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ABSTRACT
Modern query optimizers select an efficient join ordering for a phys-
ical execution plan based essentially on theaveragejoin selectivity
factors among the referenced tables. In this paper, we arguethat
this “monolithic” approach can miss important opportunities for the
effective optimization of relational queries. We proposeselectivity-
based partitioning, a novel optimization paradigm that takes into
account the join correlations amongrelation fragmentsin order to
essentially enable multiple (and more effective) join orders for the
evaluation of a single query. In a nutshell, the basic idea isto care-
fully partition a relation according to the selectivities of the join
operations, and subsequently rewrite the query as a union ofcon-
stituent queries over the computed partitions. We provide aformal
definition of the related optimization problem and derive properties
that characterize the set of optimal solutions. Based on ouranaly-
sis, we develop a heuristic algorithm for computing efficiently an
effective partitioning of the input query. Results from a prelim-
inary experimental study verify the effectiveness of the proposed
approach and demonstrate its potential as an effective optimization
technique.

Categories and Subject Descriptors:H.2.4 [Database Manage-
ment]: Query Processing, Relational Databases

General Terms: Algorithms, Performance

1. INTRODUCTION
Effective query optimization techniques have played a key role in

the success of relational database systems as they have enabled the
efficient evaluation of high-level, declarative queries over massive
data stores. At an abstract level, the outcome of query optimiza-
tion is a low-cost physical execution plan for accessing thestored
data and computing the results of the input declarative query. The
complexity of the problem clearly makes this a challenging task,
and the query optimizer has naturally evolved to one of the most
complex (and most important) modules of a modern DBMS.

A central issue in relational query optimization remains the se-
lection of an effective join ordering, i.e., an order for evaluating
efficiently the join predicates of a given query. This important prob-
lem has been the focus of active research from the first years of re-
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lational database development and earlier studies have introduced
a host of effective optimization techniques [3, 9, 13, 17, 18, 19].
At an abstract level, the proposed methods follow the same basic
approach of exploring the joint space of join orders and their im-
plementations in physical plans, and selecting the one withthe least
estimated cost. Typically, the cost factors of a candidate plan de-
pend on the average selectivity of the involved join operators, that
is, the total number of tuples that are generated when the corre-
sponding tables are joined. An effective plan intuitively minimizes
the number of intermediate results, thus reducing the amount of
work that is required to produce the answer to a query.
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Figure 1: Statistical correlation among join attributes in E 1

D 1 P .

A key observation on existing optimization techniques is that
they adopt a “monolithic” approach to the problem of join order-
ing: for any query, the optimizer selects asingle join order that is
based on theaveragejoin selectivities among different tables. In ef-
fect, the optimized physical plan depends on the average statistical
profile of the data and essentially ignores the details of individual
frequency distributions. To illustrate this point, consider a sim-
ple database schema consisting of three tables, namely,Employee,
Department, andProject, and assume thatE andP have foreign
key relationships toD. Let us assume that these two relationships
are correlated in the following manner: either a departmenthas a
few big-budget projects that employ a large number of employees,
or it has many small budget projects and a few employees to work
on them. This correlation is shown pictorially in Figure 1, where
D can be separated in two partitions,D1 andD2, according to the
’fan-out’ of department tuples to tablesE andP . Consider now
the queryE 1 D 1 P , that pairs each employee with the projects
he/she works on. A conventional query optimizer will base its de-
cisions on the overall selectivity factors for the joinsE 1 D and
D 1 P , which essentially assign the same average fan-out factor
to every tuple inD even if the detailed statistical characteristics are
very different.

720



In this paper, we argue that this monolithic approach can miss
important opportunities for optimizing queries more effectively. Re-
turning to our example, consider the option of partitioningD to D1

and D2, based on the statistical dependencies of these partitions
to the other relations, and essentially rewriting the original query
E 1 D 1 P as(E 1 D1 1 P ) ∪ (E 1 D2 1 P ). The key idea
is that each constituent query can be optimized independently and,
due to the correlation of the join attributes, the generatedphysi-
cal plans can be evaluated more efficiently than a single monolithic
plan for the whole query. One option, for instance, would be to use
different join orders for each plan as follows:(E 1 D1) 1 P and
(P 1 D2) 1 E. It is clear that these different join orders are likely
to generate less intermediate result tuples than a single plan, which
might have a significant impact on query response time.

The previous example illustrates the crux ofselectivity-based
partitioning, the novel query optimization technique that we in-
troduce in this paper. Contrary to the conventional monolithic ap-
proach, our proposed technique employs a novel paradigm of divide-
and-union for the effective optimization of relational queries: it
carefully partitions the base data by examining join selectivities at
a finer level of granularity, namely amongrelation fragments, and
rewrites an input query to a union of constituent queries that can be
optimized separately and more effectively. Overall, this results in
a partition-based plan that may improve query response timesig-
nificantly as it takes into account more detailed information on the
join dependencies among relations. We define formally the parti-
tioning problem and present an analysis on the properties ofopti-
mal solutions for a simple, yet intuitive cost model that provides
useful insights on the characteristics of good partitioning schemes.
Based on this model, we develop effective partitioning algorithms
that enable an initial solution to the integration of selectivity-based
partitioning within an existing query optimizer. More concretely,
the key contributions of our work can be summarized as follows:

• Selectivity-based partitioning. We introduce selectivity-based
partitioning and provide a formal definition of the related optimiza-
tion problem. Based on our formulation, we present an analysis on
the space of possible solutions and derive properties for the optimal
partitioning of a given query.

• Effective Partitioning Algorithm. Using the results of our anal-
ysis, we describe an efficient algorithm for exploring the space of
possible solutions and identifying an effective partitioning. Our al-
gorithm is based on the concept ofIterative Partitioning, a method
that efficiently computes an effective partition while considering
only a limited fraction of the total search space.

• Experimental evaluation of the effectiveness of selectivity-
based partitioning. We present the results of a preliminary exper-
imental study that evaluates the effectiveness of our proposed tech-
niques on real-life and synthetic data sets. The results indicate that
selectivity-based partitioning can offer significant improvements
compared to a monolithic evaluation plan, while being affordable
in terms of optimization time.

To the best of our knowledge, this is the first work that pro-
poses a horizontal partitioning scheme based on the join selectivi-
ties among relation fragments.

2. BACKGROUND
Query Model. In this paper, we focus onchainqueries that join re-
lationsR0, R1, . . . , Rn with equality predicates of the formR0.A1 =
R1.A1 AND R1.A2 = R2.A2 AND . . . Rn−1.An = Rn.An.
That is, every relationRk (exceptR0 andRn) participates in two
joins, with attributesAk andAk+1. (When no confusion arises,
we will use the shorthand notationR0 1 R1 1 . . . 1 Rn for

the clause of equi-join predicates.) In our model we also consider
arbitrary selection predicates on any subset of the attributes of the
joined relations. This class of chain queries occurs frequently in
real-world applications, and hence presents an interesting case for
the development of our optimization techniques. We stress that it
is possible to extend our proposed framework to the more general
case oftree-joinqueries, where the join-graph forms essentially a
tree. The required mathematical machinery gets hairier (e.g., ten-
sors are required instead of matrices), but the essence of our tech-
niques remains the same.

We assume that the values of each attributeAk, 1 ≤ k ≤ n,
are drawn from a domainDk = {vkj | 1 ≤ j ≤ Mk}. We note
that we do not make use of any ordering within the domain, i.e.,
i ≤ j does not implyvki ≤ vkj . A r × c matrix F = (fij) is
a table ofr rows andc columns, where each elementfij is a real
number. Given a relationRk, we define itsfrequency matrixas a
Mk × Mk+1 matrix Rk, where each elementfij is the number
of tuples in relationRk with Ak = vki and Ak+1 = v(k+1)j ,
1 ≤ i ≤ Mk, 1 ≤ j ≤ Mk+1. We note that the matrices forR0

andRn, which participate in the query with a single attribute, are
essentially vectors of dimensions1×M1 andMn×1 respectively.
It is a well-known result [15] that the productRk · Rk+1 yields the
frequency matrix of the joined tuplesRk 1 Rk+1 on attributesAk

andAk+2, while R0 · R1 · . . . Rn computes the number of tuples in
the result of the query.

EXAMPLE 2.1.: Consider a queryQ = R0R1R2, whereMj =
2 for all domains (i.e., each join attribute takes only two values).
Assume that the frequency matrices are as follows:

R0 =
`

10 20
´

R1 =

„

10 20
20 40

«

R2 =

„

10
50

«

The result size of queryQ can be computed as|Q| = |R0 · R1 ·
R2| = 55000.

We note that it is straightforward to incorporate selectionpredi-
cates in this model, as a predicate on relationRk essentially scales
down the entries of the frequency matrixRk. To simplify our pre-
sentation, we will assume that all selection predicates have been
incorporated in the corresponding frequency matrices and hence
the productR0 ·R1 · . . . Rn correctly computes the result cardinality
of a query.

We note that a real system stores only an approximation ofRj

in the form of a summaryHj (typically, a histogram) and hence
all computations on frequency matrices are carried out using tech-
niques for approximate query processing [2, 14]. For simplicity, we
present our techniques assuming that the query optimizer has com-
plete knowledge of the true frequency matrices; an extension to the
more general case of summarized distributions is straightforward
and omitted in the interest of space.

Query Evaluation Model. We restrict our attention to left-deep
evaluation plans as they have become the norm in relational database
systems. We represent a left-deep plan as an ordering
O = Rk0

Rk2
. . .Rkn , whereRkj

is the inner relation that joins
with the result ofRk1

1 Rk2
1 · · · 1 Rkj−1

. As an example, the
orderingR1R0R2 represents the left-deep plan(R1 1 R0) 1 R2.
Following common practice, we only consider orderings thatdo
not generate cross-products, i.e., every prefix of an ordering is a
chain query. An immediate result of this property is that ifRkj

is
the last relation of the ordering, thenRkj−1 or Rkj+1 must appear
in the prefix. We denote the set of all such orderings asO(Q) and
usecost(O) for the evaluation cost of planO under a suitable cost
model. The cost of a queryQ can be naturally defined as the mini-
mum over all possible plans, i.e.,cost(Q) = min

O∈O(Q)
(cost(O)).
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We extend the definition of frequency matrices to the case of
evaluation plans as follows. The frequency matrixO of the or-
dering O = Rk0

Rk2
. . . Rkl

(l ≤ n) is defined as the product
Rk′

0
Rk′

2
. . . Rk′

l
, where(k′

0, k
′
1, . . . , k

′
l) is the sorted order of the

indices{k0, k1, . . . , kl}. Clearly,O is aMk′

1
× Mk′

l
matrix that

records the distribution of joined tuples along attributesAk′

1
, Ak′

l
.

Given a frequency matrixF = (fij), we use|F| =
P

fij to
denote the number of tuples that exist in the corresponding relation.
If we consider a specific join planO = Rk0

Rk1
. . .Rkn , then the

total number of intermediate results that are produced during the
evaluation ofO can be computed as‖O‖ =

P

O′≺O |O′|, where
≺ denotes the prefix relation. (We note that the above expression
does not include the count of result tuples|Q|.) Similar to thecost
function, we define the number of intermediate results for a query
Q as the minimum number of intermediate results over all possible
plans, i.e.,‖Q‖ = min

O∈O(Q)
(‖O‖).

EXAMPLE 2.2.: Consider the queryQ of Example 2.1. Under
our evaluation model, there are two possible plans , namely,O1 =
R0R1R2 andO2 = R2R1R0. (O1 is equivalent toR1R0R2 since
both plans generate the same number of intermediate tuples;the
same holds forO2 and R1R2R0.) The number of intermediate
results in each case is computed as follows:

‖O1‖ = |R0R1| = |R0 · R1|

‖O2‖ = |R2R1| = |R1 · R2|

Partitioning Model. A partitioning of relationRk ∈ Q is defined
as the setPk,c = {Rk1, . . . , Rkc}, whereRki are disjoint subsets
of Rk and

S

Rki = Rk. We will refer toRk as thepivot relation
of partitioningPk,c. (When no confusion arises, we will dropk, c
and useP to denote a partition.) IfQ[Rki] is the query that results
from Q by substitutingRk with partitionRki, then the following
holds:

Q ≡
[

1≤j≤c

Q[Rkj ]

We note that the identity holds in multi-set semantics as well, since
the partitions are disjoint. A partitioning, therefore, defines a set
of queriesQ[Rki] that produce the answers toQ without requiring
duplicate elimination. Assuming that the constituent queries are
evaluated independently, i.e., no computation is shared, we will
denote the total number of intermediate results across all queries
as follows:

‖Pk,c‖ =
X

1≤j≤c

‖Q[Rki]‖

By definition,‖Q[Rki]‖ corresponds to an ordering ofQ[Rki] that
minimizes the number of intermediate results. Since eachQ[Rki]
is evaluated independently, our model essentially allows different
join orders to be used for the constituent queries.

3. SELECTIVITY-BASED PARTITIONING

3.1 Problem Definition
The key idea behind selectivity-based partitioning is to re-write

the input query as a union of queries that can be optimized more ef-
fectively and hence evaluated more efficiently. In particular, given
a queryQ, we seek a relationRk and a partitioningPk,c = {Rki},
such that the combined evaluation of the constituent queriesQ[Rki]
is more efficient than a single monolithic plan. The goal, of course,

is to “match” the distributions among the partitions and theremain-
ing relations so that the constituent queries can be optimized more
effectively than the single monolithic plan. More formally, we de-
fine the following optimization problem:

[ Query Partition ] Consider a queryQ = {R1, . . . , Rn} and let
N > 0 be a positive integer. We wish to find a pivot relationRk, a
partition budgetc ≤ N , and a partitioningP∗ = {Rk1, . . . , Rkc},
so that the total execution cost of the resulting queries is minimized.

The previous formulation defines the partitioning problem relative
to aspecificqueryQ. We consider this as a necessary step in or-
der to gain insights on selectivity-based partitioning andapply our
techniques in the more general problem of partitioning for an ex-
pected workload of queries, or workload-independent partitioning.
A second important point is that our formulation involves the par-
titioning of asinglerelation. Conceptually, it would be possible to
partition multiple relations and then define the constituent queries
on combinations of partitions. As our analysis shows, however,
the problem is not trivial even for the simplified variant of asingle
partitioned relation. The generalization to partitions over multiple
relations is an interesting direction for future work.

Computing a solution to the partitioning problem obviouslyre-
quires knowledge of the cost model for query execution. The de-
tails of a real cost model, however, are not trivial to define and are
highly dependent on system configuration. In addition, it isnot
clear if a solution for a particular cost model will yield general in-
tuitions on the partitioning problem, that will enable its application
in a different context. In our approach, we opt for a simplified cost
function that enables a more general solution, but at the same time
maintains an intuitive (and theoretically sound) connection to the
cost factors used in real optimizers. More specifically, we define
the cost of a queryQ to be equal to the number of intermediate
result tuples that are computed during the evaluation of itsoptimal
ordering:

cost(Q) = COSTT (Q) = ‖Q‖

Clearly, the proposed function ignores many of the details of query
evaluation in a real system, such as the existence of indicesor ma-
terialized views, or the use of different physical join operators. As
an earlier study [5] has shown, however, optimizing a query for the
number of intermediate tuples is equivalent to using more detailed
cost metrics that take into account the characteristics of different
join operators. These results essentially verify the intuition that an
effective execution plan minimizes the number of intermediate re-
sults, and justify the use of the proposed function as a generic cost
model.

Based on our proposed cost function, we can define the cost of a
partitionP , as follows:

COSTT (P ) =
X

1≤i≤c

COSTT (Q[Rki]) =
X

1≤i≤c

‖Q[Rki]‖

At this point, we can provide a more concrete definition of thepar-
titioning problem that we address in this paper:

[ Query Partition ] Consider a queryQ = {R1, . . . , Rn} and let
N > 0 be a positive integer. We wish to find a relationRk, a
partition budgetc ≤ N , a partitioningP ∗ = {Rk1, . . . , Rkc}, and
join orders for queriesQ[Rki

], so that the total cost of the resulting
queries is minimized, i.e.:

P∗ = argmin
Pk,c

1≤k≤n,c≤N

(
X

1≤i≤c

‖Q[Rki]‖)

Clearly, the optimization problem involves two inter-related com-
ponents: computing the partitioning of a relation, and determining

722



the join orders that essentially minimize the total number of inter-
mediate result tuples for the constituent queries. These individual
problems, namely, partitioning and query optimization, are known
to be computationally hard in general and, even though we do not
provide formal results, our analysis indicates that the combined
problem is likely to be hard as well.

An important factor in our proposed approach is the model of
processingpartitioned queries. Consider, for instance, queryQ =
R1R2R3R4 and its partitioned formQ = (R1R21R3R4)∪
(R3R4R22R1). Clearly, the joinR3R4 is common in both queries
and it would be beneficial to evaluate it only once and use the
cached result in the individual plans. In a more general context,
the specific form of partitioned queries may enable other types of
run-time optimizations that can increase the effectiveness of parti-
tioned query processing. We consider this an important direction
for future research, but we do not address this issue in this paper.
Here, we focus solely on the important first step ofdeterminingan
effective partitioning.

3.2 Partitioning Algorithm
Overview of our approach. At an abstract level, our partition-
ing algorithm, termed COMPUTEPARTITION, computes a solution
by exploring a space of possible join orderings for the constituent
queries and determining an effective partition for each ordering.
More formally, letLRkT be an evaluation plan for the input query
Q, whereL andT are orderings for the relations inQ−{Rk}. We
will call L the leadingjoin ordering, andT the trailing join order-
ing. A configurationfor Rk is a setLT = {(L1, T1), . . . , (Lc, Tc)},
wherec is the partition count ofLT and each(Li, Ti) defines a
valid pair of leading and trailing join orderings. Intuitively, a con-
figuration represents the join plans for the constituent queries if Rk

were partitioned inc subsets, i.e., the plan for queryQ[Rki] would
be LiRkiTi, 1 ≤ i ≤ c. Given a partitioningP , we will use
COST T (P, LT ) to denote the cost of evaluating the constituent
queries given the join plans specified byLT . Using the definition
of our COST T metric, this can be written as follows:

COSTT (P, LT ) =
X

1≤i≤c

‖LiRkiTi‖

Our proposed partitioning algorithm is based on the conceptof
an Optimal Split, which is defined as the optimal partitioning of
a pivot relation for a specificLT . As we discuss later, COM-
PUTEPARTITION explores a space of different configurations and
computes optimal splits as the candidate solutions. To makethis
process more efficient, our algorithm uses an effective heuristic,
termedIterative Partitioning, that limits significantly the number
of configurations that need to be examined. In what follows, we
first define the optimal split for a given configuration, and then dis-
cuss the details of Iterative Partitioning and COMPUTEPARTITION.

Optimal Split. Theoptimal splitfor a given configurationLT , de-
noted asOptSplit(Rk, LT ), is simply defined as the partition of
Rk that minimizes the cost metric for the specific join orderings
defined inLT :

OptSplit(Rk, LT ) = argmin
P={Rk1,...,Rkc}

(
X

1≤i≤c

‖LiRkiTi‖)

Intuitively, an optimal split is the optimal solution to thepartition-
ing problem when two of the free parameters are fixed, namely,
the number of partitions and the join orderings of the constituent
queries.

We now describe a method for computing the optimal split of a
specific configuration. The key idea of our technique is that tuples

in Rk haveindependentcontributions to the total number of inter-
mediate results and hence can be distributed to different partitions
using a localized partitioning criterion. We illustrate this idea with
a simple example and then state the general formal results.

EXAMPLE 3.1.: Consider the queryQ = R1R2R3R4 and the
configurationLT = (R1, R3R4), (R3, R1R4) with respect to the
pivot relationR2. We will assume thatM1 = M2 = 2, i.e., the
frequency matrix ofR2 looks as follows:

R2 =

„

X Y
Z W

«

The partitioning ofR2 can be represented in terms of the frequency
matrices of the two partitions:

R21 =

„

x y
z w

«

R22 =

„

X − x Y − y
Z − z W −w

«

The number of intermediate result tuples for the first sub-query
R1R21R3R4 can be computed as follows:

‖R1R21R3R4‖ =

˛

˛

˛

˛

R1 ·

„

x y
z w

«˛

˛

˛

˛

+

˛

˛

˛

˛

R1 ·

„

x y
z w

«

· R3

˛

˛

˛

˛

Using algebraic manipulations, this can be rewritten as follows:

‖R1R21R3R4‖ = x ·

„˛

˛

˛

˛

R1 ·

„

1 0
0 0

«˛

˛

˛

˛

+

˛

˛

˛

˛

R1 ·

„

1 0
0 0

«

· R3

˛

˛

˛

˛

«

+ y ·

„˛

˛

˛

˛

R1 ·

„

0 1
0 0

«˛

˛

˛

˛

+

˛

˛

˛

˛

R1 ·

„

0 1
0 0

«

· R3

˛

˛

˛

˛

«

+ z ·

„˛

˛

˛

˛

R1 ·

„

0 0
1 0

«˛

˛

˛

˛

+

˛

˛

˛

˛

R1 ·

„

0 0
1 0

«

· R3

˛

˛

˛

˛

«

+ w ·

„˛

˛

˛

˛

R1 ·

„

0 0
0 1

«˛

˛

˛

˛

+

˛

˛

˛

˛

R1 ·

„

0 0
0 1

«

· R3

˛

˛

˛

˛

«

= x ·X1 + y · Y1 + z · Z1 + w ·W1

As seen by the expression, the block ofx tuples fromR2 generates
a number of intermediate results that is independent of the contri-
butions of otherR2 tuples. In particular, the factorX1 depends
solely on the leading and trailing join sets, and on the position of
thex tuples in the frequency matrix R2. A similar expression can
be derived for the intermediate results of the second partition:

‖R3R22R1R4‖ = (X − x) ·X2 + (Y − y) · Y2 +

(Z − z) · Z2 + (W −w) ·W2

The total number of intermediate results can be reduced, therefore,
by assigning allX tuples to the partition with the minimumXi

weight, which in turn can be computed from the configuration only
and independently of the assignments of other tuples. A similar
observation holds for theY, Z, W tuples ofR2.

More formally, we can state the following result for a general
configurationLT :

LEMMA 3.1. Consider a query planLRkT and letfml denote
the number of tuples inRk with Ak = vkm andAk+1 = v(k+1)l.
The total number of intermediate result tuples for the queryplan
LRkT is computed as:

‖LRkT‖ = ‖L‖+
X

1≤m≤Mk
1≤l≤Mk+1

fml · g(L, m, l, T ) (1)

whereg(L,m, l, T ) is an expression involving the frequency ma-
trix of L, the frequency matrices of relations inT , and a matrix
whose contents depend solely onm, l.
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Overall, Lemma 3.1 asserts the following important property: tu-
ples ofRk that cover different parts of the value domain have in-
dependent contributions to the total number of intermediate results.
To minimize the total number of intermediate results, therefore, it
suffices to assign all tuples that cover(vkm, v(k+1)l) to the parti-
tion with the minimum contribution for this particular region of the
value domain. This is captured formally in the following theorem:

THEOREM 3.1. Consider a configurationLT = {(Li, Ti), 1 ≤
i ≤ c} for relationRk. LetP ∗ = {Rk1, . . . , Rkc} be a partition-
ing where allfml tuples ofRk that cover(vkm, v(k+1)l) are as-
signed to partitionRki∗ , wherei∗ = argmin1≤i≤c(‖Li‖ + fml ·
g(Li, m, l, Ti)). ThenP ∗ is an optimal split w.r.t. configuration
LT , i.e.,P ∗ = OptSplit(Rk, LT ).

Theorem 3.1 is key in our framework since it provides the method
for computing the optimal split for any configurationLT . In addi-
tion, as the following result shows, it has an important ramification
regarding the number of configurations that need to be considered
in order to compute an optimal partitioning.

LEMMA 3.2. Given an orderingL, let L∗ be the optimal, in
terms of theCOST T function, evaluation plan for computing the
same join asL. Let LT = {(Li, Ti), 1 ≤ i ≤ c} be a config-
uration and defineLT ∗ = {(L∗

i , Ti), 1 ≤ i ≤ c} as the con-
figuration with the optimal leading join orderings and the same
trailing join orderings asLT . The following holds for the costs
of the optimal splitsP and P ∗ for LT and LT ∗ respectively:
COST T (P, LT ) ≥ COST T (P ∗, LT ∗)

Lemma 3.2 simply states that it is always possible to get a more
effective partitioning by considering the optimal orderings for the
leading join sets. (This property can be seen as an extensionof the
local optimality principle that is used by query optimization tech-
niques based on dynamic programming [19].) In essence, thisresult
limits considerably the number of configurations that can lead to
effective solutions, as it is never advantageous to examinea config-
uration that does not contain the optimal plans for the leading join
orderings. For the remainder of the paper, therefore, we will con-
sider only configurations that contain the optimal leading join or-
ders for every partition. (These optimal orderings can be computed
efficiently using well known optimization techniques [12, 19].) A
natural question to ask is whether the same property holds for the
trailing join orders, i.e., if the optimal partitioning is achieved for
configurations with optimal trailing join orders. Unfortunately, a
simple counter-example can demonstrate that this is not thecase;
intuitively, each partitionRki causes a set of frequencies to be-
come zero in the output ofLiRki, which may lead to an optimal
partitioning that does not contain the optimal ordering forTi.

Up to this point, we have been vague on the form and complex-
ity of expressiong(·) that is used in Theorem 3.1. At an abstract
level,g(·) involves the computation oft frequency matrix products,
wheret is the number of tables in the trailing join order, and prod-
uct i is formed from producti − 1 with the addition of a single
frequency matrix. (This is illustrated in Example 3.1 in thedefi-
nition of X1.) We expect these operations to be very efficient in
a real system, as the products are computed on highly-compressed
summarized distributions using techniques for approximate query
answering. Moreover, as we discuss later, our partitioningalgo-
rithm can control effectively the overhead of query optimization by
introducing an early-stopping condition based on time deadlines.
We revisit these points in Section 4.2, where we evaluate experi-
mentally the overhead of our optimization techniques.

Partitioning Algorithm. Our previous discussion focused on a con-
strained variant of the partitioning problem where the pivot rela-

Procedure ITERPART(S)
Input: StateS = (c, k, L)
Output: Cost of a partition that is derived by

Iterative Partitioning onS.
begin
1. Compute an initial partitioningP
2. cost∗ :=∞; iter := 0
3. do
4. iter := iter + 1;
5. Let(Li 1 Rki)T

∗
i be the optimal plan for subsetRki

6. LT ∗ := {(Li, T
∗
i ), 1 ≤ i ≤ c

7. P ∗ := OPTSPLIT(LT ∗, Rk) // Compute optimal split
8. cost∗ := COSTT (LT ∗, P ∗)
9. until ( P ∗ is unmodifiedOR iter = iterlim )
10. return cost∗

end
Figure 2: Iterative Partitioning

tion and the join orderings are fixed. In the remainder of thissec-
tion, we leverage our analysis and introduce a partitioningalgo-
rithm, termed COMPUTEPARTITION, for the general Query Par-
tition problem. Clearly, the general version of the problemsuf-
fers from a combinatorial explosion of the search space, as an ex-
haustive algorithm will have to consider all possible pivotrelations
and all possible leading and trailing join orderings. To address
this issue, our partitioning algorithm employs an effective heuris-
tic, termedIterative Partitioning, that essentially computes high-
quality solutions based on the optimized orderings of the leading
join sets and a limited subset of possible trailing join orders.

We now proceed to describe our approach in detail, starting from
our Iterative Partitioning heuristic. Consider a possibleconfigura-
tion LT = {(Li, Ti)} and letP = {Rki, 1 ≤ i ≤ c} be the opti-
mal split forLT . Assume thatT ∗

i denotes an ordering for the rela-
tions inTi, such that(Li 1 Rki)T

∗
i is an optimal query plan, i.e.,

it minimizes the number of intermediate join tuples. It is straight-
forward to show that ifLT ′ = {(Li, T

∗
i )} is the configuration with

the same leading join plans asL and the optimized orderingsT ∗
i ,

thenCOST T (P, LT ) ≥ COST T (P, LT ∗). In other words, it is
possible to derive a more efficient solution bysolelyre-ordering the
trailing join plans according to each prefix resultLi 1 Rki (with-
out modifying the split of the pivot relationRk). This re-ordering,
however, essentially modifies the configuration and hence raises
the opportunity for computing a new, more effective split. More
formally, this can be stated as follows:

LEMMA 3.3. Let LT and P be defined as previously, and let
LT ∗ be the modified configuration with the optimized trailing join
plans. If P ∗ = OptSplit(LT ∗, Rk) is the optimal split for the
new configuration, thenCOST T (P, LT ) ≥ COST T (P ∗, LT ∗).

Lemma 3.3 forms the basis of our Iterative Partitioning heuris-
tic. The key idea is to create an initial partitioning, e.g.,based on
a random ordering of the trailing join plans, and subsequently im-
prove on it by successively re-optimizing the trailing plans and re-
partitioning the pivot relation. This is illustrated in Figure 2 that
depicts the pseudo-code for Iterative Partitioning. The algorithm
applies Lemma 3.3 repeatedly on the current partitioning, and ter-
minates when the cost of the computed solution is not modified
between iterations, or when a pre-specified limit of iterations is
reached. It is interesting to note that Iterative Partitioning presents
an attractive option for integrating selectivity-based partitioning with
the cost model of a real optimizer. In particular, it is possible to
employ a realistic cost model for optimizing the leading join or-
ders and re-optimizing the trailing join orders in each iteration, and
to rely on the simplified functionCOST T and Theorem 3.1 only
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for re-routing the tuples among different partitions. Thisapproach
opens up an interesting direction for future work, as it is clearly a
feasible approach for applying selectivity-based partitioning in an
existing optimizer.

ProcedureCOMPUTEPARTITION(Q,N )
begin
1.cost∗ = COSTT (Q) // Cost of a monolithic plan
2. init states(S)
3.while S 6= ∅ do
4. S := S.pop() // State with leastscoreC and leastc
5. if (scoreC(S) < cost∗) then
6. cost∗ := min(cost∗, ITERPART(S))
7. end-if
8. for 1 ≤ i ≤ c, R ∈ Q− (Li ∪ {Rk}) do
9. S ← tI (S, Li, R);
10. done
11.done
end

Figure 3: Algorithm COMPUTEPARTITION.

Our proposed partitioning algorithm, termed COMPUTEPARTI-
TION, uses Iterative Partitioning as a method of exploring efficiently
the space of possible partitions. The pseudo-code for COMPUTEPAR-
TITION is shown in Figure 3. A stateS in the search space is en-
coded as a tripletS = (Rk, c, L), whereRk is the candidate pivot
relation,c is the number of partitions, andL is a set ofc leading join
sets forRk. (Again, the algorithm only considers the optimized or-
derings for the leading join sets.) At an abstract level, thealgorithm
considers each tripletS in the set of open statesS , derives an effec-
tive partitioning using the Iterative Partitioning methodon S, and
records the best solution in variablecost∗. S is initially populated
with all triplets(Rk, c, Ls(c, k)), for all 1 ≤ k ≤ n, 1 ≤ c ≤ N ,
and Ls(k, c) = {(Ri1), (Ri2), . . . , (Ric )|Rij

∈ Q − {Rk}}
(function init states). To make the search more efficient,S
is maintained as a priority queue based on thecompletion scoreof
each state which is defined asscoreC(S) =

P

1≤i≤c
‖Li‖, i.e.,

the sum of intermediate result tuples for all the (optimized) lead-
ing join orders. It is straightforward to show thatCOST T (P ) ≥
scoreC(S) for any partitionP that is derived based on the leading
join sets inS. The score metric, therefore, serves as a heuristic for
guiding the search process toward states that are likely to yield ef-
fective solutions. Furthermore, the algorithm does not apply Itera-
tive Partitioning onS if scoreC(S) ≥ cost∗ (line 5), as it provably
cannot yield a more effective solution.

To explore the state space, COMPUTEPARTITION uses a transi-
tion functiontI that essentially inserts one more relation in exactly
one of the input leading sets (lines 8-10). More formally, consider
a stateS = (Rk, c, L), L = {L1, . . . , Lc} and a specific join or-
deringLj ∈ L (1 ≤ j ≤ c). If R 6= Rk is a relation that does
not yet appear inLj , then the result oftI(S, Lj , R) is a new state
S′ = (Rk, c, L′) whereL′ contains exactly the same leading join
sets asL except forL′

j = Lj ∪ {R}. This transition function en-
ables the efficient computation of the tuple counts and frequency
matrices for the leading orders of each stateS, asL′

j can be com-
puted with a single matrix multiplication betweenLj andR.

It is interesting to note that COMPUTEPARTITION operates in a
progressive mode: it computes an initial partitioning (which cor-
responds toc = 1, i.e., the optimal monolithic plan) and subse-
quently discovers better solutions as more of the search space is
explored. This enables the option of calling the algorithm with a
time-based deadline, where the search is terminated after apre-
specified time interval has expired and the best current solution is
returned. As our empirical study shows, this is a simple, yetef-

fective solution for controlling the overhead of optimization while
retaining the benefits of partition-based processing.

4. EXPERIMENTAL STUDY
In this section, we present the results of an experimental study

that we have conducted on real-life and synthetic data for evaluat-
ing the effectiveness of our partitioning technique.

4.1 Methodology
Techniques. We have completed a prototype implementation of
the COMPUTEPARTITION algorithm that we introduce in this pa-
per. In all the experiments that we present, COMPUTEPARTITION

uses a maximum of four subsets (N = 4) for computing a partition-
ing, and performs exactly one iteration for Iterative Partitioning.
For comparison purposes, we have also implemented an exhaus-
tive search algorithm, termed OPTIMAL PARTITION, that explores
all possible solutions and identifies an optimal partitioning for the
input query.

Data Sets.We have based our experimental study on synthetic and
real-life data sets.
Synthetic Data. We have generated several synthetic data sets of
varying characteristics. A data set consists of 60 relations in total,
each relation having104, 105, or 106 tuples. Since our intent is
to study the performance of our partitioning technique, we exclude
the effect of statistics errors and assume that the frequency ma-
trix of each relation can be accurately represented by an equi-width
2-dimensional histogram of 100 buckets. The bucket frequencies
in each histogram are assigned according to a zipfian distribution,
with a specific skew parameterz that is the same for the whole
data set. In our experiments, we have generated four data sets with
skew values 0.5, 1.0, 1.5, and 2.0. (Each data set is denoted as
D(z), wherez is the value for the skew parameter.)
Real-Life Data. We have used a subset of the well known Swis-
sProt database as our real-life data set. More specifically,we have
generated a relational schema containing the following tables: RA
(2,541,749 tuples),OC (512,487 tuples),KW (385,634 tuples),DR
(593,933 tuples), andID (50,000 tuples). A tuple inID represents a
protein entry in SwissProt, while each of theRA, OC, KW, andDR
tables essentially record the inclusion of annotations in each entry1.
TablesRA, OC, DR, andKW have a foreign key dependency to ta-
ble ID, with an average of 50, 10, 11, and 7 joining tuples per tuple
in ID.

Workloads. For the synthetic data sets, we have generated a work-
load of 300 random join queries consisting of 3-5 relations each.
For SwissProt, we have experimented with various workloadsbut
we only present results for queries that join the entry tableID with
all possible combinations of three annotation tables. (We have se-
lected this particular workload as it yields an interestingrange of
performance measurements for our technique.) The average count
of intermediate result tuples for the optimized monolithicplans is
7 · 1015 for the synthetic workload, and3 · 106 tuples for the Swis-
sProt queries. We have also experimented with workloads that con-
tain random selection predicates on the base tables and our results
have been qualitatively the same.

Metric. We quantify the performance of our partitioning scheme
by the average reduction in the number of intermediate result tu-
ples over the queries in the workload. More specifically, ifLT and
P are the configuration and partitioning respectively returned by

1Since multiple entries may share the same annotations, these ta-
bles essentially record only the key of the entry and the key of the
annotation.
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COMPUTEPARTITION, then the relative reduction is simply com-
puted asr(Q) = (COST T (Q)−COST T (P, LT ))/COST T (Q),
whereCOST T is the function defined in Section 3. A positive
r(Q) represents a percentage of improvement on the cost ofQ,
while r(Q) = 0 implies that the best partitioningP is identical to
the monolithic plan, i.e.,c = 1. Note that our algorithms never re-
turn a partitioning that has cost greater thancost(Q), and therefore
the r(Q) metric will always lie in the range[0, 1]. In our exper-
iments, we report the average reduction over all the queriesof a
workload.

4.2 Experimental Results
In this section, we present the results of the experimental study

that we conducted for evaluating the effectiveness of selectivity-
based partitioning. In what follows, we first present a sensitivity
analysis of our technique for varying parameters of the synthetic
data sets, and then conclude with the results on our real-life data
set.

Reduction of intermediate result tuples. Figure 4(a) shows the
reduction metric for the OPTIMAL PARTITION and COMPUTEPAR-
TITION algorithms as a function of the data skew in our synthetic
data. Our results demonstrate that partition-based processing offers
significant reductions in the number of intermediate tuplescom-
pared to an optimal monolithic plan. For theD(1.5) data set,
for instance, the partitioned plan achieves an average reduction of
45% compared compared to an optimal monolithic plan. For cer-
tain queries, in fact, we observed improvements of up to 90% —
obviously a very significant savings in the count of intermediate
join tuples. The results also show that COMPUTEPARTITION yields
consistently near-optimal improvements and is out-performed only
marginally by OPTIMAL PARTITION. This clearly demonstrates the
effectiveness of the Iterative Partitioning heuristic in computing
low-cost partitions while exploring only part of the searchspace.

The previous results indicate an increasing trend in the perfor-
mance of our partitioning schemes as data skew becomes higher.
Intuitively, selectivity-based partitioning offers the most benefit when
partitions eliminate values with high frequencies in the respective
trailing join sets, thus nullifying their contribution to the number
of intermediate join tuples. As the skew is lowered, values are dis-
tributed more evenly and therefore the benefit decreases since more
frequencies contribute significantly to the count of intermediate re-
sults. Given that real-life data distributions are characterized by
non-uniformity, however, our results demonstrate that selectivity-
based partitioning is likely to yield significant performance im-
provements in practice.

It is interesting to note that the computed solutions alwayscon-
sist of two partitions and, in the vast majority of cases, thejoin
orderings are mirrored, i.e., the solution has the form(LRk1T ) ∪
(TRk2L). The sub-queries, therefore, can be evaluated very ef-
ficiently by materializing the common sub-expressionsL and T
and sharing their computation between the two plans. As we men-
tioned in Section 3, this is one possible optimization for the in-
tegration of selectivity-based partitioning in the architecture of a
typical DBMS. There are clearly several practical issues involved
in this endeavor, and we plan to investigate them as part of our fu-
ture work on this problem. In this paper, we have focused on the
challenging, and largely orthogonal, first step ofdeterminingan ef-
fective partitioning.

# of Joins 3 4 5 6
Exec Time (seconds) 0.078 0.405 1.977 9.343

Table 1: Execution times forCOMPUTEPARTITION

Optimization overhead. Up to this point, we have evaluated the
effectiveness of selectivity-based partitioning when COMPUTEPAR-
TITION runs to completion and thus explores a significant fraction
of the solution space. In this case, however, the overhead ofthe par-
titioning algorithm may be prohibitive for the stringent time con-
straints of an optimizer. This is clearly shown in Table 1 that lists
the average execution time of COMPUTEPARTITION for queries of
different complexity on data setD(1.5). The results verify the ex-
ponential growth in the number of explored states and demonstrate
that a complete execution of COMPUTEPARTITION may not be a
feasible option in practice.

As we have discussed in Section 3.2, our partitioning algorithm
can also operate in a “deadline” mode where it returns the best so-
lution that has been found within a given time limit. To evaluate
this approach, we have measured the effectiveness of the computed
partitioning as we vary the deadline given to COMPUTEPARTI-
TION. We have based our evaluation on synthetic data and we have
used two workloads:QL, which is the main synthetic workload,
andQH , an additional set of 300 queries that contain 6-8 relations
each. The latter represents a “difficult” workload with an increased
search space and is included in order to evaluate the sensitivity of
the deadline approach to the number of possible solutions.

Figure 5 shows the average reduction metric of the generated
partitions as a function of the deadline, for the synthetic workloads
QL andQH on data setD(1.5). (The results for the other data sets
are similar.) Clearly, COMPUTEPARTITION can generate effective
solutions even under stringent constraints on the overheadof op-
timization. Given a moderate deadline of 1 second, for instance,
the computed partitioned plans result in an average reduction of
45% for queries with 3-5 relations, and 18% for queries with 6-8
relations. As expected, the same time deadline yields better results
for queries with fewer relations as COMPUTEPARTITION manages
to explore a larger portion of the smaller search space within the
limited time budget. Still, our results validate the effectiveness of
this “progressive” mode of optimization and demonstrate the fea-
sibility of selectivity-based partitioning as a practicaloptimization
technique.

Performance evaluation on real-life data.We now present a lim-
ited set of experiments on our subset of the SwissProt database. As
we have discussed in Section 4.1, our test workload containsthe
4 join queries, denoted asQ0, . . . , Q3, between theID table and
three of the annotation tables. We note that we experimentedwith
workloads that contained random selection predicates as well, but
we observed similar results and we omit them from our presenta-
tion in the interest of space.

Figure 6 shows the reduction metric of the computed partition-
ing and the actual savings in intermediate result tuples forthe four
queries in our test workload. (In this experiment, COMPUTEPAR-
TITION executed to completion with an average optimization time
of 120msec.) Overall, the results demonstrate that selectivity-based
partitioning can be effective in reducing the count of intermediate
result tuples in real-life data sets. For the test queryQ3 : ID 1

OC 1 RA 1 KW , for instance, the partitioned plan generates
750,000 less intermediate tuples than the monolithic case,resulting
in 24% of savings. As our results indicate, however, not all queries
are amenable to this type of partition-based optimization.An ex-
ample is queryQ2: ID 1 OC 1 KW 1 DR, where selectivity-
based partitioning enables a significantly lower reductionof 10%.
Still, depending on the width of the generated tuples, this lower re-
duction can result in significant savings in storage space and hence
improve the performance of query processing.
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Figure 4: Performance of COM-
PUTEPARTITION varying skew

Figure 5: Performance of partitioning
for varying time budget

Figure 6: Performance of COM-
PUTEPARTITION on real-life data.

5. RELATED WORK
The optimization of relational queries has been a topic of ac-

tive research and previous studies have proposed a host of effec-
tive techniques [3, 9, 10, 13, 17, 18, 19, 20] that address different
aspects of the general problem. The proposed techniques, how-
ever, operate within the physical database schema and the gener-
ated plans refer to the already existing data structures (e.g., rela-
tions, indices, or materialized views). Our approach, on the other
hand, is based on the partitioning of base tables, accordingto the
join selectivities between groups of tuples, and the rewriting of the
query as a union of queries over the partitions. As our results have
shown, this approach can lead to significant savings in the number
of intermediate result tuples.

Our proposed techniques resemble the concept ofhorizontal ta-
ble partitioning that has been applied successfully in the context
of parallel and distributed databases [7, 8, 11]. In a nutshell, rela-
tions are partitioned across the different nodes of a parallel system
and queries are rewritten accordingly to use the fragments of each
node. The goal, of course, is to spread the load of a query across
the system and thus increase the effectiveness of parallel execution.
The key difference from our technique, however, is that the routing
of tuples depends solely on the contents of the partitioned relation
and hence does not take into account the correlations among differ-
ent relation fragments. Dobra et al. [4] have explored the horizontal
partitioning of relational data in the context of streamingdatabases.
Their technique, however, is based on a different objectivefunction
than the one we consider in this paper: minimizing the sum of prod-
ucts of self-join sizes across all partitions. Hence, theircost model
does not take into account the ordering of relations in the query
plan, which forms a key factor of our optimization problem.

Recent studies on adaptive query processing [1, 6] have looked
at the related problem of dynamically modifying a query planin
order to reduce query response time. The proposed techniques tar-
get mainly queries over streaming data sources, where distribution
information is often not available, and determine the join order of
upcoming tuples based on the join selectivities of already received
tuples. As a result, the order of tuple arrival can affect thejoin
plans that are chosen by the adaptive optimizer. Our approach,
on the other hand, focuses on the case where distribution statistics
are available and determines a static value-based routing of tuples
based solely on their frequency distribution.

6. CONCLUSIONS
In this paper we initiate the study of selectivity-based partition-

ing, a novel approach to query optimization that adopts a divide-
and-union approach to query evaluation. We define formally the
optimization problem and present an analysis on the characteris-

tics of an optimal solution. Based on this analysis, we develop
an efficient algorithm for computing an effective partitioning of
the input query while considering a limited fraction of the total
search space. Our experimental results verify the effectiveness of
selectivity-based partitioning and demonstrate its potential as a paradigm
for query optimization.
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