
Optimization of Large Join Queries:
Combining Heuristics and Combinatorial Techniques

Arun Swami

Computer Science Department, Stanford University, Stanford, CA 94305

Abstract
We investigate the use of heuristics in optimizing queries
with a large number of joins. Examples of such heuris-
tics are the augmentation and local improvement heuris-
tics described in this paper and a heuristic proposed by
Krishnamurthy et al. We also study the combination of
these heuristics with two general combinatorial optimiza-
tion techniques, iterative improvement and simulated an-
nealing, that were studied in a previous paper. Several
interesting combinations are experimentally compared. For
completeness, we also include simple iterative improvement
and simulated annealing in our experimental comparisons.
We find that two combinations of the augmentation heuris-
tic and iterative improvement perform the best under most
conditions. The results are validated using two different
cost models and several different synthetic benchmarks.

1 Introduction
Much effort has been devoted to developing good plans
for executing queries in relational database systems [JK84].
These plans are termed query evaluation plans (QEPs). The
techniques employed in current query optimizers assume
that the queries to be processed involve a small number of
joins (less than 10 joins). For example, the dynamic pro-
gramming algorithm described in System/R [SAC+791 has
a worst case time complexity of O(2N) (with an exponen-
tial space requirement), where N is the number of joins. As
N becomes larger than 10, use of this algorithm becomes
infeasible.

We expect that some future applications built on top of
relational systems will require processing of queries with a
much larger number of joins. Krishnamurthy, Boral, and
Zaniolo in [KBZ86] mention applications from logic pro-
gramming resulting in “ . . . expressions (similar to database
queries) with hundreds (if not thousands) of joins.” Object-
oriented database systems, for instance, Iris [FBC+87],

Permission to copy without fee all or part of this material is granted provided that

the copies are not made or distributed for direct commercial advantage, the ACM

copyright notice and the title of the publication and its date appear, and notice is
given that copying is by permission of the Association for Computing Machinery.

To copy otherwise, or to republish, requires a fee and/or specific pemksion.
0 1989 ACM o-89791-317-5/89/0005/0367 $1.50

that use relational systems for storage of information are an-
other class of potential applications generating many joins.
Finally, the use of views in relational systems can lead to an
increase in the number of joins in the query being processed
without the user being aware of it.

The fundamental problem with optimizing large join
queries is searching the large spaces of possible QEPs or
solutions. In [IW87], Ioannidis and Wong study how simu-
lated annealing can be used to obtain an efficient algebraic
structure for a given recursive query. This too is a prob-
lem that involves searching a large solution space. How-
ever, they do not consider the problem of optimizing non-
recursive queries with a large number of joins.

In [KBZSS], Krishnamurthy, Boral, and Zaniolo de-
scribed an O(N2) heuristic for optimizing non-recursive
queries. This is one of the heuristics being compared in this
paper. However, one should note that the theory on which
their work is based requires that the cost functions have a
certain form. All join methods do not have a cost function
of the required form. Our work does not depend on using
any particular cost model; any reasonable cost model will
do. In fact, we present results for two different cost mod-
els: one for join processing in memory resident databases
[Swa89a], and the other for disk based databases (similar
to the model in [Bra84]).

In [SG88], Swami and Gupta addressed the problem of
optimizing non-recursive large join queries (to be denoted as
LJQOP). They showed that this problem is an NP-complete
combinatorial optimization problem. They then discussed
how general combinatorial optimization techniques such as
iterative improvement and simulated annealing can be ap-
plied to LJQOP. Experiments to compare these techniques
were described. It was shown that among the techniques
compared, iterative improvement is the method of choice.
The simulated annealing algorithm based on the variation
described in [JAMS871 was the next best method.

We extend the work in [SG88] by studying how heuristics
can be used in optimizing large join queries. Three kinds
of heuristics are considered. These are the augmentation
heuristic and its variations, the local improvement heuris-
tic, and variations of the heuristic proposed in [KBZSS]. We
first determine the best variation of each class of heuristics.
We then study interesting ways in which these heuristics
can be combined with the techniques of iterative improve-
ment and simulated annealing. The different combinations

367

are experimentally compared. To illustrate that our work
can be extended to different cost models, we perform the
comparisons for both memory resident and disk based query
processing. We also use several different synthetic bench-
marks to obtain a large number of different kinds of test
queries.

The paper is organized as follows. In Section 2, we
present our formulation of LJQOP and the assumptions
we make. In Section 3, we outline the general combinato-
rial optimization techniques of iterative improvement and
simulated annealing. In Section 4, we describe the different
heuristics and their variations. Interesting combinations of
the heuristics with the general techniques are given. In Sec-
tion 5, we characterize the different synthetic benchmarks
of queries we used for comparing the techniques. In Section
6, we show the results of our experimental comparison of
the different combinations, including the experiments using
a different cost model and several synthetic benchmarks.
Section 7 has some concluding remarks.

For lack of space, we will provide only a brief summary
of algorithms and results that are discussed in greater de-
tail in [SG88]. Justifications for certain assumptions are
not repeated here. Also, the statistical techniques that are
part of our experimental methodology are presented in that
paper and are not discussed here.

2 Problem Formulation
In traditional database applications, N is typically less than
10. A large join query is a query where N 2 10. We
restrict our attention to queries involving only selections,
projections, and joins where the number of joins involved
is between 10 and 100. General heuristics for processing
relational query expressions such as push selections down OS
much as possible and perform projections as soon as possible
can and should be used. However, we do not discuss their
application as they do not alter the combinatorial nature of
the search space. The major problems to be addressed are
choosing the join order and determining the join method for
each join operation. Choosing the join method may entail
access path selection.

In our current experiments, we decided to use only the
hash join method. Simulations based on the cost model in
[Swa89a] and other proposed models for query processing
using large main memory [DK0+84] show that hash-based
methods perform well over large ranges of values of the
parameters. Also, we need to estimate lower bounds before
carry out the optimization (in order to stop when we are
sufficiently close to the lower bound). It is a hard problem
to obtain good estimates of lower bounds when other join
methods are included. In future work, we will consider
how to incorporate the use of multiple join methods in the
optimization algorithms. Now our optimization problem is
reduced to choosing a good join order.

Any join order can be represented by a join processing
tree. As in [SG88], we consider only outer linear join trees.
Most query optimizers, including System R, use the same
restriction to cut down on the search space. This is done

based on the assumption that a significant fraction of the
join trees with low processing cost is to be found in the
space of outer linear join trees. The validation of this as-
sumption is an open problem. In these join trees, each
join operator has exactly two operands, the outer and in-
ner operands. The inner operand is always a base relation,
while the outer operand can be a base relation or an in-
termediate relation. Note that each such join tree can be
equivalently represented as a permutation of the relations.
When we need to show a join tree (or parts of it), we use
the permutation notation.

The query optimizer is given a join graph representing the
join predicates linking the different relations in the query.
If the query requires a cross-product for its evaluation, the
join graph will have at least two components. As in [SG88],
we use the heuristic of postponing cross-products as late
as possible to process each component separately, and then
join the results using cross-products. The intuition is that
cross products are expensive and result in large interme-
diate results. For processing a component there exists at
least one join processing tree that does not require a cross-
product. Such a join tree is called a valid join tree. We
restrict our search to the space of all valid join trees.

3 Combinatorial Optimization
Techniques

These techniques have been discussed in great detail in
[SG88]. The techniques of iterative improvement and sim-
ulated annealing performed best in the experimental com-
parisons described in that paper. In this section, we provide
a summary description of these techniques.

Each solution to a combinatorial optimization problem
can be looked upon as a state in a state space (in our case
the join trees are the states). Each state has a cost asso-
ciated with it as given by some cost function. A move is
a perturbation applied to a solution to get another solu-
tion; one moves from the state represented by the former
solution to the state represented by the latter solution. A
move set is the set of moves available to go from one state
to another. Any one move is chosen from this move set ac-
cording to a probability distribution that is specified along
with the move set. The move set used in our experiments
was described in [SG88].

Two states are said to be adjacent states if one move
suffices to go from one state to the other. A local minimum
in the state space is a state such that its cost is lower than
that of all adjacent states. There can be many such local
minima. A global minimum is a state that has the lowest
cost among all the local minima.

In Figure 1 we show the code for a single run of the
iterative improvement algorithm. This is essentially the
“greedy” heuristic applied to the start state. Starting at
different initial states S, different local minima would be
reached. The best of these local minima could then be
chosen.

The simulated annealing algorithm is shown in Figure 2.

368

/* Get an initial solution */
S = initialize();
repeat {

/* Randomly select adjacent state */
news = move(S);
if (cost(newS) < cost(S))

S = news;
} until (“local minimum reached”);

Figure 1: One Run of Iterative Improvement

The determination of the parameter sizeFactor, the proce-

/* Get an initial solution */
S = initialize();
/* Set the initial temperature */
T = initialTempO;
/* Set the chain length */
chainLength = sizeFactor * N;
1 = 0;

repeat {
repeat {

1=1+1;
/* Randomly select adjacent state */
news = move(S);
delta = cost(newS) - cost(S);
if (delta 5 0)

S = news;
if (delta > 0)

S = news “with probability exp(-delta/T)“;
} until (1 2 chainlength);

/* Reduce the temperature */
T = reduceTemp(T);

} until (“system has frozen”);

Figure 2: Simulated Annealing

dure reduceTemp, and the freezing condition are described
in [SG88]. The stopping condition can include a maximum
time limit. The optimizer can stop if it obtains a solution
whose cost is sufficiently close to a lower bound on the cost
of the optimal solution.

4 Heurist its
A number of heuristics are commonly used in query opti-
mization. It is expected that these heuristics are usually
beneficial. For example, the heuristic push selections down
as much as possible helps to decrease sizes of intermediate

results. The heuristic perform projections as soon as pos-
sible has a similar motivation. These two heuristics have
been used by us to reduce the optimization problem to one
of determining a good join order. The heuristic postpone
cross-products as late as possible is very effective in prun-
ing the search space to be searched. However, the space to
be searched, namely, the valid space, is still too large for
the queries we consider.

We will discuss three heuristics in this section. One
heuristic, denoted as the KBZ heuristic, is the only heuristic
known to us which was specifically proposed for optimizing
nonrecursive large join queries [KBZSS]. Based on ideas of
incrementally building good plans, we developed the aug-
mentation heuristic described in 4.1. The algorithmic prin-
ciple of “divide and conquer” gave rise to the third heuris-
tic known as local improvement. While the KBZ and the
augmentation heuristics directly generate a finite number
of solutions, local improvement takes an existing solution
as input, and seeks to improve it by a sequence of small
transformations.

4.1 Augmentation Heuristic
The augmentation heuristic builds a join tree (or the equiv-
alent permutation) as follows. The first relation is picked
according to some criterion. For instance, we may pick
the smallest relation first. Corresponding to each choice of
the first relation, the heuristic generates one permutation.
Thus upto (N + 1) permutations can be generated corre-
sponding to the (N + 1) joining relations. If all or some of
these permutations are to be generated, the relations could
be picked for the first position in order of increasing size.

Let S denote the set of relations that have already been
placed in the permutation being generated. Let T denote
the set of relations from which the next relation in the or-
dering is to be selected. Initially, S consists of the first re-
lation, picked as indicated above. Then, the augmentation
heuristic generates the rest of the permutation as shown in
Figure 3.

perm[O] = first-relation;
S = { first-relation };
T = { remaining relations };

for (i = 1; i < (N + 1); i = i + 1) {
nextReln = chooseNext(S, T);
perm[i] = nextReln;
S = S + { nextReln };
T = T - { nextReln };

3

Figure 3: Augmentation Heuristic

The function chooseNext is passed the two sets S and T
as input parameters, and returns a relation chosen from T
according to some criterion. This criterion depends on the

369

relations in S. Note that only relations in T that join with
at least one relation in S are considered. This ensures that
only valid join trees are generated. Five different criteria
were investigated. These are described below.

Let Nk denote the cardinality of relation k (this is the car-
dinality after all applicable selections have been performed).
Let Dk denote the number of distinct values in the join col-
umn of relation k. Let deg(k) denote the number of rela-
tions that relation k joins with in the join graph. Let Jkr
denote the join selectivity of the join of relations k and 1.
Let i iterate over all the relations in S, and let j iterate
over all the relations in T. Then the different criteria are:

1. min(Nj) - the relation with the smallest cardinality is
chosen

2. max(deg(j)) - the relation with the highest degree in
the join graph is chosen

3. min(kj) - the relation with the smallest join selectiv-
ity for the next join is chosen

4. min(Ni Nj Jij) - the relation that results in the smallest
size for the next intermediate result is chosen

5. min((NiNjJij - l)/(O.SNi(Nj/Dj))) - the relation
with the smallest “rank” (see [KBZSS]) is chosen

The goal is to keep the sizes of the intermediate relations
as small as possible. Each criterion seeks to do this in a
different way. Joining relations with the smallest cardinal-
ity first is an obvious way to achieve the goal (criterion 1).
The second criterion is more subtle. The relations with the
smallest cardinality may not be immediately available due
to the constraint of avoiding cross products. Criterion 2
seeks to alleviate this problem by bringing as many rela-
tions as possible into the set T.

Criterion 3 tries to take into account that the join selec-
tivity may be much more crucial than the cardinalities of
the two joining relations. Criterion 4 seeks to combine the
effects of criteria 1 and 3. Finally, criteria 5 seeks to mini-
mize a calculated quantity called the ‘rank’ rather than the
size of the intermediate relation. The rank can be thought
of as the increase in the intermediate result normalized by
the cost of doing the join. By using the rank measure, re-
lations which do not produce intermediate results at great
cost are preferred. The context in which the definition of
rank arises is given in [KBZSS].

We carried out experiments to determine which criteria
in the chooseNext function gives the best results. The av-
erage scaled costs for different time limits (see Section 6.1)
for each of the criteria are given in Table 1. It is clear that
the third criterion, namely, choosing the relation so that
the next join has the smallest join selectivity, is the best
criterion. The intuition behind why this criterion works
best is that it tends to maximize the number of distinct
values in the intermediate results, thus helping keep inter-
mediate result sizes small throughout the evaluation of the
query. The more direct criterion of choosing the relation
resulting in the smallest immediate intermediate result size
fares poorly because it neglects the effect of the number
of distinct values in determining later intermediate result
sizes. We used the criterion of join selectivity in the other
experiments with the augmentation heuristic.

Vezt Criteria Time choose!

1 2 3 4 5

Table 1: Comparison of Criteria in Augmentation

4.2 KBZ Heuristic
The KBZ heuristic algorithm is described in detail in
[KBZSS]. The algorithm has been evaluated for queries
with upto 15 joins in [vi187]. It is best viewed as consisting
of a 3-level hierarchy of algorithms. The algorithm lowest
in the hierarchy (algorithm R) expects to be given a join
graph which is a rooted tree. The root is taken to be the
first relation in the join ordering. Algorithm R returns the
optimal join ordering for the input rooted tree. The next
algorithm in the hierarchy (algorithm T) takes as input a
join graph which is a tree, and finds the optimal order by
iterating over all roots. For each choice of root, algorithm
T calls algorithm R. The highest level algorithm (algorithm
G) accepts a join graph (which could be cyclic), chooses a
spanning tree for this graph, and then calls algorithm T to
find the optimal order for this tree.

If cross products are to be avoided, a rooted join tree im-
poses a partial ordering on the relations in the different join
orderings, that is, only some of the possible join orderings
are acceptable. The root is the first relation in any ordering.
The root of each subtree must join before its descendants.
However, relations which appear in different subtrees can
be merged into the linear join ordering in many different
ways. Algorithm R merges the subtrees in such a way that
the relations are ordered by increasing rank values.

For a definition of rank, see Section 4.1. The definition
of rank obtained in [KBZSS] depends on the cost function
satisfying the following property. The cost function should
have the form nrg(nz), where ni is the size of the outer
operand and ns is the size of the inner operand, and g is
a function. Note that the sort merge join method does not
have a cost function of this form.

The heuristic behind algorithm R is that those relations
which have lower rank should be joined before relations
which have higher ranks. This seeks to minimize the cost of
each new join, since the rank can be viewed as measuring
the increase in the intermediate result per unit differential
cost of doing the join. The hope is that in this fashion
the total cost of the join ordering can be minimized. The
complexity of algorithm R is O(N log(N)).

Algorithm T can use algorithm R to produce an optimal
order for each choice of root in its input join tree. Since
there are N + 1 choices for the root, it appears that algo-
rithm T is of complexity O(N’log(N)). However, the al-

370

gorithm can be improved by performing the iteration over
all roots by moving to adjacent relations. It can be shown
that, on changing the root to an adjacent relation in the
join tree, most of the computation in determining the opti-
mal order for the previous root can be reused. The details
are given in [KBZSS] where they show that the improved
algorithm has complexity O(N’).

To extend the algorithm to handle join graphs which may
be cyclic, algorithm G is used. Algorithm G chooses a
minimum cost spanning tree from the join graph, and then
applies algorithm T to this spanning tree. In [KBZSS], the
authors suggest using the join selectivities as the weights
for the edges in determining the best spanning tree.

Choosing the minimum spanning tree can be modeled by
a process similar to that used in the augmentation heuris-
tic. Here, we can use any of the last three criteria among
those listed in Section 4.1, to pick the next relation and
edge in the spanning tree. We carried out experiments to
determine which weighting factors worked well. We give
the average scaled costs for different time limits in Table 2.
The same criterion that proved the best in the augmenta-

9N2 5.77 6.54 6.67

Table 2: Comparison of Criteria in KBZ

tion heuristic, namely, the join selectivity, is the best weight
to use. The intuitions are similar to the ones we gave in ex-
plaining the result for the augmentation heuristic. We used
the criterion of join selectivity in the KBZ heuristic in the
other experiments. Thus, the heuristic is identical to the
one described in [KBZSS].

4.3 Local Improvement
Given an ordering or permutation of the relations, one can
improve the ordering as follows. Consider the first m re-
lations in the ordering. Among all valid permutations of
these m relations choose the best permutation. Apply the
same procedure to the next group of m relations and so on.
These groups of relations are termed clusters. This is done
until all the relations in the ordering have been considered;
the last cluster may have less than m relations. It is easy
to see that this strategy of local improvements will never
result in a more expensive join ordering. The heuristic of
improving a solution by exhaustive search in small clusters
is called the local improvement heuristic.

One pass suffices if there is no overlap between the dif-
ferent clusters. If overlap is permitted, several passes may

be necessary before no changes are seen in the join order-
ing. If the cluster size is m, the overlap can be at most
m - 1. Each pass will take a longer time as the overlap is
increased, but relations can be displaced farther from their
original positions in a single pass. Hence, fewer passes may
be necessary. Also, as the cluster size is increased the time
for a single pass increases rapidly (the complexity is that
of the factorial function). Therefore it may be possible to
perform such a local improvement strategy only for small
cluster sizes.

Let us denote a particular local improvement strategy by
(c,o), where c is the cluster size, o is the overlap, 2 5 c 5
(N + l), and 0 5 o 5 (c - 1). Experiments showed that the
search space increased too rapidly to go beyond c = 5 and
o = 4. After determining the time complexity of each local
improvement strategy, the best possible choices were found
to be (5,4), (4, 3), (3,2), (2, l), and (2, 0) depending on the
time available. That is, if there is sufficient time available
for one pass of (5, 4) one such pass should be performed,
else if there is sufficient time available for one pass of (4, 3)
one such pass should be performed etc.

4.4 Heuristics and Combinatorial Op-
timization Techniques

Given a certain length of optimization time, the quality of
the solutions obtained by the methods in that time will be
compared. This comparison process is repeated for different
optimization time limits. Each of the heuristics described in
the previous sections generates only a limited number of so-
lutions, and cannot take advantage of additional time that
may be available. For these reasons alone, it is necessary
to combine the heuristics with the techniques described in
Section 3. Another reason for studying different combina-
tions is to see which combinations lead to good results. We
also wish to compare such combinations with the simple
techniques given in Section 3.

We investigated a large number of combinations in our
experiments. We describe below only the combinations that
performed well (the rest are described in [Swa89b]). For
completeness, we first list simple iterative improvement and
simulated annealing.

II (Iterative Improvement) A random state generator is
used to generate start states for different runs of iterative
improvement (see Figure 1). When the stopping condition
is satisfied, the best of the local minima is chosen.

SA (Simulated Annealing) The random state generator is
used to generate the start state for the simulated annealing
algorithm (see Figure 2).

SAA The augmentation heuristic is used to generate a
single start state for the simulated annealing algorithm.

SAK The KBZ heuristic is used to generate a single start
state for the simulated annealing algorithm.

371

IA1 The augmentation heuristic generates the start
states for different runs of iterative improvement. If all the
states generated by the augmentation heuristic have been
utilized and the stopping condition is not yet satisfied, the
random state generator is used to generate start states for
further runs of iterative improvement. When the stopping
condition is satisfied, the best of the local minima is chosen.

IKI This combination is similar to IA1 except that the
KBZ heuristic is used to provide the start states for the first
set of iterative improvement runs.

IAL This combination is similar to IA1 except that af-
ter the states generated by the augmentation heuristic have
been utilized, local improvement is applied to the best of
the local minima obtained from the runs of iterative im-
provement.

AGI The augmentation heuristic is employed to generate
different states. If the stopping condition is not yet sat-
isfied, iterative improvement using the random state gen-
erator for obtaining start states is employed. When the
stopping condition is satisfied, the best of the local minima
and the states generated by the augmentation heuristic is
chosen.

KBI This is similar to AGI except that the KBZ heuris-
tic is used initially.

5 Evaluation Methodology
To compare the different optimization techniques, we need
to systematically generate a large number of queries. First,
we specify distributions for various parameters of the
queries. Generating random numbers according to these
distributions, we obtain values for these parameters for a
single query. Different queries are generated by specifying
different initial seeds. In this way, we can obtain a large
number of “random” queries.

N, the number of joins, is allowed to take values 10
through 100 (the number of joining relations is N + 1).
The join graph is generated in two steps as follows. We
first obtain a connected join graph using N joins so that
the permutation (1 2 3 . . . N N + 1) is a valid permutation.
Let S denote the set of relations that have already been
linked. Initially, S consists of the relation 1. We iterate
in numerical order over the relations 2 through N + 1; let
the current relation to be linked be denoted by i. We pick
a relation from S at random, link a’ with the chosen rela
tion, and add i to S. In the second step, a parameter called
the join cutoff probability is used. For each qualifying pair
of relations, if a generated random number is less than the
join cutoff probability, the two relations are linked by a join
predicate.

The relation cardinality is the number of tuples in a re-
lation. Each relation can have selection predicates that re-
strict the tuples of the relation that participate in joins
with other relations. The number of distinct values in a

join column is an important factor in determining the size
of intermediate results.

The features that characterize the queries generated are
distributed as shown below. These distributions constitute
the “default” distributions, and the benchmark synthesized
using these distributions is the “default” benchmark. The
motivations for choosing these distributions are explained
in [SG88].

l Relation Cardinalities
[lO,lOO) - 20%; [lOO,lOOO) - 60%; [lOOO,lOOOO) - 20%

0 Selections
The number of selection predicates per relation ranges from
0 to 2. The selectivities of the selection predicates were
chosen randomly from the following list:

0.001, 0.01, 0.1, 0.2, 0.34, 0.34, 0.34,
0.34, 0.34, 0.5, 0.5, 0.5, 0.67, 0.8, 1.0

l Distinct Values in join columns (as a fraction of the rela-
tion cardinality)

(0,0.2] - 90%; (0.2,1) - 9%; 1.0 - 1%

l Join Cutoff Probability = 0.01
In order to provide a more extensive comparison of the

different optimization methods, we varied the distributions
so as to generate more extreme kinds of queries. These
variations are divided into three classes. In the first class,
we vary the distribution of the relation cardinalities. In the
second class, we vary the distribution of the distinct values.
Finally, we changed the manner in which the join graph was
generated. In each class, three variations were used. When
varying the distribution of one feature of the synthesized
benchmark, the other distributions were kept the same (as
in the default benchmark).

Relation Cardinalities The first variation is like the
default distribution except that the range of the cardinali-
ties is increased by a factor of 10. The increase in the range
is of interest for two reasons. It can result in wider dispar-
ities in relation sizes, potentially decreasing the number of
good QEPs. Also, it results in more disk accesses in the
disk based cost model.

In the second variation, the distribution is replaced by
a uniform distribution over the range of cardinalities. This
serves to model situations where nothing is known about the
distribution of the relation cardinalities. The third varia-
tion is a combination of the first two variations. As in the
first variation, the range is increased by a factor of 10, and,
as in the second variation, a uniform distribution is used
over the range of cardinalities.
l [10,103) - 20%; [103,104) - 60%; [104,105) - 20%
l [10,104) - uniform distribution
s [10,105) - uniform distribution

Distinct Values In the first variation, there are more
join columns with a larger number of distinct values. This
results in smaller intermediate results on the average and
may increase the fraction of good QEPs. The second varia-
tion is like the default distribution except that the range at
the low end is decreased resulting in lower number of dis-
tinct values on the average. This has the effect of increasing

372

the average size of intermediate results, and makes the job
of the optimizer harder since fewer QEPs are likely to be
good.

The third variation is like the first variation, except that
the range at the low end is decreased as in the second vari-
ation. Though these variations appear similar, one should
note that small changes in the number of distinct values
can lead to large changes in result sizes.
l (0,0.2] - 80%; (0.2,1) - 16%; 1.0 - 4%
0 (O,O.l] - 90%; (O.&l) - 9%; 1.0 - 1%
l (O,O.l] - 80%; (O.l,l) - 16%; 1.0 - 4%

Join Graph In the first variation, the join cutoff prob-
ability is increased. This means that the queries have more
join predicates. As a result the optimizer may have to de-
vote more time in generating individual QEPs. In the sec-
ond and third variations, we change the manner in which
the initial spanning tree is generated, thus changing the
space of QEPs by changing its size and the fraction of good
QEPs. Also, the last two variations generate important
kinds of queries which are good tests of query optimizers.

In the second variation, the generation of the join pred-
icates is biased towards generating “star-like” join graphs.
In these graphs, a few relations are joined to a large num-
ber of other relations. This increases the size of the search
space. In the third variation, the generation of the join
predicates is biased towards generating “chain-like” join
graphs. In these graphs, all relations are joined to only
a few other relations. This decreases the size of the search
space.
l No bias, Join Cutoff Probability = 0.1
s Bias towards star graphs, join cutoff probability = 0.01
l Bias towards chain graphs, join cutoff probability = 0.01

6 Experimental Results
The different methods were coded in C, and the experiments
were run on very lightly loaded HP 9000/350 workstations.
The workstation is based on a 25 Mhz 68020 processor,
and is approximately a 4 MIPS machine. Note that the
optimizer simulations are completely CPU bound; memory
requirements are negligible compared to the main memory
of the workstations.

For most experiments, we used 50 different queries for
each of N = 10,20,30,40,50, giving a total of 250 dif-
ferent queries. Each algorithm was run twice on each
query (using different initial seeds), thus giving two repli-

cates per query which were then averaged. For some ex-
periments, we used 50 different queries for each of N =
10,20,30,40,50,60,70,80,90,100, giving a total of 500 dif-
ferent queries. The entire set of experimental runs took
about 5000 hours of CPU time.

The majority of the experiments were performed using
the default benchmark and the main memory cost model de-
scribed in [Swa89a]. In the experiments where we changed
the synthesized benchmarks, the cost model was left un-
changed. Finally, in one set of experiments, we changed

the cost model to a disk based cost model similar to the
one described in [Bra84].

6.1 Comparison of Algorithms
All the experiments described in this section were con-
ducted using the default benchmark and the main memory
cost model. Unless otherwise indicated the experiments use
the benchmark of 250 queries over N = 10 to 50. The exper-
iments were performed for different time limits. The time
limits are proportional to N’. At 9N2, the time limit for
N = 50 is 7.5 minutes. The costs of the solutions obtained
for each query at a particular time limit were scaled by di-
viding by the best solution costs obtained at the time limit
of 9N2.

For each technique, we can obtain the mean of the scaled
solution costs obtained by that technique. Then, to com-
pare the different techniques, we can simply compare the
means of the scaled solution costs. The problem with this
is that the mean is not a very robust statistic. It can be
easily distorted by a few extreme values. An important
intuition in query optimization research is that beyond a
certain threshold, the ezact scaled cost of the QEP is unim-
portant. For example, if we regard a QEP as useless if it has
a scaled cost of 10 or greater, we do not wish to distinguish
between two QEPs, one having a cost of 10, and the other a
cost of 100. However, we need some measure like the mean
for comparing the different optimization methods.

To resolve this problem, we define the notion of an out-
lying value. An outlying value is a final solution cost (ob-
tained by some technique) which is much higher than the
best solution cost. Intuitively, a technique performs poorly
on a particularly query if the solution cost obtained by the
technique is an outlying value. In our experiments we de-
fine a solution cost to be an outlying value if it is at least
10 times the best solution cost.

All outlying values are coerced to have a value of 10. This
agrees with our intuition that once a solution is considered
poor, we are not much interested from a practical point of
view in how poor it is. Also, by not including the outlying
values directly in the computation of the mean, we ensure
that they do not skew the mean too much. The scaled so-
lution costs after suitable trimming were averaged over the
250 queries to obtain one data point for a single algorithm
at a particular time limit.

In Figure 4, we present the results of our first set of exper-
iments comparing the nine methods described in Section 4.
Note that all the methods show very little improvement
near the time limit of 9N2. This indicates that we are
comparing the methods over a reasonably comprehensive
range of time. We see that IA1 is superior to all the other
methods over almost the entire range of time. For the time
limits less than l.5N2, AGI and II appear to be better.
Note that the combinations using simulated annealing are
clearly inferior. In the remaining experiments, we decided
to concentrate on the top five methods, namely, IAI, AGI,
II, IAL, and KBI.

In Figure 5, we compare these five methods using the
benchmark of 500 queries over N = 10 to 100. The or-

373

6

A

E 5
r

9”
e

s 4
C
a
1
e
d 3

C
0

:
s 2

1

6

A
V

F 5

g”
e

: 4
a
1

ii
3

C
0

f
s 2

1

oIA1 +AGI sI1 oIAL uKB1
l IK1 *SAK aSAA @SA

F

* :
‘, ‘.

a. ‘..‘..

9
-.:

‘Z..

‘.
:::;e.:

‘0..

::::+;

Q.

:::!(

“.._

--i/l

;Q.:;;; . . .
8s:. Q

‘. .,

2,::
. . .

3
.o

0.3 1.5 3 4.5 6 7.5 9

Time (N’)

Figure 4: All Methods

oIA1 +AGI sI1 oIAL uKB1
U

. .
+.

0

2:: 'S....

i ; ;g : :

'O...:

"...._,
"...:g::.,.

"".....,,,,
"...., .-j-....

.,, .'..._
. . ".., '.O.....

".O.....

.‘..V,/,

._
:::::. s .o
““.,.

0.3 1.5 3 6 9

Time (N’)

Figure 5: Larger Benchmark

dering among the methods is unchanged. Again, we note
that AGI and II are better than IA1 for small time limits.
This is of interest because for optimizing ad hoc queries or
queries that will be run only a few times, it is worthwhile
identifying methods which do well (comparatively) at small
time limits (even if they are inferior at larger time limits).

Hence, we decided to study the region of time from 0.3N2
to around 1.5N2 in greater detail for the three methods
IAI, AGI, and II. The results for the benchmark of 500
queries are shown in Figure 6. We see that AGI is the
method of choice until about 1.8N2. After this time limit,
IA1 is better. The intuition behind the better performance

5

A
V
e
r

g”
e

S

Ii 4
1

ii

C
0
S
t
8

3

o IA1 + AGI s II
0

s ‘.

‘.
‘0

I I I I I I

0.3 0.6 0.9 1.2 1.5 1.8 2.1

Time (N’)

Figure 6: Small Time Limits

of AGI at smaller time limits is that it permits exploration
of many more join orderings obtained using the augmenta-
tion heuristic. IA1 expends time on runs of iterative im-
provement, and is unable to consider as many join orderings
from the augmentation heuristic. This also indicates that
the augmentation heuristic generates fairly good join order-
ings.

6.2 Changing the Cost Model
We replaced the main memory cost model with a disk based
cost model, and compared the methods using the bench-
mark of 250 queries. From Figure 7, we see that there is
no alteration in the ordering among the methods. AGI is
preferable for small time limits and beyond about 1.5N2,
IA1 should be used. This implies that the characteristics of

374

the query plan space have not changed significantly when
the cost models are changed.

5

A
V

f 4

g”
e

S
C
a 3
1

i

C
0

f 2
S

1

o IA1 + AGI s II o IAL u KBI n

I I I I I I I

0.3 1.5 3 4.5 6 7.5 9

Time (N’)

Figure 7: Disk Cost Model

6.3 Changing the Benchmarks
We then compared the methods using the nine different
benchmarks described in Section 5. We show the results
in Table 3. These experiments were carried out at the

7 1.02 1.10

8 1.23 1.44

9 1.33 1.56

AGI 1 KBI 1 II

2.50 2.65 2.83

Table 3: Changing the Benchmarks

time limit of 9N2. The benchmarks are numbered from
1 through 9 in the order they appear in Section 5. The first
three rows show the results for the benchmarks in which the
distributions of the relation cardinalities were varied. The
next three rows correspond to changing the distributions of
the distinct values, and the last three rows depict the out-
comes for the different ways in which the generation of the
join graph was changed. We see that IA1 continues to be
the method of choice irrespective of the benchmark used.

6.4 Discussion

In explaining these results, one should note that II was
shown to be the best of the general combinatorial optimiza-
tion techniques in [SG88]. We find that in the best com-
binations here, iterative improvement is used. Simulated
annealing alone and the combinations involving simulated
annealing are clearly inferior. One possible explanation of
these results is that the solution space has a large number of
local minima, with a small but significant fraction of them
being deep local minima. Iterative improvement using the
random state generator for generating the start states can
traverse large regions of the search space and thus stands a
good chance of finding one of the deep minima.

When aided by the augmentation heuristic, as in IAI,
iterative improvement works even better. The heuristic
provides (on the average) better starting points than the
random state generator. For small time limits, it is likely
that, in IAI, too much time is expended on reaching unprof-
itable local minima. Hence, all the states which could be
generated by the augmentation heuristic are not explored.
Here AGI does better by first allowing for the generation
of states by augmentation heuristic, and then employing
iterative improvement.

The results regarding the KBZ heuristic are not encour-
aging. It is a complex heuristic that takes much longer
to generate a single state than the augmentation heuris-
tic. This probably explains why the KBZ heuristic does so
badly at small time limits. In comparison, the augmenta-
tion heuristic is trivial to implement. The local improve-
ment heuristic also did not prove very useful. We only
showed the results for IAL; the other methods in which
local improvement was used were even less effective.

7 Summary
The problem of optimizing large join queries is a hard
combinatorial optimization problem. In a previous paper
[SG88] we discussed the use of general combinatorial op-
timization techniques such as iterative improvement and
simulated annealing to attack this problem. In this paper
we study the use of heuristics to optimize large join queries,
combining them profitably with iterative improvement and
simulated annealing.

We discuss three heuristics, namely, augmentation, KBZ,
and the local improvement heuristic. We experiment with
a number of different combinations of these heuristics with
the techniques of iterative improvement and simulated an-

375

nealing. We find that two combinations of iterative im-
provement and augmentation, namely, IA1 and AGI per-
form best. Of these, IA1 is the method of choice, except
for small time limits when AGI is better. These results
are unchanged when the main memory cost model was re-
placed by a disk based cost model. The ordering among
the methods was also unaffected by the different synthetic
benchmarks used.

Note that iterative improvement is one of the simplest
combinatorial optimization techniques. The complex opti-
mization technique of simulated annealing and its combi-
nations do not fare well in the comparisons. Similarly, the
augmentation heuristic is the simplest among the different
heuristics discussed. Local improvement and the even more
complex KBZ heuristic do not perform as well. These re-
sults lead us to speculate that until significant new insights
are obtained into the characteristics of the search space,
it will not be profitable to experiment with very complex
methods for optimization.

Our work can be extended by incorporating join meth-
ods other than the hash join method. The distribution of
solution costs in the space of valid solutions is of interest
and is being investigated. Finally, the search for newer and
improved heuristics usually never ends. We believe that our
work provides a framework within which candidate heuris-
tics can be compared with the methods we recommend in
this paper.

Acknowledgements
Prof. Gio Wiederhold, Prof. Anoop Gupta, and Jonathan
Rose contributed to the work by way of stimulating discus-
sions. The author thanks them, Peter Lyngbaek, Marie-
Anne Neimat, and Waqar Hasan for providing useful com-
ments on earlier drafts. The research is supported by
Hewlett-Packard Laboratories under the contract titled
“Research in Relational Database Management Systems”
and, earlier, by DARPA contract N00039-84-C-0211 for
Knowledge Based Management Systems.

References

[Bra841 K. Bratbergsengen. Hashing Methods and Rela-
tional Algebra Operations. In Proceedings of the
Tenth International Conference on Very Large
Data Bases, pages 323-333, Singapore, Singa-
pore, 1984. Morgan Kaufman.

[DKO+84] D. J. Dewitt, R. H. Katz, F. Olken, L. D.
Shapiro, M. R. Stonebraker, and D. Wood.
Implementation Techniques for Main Memory
Database Systems. In Proceedings of ACM-
SIGMOD International Conference on Manage-
ment of Data, pages 1-8, June 1984.

[FBCt87] D. H. Fishman, D. Beech, H. P. Cate, E. C.
Chow, T. Connors, J. W. Davis, N. Derrett,
C. G. Hoch, W. Kent, P. Lyngbaek, B. Mahbod,

[IW87]

[JAMS871

[JK84]

[KBZSS]

[SAC+791

[SG88]

[Swa89a]

[Swa89b]

[vi1871

M. A. Neimat, T. A. Ryan, and M. C. Shan.
Iris: An Object-Oriented DBMS. ACM Trans-
actions on O&e Information Systems, 5(1):48-
69, January 1987.

Y. E. Ioannidis and E. Wong. Query Optimiza-
tion by Simulated Annealing. In Proceedings
of ACM-SIGMOD International Conference on
Management of Data, pages 9-22, 1987.

D. S. Johnson, C. R. Aragon, L. A. McGeoch,
and C. Schevon. Optimization by Simulated
Annealing: An Experimental Evaluation (Part
I). Draft, June 1987.

M. Jarke and J. Koch. Query Optimization in
Database Systems. ACM Computing Surveys,
16(2):111-152, June 1984.

R. Krishnamurthy, H. Boral, and C. Zaniolo.
Optimization of Nonrecursive Queries. In Pro-
ceedings of the Twelfth International Confer-
ence on Very Large Data Bases, pages 128-137,
Kyoto, Japan, 1986. Morgan Kaufman.

P. Selinger, M. M. Astrahan, D. D. Chamber&r,
R. A. Lorie, and T. G. Price. Access Path Selec-
tion in a Relational Database Management Sy5
tern. In Proceedings of ACM-SIGMOD Inter-
national Conference on Management of Data,
1979.

A. Swami and A. Gupta. Optimization of
Large Join Queries. In Proceedings of ACM-
SIGMOD International Conference on Manage-
ment of Data, pages 8-17, 1988.

A. Swami. A Validated Cost Model For Main
Memory Databases. To appear in Proceedings
of ACM-SIGMETRICS Conference on Mea-
surement and Modeling of Computer Systems,
May 1989.

A. Swami. Optimization of Large Join Queries.
PhD thesis, Stanford University, 1989. Draft in
preparation.

E. E. Villarreal. Evaluation of an O(N*)
Method for Database Query Optimization.
Master’s thesis, The University of Texas at
Austin, May 1987.

376

