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ABSTRACT

The changing data requirements of today’s dynamic business envi-
ronments are not handled well by current OLAP systems. Physi-
cally integrating unexpected data into such systems is a long and
time-consuming process making logical integration, i.e., federa-
tion, the better choice in many situations. The increasing use of
Extended Markup Language (XML), e.g. in business-to-business
(B2B) applications, suggests that the required data will often be
available as XML data. This means that logical federations of
OLAP and XML databases will be very attractive in many cases.
However, for such OLAP-XML federations to be useful, effective
optimization techniques for such systems are needed.

In this paper we present novel techniques for query optimization
in federations of OLAP and XML databases. The techniques in-
clude so-calledhlining of XML data in OLAP predicates, caching,
and pre-fetching. Experiments show that the proposed optimiza-
tion techniques improve query execution times significantly. Fur-
thermore, the performance of the optimized federation queries is
comparable to the performance achieved with physical integration
of the data, showing that our federated OLAP approach is indeed a
feasible alternative to physical integration.

Categories and Subject Descriptors
H.2.4 [Information Systems]: Database ManagemeniSystems

General Terms
Performance
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1. INTRODUCTION

OLAP systems [16] enable powerful decision support based on
multidimensional analysis of large amounts of detail data. OLAP
data are often organized in multidimensiocabescontainingmea-
sured valueghat are characterized by a number of hierarchigal
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mensions However,dynamic datasuch as stock quotes or price
lists, is not handled well in current OLAP systems, although be-
ing able to incorporate such frequently changing data in the deci-
sion making-process is sometimes vital. Also, OLAP systems lack
the necessary flexibility when faced with unanticipated or rapidly
changing dateequirementsThese problems are due to the fact that
physically integrating data can be a complex and time-consuming
process, requiring the cube to be rebuilt [16]. Thus, logical, rather
than physical, integration is desirable, i.e. fealerateddatabase
system [14] is called for. The increasing use of Extended Markup
Language (XML) [18], e.g. in B2B applications, suggests that the
required external data will often be available in XML format. Also,
most major DBMSs are now able to publish data as XML. Thus,
it is desirable to access XML data from an OLAP system, i.e.,
OLAP-XML federations are needed. In order for OLAP-XML fed-
erations to perform satisfactorily, effective cost-based optimization
techniques are needed. However, existing query optimization tech-
niques do not support the special case of OLAP-XML federations
satisfactorily.

This paper presents three effectivest-basedjuery optimiza-
tion techniques for OLAP-XML federations. Firsnlining of lit-
eral XML data values in OLAP queries is suggested to reduce the
overhead of evaluating queries that uses external XML data for se-
lection. Second, for simple languages, such as XPath, the special
queries needed to retrieve data from XML components can only
be expressed using a large number of queries. However, the query
interfaces of current systems support only XPath or similar lan-
guages. Hence, techniques are presented to combine these queries
at the cost of retrieving additional data. Third, techniques are pre-
sented to allowcachingand pre-fetchingof intermediate query re-
sults. Used together, these techniques provide dramatic perfor-
mance improvements for many queries that would otherwise be
unfeasible to evaluate in the federated system. The paper presents
experiments that show the effectiveness of the optimization tech-
nigues, indicating that our federated approach is a feasible alterna-
tive to physical integration.

A great deal of previous work on data integration exist, e.g., on
integrating relational data [6], object-oriented data [13], and semi-
structured data [2]. However, none of these handle the issues re-
lated to OLAP systems, e.g., dimensions with hierarchies. One
paper [12] has considered federating OLAP and object data, but
does not consider cost-based query optimization. The same paper
briefly mentions thénlining technique, but only for certain simple
types of predicates, whereas we consider a cost-based use of the
technique. Query processing and optimization has been considered

for data warehousing/OLAP systems [16], federated, distributed,

and multi-databases [1, 14, 19], heterogeneous databases [5], data
sources with limited capabilities [3, 4], and XML and semistruc-



tured data [2, 7]. However, none of this work addresses the specialplexity of the system, thereby reducing maintainability. Also, this

case of optimizing OLAP queries in a federated environment. may degrade the general performance of the system. Finally, ad
We believe this paper to be the first to consider query optimiza- hoc integration allowsapid prototypingof OLAP systems, which

tion for OLAP-XML federations. Specifically, we believe the cost- can significantly ease the task of deciding which data to physically

based inlining technique and XML retrieval technique, and our par- integrate.

ticular use of caching and pre-fetching, to be novel. We also believe  The federated approach also allows components to maintain the

that optimization issues for federations involving OLAP databases high degree of autonomyhich is essential when the data sources

have not been investigated to this extent before. are outside the organisation controlling the federation, e.g., when
The rest of the paper is organized as follows. Sections 2 and a component is accessed on the Internet. Also, data is akways

3 motivates the use of OLAP-XML federations and introduces the to-datewhen using a federated system as opposed to physically

basic concepts of these, respectively. Section 4 presents the archiintegrating the data, which is crucial for dynamic data such as price

tecture of the federation system and gives an overview of query lists and stock quotes.

processing and the optimization techniques. Section 5 presents the

cost-based technique for inlining XML data in OLAP predicates. 3., QLAP-XML FEDERATION CONCEPTS

Sections 6, 7, and 8 discusses the techniques for limited XML This section briefly describes the concepts underlying the OLAP-

query interfaces, the use of (_:achlng and pr_efecthlng, _and the COM "y ML federations that the optimizations are aimed at. The examples
bined use of the three techniques, respectively. Section 9 presents

- : r n ncerning B2B portals, wher:
the performance experiments conducted to evaluate the effective-2 < based on a case study concerning portals, where a cube

ness of the optimization techniques. Section 10 summarizes thetracks the cost and number of units fiurchasesnade by customer
P ques. companies. The cube has three dimensions: Electronic Component
paper and points to future work.

(EC), Time, and Supplier. External data is found in an XML docu-
ment that tracks component, unit, and manufacturer information.
2. MOTIVATION The XML document has the following nesting of elements and
As described in the introduction, this work is aimed at, but not attributes: Components(Supplier(Class(Component(Manufacturer
limited to, the use of XML data from autonomous sources, such <@MCode> UnitPrice Description)))). The details of the con-
as the Internet, in conjunction with existing OLAP systems. Our cepts and the case study are described in another paper [9].
solution is to make a federation which allows users to quickly de-  The OLAP data model is defined in terms of a multidimensional
fine their ownlogical cube viewby creatindinks between existing cubeconsisting of acube hamgdimensionsand afact table Each
dimensions and XML data. This immediately permits queries that dimension has a hierarchy of thevelswhich specify the possi-
use these new “virtual” dimensions in much the same way ordinary ble levels of detail of the data. Each level is associated with a
dimensions can be used. For example, in a cube containing dataset ofdimension values Each dimension also captures the hier-
about sales, a Store-City-Country dimension may be linked to a archy of the dimension values, i.e., which values roll up to one an-
public XML document with information about cities, such as state other. Dimensions are used to capture the possible ways of group-
and population, enabling queries on this external data. Thus, theing data. The actual data that we want to analyze is stored in a
cube data can bgrouped byXML data residing, e.g. on a web  fact table A fact table is a relation containing one attribute for
page or in a database with an XML interface. In addition, such each dimension, and one attribute for easdasurewhich are the
data can be used to perforselection(also known as filtering) on properties we want to aggregate, e.g., the sales price. The cubes
the cube data, e.g. “Show only sales for cities with a population of can contairirregular dimension hierarchies [8] where the hierar-
more than 100.000” or tdecoratedimensions, e.g. “Show sales chies are not balanced trees, e.g., where a lower-level item has sev-
by month and city and for each city, show also the state in which it eral parents. The data model captures this aspect as it can affect
is located”. Many types of OLAP systems may benefit from being the summarizabilityof the data [8], i.e., whether aggregate com-
able to logically integrate external XML data. In a business set- putations can be performed without problems. The data model
ting, an OLAP database containing data about products and theiris equipped with a formal algebra, withslection operatoifor
production prices can be enriched with information a competing selecting fact datag ..., and ageneralized projection operatpr
company’s products and prices, residing on the competing com- I1¢.;., for aggregating fact data. On top of the algebra, a SQL-
pany’s website. In many scientific domains, there are already a based OLAP query languag&QL 1/, has been defined. For exam-
number of data sources, e.g., the SWISSPROT protein databankple, the SQL s query “SELECT SUM(Quantity),Nation(Supplier)
which are primarily accessed over the Internet. We believe that FROM Purchases GROUP BY Nation(Supplier)“ computes the to-
such data sources will publish their data in XML-based formats in tal quantity of the purchases in the cube, grouped by the Nation
the future. level of the Supplier dimension. The OLAP data model, algebra,
Our approach, a so-callddosely coupled federatiofi4], pro- and the SQL s query language is described in detail in another
vides the ability to doad hoc integration which is needed for a paper [8].
number of reasons. First, it is rarely possible to anticipate all fu- Extended Markup Language (XML) [18] specifies how docu-
ture data requirements when designing a database schema. OLARnents can be structured using so-cakdeimentshat containsat-
databases may contain large amounts of data and thus, physicallytributes with atomic values. Elements can be nested within and
integrating the data can be a time consuming process requiring acontain references to each other. For example, for the example de-
partial or total rebuild of the cube. However, being able to quickly scribed above, a “Manufacturer” element in the XML document
obtain the necessary data can sometimes be vital in making thecontains the “MCode” attribute, and is nested within a “Compo-
right strategic decision. Second, not all types of data are feasible nent.” XPath [18] is a simple, but powerful language for navigat-
to copy and store locally even though it is available for browsing, ing within XML documents. For example, the XPath expression
e.g. on the Internet. Copying may be disallowed because of copy- “Manufacturer/@Mcode” selects the “MCode” attribute within the
right rules, or it may not be practical, e.g. because data changes tod'Manufacturer” element.
frequently. Third, attempting to anticipate a broad range of future =~ The OLAP-XML federations are based on the conceplirds
data needs and physically integrating the data increases the comwhich are relations linking dimension values in a cube to elements
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Figure 1. Architecture Of The Federation System and The Federation Manager

in an XML document, e.g., linking electronic components (ECs) in periments. In the prototype, the OLAP component uses Microsoft
the cube to the relevant “Component” elements in the XML docu- Analysis Services and is queried with MDX and SQL. The XML
ment. The most common type is thatural link where the dimen- component is based on Software AG’s Tamino XML Database sys-
sion values are also found as element values in the XML document. tem [15], which provides an XPath-like interface. For the external
Enumerated linksnap each dimension value explicitly to a specific temporary component, aleading industrial RDBMS system is used.
XML element in the XML document. A naive query processing strategy will proceS®L x»s queries

A federationconsists of a cube, a collection of XML documents, in three major steps. First, any XML data referenced in the query
and the links between the cube and the documents. The most fun-is fetched and stored in a temporary database as relational tables.
damental operator in OLAP-XML federations is ttecorationop- Second, a pure OLAP query is constructed from8@L x,, query
erator which basically attaches a new dimension to a cube based orand evaluated on the OLAP data, resulting in a new table in the
values in linked XML elements. Based on this operator, we have temporary database. Finally, these temporary tables are joined, and
defined an extension o8QL /, called SQL xr, which allows al- the XML-specific part of theSQLxx query is evaluated on the
lows so-calledevel expressionsf the formlevel/link/xpathexpres- resulting table. This strategy will only perform satisfactorily for
sion, e.g., ‘EC/EClink/Manufacturer/@MCodgin the SELECT, rather small databases. The primary problems are that decoration
WHERE, and GROUP BY clauses of a query. The link may be operations require large parts of the OLAP and XML data to be
omitted in the level expression, in which case tefault linkis transferred to temporary storage before decoration can take place,
used. For example, thBQL x»s query “SELECT SUM(Quantity), i.e., the primary bottleneck in the federation will most often be the
EC/Manufacturer/@MCode FROM Purchases GROUP BY moving of data from OLAP and XML components. Thus, our op-
EC/Manufacturer/@MCode“ computes total purchase quantities timization efforts have focused on this issue. These efforts include
grouped by the manufacturer’s MCode which is found only in the bothrule basedandcost basedptimization techniques.

XML document. The rule basedoptimization uses the heuristic of pushing as
much of the query evaluation towards the components as possible.
4. THE FEDERATION SYSTEM Although not always valid for more general database systems, this

heuristic is always valid in our case since the considered operations

In this section we give an overview of the OLAP-XML feder- || reduce the size of the result. The rule based optimization algo-
ation system and some design considerations, and introduce th&ithm partitionsa SQLx, query tree, meaning that th8QL x
optimization techniques. The overall architectural design of the operators are grouped into an OLAP part, an XML part, and a rela-
partially implemented prototype system supporting t8QL x tional part. After partitioning the query tree, it has been identified
query language is seen to the left in Figure 1 (the right side of the to which levels the OLAP component can aggregate data and which
figure will be explained later). Besides the OLAP component and selections can be performed in the OLAP component. Furthermore,
the XML components, three auxiliary components have been intro- the partitioned query tree has a structure that makes it easy to cre-
duced to hold meta data, link data, and temporary data. Generally,ate component queries. See [9] for details on the query processing.
current OLAP systems do not support irregular dimension hierar- Since the primary bottleneck in the federation will most often be the
chies and make it too eXpenSiVe to add new dimensions, which ne-moving of data from OLAP and XML components, our op’[imiza_
cessitates the use of a temporary compon&®QL x., queries are  tjon efforts have focused on this issue. Three diffecost based
posed to théederation Managerwhich coordinates the execution  optimization techniques are presentédlining XML Data, XML
of queries in the data components using several optimization tech-data retrieval through limited query interfaceand our particular

niques to improve query performance. A partial prototype imple- yse ofcaching and pre-fetching
mentation has been performed to allow us to make performance ex-
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5. INLINING XML DATA

The OLAP and XML components can be accessed in parallel if EC Manufacturer/@Mcode
i - i i EC1234 M31
no XML data is used in the construction of OLAP queries. The EC1234 M33
retrieval of component data is followed by computation of the fi- EC1235 M32

nal result in the temporary component. Hence, the total time for a
federation query is the time for the slowest retrieval of data from Using this table, the predicate can be transformed to: “(Manu-
the OLAP and XML components plus the time for producing the facturer(EC)IN (M31, M33)AND EC='EC1234") or (Manufac-
final result. However, often it is advantageous to make the OLAP yrer(EC)IN (M32) AND EC=’EC1235')". This predicate is then
query depend on the XML queries, as will be explained next. A pyt into the WHERE clause of the OLAP query. If the predicate is
level expression such as “EC/Description” can be integrated into a too long, it can be split into: “Manufacturer(EC)N (M31, M33)
predicate by creating a more complex predicate that contains only anp EC=’EC1234' ” and “Manufacturer(EC) IN (M32) AND
references to constants, a process we have temfiathg. In the EC='EC1235’ ",
general case the predicate can be very large, but for many simple
predicates and if the number of values is small, this is indeed a Because of the typically high cost of performing extra queries,
practical solution. Better performance can be achieved when selec-the cost model is revised to reflect this. The evaluation time of
tion predicates refer to decorations of dimension values at a lower an OLAP query can be divided into three parts: A constant query
level than the level to which the cube is aggregated. If, e.g. a predi- overheadthat does not depend on the particular query being eval-
cate refers to decorations of dimension values at the bottom level of uated, the time it takes ®valuatethe query, and the time it takes
some dimension, large amounts of data may have to be transferredo transferdata across the network, if necessary. The overhead is
to the temporary component unless inlining is used. Inlining level repeated for each query that is posed, while the transfer time can be
expressions may also be a good idea if it results in a more selectiveassumed not to depend on the number of queries as the total amount
predicate. of data transferred will be approximately the same whether a single
query or many partial queries are posed. Due to space constraints,

EXAMPLE 5.1. The level expression predicafiC/Description we cannot give the details of the cost model and the estimation of

="16-bit flip-flop’ can be transformed t&C IN (EC1234, EC1235) cost model parameters here, they are described in detail in another
because EC1234 and EC1235 are the ECs with Description nodesPaprer [10].

equal to “16-bit flip-flop” (See the full paper [11] for details on the EXAMPLE 5.3. In Figure 2, four XML queries are used, two of

case study.). which are inlined in the OLAP query (XMland XML;). Hence,
the OLAP query cannot be posed until the results of both these

Level expressions can be inlined compactly into some types of queries are returned. The inlining makes the OLAP query too long
predicates. Even though it is always possible to make this in- and itis split into two partial queries as discussed above. In paral-
lining, the resulting predicate may sometimes become very long. lel with this, the two other XML queries (XMland XMLy) are pro-
For predicates such as “EC/BHGnk/Manufacturer/MName = Sup- cessed. Thus, the final query to the temporary component, which
plier/SupLink/SName”, where two level expressions are com- combines the intermediate component results, cannot be issued un-
pared, this may be the case even for a moderate number of dimen+il the slowest of the component queries has finished. In this case,
sion values. However, as long as predicates do not compare levelthe OLAP component finishes after X(Mand XMLs, and thus, the
expressions to measure values the predicate length will never betemporary query must wait for it.
more thanquadraticin the number of dimension values. Further-
more, this is only the case when two level expressions are com-
pared. For all other types of predicates the lengtlinsar in the
number of dimension values. Thus, when predicates are relatively
simple or the number of dimension values is small, this is indeed a XML ‘
practical solution. Very long predicates may degrade performance, z Temp
e.g. because parsing the query will be slower. However, a more im- XML,
portant practical problem that can prevent inlining, is the fact that OLAP, |OLAP,
almost all systems have an upper limit on the length of a query. XML,
Please refer to the full paper [11] for an in-depth discussion of the
above. A general solution to the problem of very long predicates is
to split a single predicate into several shorter predicates and eval- . : :
uate these in a number of queries. We refer to these individual Figure2: Component Evaluation Timesfor a SQLxur Query
queries aspartial querigs, whereas_the single query is called the Since any subset of the level expressions can be inlined in the
total query. Of course, in genera_l this approach .e”ta"s alarge over- OLAP query, the number of inlining strategiesdgsponentialin
head becagse of the extra queries. However, since the que_ry_re_sul{he number of level expressions. None of these can be disregarded
may sometlm_es be r(_aduced by orders of magnltude_when '”'_'”'r_‘g simply by looking at the type of predicate and estimated amount of
level expressions, being able to do so can be essential in achlevmgXML data. Even a large number of OLAP queries each retrieving
acceptable performance. a small amount of data may be faster than a few queries retriev-

ing most or all of the stored data. Further complicating the issue,

ExamMpPLE 5.2. Consider the predicate: “EC/Manufacturer/ is the fact that the choice of whether a particular level expression
@MCode = Manufacturer(EC)". The decoration data for the level should be inlined may depend on which other expressions are in-
expression is retrieved from the XML document as explained in Sec-lined. Consider, e.g. two predicates that both refer to decorations
tion 4 resulting in the following relationships between dimension of values at a low level in the cube, and hence, require the retrieval
values and decoration values: of a large part of the cube. Inlining only one of them may give

XML, |

> time
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only a small reduction in the OLAP result size, because the low
level values must still be present in the result to allow the other
decoration to be performed. For the same reason, we cannot con-
sider XML data used for selection independently from XML data
that are only used for decoration or grouping. Also, a level expres-
sion that occurs multiple times in a predicate need not be inlined AB AC AD BC2. BD CD
for all occurrences. When adding a level expression to the set of
inlined expressions, the total cost may increase or it may decrease.
An increase in cost can be caused by two things: The OLAP query
may have to wait longer for the extra XML data, or more OLAP
queries may be needed to hold the extra data. Any decrease in cost
is caused by a reduction in the size of the OLAP result, either be- ) . S )
cause the selectivity of the predicate is reduced or because a higher ~ Figure3: Top-down generation of inlining strategies.
level of aggregation is possible. A smaller OLAP result may re-

duce both the OLAP evaluation time and the temporary evaluation

%)
time. Although predicates in a query will typically contain only a %\

ABC ABD ACD BCD

ABCD

few level expressions, a higher number is, of course, possible. If A B C D

the number of level expressionsis too high, then the optimal so- m
lution cannot be found within reasonable time. In fact, the problem

of finding the minimal cost idNP-hardas stated in the following AB AC AD BC2 BD ¢D
theorem.

- L ABC100 ABD20 ACDs3o BCDe0o
THEOREM 5.1. Finding the global minimum of the cost func-

tion Cost is NP-hard.

ABCD
Proof: See the full paper [11] "

Even though there is an exponential number of inlining strate- Figure4: Bottom-up generation of inlining strategies.
gies, this will almost never be a problem, as selections typically

contain only a few level expressions, say 2-5. Thus, performing take very long time to evaluate or produce a high number of OLAP
an exhaustive search is in most cases an adequate solution to thiaueries. In Figure 5, both A and D would have to be very expensive.
problem. A few heuristics are used to reduce the search space everrirst, this makes it likely that the other combinations, which also
more: If a combination of level eXpreSSions produces a cost that is involve A or D, are expensive too. Second’ the heuristic can be
much larger than the combinations previously generated, it is not refined to handle this problem by identifying when a single level
tic, itis important to begin from the full set of level expressions and The optimization approach can be summarized as follows: Gen-
remove each one iteratively until none are left. Using the opposite erate all inlining strategies bottom-up except for combinations with
approach, i.e. beginning from the empty set and add elements it-3 very high cost. Thus, if the cost is high for a particular combi-
eratively, the heuristic will sometimes fail. Consider e.g. the two nation, no subsets of the combination are considered. However,
approaches shown in Figures 5 and 5, where each letter representg the high cost is mainly caused by a single level expression, this
a level expression, each letter combination represents the choice ofestriction does not apply and the subsets of the combination are
inlining these level expressions, and the values shown for some of considered anyway. What constitutes a “very high cost”, is de-
the combinations represent costs. The optimal results are shown ingermined dynamically based on the number of level expressions.
dashed circles. A top-down approach, beginning from the empty Thys, for only few expressions almost all combinations are consid-
set of expressions, is shown in Figure 5 and a bottom-up approach,ered, whereas for more expressions the heuristic is used more ag-
beginning from the full set, in Figure 5. A heuristic top-down ap-  gressively. This can be generalized to cope with a higher number of
proach ignores all combinations containing a certain level expres- |eve| expressions by choosing only a fixed number of combinations

sion ifitis very eXpenSiVe to inline. For instance, all combinations at each level. This reduces the time Comp|exity from exponentia|
containing B would be ignored in Figure 5. However, even though to quadratic in the number of level expressions.

an expression is much more expensive to inline than the other ex-
pressions, this may be compensated for by a much higher level of
aggregation in the OLAP query. This may only be achieved when 6. OPTIMIZING XML DATA RETRIEVAL
the expensive level expression is inlined together with other expres- The second technique is focused on the special kind of XML
sions as discussed above. Hence, the optimal cost, represented bgueries that are used in the federation. These queries can easily
the dashed circle, may actually contain expression B, and conse-be expressed in more powerful languages like XQuery, but many
quently, the top-down approach will fail to find the optimal value. XML sources have more limited interfaces, such as XPath or XQL.
A bottom-up approach is less likely to fail because it first considers The special queries needed to retrieve data from XML components
the strategy where all expressions are inlined. Thus, if any combi- cannot be expressed in a single query in these simple languages,
nations give a special reduction in the cost, this is taken into accountand hence, special techniques must be used for this to be practical.
when selecting which combinations to disregard. Having only an XPath interface, decoration data can be fetched by
Certain situations may still cause the bottom-up approach to fail, posing a query for each dimension value. However, in general the
but a refinement to the heuristic can often prevent this. Consider overhead of transferring, parsing and evaluating a large number of
the situation in Figure 5. Here, the optimal strategy may be skipped queries will be too expensive. Combining groups of queries into
because all the combinations leading to it are very expensive. Thisa single query using OR/IN predicates (like Example 5.2) does not
can only occur if all the level expressions not in the optimal strategy work because the resulting nodes cannot always be distinguished in
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the result. For this to be possible, both the locator and the user de-they can be re-used. kast recently usedeplacement strategy is
fined XPath expression must be present. This is necessary becausaesed. As will be described in Section 9, experiments indicate that
according to the XPath Recommendation the result of an XPath ex- large cost reductions can be achieved using these techniques. This
pression is amunorderedcollection of nodes, and hence, there is technique is described in detail in the full paper [11].

no way to identify each decoration node, except by using the lo-

cator. Furthermore, an XPath expression cannot change the struc

ture of a document, but only return a set of existing nodes from 8. COM B_I NING THE TECH NIQUES ]
it. Consequently, the result of an expression can only corain We now outline how the techniques discussed above are used in
tire nodes and not partial nodes. Thus, to maintain the relationship combination, we will refer to the software component architecture
between the locator and the user defined XPath expression, theiS€en to the right in Figure 1. When a federation query has been
common parent node must be retrieved in its entirety. A cost anal- Parsed, the Query Decomposer partitions the resultBQL v

ysis is used to decide whether or not to employ this technique. In query tree, splitting it into three parts: an OLAP query, a relational
summary, three different strategies are used when evaluating a sefiuery, and a number of XML queries. The XML queries are im-
of XPath expressions resulting from a level expression: combin- Mediately passed on to the Execution Engine, which determines for
ing none, some, or all of the expressions. If the level expression each query W_he_ther the result is obtainable from the cache. If this is
is based on a natural link, it is always possible to combine all the Not the case, itis sent to the Component Query Evaluator. Here, the
expressions which typically produces a low overhead expression SPecific actions depend on which query languages are supported. If
because of the way these links are defined. If it is based on an enu-€-8- 0nly an XPath interface is available, it is determined which is
merated link, combining all expressions to a single expression may cheaper: To pose many queries or to combine some or all of them
retrieve all or a large part of the document. Hence, we also con- into a single query. This decision is based on costs estimated by
sider the situation where only expressions having predicates at theth® Component Cost Evaluator. For the OLAP part of the query,
same location step are combined. For each of these three strategied! IS also determined whether the result can be obtained from any
the total evaluation cost is estimated and the cheapest one is used®f the cached results. If so, the cost of evaluating BQLxw
The details of the technique, including an algorithm for combining 9uery using the cached results is compared to the cost of evaluating

XPath expressions is described in the full paper [11]. the SQ_LXM query without the use of cached results. Th_is cost is
determined by the Global Cost Evaluator. The cost estimates are
7. CACHING AND PRE-FETCHING also used by the Global Optimizer to pick a good inlining strat-
) . ) ) T ) egy. When the results of the component queries are available in the
The third technique is an application oching and prefetch- temporary component, the relational part of tBQLx,, query is

ing to this particular domain. Basically, caching results of OLAP  gy51uated.

queries is done by keeping the otherwise temporary tables that are

created in the temporary component. Associated with each such

table is the part of the query tree that produced the table. Given a9- EXPERIMENTAL RESULTS

new query tree, it is determined whether the cached result is iden-  This section describes the experiments performed to evaluate the

tical to or can be used to produce the new result. When this is the effectiveness of the optimization techniques. The test cube is based

case, the cost of using the cached result is compared to the cost obn about 50 MB of data generated using the TPC-H benchmark [17]

not using it. If the query that produced the cached result is identical and about 10 MB of pre-aggregated results. The cache size was

to the new query, it will always be cheaper to use the cache. How- limited to 10 MB to prevent an unrealistically large part of the data

ever, if, e.g. extensive aggregation is needed on the cached resulfrom being cached. About 3 MB of XML data is used for the XML

to produce the final result, it may be cheaper to fetch a possibly component which is divided into two documents that have been

pre-aggregated result from the OLAP component. generated from the TPC-H data and public data about nations. Two
Determining whether a cached result can be used to produce anatural links, NLink and Tlink, are defined to from Nation level in

new result must be done efficiently since a large cache may hold the cube to the Nation elements in the XML data, and from the Type

many different results. This is done by performing a few simple level in the cube to the Type elements in the XML data, respec-

tests on the query tree corresponding to each cached result. Contively. The details of the experiments, including the actual queries,

sider two query tree@¢ andQu, representing theachedand the can be found in the full paper [11].

userquery, respectively. If the cached result can be used to produce The results of executing the queries are shown in Figure 5. The

the needed result th&py must be expressible in terms@f:. The results only show the component evaluation times as these will

tests discussed next will determine whether this is possible, but let dominate the total evaluation time. In the results, the total eval-

us first see how the final query is constructed in the non-trivial case uation time for each query is divided into three parts: One for each

where@Qu and Q¢ are not identical. (By identical we mean that of the three types of component queries posed during the evaluation

they contain the same operations, disregarding the order of selec-of a federation query. Thus, the following tasks are represented in

tions.) Q¢ must form the bottom part of theewquery Q n that the results (task 1(a) may be performed several times for one query)
is constructed frond)ry, and the part 0@y that restricts the result ~ : Task 1(a) fetch XML data and store it in the temporary compo-
further must be applied to this bottom part (see the full paper [11] nent (denoted by a prefix “X”, e.g., “X1"JTask 1(b) fetch OLAP

for details). data and store it in the temporary component (denoted by an “O");

In summary, we perform caching and pre-fetching for compo- andTask 2 compute the final result in the temporary component
nent queries only. Intermediate OLAP results stored in temporary (denoted by a “T”). Task 1(a) and 1(b) can be performed in parallel
tables as well as raw XML data are kept for a certain amount of unless the XML data is inlined into the OLAP query. As the pro-
time, which can specified as a tuning parameter. If adequate stor-totype is not yet fully implemented, the query optimization process
age is available, temporary XML tables are also stored to avoid has been carried out by hand. Thus, the execution costs does not
constructing the same tables again. Currently, we do not cache orcontain the cost of optimizing the query. However, this cost will
pre-fetch entire federation queries as the cache space they take ujpe neglible compared to the high cost of executing the OLAP and
is in most cases too high in comparison with the probability that XML queries.
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Figure5: Experimental results. Notice that different timeintervalsare used in the graphs.

Query A; and A, both illustrate the use of decoration. The re- much lower level than needed for the final result. Result 5 illus-
sults of these queries, seen in Result 1, shows a low overhead oftrates the use of the simple inlining strategy, “Always use inlining
performing decoration compared to the time it takes to retrieve the if the predicate is simple”, which causes both XML predicates to be
OLAP and XML data. This low overhead is representative for dec- inlined. This is significantly faster than before because the OLAP
oration queries since they do not require additional data to be re- query can now aggregate further. Also, sincesh€EREclause has
trieved from the OLAP component. Hence, the overhead of com- been evaluated entirely in the cube, no work needs to be done after
bining the intermediate results will be low, since typically only the OLAP result has been returned. However, six OLAP queries
small amounts of OLAP data (at most a few thousand facts) will are needed to hold the new predicate and the OLAP query has to
be requested for presentation to a user. Qugijustrates the use wait for the XML queries to finish. Consequently, in this example,
of XML data for grouping, while Querg’ uses XML data for se- it is faster to inline only the Population data. This is shown in Re-
lection. Since both queries use the same decoration as in Querysult 6 where the cost-based inlining strategy is used. Because the
A;, the same XML and OLAP queries are performed to evaluate Nation level only contains few dimension values, this requires only
these queries. As can be seen from Result 2 and 3, the overheadne OLAP query and the Population data is also faster to retrieve.
endured by the temporary component query is also low for these The three results are also shown in Result 7 for easy comparison.
queries. This is typical for both grouping and certain types of se- We see that cost-based inlining improves the performance by more
lection because the size of the intermediate OLAP result will often than an order of magnitude.

be comparable to the size of the final result. To evaluate the effectiveness of caching and prefetching, the que-
Results 4, 5, and 6 demonstrate how effective the inlining tech- ries have also been evaluated using a fully pre-aggregated cube
nigue can be. Here, two XML queries are uséd; is the time it where both the OLAP data and the XML data were stored in tables.

takes to retrieve the Population data, while is the time it takes to Theselocal evaluation times are shown in Result 8 together with
retrieve the RetailPrice data. The results show the processing timeshe non-local, oremote evaluation times described above. We see
for three different strategies for evaluating Quédy in which the that the use of cached/prefetched data improves performance from
selection on Population refers to a low level that is not needed in the 4 to 25 times in this case. However, more experiments are needed
result. Thus, in Result 4, where no inlining is used, this produces to fully understand the effect of caching and prefetching.

a very large overhead as the OLAP query can only aggregate to a To evaluate the combined effect of the query processing and op-
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timization techniques for our federation, we have also performed research issues include how to capture the document order of an

experiments that compare our approach to the performance-wiseXML document in the result of an OLAP query, how to extract

ideal situation where the external datapisysically integratedn new measures from XML data and incorporate these into a cube,

the OLAP cube. These experiments were performed with 1GB of data cleansing for this particular setting, and finally optimization

TPC-H data in the OLAP cube, plus 100MB used for pre-computed techniques for all these issues.

aggregates. In the XML component, we had 10 MB of XML data.

The results of these experiments are seen in Figure 6. The “0”"11. REFERENCES
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