
Query Optimization For OLAP-XML Federations

Dennis Pedersen
Department of Computer

Science, Aalborg University
Fredrik Bajers Vej 7E

9220 Aalborg Ø, Denmark

dennisp@cs.auc.dk

Karsten Riis
Department of Computer

Science, Aalborg University
Fredrik Bajers Vej 7E

9220 Aalborg Ø, Denmark

riis@cs.auc.dk

Torben Bach Pedersen
Department of Computer

Science, Aalborg University
Fr. Bajers Vej 7E

9220 Aalborg Ø, Denmark

tbp@cs.auc.dk

ABSTRACT
The changing data requirements of today’s dynamic business envi-
ronments are not handled well by current OLAP systems. Physi-
cally integrating unexpected data into such systems is a long and
time-consuming process making logical integration, i.e., federa-
tion, the better choice in many situations. The increasing use of
Extended Markup Language (XML), e.g. in business-to-business
(B2B) applications, suggests that the required data will often be
available as XML data. This means that logical federations of
OLAP and XML databases will be very attractive in many cases.
However, for such OLAP-XML federations to be useful, effective
optimization techniques for such systems are needed.

In this paper we present novel techniques for query optimization
in federations of OLAP and XML databases. The techniques in-
clude so-calledinlining of XML data in OLAP predicates, caching,
and pre-fetching. Experiments show that the proposed optimiza-
tion techniques improve query execution times significantly. Fur-
thermore, the performance of the optimized federation queries is
comparable to the performance achieved with physical integration
of the data, showing that our federated OLAP approach is indeed a
feasible alternative to physical integration.

Categories and Subject Descriptors
H.2.4 [Information Systems]: Database Management—Systems

General Terms
Performance

Keywords
OLAP, XML, database federations, query optimization

1. INTRODUCTION
OLAP systems [16] enable powerful decision support based on

multidimensional analysis of large amounts of detail data. OLAP
data are often organized in multidimensionalcubescontainingmea-
sured valuesthat are characterized by a number of hierarchicaldi-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DOLAP’02, November 8, 2002, McLean, Virginia, USA.
Copyright 2002 ACM 1-58113-590-4/02/0011 ...$5.00.

mensions. However,dynamic data, such as stock quotes or price
lists, is not handled well in current OLAP systems, although be-
ing able to incorporate such frequently changing data in the deci-
sion making-process is sometimes vital. Also, OLAP systems lack
the necessary flexibility when faced with unanticipated or rapidly
changing datarequirements. These problems are due to the fact that
physically integrating data can be a complex and time-consuming
process, requiring the cube to be rebuilt [16]. Thus, logical, rather
than physical, integration is desirable, i.e. afederateddatabase
system [14] is called for. The increasing use of Extended Markup
Language (XML) [18], e.g. in B2B applications, suggests that the
required external data will often be available in XML format. Also,
most major DBMSs are now able to publish data as XML. Thus,
it is desirable to access XML data from an OLAP system, i.e.,
OLAP-XML federations are needed. In order for OLAP-XML fed-
erations to perform satisfactorily, effective cost-based optimization
techniques are needed. However, existing query optimization tech-
niques do not support the special case of OLAP-XML federations
satisfactorily.

This paper presents three effectivecost-basedquery optimiza-
tion techniques for OLAP-XML federations. First,inlining of lit-
eral XML data values in OLAP queries is suggested to reduce the
overhead of evaluating queries that uses external XML data for se-
lection. Second, for simple languages, such as XPath, the special
queries needed to retrieve data from XML components can only
be expressed using a large number of queries. However, the query
interfaces of current systems support only XPath or similar lan-
guages. Hence, techniques are presented to combine these queries
at the cost of retrieving additional data. Third, techniques are pre-
sented to allowcachingandpre-fetchingof intermediate query re-
sults. Used together, these techniques provide dramatic perfor-
mance improvements for many queries that would otherwise be
unfeasible to evaluate in the federated system. The paper presents
experiments that show the effectiveness of the optimization tech-
niques, indicating that our federated approach is a feasible alterna-
tive to physical integration.

A great deal of previous work on data integration exist, e.g., on
integrating relational data [6], object-oriented data [13], and semi-
structured data [2]. However, none of these handle the issues re-
lated to OLAP systems, e.g., dimensions with hierarchies. One
paper [12] has considered federating OLAP and object data, but
does not consider cost-based query optimization. The same paper
briefly mentions theinlining technique, but only for certain simple
types of predicates, whereas we consider a cost-based use of the
technique. Query processing and optimization has been considered
for data warehousing/OLAP systems [16], federated, distributed,
and multi-databases [1, 14, 19], heterogeneous databases [5], data
sources with limited capabilities [3, 4], and XML and semistruc-

57

tured data [2, 7]. However, none of this work addresses the special
case of optimizing OLAP queries in a federated environment.

We believe this paper to be the first to consider query optimiza-
tion for OLAP-XML federations. Specifically, we believe the cost-
based inlining technique and XML retrieval technique, and our par-
ticular use of caching and pre-fetching, to be novel. We also believe
that optimization issues for federations involving OLAP databases
have not been investigated to this extent before.

The rest of the paper is organized as follows. Sections 2 and
3 motivates the use of OLAP-XML federations and introduces the
basic concepts of these, respectively. Section 4 presents the archi-
tecture of the federation system and gives an overview of query
processing and the optimization techniques. Section 5 presents the
cost-based technique for inlining XML data in OLAP predicates.
Sections 6, 7, and 8 discusses the techniques for limited XML
query interfaces, the use of caching and prefecthing, and the com-
bined use of the three techniques, respectively. Section 9 presents
the performance experiments conducted to evaluate the effective-
ness of the optimization techniques. Section 10 summarizes the
paper and points to future work.

2. MOTIVATION
As described in the introduction, this work is aimed at, but not

limited to, the use of XML data from autonomous sources, such
as the Internet, in conjunction with existing OLAP systems. Our
solution is to make a federation which allows users to quickly de-
fine their ownlogical cube viewby creatinglinks between existing
dimensions and XML data. This immediately permits queries that
use these new “virtual” dimensions in much the same way ordinary
dimensions can be used. For example, in a cube containing data
about sales, a Store-City-Country dimension may be linked to a
public XML document with information about cities, such as state
and population, enabling queries on this external data. Thus, the
cube data can begrouped byXML data residing, e.g. on a web
page or in a database with an XML interface. In addition, such
data can be used to performselection(also known as filtering) on
the cube data, e.g. “Show only sales for cities with a population of
more than 100.000” or todecoratedimensions, e.g. “Show sales
by month and city and for each city, show also the state in which it
is located”. Many types of OLAP systems may benefit from being
able to logically integrate external XML data. In a business set-
ting, an OLAP database containing data about products and their
production prices can be enriched with information a competing
company’s products and prices, residing on the competing com-
pany’s website. In many scientific domains, there are already a
number of data sources, e.g., the SWISSPROT protein databank,
which are primarily accessed over the Internet. We believe that
such data sources will publish their data in XML-based formats in
the future.

Our approach, a so-calledloosely coupled federation[14], pro-
vides the ability to doad hoc integration, which is needed for a
number of reasons. First, it is rarely possible to anticipate all fu-
ture data requirements when designing a database schema. OLAP
databases may contain large amounts of data and thus, physically
integrating the data can be a time consuming process requiring a
partial or total rebuild of the cube. However, being able to quickly
obtain the necessary data can sometimes be vital in making the
right strategic decision. Second, not all types of data are feasible
to copy and store locally even though it is available for browsing,
e.g. on the Internet. Copying may be disallowed because of copy-
right rules, or it may not be practical, e.g. because data changes too
frequently. Third, attempting to anticipate a broad range of future
data needs and physically integrating the data increases the com-

plexity of the system, thereby reducing maintainability. Also, this
may degrade the general performance of the system. Finally, ad
hoc integration allowsrapid prototypingof OLAP systems, which
can significantly ease the task of deciding which data to physically
integrate.

The federated approach also allows components to maintain the
high degree of autonomywhich is essential when the data sources
are outside the organisation controlling the federation, e.g., when
a component is accessed on the Internet. Also, data is alwaysup-
to-datewhen using a federated system as opposed to physically
integrating the data, which is crucial for dynamic data such as price
lists and stock quotes.

3. OLAP-XML FEDERATION CONCEPTS
This section briefly describes the concepts underlying the OLAP-

XML federations that the optimizations are aimed at. The examples
are based on a case study concerning B2B portals, where a cube
tracks the cost and number of units forpurchasesmade by customer
companies. The cube has three dimensions: Electronic Component
(EC), Time, and Supplier. External data is found in an XML docu-
ment that tracks component, unit, and manufacturer information.
The XML document has the following nesting of elements and
attributes: Components(Supplier(Class(Component(Manufacturer
<@MCode> UnitPrice Description)))). The details of the con-
cepts and the case study are described in another paper [9].

The OLAP data model is defined in terms of a multidimensional
cubeconsisting of acube name, dimensions, and afact table. Each
dimension has a hierarchy of thelevelswhich specify the possi-
ble levels of detail of the data. Each level is associated with a
set of dimension values. Each dimension also captures the hier-
archy of the dimension values, i.e., which values roll up to one an-
other. Dimensions are used to capture the possible ways of group-
ing data. The actual data that we want to analyze is stored in a
fact table. A fact table is a relation containing one attribute for
each dimension, and one attribute for eachmeasure, which are the
properties we want to aggregate, e.g., the sales price. The cubes
can containirregular dimension hierarchies [8] where the hierar-
chies are not balanced trees, e.g., where a lower-level item has sev-
eral parents. The data model captures this aspect as it can affect
the summarizabilityof the data [8], i.e., whether aggregate com-
putations can be performed without problems. The data model
is equipped with a formal algebra, with aselection operatorfor
selecting fact data,�Cube , and ageneralized projection operator,
�Cube , for aggregating fact data. On top of the algebra, a SQL-
based OLAP query language,SQLM , has been defined. For exam-
ple, the SQLM query “SELECT SUM(Quantity),Nation(Supplier)
FROM Purchases GROUP BY Nation(Supplier)“ computes the to-
tal quantity of the purchases in the cube, grouped by the Nation
level of the Supplier dimension. The OLAP data model, algebra,
and the SQLM query language is described in detail in another
paper [8].

Extended Markup Language (XML) [18] specifies how docu-
ments can be structured using so-calledelementsthat containsat-
tributes with atomic values. Elements can be nested within and
contain references to each other. For example, for the example de-
scribed above, a “Manufacturer” element in the XML document
contains the “MCode” attribute, and is nested within a “Compo-
nent.” XPath [18] is a simple, but powerful language for navigat-
ing within XML documents. For example, the XPath expression
“Manufacturer/@Mcode” selects the “MCode” attribute within the
“Manufacturer” element.

The OLAP-XML federations are based on the concept oflinks
which are relations linking dimension values in a cube to elements

58

Temp. Data XML Data

User Interface

XML Comp.
Interface

OLAP Comp.
Interface

Federation
Manager

SQLM

SQLXM

SQL SQL

SQL
OLAP Query

Language
XML Query
Language

XPath

Meta-data Link Data

OLAP Data

Component
Query Evaluator

Statistics
Manager

Global Cost
Evaluator

Component
Cost Evaluator

Global
Optimizer

Query
Decomposer

Prefetcher

Parser

Execution
Engine

Cache
Manager

Federation Manager

Component Interface

SQLxm query

Parsed Query

Intermediate
Global Plan

XML Component
Plan

Request

Optimized
Global Plan

Request
Cost

Request CostExecute
Component Plan

Execute
Component Plan

Update

Request
or Update

Component
Plan

Request

XML Data
Available

Figure 1: Architecture Of The Federation System and The Federation Manager

in an XML document, e.g., linking electronic components (ECs) in
the cube to the relevant “Component” elements in the XML docu-
ment. The most common type is thenatural link where the dimen-
sion values are also found as element values in the XML document.
Enumerated linksmap each dimension value explicitly to a specific
XML element in the XML document.

A federationconsists of a cube, a collection of XML documents,
and the links between the cube and the documents. The most fun-
damental operator in OLAP-XML federations is thedecorationop-
erator which basically attaches a new dimension to a cube based on
values in linked XML elements. Based on this operator, we have
defined an extension ofSQLM , called SQLXM , which allows al-
lows so-calledlevel expressionsof the formlevel/link/xpathexpres-
sion, e.g., “EC/EClink/Manufacturer/@MCode”, in the SELECT,
WHERE, and GROUP BY clauses of a query. The link may be
omitted in the level expression, in which case thedefault link is
used. For example, theSQLXM query “SELECT SUM(Quantity),
EC/Manufacturer/@MCode FROM Purchases GROUP BY
EC/Manufacturer/@MCode“ computes total purchase quantities
grouped by the manufacturer’s MCode which is found only in the
XML document.

4. THE FEDERATION SYSTEM
In this section we give an overview of the OLAP-XML feder-

ation system and some design considerations, and introduce the
optimization techniques. The overall architectural design of the
partially implemented prototype system supporting theSQLXM
query language is seen to the left in Figure 1 (the right side of the
figure will be explained later). Besides the OLAP component and
the XML components, three auxiliary components have been intro-
duced to hold meta data, link data, and temporary data. Generally,
current OLAP systems do not support irregular dimension hierar-
chies and make it too expensive to add new dimensions, which ne-
cessitates the use of a temporary component.SQLXM queries are
posed to theFederation Manager, which coordinates the execution
of queries in the data components using several optimization tech-
niques to improve query performance. A partial prototype imple-
mentation has been performed to allow us to make performance ex-

periments. In the prototype, the OLAP component uses Microsoft
Analysis Services and is queried with MDX and SQL. The XML
component is based on Software AG’s Tamino XML Database sys-
tem [15], which provides an XPath-like interface. For the external
temporary component, a leading industrial RDBMS system is used.

A naive query processing strategy will processSQLXM queries
in three major steps. First, any XML data referenced in the query
is fetched and stored in a temporary database as relational tables.
Second, a pure OLAP query is constructed from theSQLXM query
and evaluated on the OLAP data, resulting in a new table in the
temporary database. Finally, these temporary tables are joined, and
the XML-specific part of theSQLXM query is evaluated on the
resulting table. This strategy will only perform satisfactorily for
rather small databases. The primary problems are that decoration
operations require large parts of the OLAP and XML data to be
transferred to temporary storage before decoration can take place,
i.e., the primary bottleneck in the federation will most often be the
moving of data from OLAP and XML components. Thus, our op-
timization efforts have focused on this issue. These efforts include
bothrule basedandcost basedoptimization techniques.

The rule basedoptimization uses the heuristic of pushing as
much of the query evaluation towards the components as possible.
Although not always valid for more general database systems, this
heuristic is always valid in our case since the considered operations
all reduce the size of the result. The rule based optimization algo-
rithm partitionsa SQLXM query tree, meaning that theSQLXM
operators are grouped into an OLAP part, an XML part, and a rela-
tional part. After partitioning the query tree, it has been identified
to which levels the OLAP component can aggregate data and which
selections can be performed in the OLAP component. Furthermore,
the partitioned query tree has a structure that makes it easy to cre-
ate component queries. See [9] for details on the query processing.
Since the primary bottleneck in the federation will most often be the
moving of data from OLAP and XML components, our optimiza-
tion efforts have focused on this issue. Three differentcost based
optimization techniques are presented:inlining XML Data, XML
data retrieval through limited query interfaces, and our particular
use ofcaching and pre-fetching.

59

5. INLINING XML DATA
The OLAP and XML components can be accessed in parallel if

no XML data is used in the construction of OLAP queries. The
retrieval of component data is followed by computation of the fi-
nal result in the temporary component. Hence, the total time for a
federation query is the time for the slowest retrieval of data from
the OLAP and XML components plus the time for producing the
final result. However, often it is advantageous to make the OLAP
query depend on the XML queries, as will be explained next. A
level expression such as “EC/Description” can be integrated into a
predicate by creating a more complex predicate that contains only
references to constants, a process we have termedinlining. In the
general case the predicate can be very large, but for many simple
predicates and if the number of values is small, this is indeed a
practical solution. Better performance can be achieved when selec-
tion predicates refer to decorations of dimension values at a lower
level than the level to which the cube is aggregated. If, e.g. a predi-
cate refers to decorations of dimension values at the bottom level of
some dimension, large amounts of data may have to be transferred
to the temporary component unless inlining is used. Inlining level
expressions may also be a good idea if it results in a more selective
predicate.

EXAMPLE 5.1. The level expression predicateEC/Description
= ’16-bit flip-flop’ can be transformed toEC IN (EC1234, EC1235)
because EC1234 and EC1235 are the ECs with Description nodes
equal to “16-bit flip-flop” (See the full paper [11] for details on the
case study.).

Level expressions can be inlined compactly into some types of
predicates. Even though it is always possible to make this in-
lining, the resulting predicate may sometimes become very long.
For predicates such as “EC/ECLink/Manufacturer/MName = Sup-
plier/SupLink/SName”, where two level expressions are com-
pared, this may be the case even for a moderate number of dimen-
sion values. However, as long as predicates do not compare level
expressions to measure values the predicate length will never be
more thanquadratic in the number of dimension values. Further-
more, this is only the case when two level expressions are com-
pared. For all other types of predicates the length islinear in the
number of dimension values. Thus, when predicates are relatively
simple or the number of dimension values is small, this is indeed a
practical solution. Very long predicates may degrade performance,
e.g. because parsing the query will be slower. However, a more im-
portant practical problem that can prevent inlining, is the fact that
almost all systems have an upper limit on the length of a query.
Please refer to the full paper [11] for an in-depth discussion of the
above. A general solution to the problem of very long predicates is
to split a single predicate into several shorter predicates and eval-
uate these in a number of queries. We refer to these individual
queries aspartial queries, whereas the single query is called the
total query. Of course, in general this approach entails a large over-
head because of the extra queries. However, since the query result
may sometimes be reduced by orders of magnitude when inlining
level expressions, being able to do so can be essential in achieving
acceptable performance.

EXAMPLE 5.2. Consider the predicate: “EC/Manufacturer/
@MCode = Manufacturer(EC)”. The decoration data for the level
expression is retrieved from the XML document as explained in Sec-
tion 4 resulting in the following relationships between dimension
values and decoration values:

EC Manufacturer/@MCode
EC1234 M31
EC1234 M33
EC1235 M32

Using this table, the predicate can be transformed to: “(Manu-
facturer(EC) IN (M31, M33) AND EC=’EC1234’) OR (Manufac-
turer(EC) IN (M32) AND EC=’EC1235’)”. This predicate is then
put into the WHERE clause of the OLAP query. If the predicate is
too long, it can be split into: “Manufacturer(EC)IN (M31, M33)
AND EC=’EC1234’ ” and “Manufacturer(EC) IN (M32) AND

EC=’EC1235’ ”.

Because of the typically high cost of performing extra queries,
the cost model is revised to reflect this. The evaluation time of
an OLAP query can be divided into three parts: A constant query
overheadthat does not depend on the particular query being eval-
uated, the time it takes toevaluatethe query, and the time it takes
to transferdata across the network, if necessary. The overhead is
repeated for each query that is posed, while the transfer time can be
assumed not to depend on the number of queries as the total amount
of data transferred will be approximately the same whether a single
query or many partial queries are posed. Due to space constraints,
we cannot give the details of the cost model and the estimation of
cost model parameters here, they are described in detail in another
paper [10].

EXAMPLE 5.3. In Figure 2, four XML queries are used, two of
which are inlined in the OLAP query (XML3 and XML4). Hence,
the OLAP query cannot be posed until the results of both these
queries are returned. The inlining makes the OLAP query too long
and it is split into two partial queries as discussed above. In paral-
lel with this, the two other XML queries (XML1 and XML2) are pro-
cessed. Thus, the final query to the temporary component, which
combines the intermediate component results, cannot be issued un-
til the slowest of the component queries has finished. In this case,
the OLAP component finishes after XML1 and XML2, and thus, the
temporary query must wait for it.

XML1

XML2

XML3

XML4

OLAP1 OLAP2

Temp

time

Figure 2: Component Evaluation Times for a SQLXM Query

Since any subset of the level expressions can be inlined in the
OLAP query, the number of inlining strategies isexponentialin
the number of level expressions. None of these can be disregarded
simply by looking at the type of predicate and estimated amount of
XML data. Even a large number of OLAP queries each retrieving
a small amount of data may be faster than a few queries retriev-
ing most or all of the stored data. Further complicating the issue,
is the fact that the choice of whether a particular level expression
should be inlined may depend on which other expressions are in-
lined. Consider, e.g. two predicates that both refer to decorations
of values at a low level in the cube, and hence, require the retrieval
of a large part of the cube. Inlining only one of them may give

60

only a small reduction in the OLAP result size, because the low
level values must still be present in the result to allow the other
decoration to be performed. For the same reason, we cannot con-
sider XML data used for selection independently from XML data
that are only used for decoration or grouping. Also, a level expres-
sion that occurs multiple times in a predicate need not be inlined
for all occurrences. When adding a level expression to the set of
inlined expressions, the total cost may increase or it may decrease.
An increase in cost can be caused by two things: The OLAP query
may have to wait longer for the extra XML data, or more OLAP
queries may be needed to hold the extra data. Any decrease in cost
is caused by a reduction in the size of the OLAP result, either be-
cause the selectivity of the predicate is reduced or because a higher
level of aggregation is possible. A smaller OLAP result may re-
duce both the OLAP evaluation time and the temporary evaluation
time. Although predicates in a query will typically contain only a
few level expressions, a higher number is, of course, possible. If
the number of level expressionsn is too high, then the optimal so-
lution cannot be found within reasonable time. In fact, the problem
of finding the minimal cost isNP-hardas stated in the following
theorem.

THEOREM 5.1. Finding the global minimum of the cost func-
tionCost is NP-hard.
Proof: See the full paper [11]

Even though there is an exponential number of inlining strate-
gies, this will almost never be a problem, as selections typically
contain only a few level expressions, say 2–5. Thus, performing
an exhaustive search is in most cases an adequate solution to this
problem. A few heuristics are used to reduce the search space even
more: If a combination of level expressions produces a cost that is
much larger than the combinations previously generated, it is not
used to generate further combinations. For this to be a valid heuris-
tic, it is important to begin from the full set of level expressions and
remove each one iteratively until none are left. Using the opposite
approach, i.e. beginning from the empty set and add elements it-
eratively, the heuristic will sometimes fail. Consider e.g. the two
approaches shown in Figures 5 and 5, where each letter represents
a level expression, each letter combination represents the choice of
inlining these level expressions, and the values shown for some of
the combinations represent costs. The optimal results are shown in
dashed circles. A top-down approach, beginning from the empty
set of expressions, is shown in Figure 5 and a bottom-up approach,
beginning from the full set, in Figure 5. A heuristic top-down ap-
proach ignores all combinations containing a certain level expres-
sion if it is very expensive to inline. For instance, all combinations
containing B would be ignored in Figure 5. However, even though
an expression is much more expensive to inline than the other ex-
pressions, this may be compensated for by a much higher level of
aggregation in the OLAP query. This may only be achieved when
the expensive level expression is inlined together with other expres-
sions as discussed above. Hence, the optimal cost, represented by
the dashed circle, may actually contain expression B, and conse-
quently, the top-down approach will fail to find the optimal value.
A bottom-up approach is less likely to fail because it first considers
the strategy where all expressions are inlined. Thus, if any combi-
nations give a special reduction in the cost, this is taken into account
when selecting which combinations to disregard.

Certain situations may still cause the bottom-up approach to fail,
but a refinement to the heuristic can often prevent this. Consider
the situation in Figure 5. Here, the optimal strategy may be skipped
because all the combinations leading to it are very expensive. This
can only occur if all the level expressions not in the optimal strategy

ABCD

ABC ABD ACD BCD

AB AC AD BC BD CD

A B C D

Ø

12 100

50

2

20 14

Figure 3: Top-down generation of inlining strategies.

ABCD

ABC ABD ACD BCD

AB AC AD BC BD CD

A B C D

Ø

100 20

2

30

150

90

Figure 4: Bottom-up generation of inlining strategies.

take very long time to evaluate or produce a high number of OLAP
queries. In Figure 5, both A and D would have to be very expensive.
First, this makes it likely that the other combinations, which also
involve A or D, are expensive too. Second, the heuristic can be
refined to handle this problem by identifying when a single level
expression causes a long waiting time or many OLAP queries.

The optimization approach can be summarized as follows: Gen-
erate all inlining strategies bottom-up except for combinations with
a very high cost. Thus, if the cost is high for a particular combi-
nation, no subsets of the combination are considered. However,
if the high cost is mainly caused by a single level expression, this
restriction does not apply and the subsets of the combination are
considered anyway. What constitutes a “very high cost”, is de-
termined dynamically based on the number of level expressions.
Thus, for only few expressions almost all combinations are consid-
ered, whereas for more expressions the heuristic is used more ag-
gressively. This can be generalized to cope with a higher number of
level expressions by choosing only a fixed number of combinations
at each level. This reduces the time complexity from exponential
to quadratic in the number of level expressions.

6. OPTIMIZING XML DATA RETRIEVAL
The second technique is focused on the special kind of XML

queries that are used in the federation. These queries can easily
be expressed in more powerful languages like XQuery, but many
XML sources have more limited interfaces, such as XPath or XQL.
The special queries needed to retrieve data from XML components
cannot be expressed in a single query in these simple languages,
and hence, special techniques must be used for this to be practical.
Having only an XPath interface, decoration data can be fetched by
posing a query for each dimension value. However, in general the
overhead of transferring, parsing and evaluating a large number of
queries will be too expensive. Combining groups of queries into
a single query using OR/IN predicates (like Example 5.2) does not
work because the resulting nodes cannot always be distinguished in

61

the result. For this to be possible, both the locator and the user de-
fined XPath expression must be present. This is necessary because
according to the XPath Recommendation the result of an XPath ex-
pression is anunorderedcollection of nodes, and hence, there is
no way to identify each decoration node, except by using the lo-
cator. Furthermore, an XPath expression cannot change the struc-
ture of a document, but only return a set of existing nodes from
it. Consequently, the result of an expression can only containen-
tire nodes and not partial nodes. Thus, to maintain the relationship
between the locator and the user defined XPath expression, their
common parent node must be retrieved in its entirety. A cost anal-
ysis is used to decide whether or not to employ this technique. In
summary, three different strategies are used when evaluating a set
of XPath expressions resulting from a level expression: combin-
ing none, some, or all of the expressions. If the level expression
is based on a natural link, it is always possible to combine all the
expressions which typically produces a low overhead expression
because of the way these links are defined. If it is based on an enu-
merated link, combining all expressions to a single expression may
retrieve all or a large part of the document. Hence, we also con-
sider the situation where only expressions having predicates at the
same location step are combined. For each of these three strategies,
the total evaluation cost is estimated and the cheapest one is used.
The details of the technique, including an algorithm for combining
XPath expressions is described in the full paper [11].

7. CACHING AND PRE-FETCHING
The third technique is an application ofcaching and prefetch-

ing to this particular domain. Basically, caching results of OLAP
queries is done by keeping the otherwise temporary tables that are
created in the temporary component. Associated with each such
table is the part of the query tree that produced the table. Given a
new query tree, it is determined whether the cached result is iden-
tical to or can be used to produce the new result. When this is the
case, the cost of using the cached result is compared to the cost of
not using it. If the query that produced the cached result is identical
to the new query, it will always be cheaper to use the cache. How-
ever, if, e.g. extensive aggregation is needed on the cached result
to produce the final result, it may be cheaper to fetch a possibly
pre-aggregated result from the OLAP component.

Determining whether a cached result can be used to produce a
new result must be done efficiently since a large cache may hold
many different results. This is done by performing a few simple
tests on the query tree corresponding to each cached result. Con-
sider two query treesQC andQU , representing thecachedand the
userquery, respectively. If the cached result can be used to produce
the needed result thenQU must be expressible in terms ofQC . The
tests discussed next will determine whether this is possible, but let
us first see how the final query is constructed in the non-trivial case
whereQU andQC are not identical. (By identical we mean that
they contain the same operations, disregarding the order of selec-
tions.) QC must form the bottom part of thenewqueryQN that
is constructed fromQU , and the part ofQU that restricts the result
further must be applied to this bottom part (see the full paper [11]
for details).

In summary, we perform caching and pre-fetching for compo-
nent queries only. Intermediate OLAP results stored in temporary
tables as well as raw XML data are kept for a certain amount of
time, which can specified as a tuning parameter. If adequate stor-
age is available, temporary XML tables are also stored to avoid
constructing the same tables again. Currently, we do not cache or
pre-fetch entire federation queries as the cache space they take up
is in most cases too high in comparison with the probability that

they can be re-used. Aleast recently usedreplacement strategy is
used. As will be described in Section 9, experiments indicate that
large cost reductions can be achieved using these techniques. This
technique is described in detail in the full paper [11].

8. COMBINING THE TECHNIQUES
We now outline how the techniques discussed above are used in

combination, we will refer to the software component architecture
seen to the right in Figure 1. When a federation query has been
parsed, the Query Decomposer partitions the resultingSQLXM
query tree, splitting it into three parts: an OLAP query, a relational
query, and a number of XML queries. The XML queries are im-
mediately passed on to the Execution Engine, which determines for
each query whether the result is obtainable from the cache. If this is
not the case, it is sent to the Component Query Evaluator. Here, the
specific actions depend on which query languages are supported. If
e.g. only an XPath interface is available, it is determined which is
cheaper: To pose many queries or to combine some or all of them
into a single query. This decision is based on costs estimated by
the Component Cost Evaluator. For the OLAP part of the query,
it is also determined whether the result can be obtained from any
of the cached results. If so, the cost of evaluating theSQLXM
query using the cached results is compared to the cost of evaluating
the SQLXM query without the use of cached results. This cost is
determined by the Global Cost Evaluator. The cost estimates are
also used by the Global Optimizer to pick a good inlining strat-
egy. When the results of the component queries are available in the
temporary component, the relational part of theSQLXM query is
evaluated.

9. EXPERIMENTAL RESULTS
This section describes the experiments performed to evaluate the

effectiveness of the optimization techniques. The test cube is based
on about 50 MB of data generated using the TPC-H benchmark [17]
and about 10 MB of pre-aggregated results. The cache size was
limited to 10 MB to prevent an unrealistically large part of the data
from being cached. About 3 MB of XML data is used for the XML
component which is divided into two documents that have been
generated from the TPC-H data and public data about nations. Two
natural links, NLink and Tlink, are defined to from Nation level in
the cube to the Nation elements in the XML data, and from the Type
level in the cube to the Type elements in the XML data, respec-
tively. The details of the experiments, including the actual queries,
can be found in the full paper [11].

The results of executing the queries are shown in Figure 5. The
results only show the component evaluation times as these will
dominate the total evaluation time. In the results, the total eval-
uation time for each query is divided into three parts: One for each
of the three types of component queries posed during the evaluation
of a federation query. Thus, the following tasks are represented in
the results (task 1(a) may be performed several times for one query)
: Task 1(a): fetch XML data and store it in the temporary compo-
nent (denoted by a prefix “X”, e.g., “X1”);Task 1(b): fetch OLAP
data and store it in the temporary component (denoted by an “O”);
andTask 2: compute the final result in the temporary component
(denoted by a “T”). Task 1(a) and 1(b) can be performed in parallel
unless the XML data is inlined into the OLAP query. As the pro-
totype is not yet fully implemented, the query optimization process
has been carried out by hand. Thus, the execution costs does not
contain the cost of optimizing the query. However, this cost will
be neglible compared to the high cost of executing the OLAP and
XML queries.

62

Query

Different inlining strategies

Q
u

e
ry

E
v
a

lu
a

ti
o

n
T

im
e

,
s
e

c
.

D2 D3D1

0

50

150

100

Remote retrieval/local storage

Q
u

e
ry

E
v
a

lu
a

ti
o

n
T

im
e

,
s
e

c
.

A1 A2

Query
B C D3

0.0

2.5

7.5

10.0

Query

Cost-based inlining strategy

Q
u

e
ry

E
v
a

lu
a

ti
o

n
T

im
e

,
s
e

c
.

D3

T

X1

X2

O

0.0

2.5

7.5

10.0

5.0

5.0

Query

No inlining

Q
u

e
ry

E
v
a

lu
a

ti
o

n
T

im
e

,
s
e

c
.

D1

T

X1
X2

O

0

50

150

100

Query

Simple inlining strategy

Q
u

e
ry

E
v
a

lu
a

ti
o

n
T

im
e

,
s
e

c
.

T

D2

X1

X2

O1-6

0

10

30

20

Query

Selection

Q
u

e
ry

E
v
a

lu
a

ti
o

n
T

im
e

,
s
e

c
.

X

O

0.0

1.0

5.0

6.0

4.0

3.0

2.0

T

C

Query

Grouping

Q
u

e
ry

E
v
a

lu
a

ti
o

n
T

im
e

,
s
e

c
.

X

O

0.0

1.0

5.0

6.0

4.0

3.0

2.0

T

B

X

O

Query

Decoration

Q
u

e
ry

E
v
a

lu
a

ti
o

n
T

im
e

,
s
e

c
.

A1 A2

X

O

0.0

1.0

5.0

6.0

4.0

3.0

2.0

T

T

Result 1 Result 2 Result 3

Result 4 Result 5 Result 6

Result 7 Result 8

Remote

Local

Figure 5: Experimental results. Notice that different time intervals are used in the graphs.

QueryA1 andA2 both illustrate the use of decoration. The re-
sults of these queries, seen in Result 1, shows a low overhead of
performing decoration compared to the time it takes to retrieve the
OLAP and XML data. This low overhead is representative for dec-
oration queries since they do not require additional data to be re-
trieved from the OLAP component. Hence, the overhead of com-
bining the intermediate results will be low, since typically only
small amounts of OLAP data (at most a few thousand facts) will
be requested for presentation to a user. QueryB illustrates the use
of XML data for grouping, while QueryC uses XML data for se-
lection. Since both queries use the same decoration as in Query
A1, the same XML and OLAP queries are performed to evaluate
these queries. As can be seen from Result 2 and 3, the overhead
endured by the temporary component query is also low for these
queries. This is typical for both grouping and certain types of se-
lection because the size of the intermediate OLAP result will often
be comparable to the size of the final result.

Results 4, 5, and 6 demonstrate how effective the inlining tech-
nique can be. Here, two XML queries are used:X1 is the time it
takes to retrieve the Population data, whileX2 is the time it takes to
retrieve the RetailPrice data. The results show the processing times
for three different strategies for evaluating QueryD, in which the
selection on Population refers to a low level that is not needed in the
result. Thus, in Result 4, where no inlining is used, this produces
a very large overhead as the OLAP query can only aggregate to a

much lower level than needed for the final result. Result 5 illus-
trates the use of the simple inlining strategy, “Always use inlining
if the predicate is simple”, which causes both XML predicates to be
inlined. This is significantly faster than before because the OLAP
query can now aggregate further. Also, since theWHEREclause has
been evaluated entirely in the cube, no work needs to be done after
the OLAP result has been returned. However, six OLAP queries
are needed to hold the new predicate and the OLAP query has to
wait for the XML queries to finish. Consequently, in this example,
it is faster to inline only the Population data. This is shown in Re-
sult 6 where the cost-based inlining strategy is used. Because the
Nation level only contains few dimension values, this requires only
one OLAP query and the Population data is also faster to retrieve.
The three results are also shown in Result 7 for easy comparison.
We see that cost-based inlining improves the performance by more
than an order of magnitude.

To evaluate the effectiveness of caching and prefetching, the que-
ries have also been evaluated using a fully pre-aggregated cube
where both the OLAP data and the XML data were stored in tables.
Theselocal evaluation times are shown in Result 8 together with
the non-local, orremote, evaluation times described above. We see
that the use of cached/prefetched data improves performance from
4 to 25 times in this case. However, more experiments are needed
to fully understand the effect of caching and prefetching.

To evaluate the combined effect of the query processing and op-

63

timization techniques for our federation, we have also performed
experiments that compare our approach to the performance-wise
ideal situation where the external data isphysically integratedin
the OLAP cube. These experiments were performed with 1GB of
TPC-H data in the OLAP cube, plus 100MB used for pre-computed
aggregates. In the XML component, we had 10 MB of XML data.
The results of these experiments are seen in Figure 6. The “O”
bars show the time spent in the OLAP component, while the “T”
bars show the time spent in the temporary component. The queries
A1, B, andC from above were used in the comparison. The fig-
ure shows that for typical queries the overhead of our federated ap-
proach was only 25–50% compared to physical integration. To con-
clude, the optimizations discussed above suggests that anSQLXM
query can in most cases be evaluated with a level of efficiency com-
parable to that of physical integration, while avoiding the problems
related to physical integration in dynamic environments.

Q
u

e
ry

E
v
a

lu
a

ti
o

n
T

im
e

,
s
e

c
.

1 2

Query
3

0.0

0.5

1.5

2.0

1.0

2.5

3.0

O

T

O

T

T

O

Federated System
Physically integrated

O
O

O

Figure 6: Federation Versus Physical Integration

10. CONCLUSION AND FUTURE WORK
Motivated by the need for federating external XML data with

OLAP data, and the subsequent need for efficient query processing
in such OLAP-XML federations, we have presented three effec-
tive cost-basedquery optimization techniques for such systems.
First, inlining of literal XML data values in OLAP queries was
suggested to reduce the overhead of evaluating queries that uses
external XML data for selection. Second, for XML components
offering only a simple query interface, e.g., XPath, techniques to
combine these queries at the cost of retrieving additional data were
presented. Third, techniques were presented to allowcachingand
pre-fetchingof intermediate query results. These techniques pro-
vide dramatic performance improvements for many queries that
would otherwise be unfeasible to evaluate in the federated system.
The paper also presented experiments that show the effectiveness
of the optimization techniques. Additionally, the experiments indi-
cate that our federated approach is indeed a practical alternative to
physical integration.

We believe this paper to be the first to consider query optimiza-
tion for OLAP-XML federations. Specifically, we believe the the
cost-based use of the inlining technique and the XML retrieval
technique, and our particular use of caching and pre-fetching, to
be novel. We also believe that optimization issues for federations
involving OLAP databases have not been investigated to this extent
before.

Future work will focus on implementation aspects, e.g., explor-
ing how this work could be applied in a commercial software prod-
uct such as an existing OLAP querying tool. Here, interesting

research issues include how to capture the document order of an
XML document in the result of an OLAP query, how to extract
new measures from XML data and incorporate these into a cube,
data cleansing for this particular setting, and finally optimization
techniques for all these issues.

11. REFERENCES
[1] S. Adali, K. S. Candan, Y. Papakonstantinou, and V. S.

Subrahmanian. Query Caching and Optimization in
Distributed Mediator Systems. InProc. of SIGMOD,
pp. 137–048, 1996.

[2] S. Chawathe et al. The TSIMMIS project: Integration of
Heterogeneous Information Sources. InProc. of the 16th
Meeting of the Information Processing Society of Japan,
pp. 7–08, 1994.

[3] D. Florescu, A. Y. Levy, I. Manolescu, and D. Suciu. Query
Optimization in the Presence of Limited Access Patterns. In
Proc. of SIGMOD, pp. 311–022, 1999.

[4] H. Garcia-Molina and R. Yerneni. Coping With Limited
Capabilities Of Sources. InProc. of BTW, pp. 1–09, 1999.

[5] L. M. Haas, D. Kossmann, E. L. Wimmers, and J. Yang.
Optimizing Queries Across Diverse Data Sources. InProc. of
VLDB, pp. 276–285, 1997.

[6] J. M. Hellerstein, M. Stonebraker, and R. Caccia.
Independent, Open Enterprise Data Integration.IEEE Data
Engineering Bulletin, 22(1):43–49, 1999.

[7] J. McHugh and J. Widom. Query Optimization For XML. In
Proc. of VLDB, pp. 315–026, 1999.

[8] D. Pedersen, K. Riis, and T. B. Pedersen. A Powerful and
SQL-Compatible Data Model and Query Language for
OLAP. In Proc. of ADC, pp. 121–030, 2002.

[9] D. Pedersen, K. Riis, and T. B. Pedersen. XML-Extended
OLAP Querying. InProc. of SSDBM, 2002.

[10] D. Pedersen, K. Riis, and T. B. Pedersen. Cost Modeling and
Estimation for OLAP-XML Federations. InProc. of DaWaK,
pp. 245–254, 2002.

[11] D. Pedersen, K. Riis, and T. B. Pedersen. Query
Optimization For OLAP-XML Federations. TR R02-5004,
Department of Computer Science, Aalborg University, 2002,
www.cs.auc.dk/˜tbp/publications

[12] T. B. Pedersen, A. Shoshani, J. Gu, and C. S. Jensen.
Extending OLAP Querying To External Object Databases. In
Proc. of CIKM, pp. 405–413, 2000.

[13] M. T. Roth et al. The Garlic Project. InProc. of SIGMOD,
pp. 557, 1996.

[14] A. P. Sheth and J. A. Larson. Federated Database Systems
For Managing Distributed, Heterogeneous, And Autonomous
Databases.ACM Computing Surveys, 22(3):183–236, 1990.

[15] Software AG. Tamino XML Database.
www.softwareag.com/taminoplatform, 2001.
Current as of July 5, 2002.

[16] E. Thomsen.OLAP Solutions: Building Multidimensional
Information Systems. Wiley, 1997.

[17] Transaction Processing Performance Council. TPC-H.
www.tpc.org/tpch, 2001. Current as of July 5, 2002.

[18] W3C. Extensible Markup Language (XML) 1.0 (Second
Edition).www.w3.org/TR/REC-xml, October 2000.
Current as of July 5, 2002.

[19] Q. Zhu and P.-̊A. Larson. Global Query Processing And
Optimization In The CORDS Multidatabase System. In
Proc. of PDCS, pp. 640–646, 1996.

64

