
CORRECTING EXECUTION OF DISTRIBUTED QUERIES

P. BODORIKt, J. PYRAt and J.S. RIORDONtt

tSchoo1 of Computer Science,
Technical University of Nova Scotia,

P.O. Box 1000, Halifax, Nova Scotia,
B3J 2X4, Canada

ttDept. of Systems and Computer Engineering,
Carleton University,

Ottawa, Ontario, KlS 5B6, Canada

ABSTRACT

results processed by a sub-optimal heuristic. [Daniels, 1982;
Selinger, 1980; Lohman, 1985; Mackert, 1986a, 1986b]
describe query optimization in System R*.

Algorithms for processing distributed queries require &
estimates of the size of intermediate relations. Most such
algorithms take a “static” approach in which the algorithm is
completely determined before processing begins. If size
estimates are found to be inaccurate at some intermediate stage,
there is no opportunity tore-schedule, and the result may be far
from optimal. Adaptive query execution may be used to alleviate
the problem. Care is necessary, though, to ensure that the delay
associated with re-scheduling does not exceed the time saved
through the use of a more efficient strategy. This paper presents
a low overhead delay method to decide when to correct a
strategy. Sampling is used to estimate the size of relations, and
alternative heuristic strategies prepared in a background mode
are used to decide when to correct. Correction is made only if
lower overall delay is achieved, including correction time.
Evaluation using a model of a distributed data base indicates that
the heuristic strategies ate near optimal. Moreover, it also
suggests that it is usually correct to abort creation of an
intermediate relation which is much larger than predicted.

1. INTRODUCTION

Although researchers are currently turning their attention to
multi-query optimization [Cellary, 1980; Ounegbe, 1983; Carey,
1985; Kim, 1985; Reuter, 1986; Su, 1986; Sellis, 19881 and
adaptive query processing, most research on distributed query
processing assumes a single query environment and static
processing. Furthermore, most research concentrates on an
important class of queries, Select-Project-Join (SPJ) [Ceri,
1984; Yang, 19871. Use of semi-joins in optimizing SPJ type
queries has received a great deal of attention [Hevner, 1979,
1980; Bernstein, 1981; Apers, 1983; Yu, 1982, 1983, 1985;
Perrizo, 1984; Ceri, 1986; Masuyama, 1987; Otoo, 19871.
Although use of semi-joins has been widely accepted as a good
processing tactic, it has also been recognized [Epstein, 1980;
Lafortune, 19861 that semi-join and generalized join processing
tactics must integrated. Epstein et al. [19781 proposed one of
the earliest methods which uses joins as a processing tactic; it
results from is an adaptation of INGRES to the distributed
environment [Epstein, 19861. A join processing heuristic
algorithm for the ADD system [Mahmoud, 19791, first
decomposes a query into “Class A” sub-queries which produce

This work has been supported in pan by a grant from the Natural Sciences
and Engineering Research Council of Canada.

After a user query is parsed and transformed into a canonical
form [Ceri, 19841, an optimizing algorithm is used to form a
strategy, i.e., a specification of the sequence and locations of the
individual relational operations whose result satisfies the query.
Optimization is carried out on the basis of a specified cost
function, typically related to processing and/or data transfer
delay [Bodorik, 1988al. The strategy is distributed to cohorrs,
that is, to those information processors which participate in its
execution.

In static processing a strategy is not modified once its
execution begins. Static processing thus relies on accurate
estimation of parameters characterizing the query and the
distributed environment in which it is processed. In particular, it
relies on estimates of the size of intermediate results [Epstein,
1980; Bernstein, 1981; Wong, 1982; Yu, 1982;
Christodoulakis, 1983; Chao, 1986; Vander Zanden, 1986;
Ijbema, 1986; Hwang, 1987; Bell, 19891, that is relations
produced by executing relational operators such as joins. It also
relies on estimates of the cost of processing and transmission
over the network [Yu, 19861. If estimates are inaccurate, the
strategy may be far from optimal.

There are two possible approaches to dealing with this
problem. One is to seek accurate estimates. Despite much effort
in this direction, they are often unobtainable; moreover the
attempt is expensive in terms of the size and maintenance of the
required statistical data. Various types of adaptive (dynamic)
query execution techniques comprise the second approach
[Nguyen, 1981; Yu, 1983,1986; Bodorik, 1988b, 1988~1.
Execution of a strategy is monitored, if at some intermediate
stage a priori estimates used in its optimization prove to be
inaccurate, corrections am made with updated information.

Two general decision making methods have been proposed
thus far to decide when to correct a strategy [Bodorik, 1988b].
In reformulation the unexecuted portion of the strategy is
reformulated at every intermediate stage using available updated
information. If the new strategy is estimated to reduce cost then
correction is appropriate. In the second method reformulation
occurs only when intermediate results exceed a predetermined
threshold or lie outside a specified band of values. [Nguyen,
198 l] uses the average size of intermediate results as one single
dynamically updated threshold for the whole query. [Bodorik,
1988b] refines this approach by the use of one threshold value
per intermediate result; however, these values are not updated
dynamically. [Bodorik, 19891 addresses both the monitoring

192
CH2895-1/90/0000/0192$01.00O1990lEEE

and execution phases of strategy execution. Available methods
are identified for each phase; these am analyzed in terms of
overhead, complexity and accuracy of information used in
correcting.

This paper presents a low overhead delay method to decide
when to cormct a faltering strategy. During execution,
alternative strategies are prepared. These may be invoked if they
reduce execution time, including overhead delay. A key
problem is the preparation of an adequate alternative strategy
when the estimation error is unknown. It is proposed that
sampling methods [Vitter, 1985; Olken, 19861 be used to predict
the size of a join result before it is complete. After a fraction of
the join is completed, sampling is used to predict the size of the
result. If it is higher than the initial estimate and the alternative
strategy is expected to reduce delay, then the original strategy is
discarded and the alternative one introduced. The join which
produces the larger-than-expected relation is also aborted. The
proposed method is evaluated using a model of a Distributed
Data Base (DDB).

2. ASSUMPTIONS

A query is assumed to be a tree query in a conjunctive normal
form such that each term has at most two relational variables.
This is a typical approach since it simplifies query representation
but does not greatly reduce their expressiveness [Ceri, 19841.
The twovariable terms are processed by joins. As in [Selinger,
1980; Kumar, 19871, two relations are considered for joining
only if they have a term present in the query. It is assumed that
the values of attributes are distributed uniformly and
independently of each other. The query’s terms am also
assumed to he independent in that no predicate is implied
through others via transitivity. For each two-variable term Ri
AND R], there exists a selectivity factor which determines the
expected fraction of tuple pairs from Ri and R’ which satisfy it
[Epstein, 1980; Bernstein, 1981; Wong, 198 1 I. These
assumptions imply that an intermediate result of evaluating a set
of predicates has a cardinal@ which is the product of the
predicates’ selectivities and the cardinalities of relations referred
to by these predicates. Restrictions and projections are assumed
to be locally optimized and executed as quickly as possible in
order to reduce the sizes of relations involved in the query [Ceri,
1984; Lafortune, 19861.

In this paper the optimization objective is miniization of
query response time. The result of a relational operator
execution is transferred to another network location only when it
is completely formed. Consequently pipelining, which may
improve the query response time, is not considered. Although
the paper does not explicitly consider semi-joins as a processing
tactic, the proposed method is applicable to the environment in
which the join and semi-join tactics am integrated [Lafortune,
19861.

3. PROPOSED (AJL) METHOD

To minimize delay, the decision to correct should be
computationally simple and, moreover, a corrective strategy
should already exist when it is decided to correct. The proposed
method to formulate alternative strategies, termed the Aborted
Join Last (AJL) method, satisfies both of these requirements.
An alternative strategy is prepared for each intermediate
tesult/relation before it is actually formed by a relational
operation. whenever such a relation is formed, the delay of the
strategy under execution is estimated using the information on its
new size. If the estimated delay of the current strategy is higher

than that of the alternative one, then it is aborted and the
alternative strategy is instituted. The difficulty here, of course,
is the formulation of an alternative strategy. It is formulated
concurrently with the execution of the current strategy and
before the size of the intermediate result in question is known.
The proposed solution avoids the necessity of computing an
intermediate result by using sampling [Vitter, 1985; Olken,
19861. It proceeds as follows:

1. Given a query, a formulator/optimizer is used to derive a
processing strategy. The latter is distributed to cohorts which
then cooperate in transferring relations and executing relational
operations according to the strategy’s instructions.

2. Concurrently with the strategy’s execution, an alternative
strategy is formed for each intermediate result.

3. During the course of a join execution sampling methods
are used to estimate the size of the result. This estimate is then
used to update the estimated delay of the cutrent strategy and
compare it with the delay of the alternative strategy. If the
alternative strategy has a lower expected delay, correction takes
place; the current strategy is aborted and the alternative strategy
is adopted Otherwise the original strategy is allowed to
continue.

Note the diierence between the size estimation performed in
the initial Query Processing Strategy (QPS) phase and the
proposed sampling when a join is being performed. The former
uses simplifying assumptions, such as a uniform distribution of
attribute values, independence of joining attributes and some
simple statistical information such as a selectivity factor. The
latter is based on samples of actual values from currently
retrieved tuples, which should provide more accurate estimates.
Increasing the sample size increases the confidence in accurate
size prediction, but this is at the expense of higher overhead
delay.

ALTERNATlVE STRATEGY

The proposed method is applicable to SPJ tree queries
(sub-queries) which are processed by a join processing tactic. It
is a simple method based on the following observation.
Consider the situation in which sampling indicates that an
intermediate result will be larger than expected. If, as a
consequence, this results in a correction, an optimal corrective
strategy tends to postpone the manipulation of the relation in
question. The proposed method postpones a join which
produces much larger than expected relation to the very end of
the strategy.

The method is presented using query graphs. Consider a
query in graph form in which vertices represent relations and
edges represent the two-variable terms (Figure l(a)). A strategy
for this query is shown in a tree form in Figure l(b). Under the
stated assumptions, a join is identified by the two-variable term
which it “processes”. For example, a join of R3 with Rq
“processes” the two-variable term (R3.e 83 R4.f).

Postponing a join to the end of a strategy implies, of course,
that its operands are created first. Because of the assumption
that the query is of a tree type, each operand is a result of a
separate sub-query, i.e., each sub-query is represented by a
sub-graph, such that the two sub-graphs are disconnected. In
reference to Figure 1, for instance, postponement of the join to
process the term “R3.e 83 R.&’ to the end of the strategy
implies that its operands are produced by sub-queries shown in
Figure 2(a) within the context of the original query. Clearly, for
a strategy to process a tree query, the postponement of a join to

193

V W X Y Z

V.W.X,YandZ~ndwo*locations; B,.i= 1.2.3 and 4 art arithmetic relational opmators

6) w~graphfor (R1.a 81 R 2.b) A (R2.c 82R 3.d) A (R3.e 83 R 4.f) A (R4.g 84 R 5.h)

y R

0
Jo&in Y

Figure 1

w X Y

(b) Stmtegy mprescnted by a tm.c

A query and a strategy to process it

/ -------

[r-$ @‘.= el~~.y--g2.c BzR3.q+ e3R4.0

W x / \ Y

Join in V resulting in R, 1

\ L---- 1’ -- - ---- \ ------’

sub-query Qa sub-query Qb

(a) Distinct subqueries to derive operands for the post-poned join

(b) Sub-queries with completed intermediate results
which were in progress at the time of decision

(c) Alternative strategy

Figure 2 Sub-queries and alternative strategies

the end of a strategy implies that its two
operands are results of two distinct sub-
queries which are mutually exclusive with
reference to the relations of the original
query. Moreover, the formulation of
alternative strategies uses estimates of
intermediate results which shouId already
be formed when the decision to correct is
made. With the exception of the sampled
joins, operations in progress at the time
of the decision are permitted to complete.
Consequently, the sub-queries which
produce the operands for the postponed
join to process the term “R3.e 03 Q.f
are such that the join of Rl with R2 and
the transfer of the relation Rs from Z to Y
am assumed to be completed as planned
for the original strategy. The sub-queries
and the alternative strategy are shown in
figures 2(b) and 2(c), respectively.

Recall that an alternative strategy is
formed for each of the intermediate
results. The alternative strategy for the
relation Rt2, which is the result of the
join of R3 with lQ, consists of two
sub-strategies to derive the operands of
the final join, plus the final join. Each of
the two sub-strategies is prepared in a
background mode, that is, concurrently
with the execution of the original
strategy. In addition, an equation is
prcparcd to determine the delay of the
final join of the alternative strategy. It is
used to quickly estimate the delay of the
alternative strategy when the size of the
result is estimated using sampling. A
brief example in the subsequent section
should clarify the above statements.

4. MODELED ENVIRONMENT

The alternative strategies described above
are heuristic and hence sub-optimal.
Modeling was used to compare the
proposed method to other methods
including those which use optimal
strategies. This section describes the
modeled distributed environment and
determination of processing and data
transfer delays.

Relations are assumed to be complete
and unique as in modeling reported in
[Sacco; 1984, Segev, 1984, Lafortune,
19861; that is, there is no fragmentation
or replication of data. Relations ate
located in distinct network locations. A
query is assumed to be a tree Select-
Project-Join (SPJ) query. Recall that
each term has a selectivity factor which is
used to determine the size of a join result.

194

In order to provide a broad base of varying types of queries
(within the assumptions adopted of SPJ queries), all possible
configurations of join graphs for queries involving between two
and five joins (three and six relations) were determined. Only
those queries with unique join graph shapes were considered.
Fifty two queries were modeled such that the cardinalities of
relations, ranging from ten tuples to one hundred thousand
tuples, and the selectivities, ranging from 0.1 to O.CKKll, were
randomly determined. All relations were assumed to have
equivalent average size per tuple (as in [Kerschberg, 19823) of
fifty bytes .

The network delays are directly proportional to the volume
of transferred data. The unit cost of a network transfer is
represented by a matrix in which each element represents the
cost/delay to transfer a unit of data (byte) between two network
locations. Two types of network environment comparable to
those used in [Mackert, 1986a] were modeled, they differ in the
data transfer rates: one corresponds to a long haul network with
data transfer rates ranging from 2400 to 19200 bps, while the
other conesponds to a local area network with an average data
transfer rate of between 1 and 4 Mbps.

Join delays, which are assumed to be directly proportional to
the volume of data accessed through secondary storage devices,
are determined as in [Mackert, 1986al on a ‘per tuple’ basis.
The average join involves some combination of the following
essential operations depending on the exact join method used:

(i) disk access;
(ii) internal transfer, and
(iii) comparison.

Different join processing methods vary in the amount of disk
access and processing time they require. For simplicity, it is
assumed that each tuple of the result and some combination of
the tuples of the operands, as determined by the algorithmic
complexity of the join method used, contribute a constant factor
to the overall delay of executing the join. The constant factor is
the time required to perform the essential operations and a disk
access. Five machine instructions are assumed to suffice to join
two tuples and execution proceeds at a rate of of 0.0004
msec/insmtctions (comparable to IBM 4381 CPU processing).
The secondary storage I/O time is estimated as a sum of the
average seek, latency and transfer times per page of data, such
that each page is 2 Kbytes. The secondary storage device
statistics were derived from an IBM 3380 disk with I/O time of
0.02348 seconds per page of data. A join is assumed to be
executed using one of the following methods: Nested-loop with
algorithmic complexity of O(mn+r), (perfect) Hashing without
misses with a complexity of O(m+n+r) and Indexed method
with a computational complexity of O(n log n + m log n + r); m
and n are cardinalides of the operand relations, and r is the
cardinal@ of the join result. Hashing without misses, or perfect
hashing, implies that there is no overflow of buckets. One
relation is hashed into buckets. For each tuple of the other
relation, hashing is used to find the bucket containing tuples for
joining. For the index method, an index is first buih on one (the
smaller) of the operand relations with a cardinality of n. This
index is then used to find appropriate tuples to be joined with
each tuple of the other relation with the cardinality of m.

Due to the space limitation, the following report will
concentrate on reporting the results of modeling the type of
environment in which joins are executed using the indexed join
method and data transfer delays are for a long-hauled network.
Note that the indexed method is “representative” under the
adopted assumptions: it is better than the nested-loop method,
but worse than the hashing method without misses. Results of

modeling the other join and data transfer methods will also be
high-lighted.

5. MODELING METHOD AND NOTATION

Recall that as the proposed method prepares alternative strategies
in which aborted joins are last; it is called Aborted Join Last
(AJ&$~thcd. It shall be compared with the following

Abort Join Optimal (AJO): This method is theoretically
“optimal”, but not realizable. It is similar to the proposed
AJL method, but assumes perfect a priori knowledge of the
intermediate result size just before the join execution
commences. Without overhead delay, a new corrective
strategy is formulated and executed for the remaining
unprocessed portion of the strategy. The new strategy may.
of course, be the same as the original one.

Complete Join Optimal (CJO): This is identical to the AJO
method with the exception that the join is not aborted. Only
when the join is completed is a new strategy formulated and
instituted (without delay) for the remaining unprocessed
portion of the strategy.

Static Optimal (SO): The strategy execution is static.

It should be noted that although a join which produces a
larger-than-expected relation is aborted in the AJL and AJO
methods, all other operations which are in progress at the time of
this abort and correction are permit&d to complete. This applies
to all adaptive processing methods. [Bodorik, 1988c] has found
that such an approach leads to lower delays in comparison to
aborting all operations which are in progress at the time of the
correction.

An optimizing algorithm which formulates a QPS estimates
two parameters: size (cardinality) of relations produced by
relational operations, and average delays due to relational
processing and data transfer. Since it was shown in [Bodorik,
1988c] that the former are far more critical than the latter, only
inaccuracies in size estimation are modeled. To find the effects
of inaccuracies in estimating the size of intermediate results on
the query response time, the size of intermediate results, one at a
time, is increased by a certain factor. How the strategy’s
execution delay (query response time) is affected is determined
under the assumption that all parameters, with the exception of
the size of the one intermediate result under consideration,
remain unchanged. The modeled strategy execution may be
either SO (static) or adaptive with one of the AJL, AJO or CJO
methods.

Consider a query i pmcessed by the minimal response time
strategy which forms Ml intermediate results. For each
intermediate result, one at a time, its size is increased by a factor
of y (multiplied by y). The strategy execution delay is then
found assuming static Processing and also adaptive processing
with the previously described methods. The average increase in
delays is found for each query and over all of the modeled
queries. This is performed using various values for the factory.
In order to remove the effects of queries with high response
time, what is actually measured is the factor by which the query
response time is increased. Let

T,a(i,j,y]. . .delay of query i such that the size of the jtt’t
intermediate result of its strategy is increased by a factory.
Depending on the subscript a, the strategy execution is
assumed to be either static or adaptive. The subscript p,

195

O=$Sl, which appIies only to the proposed AJL method,
denotes the fraction of the ioin used bv the samnlina method to
determinethe sizeof thejoinresuh: . a -

a = “So” . . .the strategy execution is static
= “AJL”. . the strategy execution is adaptive using the AJL

method
= “;;AJ;.t.he strategy execution is adaptive using the AJO

= “glkthe strategy execution is adaptive using the CJO

p . . . if a =“AJL”, then p, 0 < p S 1, is the fraction of the join
used for sampling;

. . . NA for Not Applicable if a # “AJL”

AJO method: Before the join of R3 with R4 commences,
shown as time tNo in Figure 3(b), it is assumed that the actual
size of the relation Rt2 becomes known. An optimal strategy
is formulated and instituted for the unprocekl portion of&e
query without any overhead delay.

AJL method: The actual size of the relation RI2 is predicted
using sampling after completing the traction p of the join of R3
with IQ. Assume that this occurs at time tAn, as shown in
Figure 3(b). Using this predicted size of R12, the execution
delays of the current and the alternative strategies are estimated
for the unexecuted portion of the query. If the alternative
strategy is estimated to lead to a lower delay than the current
strategy, correction takes place: the current strategy is aborted
and the alternative one is instituted. Modeline is such that the
alternative strategy delay includessm-1~11
(the time ueriod between the start of the ioin of Rq wi$ R4,

p: de&
Fsa{ i,y) . . .the average increase (expressed as a factor) in the

execution delay of the strategy for the query i, such that
intermediate results have their sizes increased by a factor y.
The type of processing depends on the subscripts a and g:

Mi
Fa,p(i,y) = Fl (Ta,p(i&y) 1 T=,p(W)) 1 W

Note that T,,p (i&l) is the strategy execution delay under
the assumption that alI estimates on which the strategy is based
are wrrect and it therefore does not depend on whether the
strategy execution is static or adaptive. Finally, average
increases over all queries are defined:

E,b{ y) . . .denotes the average increase, expressed as a factor,
in the execution delay over all queries i = 1.2,. . .,N, where N
is the number of queries:

Ea,p(Y) = “c Fa,p(LyJ 1 N
i=l

FXAMPLE

Consider the example of Figure 1. The query is shown in
Figure I(a), while its initially formulated, optimal strategy is
shown in Figure l(b) in a “tree” format. Since for the purposes
of the example the timing considerations are important, the
strategy is represented by a timing diagram in Figure 3(a).
Consider now the join of relations R3 with R4 and assume that
its result, the relation R12, has cardinal@ (and therefore size)
which is higher than estimated in the initial formulation. In the
evaluation technique, this is simulated by multiplying the size of
the relation RI2 by a factory. The query’s delay is then
determined depending on the method of processing as discussed
below.

-method: If static processing is assumed then the strategy
execution delay is calculated using the “increased” size of the
intermediate result under consideration (relation RIZ). This
implies that the execution delays of joins of R3 with R4. R12
with Rg, and R21 with RI 1 are also affected by this size
increase. Had the relations RI2 or R21 been transferred then
these transfer delays would also have been affected. The join
of R3 with IQ is affected because the join execution delay
depends not only the size of its operands and the execution
method, but also on the size of the relation it produces. The
strategy’s timing diagram as affected by this size increase is
shown in Figure 3(b).

which ha&ens to be tM0, and tm). How the overhead delay
to abort the current strategy and institute the alternative one
affects the response time will be examined in a later section.

CJO method: After the completion of the join which produces
the intermediate result R12, an optimal strategy is formulated
and instituted without any overhead delay for the unprocessed
portion of the query, In Figure 3 this occurs at time ~--IO.

The original strategy may complete in any of the considered
adaptive processing methods. If the corrective strategy is
instituted, it applies to the “unexecuted/unprocessed portion of
the query”. Recall that for the AJO and CJO methods operations
in progress at the time of the decision to correct are permitted to
complete. This implies that since under the AJO method the
decision to correct is made at time tNo, which is just before the
commencement of the join of R3 with Rq, the corrective strategy
is formulated for the query as shown in Figure 4(a): the join of
RI with R2 is permitted to complete. Similarly, as the decision
to wrrect is made by the CJO method at time &JO, the corrective
strategy is formulated for the query as shown in Figure 4(b).
Finally, consider the AJL method. With the exception of the
aborted “sampled” join in question, all operations which are in
progress at the time tAn. when it is decided to wrrect are
permitted to complete. Consequently, the alternative strategy is
for the “unprocessed portion of the query”, which in this
example happens to be identical to the one obtained under the
AJO method (Figure 4(a)).

6. EVALUATION

Figure 5 shows Ea,p (y) for various values of y and for each of
the methods under consideration, i.e., for a being SO, AJL,
AJO and CJO. For instance, if a = AJO, then &,p(y) shows
the increase, expressed as a factor, in the average delay of
strategies executed dynamically with the AJO method, when tlte
actual size of intermediate results, one at a time, is y times higher
than estimated. In Figure 5, p=O.2 when a = AJL; that is, 20%
of a join is completed before sampling is used to determine the
size of the join result and to decide whether or not to abort the
join and institute the alternative strategy. The delay to execute the
p = 0.2 fraction of the subsequently aborted join1 is included
gverhead in modeling the proposed AJL method.

lThis delay (to complete g = 0.2 fraction of an aborted join) is directly
proportional to the p fraction of the size of the join’s operands and the
resulting relation.

1%

NOTATION

R2 is transfmed from W to where it is joined with Rl (already located in V). The result of the
join, the relation Rll. is transferred immediately to another network location.

NETWORK
LOCAnON TIME

(a) Strategy timing diagram

t AJO 1 t
tAJL

CJO

(b) Strategy timimg diagram with an increased size of the intermediate relation R12

Figure 3 The effect of an increase in the size of a join result on the strategy

(a) A query with compked join of Rl with R2

(b) AqucxywithaxnpletcdjoiisofRlwith s and% with R4

Figure 4 “Unexecuted/unprocessed” portions of the query

As expected, increase in delays of static
strategies appears to be linear with the
increases in inaccuracies in estimation which
are represented by the values of y. This
dependance follows directly from the
assumptions made on the size of relations
produced by joins. Secondly, the proposed
AJL method is close to the AJO method. In
other words, the alternative heuristic
strategies lead to execution delays which are
close to those of optimal corrective strategies
produced by the AJO method. This is in
spite of the fact that the sampling delays of
the AJL method are included in overhead of
correcting, while the overhead when
deciding to correct is completely neglected in
the AJO method. In the AJL method,
sampling occurs fust, that is, a l3 fraction of
a join is completed before the size of the join
result is determined through sampling and it
is decided whether or not to correct and
initiate the alternative strategy prepared in a
background mode. If correction does take
place, the overhead sampling delay is
included in the delay of the alternative
strategy.

Finally, for high inaccuracies, i.e., for
large values of y, aborting the join which
produces the much larger than estimated
relation becomes crucial. Consider the Cl0
method. When a join produces a larger
result than estimated, it is not aborted. A
corrective strategy is assumed to be
formulated and instituted without any
overhead delay after this join is complete.
Although this strategy is optimal for the
remainder of the query, its average delay is
greater for higher values of y than those of
the AJO and AJL methods which do permit
abort of joins producing larger than expected
relation. If such a join is not aborted, the
corrective strategy is forced to use the join’s
result which incurs higher delays than those
of the AJO and AJL methods which abort
the join in question and thus can postpone
the creation of a large relation to the end of a
corrective strategy. This is also conftrmed
by the AJL method when the l3 values are
varied as is shown in Figure 6. It shows
Ea,p[y) with a = AJL and several values of
p in the range between zero and one.
Increases in delays under the proposed AJL
method are shown for various fractions of
sampling as determined by i3. Obviously,
increasing the value of fi also increases the
confidence in estimating the size of the
join’s result and also the delay in correcting.
Conversely, decreasing its value also
decreases the confidence in correctly
predicting the size of the join result [Vitter,
1985; Olken, 19861. If l3 = 1, the join is
permitted to complete and hence the cost of
the alternative strategy is correctly
determined; however, if correction does take
place, the join execution time is wasted. If p
= 0.5, the sampliig method to determine the

197

5.00 -f

4.50

4.00

3.50 I

*- so
6 CJO

0 5 10 15 20 25 30 35

Figure 5 Ea,a(y) shown for various values of y; a = SO,
CJO, An. and AJO

2.50

2.00

1.50

a- so
.o- AJL#. 1.0

a- AJL. 0.75

0 AJL, 0.5

-A- AJL, 0.2

-A- AJO

0 5 10 15 20 25 30 35

Figure 6 EAJI+~(Y) shown for p = 0.2, 0.5, 0.7 and 1.0

size of the join result uses half the resulting relation and, consequently,
should be highly accurate. However, again, if a correction does take place
the join execution time (or)3 = 0.5 fraction there of) is wasted. As)3 gets
smaller, wasted overhead delay in case of correction decreases, but the

confidence in accurately predicting the size of the
join result also decreases. Consider now the case
when)3 = 1. Join execution completes and its size
is used to determine whether the alternative strategy
should be instituted. If correction takes place, the
alternative strategy “aborts” this completed join,
that is, it ignores the relation the join produced
produced. Even if this is the case, the average
delays are still lower than those of the CJO
method. Figure 6 shows that sampling overhead
delays are more than offset by benefits of
correction even for high values of fl.

The reported results are for the distributed
environment characterized by parameters of a long-
hauled network type and an index join processing
method. Modeling of other types of environment,
not reported herein due to the space limitation,
produced similar results in that the AJL method
lead to delays which were close to those of the
optimal AJO method. For a local area network,
shorter delays were observed due to the faster
communication. In addition to the index join
processing method, the nested-loop and perfect
hashing without misses join execution methods
were also modeled. As expected, a “fast” hashed
join execution method gave lower delays than
slower join methods. The nested-loop join
execution method incurred delays which “dwarfed”
all other delays [Pyra, 19881. In such an
environment the adaptive methods appeared to have
been particularly crucial in reducing high execution
delays due to inaccurate size estimation,

MONITORING AND CORRECTING
OVEFtHEAD

With the exception of sampling delays which are
inherent in the AJL method, overhead delays were
neglected for the sake of simplicity. Their effect on
the performance of the AJL method is now
examined. For this purpose some assumptions on
the monitoring and correcting delays arc made.
Delays due to the initial QPS formulation equally
apply to all of the methods under consideration and
are therefore neglected. The strategy execution and
its potential correction are assumed to proceed
according to the following simplified method
adopted from [Bodorik, 19891. Once the QPS is
initially formulated and distributed by a master
processor, its execution commences. Concurrently
with its execution, the master processor creates and
distributes alternative strategies to cohorts. Since
formulation of alternative strategies is assumed to
proceed in a background mode, that is concurrently
with the execution of the original strategy, it does
not contribute to overhead delay. It would be
preferred for cohorts themselves to prepare these
alternative strategies in order to distribute the load
created by the strategy formulation/optimization
process. For that purpose, however, they would
have to have appropriate schemas and the strategy
formulator.

When a processor executes a join, it uses
sampling to predict the size of the join result and
(re)calculates the delay of the current and

198

alternative strategies. This is a relatively simple process as it
does not involve optimization, but only a (relatively) simple
calculation. The delay of an alternative strategy includes the
overhead delay due to monitoring and correcting. If the
alternative strategy has a lower delay, the current strategy is
aborted and the alternative strategy is instituted for the
“unprocessed portion of the query”. It is assumed that this will
induce a delay which is equivalent to transferring one fxed
length, 2000 byte long message to all other processor. The
message is assumed to contain the command to abort and also
the alternative strategy itself. CPU processing associated with
correction is assumed to be equivalent to the delay caused by
accessing 100 data units (1024 byte long pages) in the secondary
data storage devices (about 2.3 seconds).

The above assumptions are reasonable since an error free
network is assumed and only one estimation inaccuracy is
considered at a time. In a real system, however, correcting
would be far more complex because processors would first have
to validate the corrective strategy to ensure that it is consistent
with the state of the strategy execution, including the case when
more than one estimating errors are detected. One such method
is proposed in [Pyra, 19881. Alternatively, an additional step
may be introduced in which the state of the execution is
ascertained by the master processor which would then either
validate the alternative strategy or formulate a new one [Bodorik,
19891. It is for these reasons that generously high overhead
delays were assumed for the purposes of modeling.

Let

&M.JI,,~,~(Y) . . . the average increase, expressed as a factor, in
the execution delay over all queries i = 1,2,. . ..N. Strategies
are pmcessed using the AJL method. The overhead corrective
delays, represented by a transfer of a fixed length message to
all processors and a fixed duration CPU processing delay, are
included in the execution deIays.

IEAJO.NA(Y) 1.51] 1.82] 1.98] 2.05] 2.10] 2.14] 2.17] 2.20

4.50

4.00

3.50

3.00

2.50

2.00

1 so

so

AILOV, 0.2

AJL, 0.2

AJO

0 5 10 15 20 25 30 35

Figure 7 Emov,o.2(y) is shown for various values of y

The effect of corrective overhead on the execution delays
(E,=kn~~,b(y)) is shown in Figure 7. The static (SO), optimal
(A30) and the proposed (AJL) methods without overhead are
also shown for the purposes of comparison. The sampling
overhead is B = 0.2. As expected, overhead delays showed to
be insignificant in an environment in which they are relatively
small in comparison to the average strategy execution delays
which was 40 seconds. They appeared to be significant in the
environment which included both fast communication and a fast
join processing method, that is, in an environment which
included a LAN and a hashed join execution method. This was
due to the fact that overhead delays were not negligible in
comparison to the strategy execution delays [Pyra, 19881.

DISCUSSION

Modeling suggests that the proposed adaptive processing
technique should be beneficial in dealing with the problems
arising due to inaccuracies in size estimation. They may,
however, become beneficial only when inaccuracies are
relatively high. This depends primarily on the relative
magnitudes of overhead and strategy execution delays which, in
turn, depend on the parameters characterizing the distributed
environment, in particular the join processing and data transfer
methods. That inaccuracies in size estimation affect optimal
strategies confirms results of modeling reported in [Epstein,
19801, but are in direct contradiction with the results reported in
[Kumar, 19871 which reported that optimal strategies are very
insensitive to inaccuracies in estimation. Since the report in
[Kumar, 19871 is on experiments for a centralized DB while the
report in [Epstein, 19801 and on this work is is for a DDB. it
appears that the problems of inaccuracies in size estimations are
negligible in a centralized DB but critical in a DDB. Further
investigation is required to confirm whether or not this indeed is
the case.

7. SUMMARY AND CONCLUSIONS

This paper has proposed and evaluated a new
method for deciding when to correct a distributed
QPS. Once a strategy is fomed and initiated.
alternative strategies are prepared concurrently with
the QPS execution. In addition, sampling methods
are used to avoid the complete processing of
relations whose results are much larger than
initially estimated. Modelling has been used to
demonstrate that alternative strategies, although
heuristic, lead to delays which are close to those of
optimal strategies. Furthermore, it has been shown
that it is usually beneficial to abort an intermediate
result/relation which is much larger than estimated.
Although some expended work is wasted, this is
more than offset by reducing delays by operating
on smaller relations. The fixed overhead delays
due to monitoring and correcting proved to be
insignificant for the modeled environment.

Integration of the proposed method and the
methods which can be utilized in monitoring and
instituting a corrective strategy need to be
investigated. Modelling was such that only one
estimation error was considered at any one time. It
remains to be investigated how multiple errors
affect the query response time. Further problems,

199

such as the stability of the methods employed and effects of
pipelining, must be addressed before adaptive processing of
queries can be shown to provide sufficient benefits to justify its
widespread development and implementation.

REFERENCES

Apers P., Hevner A., Yao S.B., 1983;
“Algorithms for Distributed Queries”, IEEE TOSE, Vol. SE-9,
No. 1, Jan. 1983, 57-68.

Bell D.A., Ling D.H.O. and McClean S.,
“Pragmatic Estimation of Join Sizes and Attribute
Correlations”, Proc. Fifth IEEE Data Engineering Conference,
Los Angeles, CA, February 6-10, 1989, 76-84.

Bernstein P., et. al., 1981;
“Query Processing in a System for Distributed Databases
(SDD-l)“, ACM TDS, Vol. 6, No. 4, Dec. 1981, 602-625.

Bodorik P. and Riordon J.S., 1988a;
“Distributed Query Processing Optimization Objectives”, Proc.
Fourth IEEE Data Engineering Conference, Los Angeles, CA,
February 2-4, 1988,320-329.

Bodorik P. and Riordon J.S., 1988k
“A Threshold Mechanism for Distributed Processing of
Queries”, Proc. of the ACM CSC ‘88 Conference, Atlanta,
GA, Feb. 23-25, 1988,616-625.

Bodorik P. and Riordon J.S., 1988c;
“Evaluating Dynamic Processing of Distributed Queries”,
Proc. of the IEEE Int. Conference on Distributed Computing
Systems, San Jose, California, June 13-17. 1988, 510-519.

Bodorik P. and Riordon J.S., 1988d;
“Heuristic Algorithms for Distributed Query Processing”,
Proc. of the Int. Conf. on Databases in Parallel and Distributed
Systems, Austin, Texas, Dec. 5-8, 144-153.

Bodorik P., Riordon J.S. and Jacob C., 1989;
“Dynamic Distributed Query Processing Techniques”, Proc. of
the ACM CSC ‘89 Conference, Lousville, KY, February 21-
23, 348-357.

Carey M., Livny M., Lu Hongjun, 1985;
“Dynamic Task Allocation in a Distributed Database System”,
Proc. of the 1985 IEEE Conf. on Distributed Comp. Systems,
282-291.

Cellary W., Meyer D., 1980;
“A Multi-query approach to Distributed Processing in a
Relational Distributed Database Management System”,
Distributed Data Bases: Proc. Inter. Symp. on Distributed Data
Bases, Edited by Delobel C., Litwin W., North Holland Publ.
Co. March 1980.

Ceri S., Pelagati G., 1984; . . . * . *Databases. McGraw Hill,
1984.

Ceri S., Gottlob G., 1986;
“Optimizing Joins between Two Partitioned Relations in
Distributed Databases”, Journal of Parallel and Distributed
Computing, Vol. 3, 1986, 183-205.

Chao T., Egyhazy C.J., 1986;
“Estimating Temporary File Sizes in Distributed Relational
Database Systems:, Proc. IEEE Data Eng. Conf., 1986,4-12.

Christodoulakis S., 1983;
“Implications of Certain Assumptions in Database
Performance Evaluation”, ACM TODS, Vol. 9, No. 2, June
1984, pp. 173-186.

Chu y., Hurley P., 1982;
“Ophmal Query Processing for Distributed DB Systems”,
IEEE TOC, Vol. C-31, No. 9, Sept. 1982, 835-850.

Daniels et al., 1982;
“An Introduction to Distributed Ouerv Comvilation in Svstem
R”, In mData Sihnkider G.J., editor, korth
Holland, 1982, 247-290.

Egyhazy C., Triantis K., 1988;
“A Query Processing Algorithm for Distributed Relational
Database System”, Computer Journal, Vol. 31, No. 1, 1988,
34-40.

Epstein R., et. al., 1978;
“Distributed Query Processing in a Relational Data Base
System”, ACM-SIGMOD, Proc. of the Int. Conf. on
Management of Data, Austin, Texas, 1978, 169-180.

Epstein R., Stonebraker M., 1980;
“Analysis of Distributed DB Processing Strategies”, 6th
VLDB Conf., Montreal, QUE, Canada, 1980,92-101.

Epstein R., et. al., 1986;
“Distr. Query Processing in a Relational DB System”, in The

ers: &atomv of a Rem
Stonebraker M., ed., Addison-Wesley, 1986, 197-214.

Gavish B., Segev A., 1986;
“Set Query Optimization on Distr. Data Database Systems:,
ACM TODS, Vol. 11, No. 3, 1986, 265-293.

Hevner A., Yao S.B., 1979;
“Query Processing in Distributed Data Base Systems”, IEEE
TOSE, Vol. SE-5, No. 3, May 1979, 177-187.

Hevner A., 1980,
“Query Processing in Distr. Data Base Systems”, Ph.D.
thesis, Univ. of Minnesota, 1980.

Hwang H-Y, Yu Y-T, 1987;
“An Analytical Method for Estimating and Interpreting Query
Time”, Proc. VLDB, 1987,347-358.

Ibaraki T., Kameda T., 1984; “On the Optimal Nesting Order
for Computing N-relational Joins”, ACM TODS, Vol. 9. No.
3, Sept. 1984, pp. 482-502.

Ijbema a., Blanken H., 1986;
“Estimating Bucket Accesses: A Practical Approach”, Proc.
IEEE Int. Conf. on Data Engineering, 1986,30-37.

Jhingran A., 1988;
“A Performance Study of Query Optimization Algorithms on a
Database System Supporting Procedures”, Proc. of the Int.
Conf. on VLDB, 1988,88-99.

Kambayashi Y., 1985; . L
“Processing Cyclic Queries:, in (&XXV Procew . . -, Edited by Kim, Reiner and
Batory, Springer-Verlag, 1985, pp. 62-78.

Kerschberg L., Ting P.P., Yao S.B., 1982;
“Query Optimization in Star Computer Networks”, ACM
TODS, Vol. 7, No. 4, Dec. 1982, 678-711.

Kim W., 1985;
al Queries: A First Step”, in

ata mSvstems, Edited by
Kim, Reiner and Batoxy. Springer-Verlag, 1985, pp. 207-
216.

Kumar A., Stonebraker M., 1987;
“The Effect of Join Selectivities on Optimal Nesting Order”,
SIGMOD RECORD, Vol. 16, No. 1, March 1987.

Lafortune S., Wong E., 1986;
“A State Transition Model for Distributed Query Processing”,
ACM TODS, Vol. 11, No. 3, Sept. 86,294-322.

Lamport L., 1978;
‘Time, Clocks and Ordering of Events in a Distributed
System”, CACM, Vol. 21, No. 7, 1978.

Lohman G.M., et. al., 1985; . . “Query Processing in R*“, in puerV Proc- ur Dd
M, Edited by Kim W., Reiner D., Batory D., Springer
Verlag, 1985, pp. 31-47.

Mackert L.F., Lohman G.M., 1986a;
“R* Optimizer Validation and Performance Evaluation for
Distributed Queries”, Proc. VLDB, 1986,149-159.

Mackert L.F., Lehman G.M., 1986b;
“R* Optimizer Validation and Performance Evaluation for
Local Queries”, Proc. ACM SIGMOD, 1986,84-95.

Mahmoud S.A., Riordon J.S., Toth K.C., 1979;
“Distributed Database Partitioning and Query Processing”,
Proc. IFIP-TC-2, Venice, Italy, 1979,32-51.

Masuyama S., et al., 1987;
“Shortest Semi-join Schedule for a Local Area Distributed
Database System”, IEEE TOSE, Vol. SE-13, No. 5, May
1987, 602-606.

Nguyen, N.G., 1981;
“Distributed Query Management for a Local Network”, Proc.
2nd hit. Conf. on Distributed Computing Systems, Paris,
France, April 1981, 188-196.

Olken G., Rotem D., 1986;
“Simple Random Sampling from Relational Databases”, Proc.
12th VLDB, Kyoto, August 1986, 160-169.

Otoo E.J., et al., 1987;
“Improving Semi-Join Evaluation in Distributed Query
Processing”, Proc. of the IEEE Conf. on Distr. Comp.
Systems, 1987, 554-561.

Ounegbe E., Rahimi S., Hevner A., 1983;
“Local Query Translation and Optimization in a Distributed
System”, Proc. NCC, July 1983, pp. 229-239.

Perizzo W., 1984;
“A Method for Processing Distr. Database Queries”, IEEE
TOSE, Vol. SE-IO, No. 4, July 1984,466-471.

Pyra J.. 1988;
“Dynamic Query Processing in Distributed DB Systems”,
M.ComD.Sci. Thesis. Technical Universitv of Nova Scotia.
Halifax: Nova Scotia, Canada, December 1988.

Reuter A., 1986;
“Load Control and Load Balancing in a Shared Database
Management System”, Proc. of the Int. Conf. on Data
Engineering, Los Angeles, CA, USA, Feb. 1986, pp. 188-
197.

Sacco G.M., 1984;
‘Distributed Query Evaluation in Local Area Networks”, Proc.
of the Int. Conf. on Data Engineering, 1984, 510-516.

Segev A., 1984;
“Optimizing Fragmented 2-Way Joins”, Proc. of the Int.
Conf. on Distributed Computing Systems, 1984, 378-388.

Selinger P.G., Adiba M., 1980;
“Access Path Selection in Distributed Data Base Management
Systems”, Proc. of the First Int. Conf. on Data Bases,
Aberdeen, 1980.

Sellis T.K., 1988;
“Multiple-Query Optimization”, ACM TODS, Vol. 13, No. 1,
March 1988, 23-52.

Su S.Y.W., et al., 1986;
“A Distributed Query Processing Strategy Using
Decomposition, Pipelining and Intermediate Results Sharing
Techniques”, Proc. of the Int. Conf. on Data Engineering, Los
Angeles, CA, USA, Feb. 1986, pp. 94-102.

Vander Zanden B.T., et al., 1986;
“Estimating Block Access when Attributes are Correlated”,
Proc of the Int. Conf. on VLDB, 1986, 119-127.

Vitter J.S., 1985;
“Random Sampling with a Reservoir”, ACM TMS, Vol. 11,
No. 1, March 1985, 37-57.

Wong E., 1982;
“A Statistical Approach to Incomplete Information in Database
Systems”, ACM TODS, Vol. 7, No. 3, Sept. 1982,470-488.

Yang H.Z., Larsen P.-A., 1987;
“Query Transformation for PSJ-queries”, Proc. Int. Conf. on
VLDB, 1987,245-254.

Yu C., Lin Y.C., 1982;
“Some Estimation Problems in Distributed Query Processing”,
Proc. IEEE Data Eng. Conf., 1982, 13-19.

Yu C., et. al., 1983;
“On the design of a Distr. Query Processing Strategy”, Proc.
ACM SIGMOD Conf., May 1983, pp. 30-39.

Yu C.T., 1985;
‘Distributed Database Query Processing”, in Ouerv Processing
in Database Svstems, Edited by Kim W., Reiner D., Batory
D., Springer Verlag, 1985, pp. 48-61.

Yu C., et. al., 1986;
“Adaptive Techniques for Distributed Query Optimization”,
Proc, of the Int. Conf. on Data Engineering, Los Angeles,
CA, USA, Feb. 1986. pp. 86-93.

Yu C.. et al., 1987;
“Algorithms to Process Distributed Queries in Fast Local
Networks”, IEEE TOC, Vol. C-36, No. 10, Oct. 1987, 1153-
1163.

201

