Optimizing Large Star-Schema Queries with Snowflakes via

Heuristic-Based Query Rewriting*

Yingying Tao Qiang Zhu

Department of Computer and Information Science
The University of Michigan, Dearborn, MI 48128, USA

{yytao,qzhu}@umich.edu

Abstract

User queries have been becoming increasingly
complex (e.g., involving a large number of
joins) as database technology is applied to
some application domains such as data ware-
houses and life sciences. Query optimizers in
existing database management systems often
suffer from intolerably long optimization time
and/or poor optimization results when opti-
mizing large join queries. One possible solution
to tackle these problems is to rewrite a user-
specified complex query into another form that
can better utilize the capability of the under-
lying query optimizer, based on some heuris-
tic rules, before sending the query to the next
query optimization stage. We focus on study-
ing a special type of complex query possessing a
star-schema structure with snowflakes, simply
called the snow-schema query. The key idea
is to split a given snow-schema query into sev-
eral levels of small query blocks at the query
rewriting stage. The query optimizer then op-
timizes the query blocks and integrates their
results into the final query result. A set of
heuristic rules on how to divide the query is in-
troduced. A query rewriting framework adopt-
ing these heuristics is presented. Experimental
results demonstrate that this heuristic-based
query rewriting technique is quite promising in
optimizing large snow-schema queries.

Keywords: Database management system,

*Research supported by the IBM Toronto Labora-
tory and The University of Michigan.
Copyright: (©2008 IBM Canada Ltd. Permission to
copy 1is hereby granted provided the original copyright
notice is reproduced in copies made.

Calisto Zuzarte Wing Lau
IBM Toronto Laboratory
Markham, Ontario, Canada L6G 1C7
{calisto,lauwing } @ca.ibm.com

query optimization, query rewrite, complex
query, query graph

1 Introduction

Query optimization is vital to the performance
of a database management system (DBMS).
The main task of a query optimizer in a DBMS
is to seek an efficient query execution plan for a
given user query. People have conducted exten-
sive studies on query optimization in the last
three decades. Many optimization techniques
have been proposed. Comprehensive surveys
of this area can be found in [3],[4],[5].

However, the database field is a rapidly grow-
ing one and queries are becoming increasingly
complex!'. The query optimization techniques
adopted in commercial DBMSs often cannot
cope effectively with large join queries.

The query optimization problem has been
proven to be NP-complete [6]. That is, we can-
not find an optimization algorithm with a poly-
nomial time complexity to generate an optimal
execution plan for every query. The dynamic
programming technique, which is adopted in
many commercial DBMSs, is the most popu-
lar technique for finding an optimal plan for a
query. However, its worst-case time complexity
is exponential, i.e., O(2™). Therefore, when the
input query is too large (e.g., having more than
50 joins), the dynamic programming technique
may take months or years to optimize a query
(assuming that unlimited resources are avail-

L Although there are several dimensions of query
complexity[9], we mainly consider the number of joins
in a query as a complexity factor contributing to opti-
mization time.

able to store alternate feasible execution plans).
When a DBMS runs out of resources, the op-
timizer might choose to switch from dynamic
programming to some form of greedy join enu-
meration. In this case, the execution plan is
usually suboptimal.

To solve the problem of optimizing large join
queries, several optimization techniques have
been proposed to find a good plan for such a
query within a polynomial time. Examples of
such techniques include the iterative improve-
ment (II), the simulated annealing (SA) [1], the
AB algorithm (AB) [8], the genetic algorithm
(GA) [2], etc. These techniques are mainly
based on the randomization approach. They
represent a compromise between the time the
optimizer takes for optimizing a query and the
quality of the resulting optimization plan.

We adopt an alternative approach to opti-
mizing a large join query. The key idea is to
rewrite the query into an equivalent one by di-
viding it into several query blocks in such a way
that each block can fully utilize the dynamic
programming capability of the query optimizer
to generate an optimal plan for the subquery
itself. The execution plan for the entire orig-
inal query consists of these subplans. In this
way the query optimizer is expected to gen-
erate a good plan within a shorter period of
time for the query, compared to the approach of
attempting a full dynamic programming tech-
nique and then dropping to a greedy join enu-
meration.

We focus on studying a class of queries whose
query structure is of a special type, called the
snow-schema structure. Such queries are gain-
ing popularity in data warehousing and web
based applications. In the appendix, we give
an example of a large snow-schema query from
a real-world user application. Some optimiza-
tion strategies for such queries including lim-
ited Cartesian products, snowflake materializa-
tion and index key feedback have been sug-
gested [7]. Although these strategies are ef-
fective for optimizing relatively smaller snow-
schema queries, the challenge for optimizing
larger snow-schema queries needs to be ad-
dressed. We develop a technique that applies a
set of heuristics to divide a large snow-schema
query into a number of small query blocks that
can be effectively and efficiently optimized by

the query optimizer within the given resource
constraints.

The rest of this paper is organized as follows:
Section 2 introduces an optimization degrada-
tion problem that occurs when a query opti-
mizer optimizes a large join query and a tech-
nique to predict the occurrence of this problem
in the context of a snow-schema queries. Sec-
tion 3 presents a technique to split a large snow-
schema query into small blocks based on a set
of heuristic rules. Section 4 shows some exper-
imental results to indicate the efficiency and
effectiveness of this technique. Section 5 de-
scribes further improvements of the technique.
Section 6 summarizes the conclusions.

2 Optimization Degrada-
tion and Its Prediction

In this section, we describe a query optimiza-
tion degradation problem, introduce a tech-
nique to predict its occurrence and discuss the
type of queries for which we solve this problem.

2.1 Optimization
Problem

Degradation

As mentioned in Section 1, for a large join
query, to get an optimal execution plan within
a short optimization time appears impossible
using the current database techniques. A com-
mercial DBMS usually supports several opti-
mization levels that may be controlled by the
user or by the optimizer itself. Optimization at
the highest level in a system is usually based
on the dynamic programming technique, while
optimization at the lowest level is based on a
greedy join enumeration. There may be inter-
mediate levels that use mixed (dynamic pro-
gramming and greedy) strategies. The higher
the optimization level, the better the resulting
query plan, but the greater the optimization
time needed. If the query is too large and the
system cannot optimize it at a higher level with
the given resources, the optimization level may
automatically drop down to a lower level. In
this case, we say that optimization degradation
has occurred. For simplicity, we only consider
two optimization levels in this paper: one based

on dynamic programming and the other based
on greedy strategies.

It is possible that the system has already
spent some time at an optimization level for
a query before the level drops down to a lower
level. Such time is obviously wasted, and mean-
while, more often than not, a poor plan gen-
erated at the lower optimization level is still
adopted for the query. Our goal is to avoid
this situation and maximize the use of dynamic
programming.

When a user query is received, we apply a
technique to determine if the query will possi-
bly drop down to a lower level. If the answer
is yes, we then try to divide this query into
several subqueries (query blocks) using some
heuristic rules. Each subquery is optimized
separately and replaced by its result table in
the query. The revised query is then opti-
mized. The query blocks are smaller and the
optimizer uses dynamic programming for each
of these separately and glues the subplans to-
gether. The challenge is to come up with a set
of good query splitting rules.

Splitting a query into subqueries limits the
search space of execution plans by the query
optimizer. Tables in different subqueries do not
have a chance to directly join with each other.
In order to find a better execution plan for a
query, the system should not split a query un-
less it is predicted that the optimization degra-
dation problem will occur for the given query.
Therefore, a method to determine if optimiza-
tion degradation will occur for a given query is
required.

2.2 Predicting Optimization
Degradation Based-on
Decision Tree

There are many factors that may cause opti-
mization degradation for a query. These in-
clude the number of tables, the number of (2-
way) joins, the types of join conditions, the size
of the optimization heap?, the cardinalities of
tables, the structures of queries, etc. Among
them, we have identified that the number of
tables, the number of joins and the optimiza-

2The optimization heap is the memory used for stor-
ing subplans during optimization.

tion heap size are the three most important fac-
tors. The more tables and joins a given query
has, the more complex the query. On the other
hand, the larger the optimization heap size, the
more complex a query the optimizer can handle
without having to drop down to a lower level
of optimization.

We employ a decision-tree-based technique
to use these factors to determine if optimiza-
tion degradation will occur for a query in a
given system environment. The key idea is as
follows. We invoke the underlying query opti-
mizer to optimize a set of sample queries with
different numbers of tables and joins in various
environments using different optimization heap
sizes, and check whether optimization degrada-
tion occurs for each sample query. Using this
set of experimental data as the training set, we
apply the well-known classification algorithm
C4.5 to generate a decision tree (i.e., a classifi-
cation model). In general, the C4.5 algorithm
takes a set of records with the same structure
consisting of a number of attribute/value pairs
as the training set. One or more of these at-
tributes represent the category of the record.
The algorithm determines a decision tree that
correctly predicts the value of the category at-
tribute on the basis of answers to questions
about the non-category attributes. In our case,
the non-category attributes are the three fac-
tors we mentioned above, and the category at-
tribute takes the value “yes” or “no”, depend-
ing on whether optimization degradation oc-
curs or not for the given query.

After the decision tree is generated for the
query optimizer in a given environment, we
can use it to guide us to make the decision on
whether a user query needs to be split or not.
A sample decision tree that we generated for
a query optimizer in a real system is shown in
Figure 1. The experiments were conducted on
a real-world database with more than thirty ta-
bles varying in size from 2 to 662647 tuples. All
features such as indexes, hash files and views
were included in the database. 276 queries were
used as the training set to generate the decision
tree.

It should be pointed out that the decision
trees for different DBMSs with different con-
figurations are not the same. Hence, for each
DBMS environment, we should generate its

of quns<=10

of quns>10

| Heap>512 | | Heap<=512 |

‘ Heap<=2048 ‘

‘ Heap>2048 ‘

Do not split

‘ # of quns<=9 ‘ ‘ # of quns>9 ‘
Do not split Split !

‘ # of quns>14 ‘ ‘ # of quns<=14‘

of quns —— number of tables in the query

Split !
‘ # of prds<=11 ‘ ‘ # of prds>11 ‘
Do not split Split ! ‘ # of prds<=15 ‘ ‘ # of prds>15 ‘
Split !
| Heap>3072 | | Heap<=3072 |
Do not split

of prds —— number of join predicates in the query
Heap —— optimization heap size

‘# of quns<=13 ‘ ‘ # of quns>13 ‘
Do not split Split !

Figure 1: A decision tree generated using C4.5

own decision tree rather than using an exist-
ing one compiled for a different environment.

2.3 Snow-Schema Query

After deciding to split a query, we need to de-
termine how to split it. It is difficult to find
effective splitting rules for general queries. We
focus on a special type of large join query that
has a star-schema structure with snowflakes,
i.e., the snow-schema query.

The star schema is a database/warehouse de-
sign in which the bulk of the raw data is kept in
a fact table, and a number of normalized tables
(known as dimension tables) surround it. A
snow-schema structure consists of several star-
schema substructures, known as snowflakes (or
dimension table sets), surrounding a central ta-
ble, i.e., the fact table of the snow schema. In
fact, a snowflake itself can also be another snow
schema. The query graph of a query on the
tables of a snow schema typically also demon-
strates a structure similar to that of the snow
schema. We call a query with a query graph of
such a structure as a star-schema query with
snowflakes, or simply a snow-schema query.

Figure 2 shows a typical snow-schema query
graph. In the figure, the snowflakes marked
as “S4 (D4)” and “S5 (D5)” contain only one
table. We call the snowflakes with only one ta-

ble as trivial snowflakes (i.e., dimension tables).
Those snowflakes with more than one table are
non-trivial snowflakes. The fact table and its
dimension tables (i.e., trivial snowflakes) to-
gether are regarded as the main (central) part
of the query.

A typical way to process a snow-schema
query in a DBMS is to put all its tables into
one query block. For example, the following is
a query block for a snow-schema query:

SELECT Ti1.al

FROM T1, T2, T3, T4, T5, T6, T7, T8,
T9, T10, T11, T12, T13, Ti14
T1.a1=T2.al AND T1.a2=T3.al AND
T1.a3=T4.a3 AND T1.a4=T5.a4 AND
T1.a5=T6.ab AND T1.a6=T7.a6 AND
T1.a7=T8.a7 AND T2.a2=T9.a2 AND
T2.a3=T10.a3 AND T2.a4=T11.a4
AND T2.a5=T12.a5 AND
T3.a2=T13.a2 AND T3.a3=T14.a3

WHERE

where T; (1 < ¢ < 14) are tables and a;
(1 < j < 7) are the columns in the tables. As
mentioned before, when the query is large, the
optimization degradation problem will occur.
Hence, our strategy is to split the query into
several smaller query blocks (subqueries). Be-
cause of the special characteristic of the snow-
schema structure, that is, each snowflake is an
“island” with only one join link connected to

’,’I/D3l
D23 ! ‘
\ DZZ\\Dz) \D3/ 2 =
I??El,/ N A o3 After smplification \ //S4(D4)
bz Dl/F< 3 — Sl———F\
/\\”PS/ / \ S5(D5)
ou /N
o PR B8N s7 S6
; / ‘ \D74‘ 1 \Dsl”‘ Main Part
D72 AN

Figure 2: Example of a snow-schema query structure

the fact table in the main query block, mov-
ing some of the snowflakes to subqueries may
not affect the remaining part of the query too
much. For example, the above example query
block can be divided into three query blocks as
follows:

SELECT T1.al
FROM T1, (SELECT T2.ail
FROM T2, T9, T10, T11, T12
WHERE T2.a2=T9.a2 AND
T2.a3 =T10.a3 AND
T2.2a4=T11.a4 AND
T2.ab=T12.ab) AS V2,
(SELECT T3.al
FROM T3, T13, T14
WHERE T3.a2=T13.a2 AND
T3.a3 =T14.a3) AS V3,
T5, T6, T7, T8
al=V2.al AND T1.a2=V3.al AND
a3=T4.a3 AND T1.a4=T5.a4 AND
ab=T6.ab AND T1.a6=T7.a6 AND
a7=T8.a7 .

T4,
WHERE T1.
T1.
T1.
T1.

Note that the embedded subqueries may be im-
plemented as views in a real system but are typ-
ically merged into one big query block to pro-
vide the optimizer with a maximum latitude to
optimize the query. We will introduce a set of
heuristic rules for splitting this type of query
in Section 3. Note that if a snowflake has its
own snowflakes, the subquery itself can be fur-
ther split into subsubqueries. Figure 3 shows
an example of a query with multiple levels of
subqueries (blocks).

We first need to identify the snow-schema
structure and in particular, the main part and
non-trivial snowflakes. For example, the query

‘ Main Query Block

\

‘ Lower-level Query Block ‘ ‘ Lower-level Query Block ‘

‘ Third-level Query Block ‘

Subsubquery

Figure 3: Example of a 3-level query block

shown in Figure 4 has a structure which con-
tains only two stars connected to each other
with a join predicate between their fact tables.
For this query, either star can be treated as the
main part, and the other as the snowflake, ac-
cording to the concept of a snow-schema query
structure described above. To resolve the am-

Starl\,\/O

(15 tables) / N
e \ !

ST sar2
O < (7Ttables)
! o

Figure 4: A query with two stars connected to
each other

biguity in this case, we regard the star with
the larger number of tables (i.e., the “Star 1” in
Figure 4) as the main part (i.e., the main query

block), and the other star as the snowflake.

If a query has a structure shown in Figure 5,
the situation is different. Although it does not
violate the concept of the snow-schema query if
we regard the part in circle marked with “Part
2” as the main part, and the part in circle “Part
1”7 as the snowflake, to follow the normal sense
of a snow schema, we still regard the part in
circle “Part 3” as the main part, and all other
stars as snowflakes.

_ Pat3

«/ (3tables)

Part 1/0\

(10tables) *,

(15 tables)

Figure 5: A query with one very large star

Considering a more complex query structure
as shown in Figure 6, we choose the part that
connects more snowflakes as the main part (i.e.,
Part 1). Part 2 which also possesses a snow-
schema structure is regarded as a snowflake of
Part 1. If both parts had the same number of
snowflakes, either one could be regarded as the
main part.

Figure 6: A more complex snow-schema query

3 Splitting Snow-Schema
Queries Based on Heuris-
tics

In this section, we introduce a technique to split
a snow-schema query based on a set of heuris-

tic rules to solve the optimization degradation
problem.

3.1 Query Processing Workflow

When a user issues a query on a DBMS, it is
first parsed. If it contains no syntactic or se-
mantic errors, the system rewrites the query
into an equivalent but more efficient one if pos-
sible. The system then generates an efficient
execution plan for the transformed query and
performs the query according to the plan to
obtain the query result.

Our query splitting task is done based on a
set of heuristic rules. It basically transforms a
given query with the optimization degradation
problem into another one without the problem.
Therefore it should be part of the query rewrit-
ing job in the system. To minimize the effect
of such splitting work on other existing compo-
nents in the system, we perform query splitting
at the end of the query rewriting stage. In this
way, all previously valid query rewriting rules
can still be applied to the query. The rewritten
query is sent to the next stage of query opti-
mization to choose an efficient execution plan
for it. The workflow of query processing in a
DBMS is shown in Figure 7.

SQL Query

Lo

. s?hema n
information parse tree

. sematic Query
nf%rmal on N
Anformat Y Rewrite

fffffff + Query Splitting
database

Saanase Based on

~ Heuristicrules

—
System
Catalog

—

v N
o« database
database . sfafistics
updsates N

rewritten query

Optimizer
query execution
plan

Query result

Figure 7: The workflow of query processing

3.2 Moving Snowflakes Consider-
ing Indexes

After the query has gone through the nor-
mal query rewriting process, we examine if the
transformed query has a snow-schema struc-
ture. If this is the case, we apply the deci-
sion tree described before to check whether the
query will have the optimization degradation
problem or not. If this is a possibility, we go
through the process of splitting the query.

The first splitting heuristic we apply is the
following:

H1: Move any snowflake in which many di-
mensions can join with its fact table via
indezes into a subquery (block).

In other words, for each snowflake, we check if
the number of its dimensions (either a table or
another snowflake) that can join with its fact
(main hub) table via an index is greater than
a threshold value. If so, we create a subquery
for the snowflake. The subquery is linked to
the main query block via the join condition be-
tween the snowflake and the fact table in the
main part of the query.

This heuristic rule has the highest priority.
The reason is as follows. As we know, in-
dexes can usually improve the performance of
query processing significantly. If a snowflake
has many dimensions that could join with its
fact table via indexes, it is better to make use
of these indexes to perform the joins within the
snowflake before we join the snowflake result
with the fact table in the main part. If the fact
table T of a snowflake joins with the fact ta-
ble T, of the main part first, then all indexes
on T are no longer usable for joining with the
other tables in the snowflake.

3.3 Moving Snowflakes Consider-
ing Number of Tables

After applying heuristic H1, some snowflakes
of the given snow-schema query have been
moved into subqueries from the original main
query block. In other words, each of such
snowflakes (subqueries) can be considered as if
it were replaced by its result table in the origi-
nal main query block from an optimizer point of

view. If the revised query still suffers the op-
timization degradation problem, the splitting
process should continue.

Assuming that the revised query still has
other snowflakes in the main query block, we
attempt to move some of these into separate
query blocks as well. The decision on which
snowflake to move is based on the number of
dimensions (tables or nested snowflakes) in a
snowflake. Our goal is to keep as just as many
tables in the main query block as possible so
that we are under the threshold to avoid the
optimization degradation problem.

Let ¢ be a snow-schema query. Let S, be the
set of all snowflakes (at the main level) in q.
For a snowflake s € S,, we use ¢ — s to denote
the remaining part in ¢ after s is removed from
q. We use ||q|| to represent the total number of
tables in ¢g. Hence, ||q|| = ||¢ — s|| + ||s]|. Let k
be the maximum number of tables in the orig-
inal main query block for ¢ that the optimizer
can process without the optimization degrada-
tion problem. Let function ¢ be defined as
follows

TRUE if x does not have the
degradation problem,

FALSE otherwise,

or(T) =

where x is a query. Let qu be the following set,
VE={s| s€ S, and pp_1(q— s) = TRUE}.

Note that if a snowflake s is moved into a sub-
query, it is replaced by its result table in the
original query block for ¢. If k£ is the max-
imum number of tables in the original query
block that the query optimizer can process
without the optimization degradation problem,
the maximum number of tables for the remain-
ing query block g — s after removing s that can
be handled by the optimizer would be k—1 (1 is
reserved for the result table of s). If the original
query block has already been modified because
of the snowflake(s) following heuristic H1, k is
assumed to have been properly adjusted.

For a given snow-schema query g¢, if qu #+
we only need to move one snowflake in qu into
a subquery to solve the optimization degrada-
tion problem for the original query block for
q. The question is which snowflake we should
choose. To fulfill the goal of keeping the main

query as large as possible, we split the smallest
snowflake in set qu to a subquery block. In
other words, we apply the following heuristic:

H2: Move the snowflake s with ||s|| ::;3}
{ l|z[| } (i.e., the smallest) in V' into a
subquery.

In case V:Ik = &, there does not exist a

snowflake that would eliminate the optimiza-
tion degradation problem in the remaining
query block for ¢ if it were moved into a sub-
query. In this case, we split the query by the
following procedure:

1. let ¢’ = q;
2. while (S; # ® and qu =) do
3. find a snowflake s € S; such that

[Isll =252 { [lll };
move snowflake s into a subquery block;
Sq =8¢ — {sh
¢ =q —s;
k=k—1,
end while;
if V) # ® then
apply heuristic H2 to split ¢';
10. stop.

© XN

This procedure repeatedly applies the follow-
ing heuristic to pick up a snowflake for the next
subquery until the remaining query block has
a snowflake applicable to heuristic H2, or un-
til no more snowflake exists in the main query

block.

H3: Move the snowflake s with ||s|| =xcs,
{||z]| } (i.e., the largest) in Sy into a sub-
query block.

This heuristic rule tells us to move the largest
snowflake into a subquery each time when
qu = ®. The purpose of this heuristic is to
make the size of the remaining (main) query
block fall, as quick as possible, into the range
that the optimizer can handle using dynamic
programming and also keep the number of sep-
arated query blocks as small as possible.

Let us consider an example. Given a query
whose structure is shown in Figure 8 (a), the
final query blocks resulting from this procedure
look like Figure 8 (b). We assume that a query
block with more than 12 tables will need to be
split in this example. In the first while loop,

snowflake 4 is moved. Snowflake 3 is pushed
to a subquery block in the second while loop.
Finally, snowflake 1 is split following heuristic
H2 at step 9.

Snowflake 1
(4 tables) Snowflake 3

(7 tables)

Snowflake 2 Snowflake 4
(6 tables) (8 tables)

@)

Main Query Block ‘

Loop 2 Last

Main Query BdeLO r-level Blocl ‘L ,: Bloc

Figure 8: Example of splitting a snow-schema
query

3.4 Handling Special Cases

Following the previous heuristics does not guar-
antee that the query blocks obtained can all be
processed by the query optimizer without the
optimization degradation problem. There are
several cases that need to be further consid-
ered.

Case 1: The main query block contains no
snowflake but is still too large.

If after all non-trivial snowflakes are moved
to subqueries and the main query block is still
too large to be processed by the optimizer with-
out the optimization degradation problem, a
possible solution is to push some of the di-
mension tables from the main query block to
a higher-level query block.

An example of a query with one higher-level
query block and two lower-level query blocks

is shown in Figure 9. As the query blocks are
processed in a bottom-up fashion, the fact ta-
ble will join with those dimension tables in the
same main block first, and the result table is
sent to the higher level query block to join with
other dimension tables.

Higher-level Query Block

‘ Main Query Block ‘

|
G

‘ Lower-level Block ‘ ‘ Lower-level Block ‘

Figure 9: Example of higher-level query block

In some cases, there are so many tables in
the main query block that even one higher-level
query block is not enough. That is, the number
of remaining tables still exceeds the limit. In
such a case, we can further push some tables to
yet another higher-level query block on top of
the current one. In other words, query blocks
at multiple higher levels are allowed.

Let ¢’ be the revised query of query q. That
is, all snowflakes have been processed and their
result tables have been put back into the main
query block. Then we further split ¢’ into
m =1+ (Imk/l#] query blocks. The block
at the lowest level is the main query block, and
others are query blocks at multiple higher lev-
els. We keep k tables in the main block, and in
each higher-level query block (except the high-
est one) there will be k£ — 1 tables. The remain-
ing tables will be put in the highest-level query
block.

To determine which dimension tables are
kept in the main query block, we apply the fol-
lowing the heuristic:

H4: Keep the filtering dimension tables that
can join with the fact table via indexes in
the main query block.

If there are more than &k — 1 dimension tables

satisfying the usable index condition, the fol-
lowing heuristic is applied to decide which ones
to put in the main query block:

HS5: Put the dimension tables that have lower
selectivities (closer to 0) for their join con-
ditions with the fact table in a lower-level
query block.

This heuristic is also applied to decide the other
dimension tables between a lower-level block
and a higher-level block. In other words, the
higher the selectivity a dimension table has, the
higher level the query block it belongs to. The
reason behind this heuristic is to make interme-
diate result sizes as small as possible to reduce
I/0O cost.

Case 2: A subquery itself is too large to be han-
dled by the optimizer without the optimization
degradation problem.

It is possible that a subquery obtained previ-
ously itself is too large to be optimized without
the optimization degradation problem. The
snowflake corresponding to the subquery can
have a simple star-schema structure or an-
other snow-schema structure. In any case, all
previously-discussed rules can be recursively
applied to this subquery to solve the optimiza-
tion degradation problem, which may yield
multiple levels of subqueries.

Case 3: Many small subqueries are obtained.

The previous splitting process may yield
many small subqueries. Although all the sub-
queries can be optimized by the optimizer with-
out the optimization degradation problem, the
capability of the optimizer for searching a good
plan in a larger space is not exploited. Restrict-
ing the optimizer to optimizing many small
query blocks may not yield a good integrated
plan for the entire query.

We use a threshold value ¢ to determine if
a query block is too small or not. If a sub-
query is too small, we then estimate the result
table size of this subquery using the database
statistics available in the system catalog. If the
result table size is very small (e.g., only a few
tuples), we then consider reorganizing it. We
sort all query blocks (at the same level) that
need to be reorganized in the ascending order
of the number of tables in them into a (sorted)
list. We merge one query block with the next

in the list into a larger query block, until per-
forming the next merge makes the total number
of tables in the larger block exceed the maxi-
mum number k of tables allowed by the query
optimizer. This procedure is repeated until all
subqueries in the list are considered.

Note that the tables from two different query
blocks (at the same level) can only be operated
together by a Cartesian product. Reference [11]
indicates that the Cartesian product may some-
times help reducing the cost of the execution
plan. Hence, it is possible that the query op-
timizer generates a plan containing Cartesian
products for a query. We have to guard against
a large intermediate result due to a Cartesian
product of two or more snowflakes.

3.5 Other Secondary Rules

Sometimes we may have multiple candidates
(snowflakes) satisfying the condition of a
heuristic rule (e.g., H2 or H3). To break the
tie, we adopt a secondary rule as follows:

H6: Give the snowflake with a smaller esti-
mated result table size a higher priority.

The reason behind this rule is to keep the sizes
of intermediate results as small as possible,
which is similar to the goal of heuristic H5.
For a snow-schema query (block), if its fact
table can be joined with the fact table of one of
its non-trivial snowflakes directly via an index,
it is better not to move the snowflake into a
subquery unless there is no other choice. The
reason for this is that an index usually improves
the performance significantly for a join involv-
ing a large table. Moving the snowflake into
a subquery may cause the query to lose the
chance of using the index for execution. How-
ever, not splitting such a snowflake sometimes
may also lead to a bad situation. For example,
consider a snow-schema query (with 31 tables)
has one large snowflake (with 20 tables) whose
fact table can join with the fact table of the
main block via an index and three other small
snowflakes (with 3 tables in each) that cannot
use any index when joining with the fact ta-
ble of the main block. Assume k = 12. If we
avoid splitting the largest snowflake and move
the small snowflakes into three subqueries, we
eventually will find that the largest snowflake

10

still has to be moved into a subquery in or-
der to solve the optimization degradation prob-
lem. On the other hand, if we move the largest
snowflake into a subquery first, we solve the
problem without moving any small snowflake
into a subquery, which is a better solution to
the problem. To moderate this problem, when
we have a chance to hold a snowflake due to
the index benefit, we look ahead the next m
steps to see if the optimization degradation
problem can be solved without moving the held
snowflake into a subquery. If so, we hold the
snowflake and move other snowflakes. Other-
wise, we still move the snowflake under consid-
eration into a subquery. Therefore, we have the
following heuristic:

H7: Keep a snowflake in the main query block
if its fact (main hub) table can join with
the fact table of the main query block via
an index, and if the optimization degra-
dation problem for the main query block
can be solved by splitting other snowflakes
within next m steps.

The threshold value m can be specified by the
user. The higher the m value is, the better the
splitting (but with a higher overhead).

4 Experiments

To examine the effectiveness of our heuristic-
based splitting technique for solving the opti-
mization degradation problem, we conducted
some experiments on the DB2 system running
on an IBM AIX machine (4 x PowerPC 604
and 3064 MB memory) under OS AIX 4.3.3.75.
The optimization heap size was set to 2048 x
4KB pages (not changing for the experiments),
and the initial query optimization level was set
to use the dynamic programming technique.

The test database used for the experiments
consisted of 50 tables varying in size from 1000
to 10,000 tuples and having 5 to 20 attributes.
The data in all the tables was randomly gener-
ated.

We first applied the C4.5 classification algo-
rithm to the execution data of a set of sample
queries (as the training data) to generate a de-
cision tree for predicting if a query will have the
optimization degradation problem in the given

experimental environment. The decision tree is
shown in Figure 10.

Root

| #of tables<=13| | #of tables>13
Split !

‘#of prds<=12‘ ‘ # of prds>12‘
Do not split

[#0f tables<=11 | #of tables>11|
Do not split Split !

Figure 10: The decision tree for predicting the
optimization degradation problem in the exper-
iments.

A set of snow-schema queries were then
tested in our experiments, which involved 18
to 50 tables and 3 to 8 snowflakes. A snowflake
may have snowflakes of its own. Each test
query was executed on the system twice: with
and without our heuristic-based splitting tech-
nique. Every test query in the set suffered the
optimization degradation problem when our
technique was not applied. In other words, the
system switched to using some greedy strate-
gies to choose an execution plan for the query.
After our technique was applied, the split
queries no longer had the optimization degra-
dation problem. In other words, each query
block in a split query was optimized based on
dynamic programming. We then compared the
optimization time for each query in both ways
and the execution time for each query following
the corresponding plans from both ways. The
comparison results are shown in Figures 11 and
12. Note that the actual time measuring unit in
the experiments are not revealed here to avoid
any potential license violation of the software.

Figure 11 indicates that our technique can
reduce the optimization time, with an average
improvement of 20.0%. Note that if the sys-
tem were forced to use the dynamic program-
ming technique without dropping down to the
greedy strategies, the optimization time would
be much higher than that when our technique is
applied. Figure 12 indicates that our technique
can help to generate better execution plans for
snow-schema queries. Using the plans with our

11

technique, the execution time for the queries
can be improved by 21.4% on average.

500

1 query before spit
I query after split

200
150

1 2 3 4 5 6 7 8 9 10 11
query number

Figure 11: Experimental results on optimiza-
tion time

7 query before spit
I query after split

350

time for execution
@
8
s

N
R
8

200

150

100

7 8 10 11 12 13 14
query number

Figure 12: Experimental results on execution
time

In summary, with our technique, a query op-
timizer can spend less time on optimization
and generate better execution plans for snow-
schema queries.

To study the performance of the dynamic
programming technique for optimizing large
snow-schema queries, we tested a snow-schema
query with 14 tables. The query was compiled
using the dynamic programming method with
the optimization heap size set to 60,000 x 4KB
pages. The optimization time for this query is
26 time units, while using our approach with
the optimization heap size set to 2048 x 4KB
pages, the optimization time for a snow-schema
query with 43 tables is only 25 time units. As

we know, the optimization time for the dy-
namic programming approach increases expo-
nentially with the number of tables joined in a
single query block. Applying our technique it
is possible to compile a very large query in a
reasonably short time compared to the tradi-
tional “single query block” dynamic program-
ming method, although the generated plan may
be sub-optimal.

5 Further Improvements

The set of heuristics presented in Section 3
are sufficient to divide a large snow-schema
query with the optimization degradation prob-
lem into a number of small query blocks with-
out the problem. However, the technique can
be further improved. In this section, we de-
scribe several possible suggestions for improve-
ments that need to be further investigated.

Partial Splitting

The heuristic rules in Section 3 assume that
we always move an entire snowflake into a sub-
query. Sometimes it may be beneficial to move
only part of a snowflake into a subquery and
keep the remainder in the main query block.
For example, consider a snow-schema query
having 15 tables with a unique non-trivial
snowflake having 8 tables, assuming k = 12.
Applying heuristic H2, the snowflake is moved
into a subquery, resulting in a main query block
having 7 tables and a subquery having 8 tables.
Alternatively, if we only move 4 tables of the
snowflake into a subquery and keep 11 tables
in the main block, the full capability of the
query optimizer can be utilized to generate a
good plan for the larger main block, insteading
of optimizing two smaller query blocks, which
may lead to a better overall plan for the entire
query. The relevant issues that need to be fur-
ther studied include when to perform a partial
splitting and which part of a snowflake should
be split into a subquery.

Exploiting Common/Similar Sub-
queries

A large snow-schema query may contain some
common/similar snowflakes. In [9],[10], we

12

introduced techniques to optimize complex
queries by exploiting common/similar sub-
queries. The basic idea is to identify groups
of common /similar subqueries, optimize a rep-
resentative subquery for each group and share
the optimization result with the other mem-
bers in the corresponding group. In this
way, the optimization time for optimizing other
common/similar subqueries is saved. These
techniques can be extended to identify com-
mon/similar snowflakes and share the opti-
mization result within each group. Since
snowflakes have a special structure, it is pos-
sible to develop a more efficient method to ex-
amine their common/similar structures.

Handling More General Queries

The idea of splitting a query can be applied
to more general cases. The reason why we
choose to consider queries with snow-schema
structures is that for this special type of query
there are more clear rules that we can follow.
Another reason is that, since each snowflake
has only one link connecting it to the main
part or fact table, replacing it by its result ta-
ble would not affect the rest of the query too
much. There are several ways to extend the
splitting technique for snow-schema queries to
more general cases. For example, it is not nec-
essary for a snowflake to have a star-schema
or snow-schema structure. As long as there is
only one join condition between one part of a
query and the remaining part, the former can
be treated as a “snowflake” in the technique.
Another extension may allow one part (cluster)
of a query to have more than one connection to
the remaining part. However, these cases are
more complex. Further studies are required.

6 Conclusions

Large join queries are becoming increasingly
common. Due to the limitation of system re-
sources, a query optimizer often drops its opti-
mization level down to a lower level when opti-
mizing such queries. This problem may cause
the query optimizer to waste much optimiza-
tion time and meanwhile still obtain a poor ex-
ecution plan for the given query.

We have presented a heuristic-based split-
ting technique to solve the optimization degra-
dation problem for a special type of complex
query, called the snow-schema query. Based on
the natural structure of such a query, a set of
useful heuristics are proposed to divide a large
query into a number of smaller query blocks
so that each query block can be optimized by
the query optimizer using dynamic program-
ming. Our analysis and experimental results
demonstrate that the proposed technique can
help the query optimizer improve the quality of
the execution plan generated for a large snow-
schema query with less optimization time. To
determine if a query will suffer the optimization
degradation problem in a given environment, a
decision-tree-based predication method is sug-
gested.

Our work is an alternate and practical ap-
proach to solve the query optimization issues
for large complex queries that have a snow-
schema structure using the existing infrastruc-
ture available in typical commercial database
systems that use dynamic programming. Fur-
ther work needs to be done to extend this ap-
proach to other large complex queries.

Acknowledgments

The authors would like to thank Berni Schiefer,
Qi Cheng, John Hornibrook, Kelly Lyons, and
Joe Wigglesworth for their useful discussions,
suggestions and support for the work reported
here.

About the Author

Yingying Tao is a graduate student in the
Department of Computer and Information Sci-
ence at The University of Michigan, Dearborn,
MI, USA. She is also a graduate research assis-
tant with an IBM CAS fellowship. She received
a B.Sc. in Computer Science from Tsinghua
University (China) in 2000. Her research inter-
ests include query processing and optimization
in database systems.

Qiang Zhu is an Associate Professor in the
Department of Computer and Information Sci-
ence at The University of Michigan, Dearborn,
MI, USA. He received his Ph.D. in Computer
Science from the University of Waterloo in

1995. Dr. Zhu is a principal investigator for
a number of database research projects funded
by sources including the NSF and IBM at The
University of Michigan. He has over 40 research
publications in various refereed journals and
conference proceedings. Some of his research
results have been included in several well-
known database research/text books. Dr. Zhu
has served as a program/organizing committee
member and session/workshop chair for a num-
ber of international conferences. His current re-
search interests include query optimization for
advanced database systems, multidatabases,
self-managing databases, Web-based database
technology, and data mining.

Calisto Zuzarte is a senior technical man-
ager of the SQL Query Rewrite development
team at the IBM Toronto Laboratory. He has
been involved in several projects leading and
implementing many features related to the DB2
SQL compiler. His main expertise is in the area
of query optimization including cost based op-
timizer technology and automatic query rewrit-
ing for performance. Calisto is also a research
staff member at the Center for Advanced Stud-
ies (CAS).

Wing Lau is a software developer in the
IBM Toronto Laboratory, working in the Query
Rewrite group of DB2 Universal Database. She
received her B. Sc. and M. Sc. in Computer
Science from The University of Michigan, Dear-
born, MI, USA, in 1997 and 2000, respectively.
She was a software engineer at Marquip Inc.
(Madision, WI) from 1997 - 1998. Her re-
search interests include query processing and
optimization in database systems.

Appendix: A Real-World
Large Snow-Schema Query

In this appendix, we show an example of the
large snow-schema query from a real-world user
application. To protect the user’s information,
we have masked the names of the tables and
attributes in the example. Figure 13 shows the
structure of this real-world query.

SELECT

SUM(F.R_CMS) AS CMS,
SUM(F.R_MPY) AS MPY,
SUM(F.R_NCD) AS NCD,

D5.CUS4=S9.SID AND D5.CUS5=S10.SID AND
D5.CUS6=S11.SID AND D5.CUS7=S12.SID AND
D5.CUS8=S13.SID AND D5.SGR=S44.SID AND
D5.SN0O=S45.SID AND F.KC_6=D6.DID AND
D6.CTR=S36.SID AND D6.PON=S40.SID AND
F.KC_7=D7.DID AND D7.CLA1=S1.SID AND
D7.CLA2=S2.SID AND D7.CLA3=S3.SID AND
D7.CLA4=S4.SID AND D7.CLA5=S5.SID AND
D7.CSR=S29.SID AND D7.CSN=S30.SID AND
F.KC_8=D8.DID AND D8.C_TYP=S21.SID AND
D8.C0OD=S33.SID AND D8.CON=S34.SID AND
D8.C0OT=S35.SID AND F.KC_9=D9.DID AND
D9.PPR=S41.SID AND D9.STP=S47.SID AND
F.KC_U=DU.DID AND DU.B_UOM=S14.SID AND
DU.D_CRY=S22.SID AND DU.S_UNI=S49.SID AND
Figure 13: The structure of the large join snow- F.KC_T=DT.DID AND DT.CDAY=S15.SID AND
schema query DT.CMON=S16.SID AND DT.CQUA=S17.SID AND
DT.CWEK=S18.SID AND DT.CYER=S19.SID AND
DT.WDY1=S51.SID AND F.KC_A=DA.DID AND

SUM(F.R_SPI) AS SPI DA.BAC=S26.SID AND DA.BKY=S27.SID AND
FROM F.KC_B=DB.DID AND DB.CSM=S20.SID AND
FR_7 F, DR_7 D7, S_CLA S1, S_CLA S2, DB.CDF=S37.SID AND F.KC_C=DC.DID AND

DC.CDF=828.SID AND DC.CNB=S31.SID AND
DC.CTP=832.SID AND DC.PDR=S38.SID AND
DC.PME=S839.SID AND DC.SER=S48.SID AND
F.KC_D=DD.DID AND DD.PM0=S42.SID AND
F.KC_P=DP.DID AND ((((DP.RQD<=81)) AND
((S1.C_CLA BETWEEN ’KO’ AND ’K67))))
GROUP BY

S1.C_CLA, S2.C_CLA, S3.C_CLA, S4.C_CLA,
DR_1 D1, SCUPC S23, SMATR S24, S5.C_CLA, S6.CUSR, S7.CUSR, S8.CUSR,
SPLT S25, DR_A DA, SR_BAC S26, S9.CUSR, S10.CUSR, S11.CUSR, S12.CUSR,
SR_BKY S27, DR.C DC, SR_CDF $28, S13.CUSR, S14.UNIT, S15.DAT, S16.CMON,
SR_CSR S29, SR_CSN S30, SR_CNB S31, S17.CQUA, S18.CWEK, S19.CYER, S20.CSMR,
SR_CTP S32, SR_COD S33, SR_CON S34, S21.CTYP, S22.CRCY, S23.CUPC, S24.MATR,

SR_COT S35, DR_6 D6, SR_CTR S36, S25.PLT, S26.R_BAC, S27.R_BKY,

SR_CDF S37, SR_PDR S38, SR_PME S39, 528 .R_CDF, S29.R_CSR, S30.R_CSN,
SR_PON S40, DR_9 D9, SR_PPR S41, S31.R_CNB, S32.R_CTP, S33.R_COD,

DR_D DD, SR_PMO S42, DR_4 D4, S34.R_CON, S35.R_COT, S36.R_CTR,

SR_RCN S43, SR_SGR S44, SR_SNO 545, S37.R_CDF, S38.R_PDR, S39.R_PME,
DR_3 D3, SR_SHR S46, SR_STP S47. S40.R_PON, S41.R_PPR, S42.R_PMO,

SR_SER S48, SUNIT S49, STIME S50, S43.R_RCN, S44.R_SGR, S45.R_SNO,
SWDY1 S51, DR_P DP S46.R_SHR, S47.R_STP, S48.R_SER,

WHERE S49.UNIT, S50.TIME, S51.WDY1

F.KC_1=D1.DID AND D1.ENP=S23.SID AND
D1.MAT=S24.SID AND F.KC_2=D2.DID AND

S_CLA S3, S_CLA S4, S_CLA S5, DR_2 D2,
SCUSR S6, DR_5 D5, SCUSR S7, SCUSR S8,
SCUSR S9, SCUSR S10, SCUSR S1i1,

SCUSR S12, SCUSR S13, DR_U DU,

SUNIT S14, DR_T DT, SDATE S15,

SCMON S16, SCQUA S17, SCWEK S18,

SCYER S19, DR_B DB, SCSMR S20,

DR_8 D8, SCTYP S21, SCRCY S22,

D2.CUS1=S6.SID AND D2.PLT=S25.SID AND References

F.KC_3=D3.DID AND D3.SHR=S546.SID AND

D3.TIME=S50.SID AND F.KC_4=D4.DID AND [1] Y. E. Ioannidis and E. Wong: Query Opti-
D4 .RCN=S43.SID AND F.KC_5=D5.DID AND mization by Simulated Annealing. In Pro-
D5.CUS2=57.SID AND D5.CUS3=58.SID AND ceedings of ACM-SIGMOD International

14

Conference on management of Data, pages
9-22, 1987.

K. Bennett, M. C. Ferris, and Y. Ioanni-
dis: A genetic algorithm for database query
optimization. In Proceeding of 4th Interna-
tional Conference on Genetic Algorithms,
pages 400-407, 1991.

S. Chaudhuri: An overview of query opti-
mization in relational systems. In Proceed-

ing of ACM PODS 1998, pages 34-43, 1998.

G. Graefe: Query Evaluation Techniques
for Large Databases. In ACM Computing
Surveys, 25(2) 111-152, 1993.

M. Jarke and J. Koch: Query Optimization
in Database Systems. In ACM Computing
Surveys, 16(2) 111-152, 1984.

T. Ibarake and T. Kameda: On the optimal
nesting order for computing N-relational
joins. In ACM Transactions on Database
Systems, 9(3) 482-502, 1984.

T. Purcell: Star join optimization: DB2
UDB for z/0S and 0OS/390. In The Interna-
tional DB2 User Group (IDUG) Solutions
Journal, 9(1) 17-19, 2002.

A. Swami and B. R. Iyer: A polynomial
time algorithm for optimizing join queries.
In Proceeding of the 9th IEEE Conference
on Data Engineering, pages 345-354, 1993.

Yingying Tao, Qiang Zhu, and Calisto
Zuzarte: Exploiting Common Subqueries
for Complex Query Optimization. In Pro-
ceedings of the 2002 CASCON, pages 21-34,
2002.

[10] Yingying Tao, Qiang Zhu, and Cal-

isto Zuzarte: Exploiting Similarity of
Subqueries for Complex Query Optimiza-
tion. In Proceedings of the 14th Interna-
tional Conference on Database and FExpert
Systems Applications (DEXA’2003), Sept.
2003.

[11] Y.C. Tay: On the optimality of strategies

for multiple joins. In Journal of the ACM,
40(5) 1067-1086, 1993.

15

