (Y —y) - Y2 +
(Z—2) Zo+ (W —w)-Ws

The total number of intermediate results can be reducedetbee,
by assigning allX tuples to the partition with the minimud;
weight, which in turn can be computed from the configuratioly o
and independently of the assignments of other tuples. Aasimi
observation holds for th&, Z, W tuples ofR-. i

More formally, we can state the following result for a gemera
configurationLT":

LEMMA 3.1. Consider a query plai. R, T and letf,,; denote
the number of tuples i, with Ay, = vgym aNd Agy1 = V(g1
The total number of intermediate result tuples for the quean
LR, T is computed as:

ILRLT| = LIl +

>

1<m< My
1<ISMqq

fml 'g(LvmvlvT) (1)

whereg(L,m, [, T) is an expression involving the frequency ma-
trix of L, the frequency matrices of relations T, and a matrix
whose contents depend solelyrani.

Overall, Lemma 3.1 asserts the following important propett-

ples of R, that cover different parts of the value domain have
dependent contributions to the total number of intermediesults.
To minimize the total number of intermediate results, tfores it
suffices to assign all tuples that cov@f...., v(x+1):) to the parti-
tion with the minimum contribution for this particular regi of the
value domain. This is captured formally in the following dhem:

THEOREM 3.1. Consider a configuratiod 7" = {(L;,T;),1 <
i < ¢} for relation R. Let P* = {Rk1, ..., Ri.} be a partition-
ing where all f,,,; tuples of R, that cover(vim, vt1y) are as-
signed to partitionRy;«, wherei* = argmin, ., . .(|| Li|| + fmi -
g(L;,m,1,T;)). ThenP* is an optimal split w.r.t. configuration
LT,ie., P* = OptSplit(Ry, LT).

Theorem 3.1 is key in our framework since it provides the roéth
for computing the optimal split for any configuratidi”. In addi-
tion, as the following result shows, it has an important faration
regarding the number of configurations that need to be ceresid
in order to compute an optimal partitioning.

LEMMA 3.2. Given an orderingL, let L™ be the optimal, in
terms of theCOST? function, evaluation plan for computing the
same join asL. Let LT = {(L;,T;),1 < ¢ < ¢} be a config-
uration and defineLT* = {(L;,T;),1 < i < ¢} as the con-
figuration with the optimal leading join orderings and themsa
trailing join orderings asLT. The following holds for the costs
of the optimal splitsP and P* for LT and LT™ respectively:
COSTT (P, LT) > COSTT (P*, LT*)

Lemma 3.2 simply states that it is always possible to get &mor
effective partitioning by considering the optimal ordggsnfor the
leading join sets. (This property can be seen as an extenkibe
local optimality principle that is used by query optimizatitech-
niques based on dynamic programming [19].) In essence gt
limits considerably the number of configurations that caadléo
effective solutions, as it is never advantageous to examomfig-
uration that does not contain the optimal plans for the leggbin
orderings. For the remainder of the paper, therefore, wiecari-
sider only configurations that contain the optimal leadioig jor-
ders for every partition. (These optimal orderings can epmdaed
efficiently using well known optimization techniques [18]] A
natural question to ask is whether the same property hotdhéo
trailing join orders, i.e., if the optimal partitioning i<kieved for
configurations with optimal trailing join orders. Unforiaiely, a
simple counter-example can demonstrate that this is notdke;
intuitively, each partitionRy; causes a set of frequencies to be-
come zero in the output af; Rk, which may lead to an optimal
partitioning that does not contain the optimal orderingfar

n_

Up to this point, we have been vague on the form and complex-

ity of expressiorg(-) that is used in Theorem 3.1. At an abstract
level, ¢(+) involves the computation affrequency matrix products,
wheret is the number of tables in the trailing join order, and prod-
uct 7 is formed from product — 1 with the addition of a single
frequency matrix. (This is illustrated in Example 3.1 in ithefi-
nition of X;.) We expect these operations to be very efficient in
a real system, as the products are computed on highly-cesgute
summarized distributions using techniques for approxéntptery
answering. Moreover, as we discuss later, our partitiormilgm-
rithm can control effectively the overhead of query optiatian by
introducing an early-stopping condition based on time tieasl
We revisit these points in Section 4.2, where we evaluaterxp
mentally the overhead of our optimization techniques.

Partitioning Algorithm. Our previous discussion focused on a con-
strained variant of the partitioning problem where the preda-

724

Procedure I TERPART(.S)
Input: StateS = (¢, k, L)
Output: Cost of a partition that is derived by
Iterative Partitioning orf.
begin
1. Compute an initial partitioning®
2. cost* :=o0;iter ;=0
3. do
4. iter = iter + 1;
5. Let(L; X Ry;)T;* be the optimal plan for subséiy;
6 LT* ={(L;,T}),1<i<c
7 P* := OPTSPLIT(LT™*, Ry) Il Compute optimal split
8 cost* .= COSTT (LT*, P¥)
9. until (P* is unmodifiedOR iter = iterlim)
10. return cost™

d . . e
en Figure 2: Iterative Partitioning

tion and the join orderings are fixed. In the remainder of $igis-
tion, we leverage our analysis and introduce a partitiorsitugp-
rithm, termed @MPUTEPARTITION, for the general Query Par-
tition problem. Clearly, the general version of the problsof-
fers from a combinatorial explosion of the search spacenaxa
haustive algorithm will have to consider all possible pikaations
and all possible leading and trailing join orderings. To radd
this issue, our partitioning algorithm employs an effeetheuris-
tic, termedIterative Partitioning that essentially computes high-
quality solutions based on the optimized orderings of tlalileg
join sets and a limited subset of possible trailing join osde

We now proceed to describe our approach in detail, stantorg f
our lterative Partitioning heuristic. Consider a possitbafigura-
tion LT = {(L;,T;)} and letP = {Rx;,1 < i < ¢} be the opti-
mal split for LT'. Assume thaf;” denotes an ordering for the rela-
tions inT;, such tha{ L, X Ry;)T;" is an optimal query plan, i.e.,
it minimizes the number of intermediate join tuples. It isagiht-
forward to show thatit. 7’ = {(L;, T;")} is the configuration with
the same leading join plans dsand the optimized orderings”,
thenCOST? (P, LT) > COST” (P, LT*). In other words, it is
possible to derive a more efficient solutiondnelyre-ordering the
trailing join plans according to each prefix reshilt X Ry; (with-
out modifying the split of the pivot relatioRy,). This re-ordering,
however, essentially modifies the configuration and henisesa
the opportunity for computing a new, more effective splitorg
formally, this can be stated as follows:

LEMMA 3.3. Let LT and P be defined as previously, and let
LT™ be the modified configuration with the optimized trailingnjoi
plans. If P* = OptSplit(LT*, Ry) is the optimal split for the
new configuration, the@OST7 (P, LT) > COST” (P*, LT*).

Lemma 3.3 forms the basis of our Iterative Partitioning reur
tic. The key idea is to create an initial partitioning, ébgsed on
a random ordering of the trailing join plans, and subsedyemi-
prove on it by successively re-optimizing the trailing gamd re-
partitioning the pivot relation. This is illustrated in Fige 2 that
depicts the pseudo-code for Iterative Partitioning. Thgoddhm
applies Lemma 3.3 repeatedly on the current partitioning, ter-
minates when the cost of the computed solution is not modified
between iterations, or when a pre-specified limit of itenasi is
reached. It is interesting to note that Iterative Partitigrpresents
an attractive option for integrating selectivity-baseditianing with
the cost model of a real optimizer. In particular, it is pb#sito
employ a realistic cost model for optimizing the leadingnjaoir-
ders and re-optimizing the trailing join orders in eachdtem, and
to rely on the simplified functioOST? and Theorem 3.1 only

for re-routing the tuples among different partitions. Téjgproach
opens up an interesting direction for future work, as it eady a
feasible approach for applying selectivity-based pariitig in an
existing optimizer.

Procedure COMPUTEPARTITION(Q,N)

begin

l.cost* = COST7 (Q) Il Cost of a monolithic plan
2. init_states(S)

3.while S # 0 do

S :=S.pop() /I State with leasscorec and least
if (scorec(S) < cost*) then

6 cost* := min(cost*, ITERPART(S))

7. end-if

8. for1<i<c¢,ReQ—(L;U{Ry})do

9. S —t7(S, L;, R);

10. done

11done

end

ar

Figure 3: Algorithm COMPUTEPARTITION.

Our proposed partitioning algorithm, terme®@PUTEPARTI-
TION, uses Iterative Partitioning as a method of exploring edfidy
the space of possible partitions. The pseudo-code ton QU TEPAR-
TITION is shown in Figure 3. A statd in the search space is en-
coded as atriplet = (Ry, ¢, L), whereRy, is the candidate pivot
relation,c is the number of partitions, andis a set of: leading join
sets forRy. (Again, the algorithm only considers the optimized or-
derings for the leading join sets.) At an abstract levelaligerithm
considers each triplef in the set of open state% derives an effec-
tive partitioning using the Iterative Partitioning method S, and
records the best solution in variablest™. S is initially populated
with all triplets (Rx, ¢, Ls(c, k)), forall1 < k <n,1 <c < N,
and Ls(k7 C) = {(Rll)v (Ri2)7) (R'Lc)|RZ] S Q - {Rk}}
(function init_states). To make the search more efficie,
is maintained as a priority queue based ondbmpletion scoref
each state which is defined asorec(S) = >, ... ILi], i.e.,
the sum of intermediate result tuples for all the (optim)ziecd-
ing join orders. It is straightforward to show th@OST7 (P) >
scorec(S) for any partitionP that is derived based on the leading
join sets inS. The score metric, therefore, serves as a heuristic for
guiding the search process toward states that are likelietd gf-
fective solutions. Furthermore, the algorithm does notyafipra-
tive Partitioning onS if scorec(S) > cost™ (line 5), as it provably
cannot yield a more effective solution.

To explore the state spaceP@PUTEPARTITION uses a transi-
tion functiont; that essentially inserts one more relation in exactly
one of the input leading sets (lines 8-10). More formallyasider
a stateS = (Ry,c, L), L = {L1,..., L.} and a specific join or-
deringL; € L (1 < j < ¢). If R # Ry is a relation that does
not yet appear irl;, then the result of; (S, L;, R) is a new state
S" = (R, c, L') whereL’ contains exactly the same leading join
sets asl except forL; = L; U {R}. This transition function en-
ables the efficient computation of the tuple counts and faqu
matrices for the leading orders of each stﬁtmsg} can be com-
puted with a single matrix multiplication betweén andR.

It is interesting to note that @UPUTEPARTITION operates in a
progressive mode: it computes an initial partitioning (@vhcor-
responds ta: = 1, i.e., the optimal monolithic plan) and subse-
quently discovers better solutions as more of the searctesisa
explored. This enables the option of calling the algorithithva
time-based deadline, where the search is terminated afpee-a
specified time interval has expired and the best currentiealis
returned. As our empirical study shows, this is a simple,efet

725

fective solution for controlling the overhead of optimipat while
retaining the benefits of partition-based processing.

4. EXPERIMENTAL STUDY

In this section, we present the results of an experimentalyst
that we have conducted on real-life and synthetic data faluet-
ing the effectiveness of our partitioning technique.

4.1 Methodology

Techniques. We have completed a prototype implementation of
the COMPUTEPARTITION algorithm that we introduce in this pa-
per. In all the experiments that we presengMPUTEPARTITION

uses a maximum of four subsef§ & 4) for computing a partition-

ing, and performs exactly one iteration for Iterative Remting.

For comparison purposes, we have also implemented an exhaus
tive search algorithm, termedr@IMAL PARTITION, that explores

all possible solutions and identifies an optimal partitignfor the
input query.

Data Sets.We have based our experimental study on synthetic and
real-life data sets.

Synthetic Data We have generated several synthetic data sets of
varying characteristics. A data set consists of 60 relatiariotal,
each relation having0*, 10°, or 10° tuples. Since our intent is

to study the performance of our partitioning technique, weale

the effect of statistics errors and assume that the frequere:

trix of each relation can be accurately represented by ainveigth
2-dimensional histogram of 100 buckets. The bucket fregesn

in each histogram are assigned according to a zipfian disioif

with a specific skew parameterthat is the same for the whole
data set. In our experiments, we have generated four datavitht
skew values 0.5, 1.0, 1.5, and 2.0. (Each data set is densted a
D(z), wherez is the value for the skew parameter.)

Real-Life Data We have used a subset of the well known Swis-
sProt database as our real-life data set. More specifigediypave
generated a relational schema containing the followingeaiRA
(2,541,749 tuplesOC (512,487 tuples)KW (385,634 tuples)PR
(593,933 tuples), aniD (50,000 tuples). A tuple ifD represents a
protein entry in SwissProt, while each of tRé&, OC, KW, andDR
tables essentially record the inclusion of annotationgizheentry.
TablesRA OC, DR, andKW have a foreign key dependency to ta-
ble D, with an average of 50, 10, 11, and 7 joining tuples per tuple
inID.

Workloads. For the synthetic data sets, we have generated a work-
load of 300 random join queries consisting of 3-5 relatioashe
For SwissProt, we have experimented with various workldads
we only present results for queries that join the entry téDlwith
all possible combinations of three annotation tables. (Alelse-
lected this particular workload as it yields an interestiagge of
performance measurements for our technique.) The avemage c
of intermediate result tuples for the optimized monolitpians is
7-10%5 for the synthetic workload, ar@gl- 10° tuples for the Swis-
sProt queries. We have also experimented with workload<tm
tain random selection predicates on the base tables anésuits
have been qualitatively the same.

Metric. We quantify the performance of our partitioning scheme
by the average reduction in the number of intermediate trégul
ples over the queries in the workload. More specifically,1f and
P are the configuration and partitioning respectively retdriy

!Since multiple entries may share the same annotationss thes
bles essentially record only the key of the entry and the Keki®
annotation.

COMPUTEPARTITION, then the relative reduction is simply com-
puted as(Q) = (COST? (Q)—COSTT (P, LT))/COST” (Q),
whereCOST7 is the function defined in Section 3. A positive
r(Q) represents a percentage of improvement on the cog}, of
while 7(Q) = 0 implies that the best partitioning is identical to
the monolithic plan, i.e¢ = 1. Note that our algorithms never re-
turn a partitioning that has cost greater thast(Q), and therefore
the r(Q) metric will always lie in the rang¢0, 1]. In our exper-
iments, we report the average reduction over all the queries
workload.

4.2 Experimental Results

In this section, we present the results of the experimemialys
that we conducted for evaluating the effectiveness of tieige
based partitioning. In what follows, we first present a d@vitsi
analysis of our technique for varying parameters of the st
data sets, and then conclude with the results on our reatiéta
set.

Reduction of intermediate result tuples. Figure 4(a) shows the
reduction metric for the ©TIMAL PARTITION and GOMPUTEPAR-
TITION algorithms as a function of the data skew in our synthetic
data. Our results demonstrate that partition-based psowesffers
significant reductions in the number of intermediate tumgles-
pared to an optimal monolithic plan. For the(1.5) data set,
for instance, the partitioned plan achieves an averagectieduof
45% compared compared to an optimal monolithic plan. For cer
tain queries, in fact, we observed improvements of up to 90% —
obviously a very significant savings in the count of intermaésl
join tuples. The results also show thab@PUTEPARTITION yields
consistently near-optimal improvements and is out-peréat only
marginally by QPTIMAL PARTITION. This clearly demonstrates the
effectiveness of the lterative Partitioning heuristic imnmputing
low-cost partitions while exploring only part of the seasgace.

The previous results indicate an increasing trend in théoper
mance of our partitioning schemes as data skew becomesrhighe
Intuitively, selectivity-based partitioning offers theost benefit when
partitions eliminate values with high frequencies in thepetive
trailing join sets, thus nullifying their contribution ttié number
of intermediate join tuples. As the skew is lowered, valuesdis-
tributed more evenly and therefore the benefit decreases siore
frequencies contribute significantly to the count of intediate re-
sults. Given that real-life data distributions are charazed by
non-uniformity, however, our results demonstrate thatctality-
based partitioning is likely to yield significant perfornzanim-
provements in practice.

It is interesting to note that the computed solutions always
sist of two partitions and, in the vast majority of cases, jtie
orderings are mirrored, i.e., the solution has the féimR,7") U
(TRi2L). The sub-queries, therefore, can be evaluated very ef-
ficiently by materializing the common sub-expressidnsand T’
and sharing their computation between the two plans. As we me
tioned in Section 3, this is one possible optimization fao th-
tegration of selectivity-based partitioning in the arebture of a
typical DBMS. There are clearly several practical issueslired
in this endeavor, and we plan to investigate them as partofusu
ture work on this problem. In this paper, we have focused en th
challenging, and largely orthogonal, first stemleterminingan ef-
fective partitioning.

3
0.078

7
0.405

5
1.977

6
9.343

of Joins
Exec Time (seconds

Table 1: Execution times for COMPUTEPARTITION

726

Optimization overhead. Up to this point, we have evaluated the
effectiveness of selectivity-based partitioning whemnMPUTEPAR-
TITION runs to completion and thus explores a significant fraction
of the solution space. In this case, however, the overhetimbqfar-
titioning algorithm may be prohibitive for the stringeningé con-
straints of an optimizer. This is clearly shown in Table 1t tists
the average execution time ofo®PUTEPARTITION for queries of
different complexity on data sé?(1.5). The results verify the ex-
ponential growth in the number of explored states and detrates
that a complete execution ofdMPUTEPARTITION may not be a
feasible option in practice.

As we have discussed in Section 3.2, our partitioning aligori
can also operate in a “deadline” mode where it returns thedues
lution that has been found within a given time limit. To etk
this approach, we have measured the effectiveness of theuteth
partitioning as we vary the deadline given t@@PUTEPARTI-
TION. We have based our evaluation on synthetic data and we have
used two workloads(),, which is the main synthetic workload,
andQ#, an additional set of 300 queries that contain 6-8 relations
each. The latter represents a “difficult” workload with aareased
search space and is included in order to evaluate the seéysitf
the deadline approach to the number of possible solutions.

Figure 5 shows the average reduction metric of the generated
partitions as a function of the deadline, for the synthetickioads
Qr and@Qy on data seD(1.5). (The results for the other data sets
are similar.) Clearly, ©MPUTEPARTITION can generate effective
solutions even under stringent constraints on the overbéag-
timization. Given a moderate deadline of 1 second, for itsta
the computed partitioned plans result in an average remtuct
45% for queries with 3-5 relations, and 18% for queries witB 6
relations. As expected, the same time deadline yieldsrrettelts
for queries with fewer relations asoMPUTEPARTITION manages
to explore a larger portion of the smaller search space mitie
limited time budget. Still, our results validate the effeehess of
this “progressive” mode of optimization and demonstrate féa-
sibility of selectivity-based partitioning as a practiogtimization
technique.

Performance evaluation on real-life data\We now present a lim-
ited set of experiments on our subset of the SwissProt deealfes
we have discussed in Section 4.1, our test workload conthis
4 join queries, denoted &3, . . . , @3, between thdD table and
three of the annotation tables. We note that we experimenmiitd
workloads that contained random selection predicates dshue
we observed similar results and we omit them from our present
tion in the interest of space.

Figure 6 shows the reduction metric of the computed pantitio
ing and the actual savings in intermediate result tuplesii®ifour
queries in our test workload. (In this experimenpMPUTEPAR-
TITION executed to completion with an average optimization time
of 120msec.) Overall, the results demonstrate that sefgebased
partitioning can be effective in reducing the count of imediate
result tuples in real-life data sets. For the test qu@gry: ID X
0OC X RA X KW, for instance, the partitioned plan generates
750,000 less intermediate tuples than the monolithic caselting
in 24% of savings. As our results indicate, however, not adlreps
are amenable to this type of partition-based optimizatién.ex-
ample is quenyQs: ID X OC X KW X DR, where selectivity-
based partitioning enables a significantly lower reductbta0%.
Still, depending on the width of the generated tuples, thisek re-
duction can result in significant savings in storage spadehance
improve the performance of query processing.

60 1 50 30
ComputePartition a5 -
M OptimalPartition
S - 7.64E+05 __|
50 ~ 40 +QH 25
8 f_ 35 QL 2 1.08E+06
o B === o= € <20 —
c o 30 e 7.20E+05
£ 5 4)
25
g 30 oo - - - __— g 15 F—
20
2 & _/'/] 3.19E+05
9207 B B B 215 / $10 ——1 —
H 10 <
10 -0 - - - 5 / 5 — -
0 .-/'/-
0 T T 0 02 04 06 08 12 14 1.6 1.8 2 0
. 1 15 2 Q Qt Q2 Q3

Data Skew

Time (seconds)

Figure 4:

Performance of Cowm-

Figure 5: Performance of partitioning Figure 6:

Performance of Cowm-

PUTEPARTITION varying skew for varying time budget PUTEPARTITION on real-life data.

5. RELATED WORK

The optimization of relational queries has been a topic ef ac
tive research and previous studies have proposed a hostecf ef
tive techniques [3, 9, 10, 13, 17, 18, 19, 20] that addrederdift
aspects of the general problem. The proposed techniques, ho
ever, operate within the physical database schema and tieg-ge

tics of an optimal solution. Based on this analysis, we dgvel

an efficient algorithm for computing an effective partitiog of

the input query while considering a limited fraction of theta
search space. Our experimental results verify the effentigs of
selectivity-based partitioning and demonstrate its p@bas a paradigm
for query optimization.

ated plans refer to the already existing data structures, (ela-
tions, indices, or materialized views). Our approach, andther
hand, is based on the partitioning of base tables, accotditige
join selectivities between groups of tuples, and the réngiof the
query as a union of queries over the partitions. As our re$uve
shown, this approach can lead to significant savings in thebeu
of intermediate result tuples.

Our proposed techniques resemble the concepbofontal ta-

ble partitioningthat has been applied successfully in the context

of parallel and distributed databases [7, 8, 11]. In a niitsteda-
tions are partitioned across the different nodes of a mrsjistem
and queries are rewritten accordingly to use the fragmdraach

node. The goal, of course, is to spread the load of a quergsicro

the system and thus increase the effectiveness of paradieligon.
The key difference from our technique, however, is that thting
of tuples depends solely on the contents of the partitiop&ation
and hence does not take into account the correlations aniffeg d
ent relation fragments. Dobra et al. [4] have explored thézbatal
partitioning of relational data in the context of streamitagabases.
Their technique, however, is based on a different objedétiaetion
than the one we consider in this paper: minimizing the suntad{p
ucts of self-join sizes across all partitions. Hence, thest model
does not take into account the ordering of relations in thergu
plan, which forms a key factor of our optimization problem.

Recent studies on adaptive query processing [1, 6] havestbok

at the related problem of dynamically modifying a query pian
order to reduce query response time. The proposed technigue
get mainly queries over streaming data sources, wheréhdistm
information is often not available, and determine the jaiden of
upcoming tuples based on the join selectivities of alreadgived
tuples. As a result, the order of tuple arrival can affect jtie

plans that are chosen by the adaptive optimizer. Our approac

on the other hand, focuses on the case where distributitiatsts
are available and determines a static value-based routingples
based solely on their frequency distribution.

6. CONCLUSIONS

In this paper we initiate the study of selectivity-baseditian-
ing, a novel approach to query optimization that adopts aleiv
and-union approach to query evaluation. We define formaky t
optimization problem and present an analysis on the clexiact

727

7. ACKNOWLEDGMENTS

The author wishes to thank Shivnath Babu, Pedro Bizarro, and

Minos Garofalakis for their helpful comments on earlierfthraf
this paper.

8. REFERENCES

[1] S.Babu, R. Motwani, K. Munagala, I. Nishizawa, and J. @fd Adaptive
ordering of pipelined stream filters. KCM SIGMOD 2004.

[2] K. Chakrabarti, M. Garofalakis, R. Rastogi, and K. ShApproximate Query
Processing Using Wavelets. L DB, 2000.

[3] S. Chaudhuri and K. Shim. Optimization of queries witlerdefined
predicates. I'VLDB, 1996.

[4] A.Dobra, M.Garofalakis, J.Gehrke, and R. Rastohi. Bssing complex
aggregate queries over data stream#®@M SIGMOD 2002.

[5] S. Cluetand G. Moerkotte. On the complexity of genegbptimal left-deep
processing trees with cross productsl@DT, 1995.

[6] A.Deshpande and J. M. Hellerstein. Lifting the burderhistory from
adaptive query processing. YALDB, 2004.

[7] D.J.DeWitt, R. H. Gerber, G. Graefe, M. L. Heytens, K. Buridar, and
M. Muralikrishna. GAMMA - A High Performance Dataflow Datat®
Machine. InVLDB, 1986.

[8] D.J.DeWittand J. Gray. Parallel database systems: Ttued of high
performance database syste@ACM, 35(6), 1992.

[9] G. Graefe and D. J. DeWitt. The exodus optimizer gener&tcACM

SIGMOD, 1987.

A. Halevy. Answering queries using views: A surviyl. Journal on Very

Large Data Basesl0(4), 2001.

[11] K. A.Huaand C.Lee. An adaptive data placement schempdallel

database computer systemsVinDB, 1990.

T. Ibaraki and T. Kameda. On the optimal nesting ordercfamputing

n-relational joinsACM Transactions on Database Systef{(8):482-502,

1984.

[13] Y. E. loannidis and Y. C. Kang. Randomized algorithmsdptimizing large
join queries. INACM SIGMOD 1990.

[14] Y. E. loannidis and V. Poosala. Histogram-Based Appration of

Set-Valued Query Answers. MLDB, 1999.

Y. E. loannidis. “Universality of Serial Histogramsh VLDB, 1993.

N. Kabra and D. J. DeWitt. Efficient mid-query re-optiration of sub-optimal

query execution plans. IBIGMOD, 1998.

[17] R. Krishnamurthy, B. Boral, and C. Zaniolo. Optimizatiof nonrecursive
queries. INVLDB, 1986.

[18] H. Pirahesh, J. M. Hellerstein, and W. Hasan. Exteedible based query
rewrite optimization in starburst. IACM SIGMOD 1992.

[19] P.G. Selinger, M. M. Astrahan, R. D. Chamberlin, R. Ariegand T. G.
Price. Access path selection in a relational database reamag system. In
ACM SIGMOD 1979.

[20] T.K. Sellis. Multiple-query optimizationrACM TODS 13(1), 1988.

[10

[12

[15
[16

