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ABSTRACT 

results processed by a sub-optimal heuristic. [Daniels, 1982; 
Selinger, 1980; Lohman, 1985; Mackert, 1986a, 1986b] 
describe query optimization in System R*. 

Algorithms for processing distributed queries require & 
estimates of the size of intermediate relations. Most such 
algorithms take a “static” approach in which the algorithm is 
completely determined before processing begins. If size 
estimates are found to be inaccurate at some intermediate stage, 
there is no opportunity tore-schedule, and the result may be far 
from optimal. Adaptive query execution may be used to alleviate 
the problem. Care is necessary, though, to ensure that the delay 
associated with re-scheduling does not exceed the time saved 
through the use of a more efficient strategy. This paper presents 
a low overhead delay method to decide when to correct a 
strategy. Sampling is used to estimate the size of relations, and 
alternative heuristic strategies prepared in a background mode 
are used to decide when to correct. Correction is made only if 
lower overall delay is achieved, including correction time. 
Evaluation using a model of a distributed data base indicates that 
the heuristic strategies ate near optimal. Moreover, it also 
suggests that it is usually correct to abort creation of an 
intermediate relation which is much larger than predicted. 

1. INTRODUCTION 

Although researchers are currently turning their attention to 
multi-query optimization [Cellary, 1980; Ounegbe, 1983; Carey, 
1985; Kim, 1985; Reuter, 1986; Su, 1986; Sellis, 19881 and 
adaptive query processing, most research on distributed query 
processing assumes a single query environment and static 
processing. Furthermore, most research concentrates on an 
important class of queries, Select-Project-Join (SPJ) [Ceri, 
1984; Yang, 19871. Use of semi-joins in optimizing SPJ type 
queries has received a great deal of attention [Hevner, 1979, 
1980; Bernstein, 1981; Apers, 1983; Yu, 1982, 1983, 1985; 
Perrizo, 1984; Ceri, 1986; Masuyama, 1987; Otoo, 19871. 
Although use of semi-joins has been widely accepted as a good 
processing tactic, it has also been recognized [Epstein, 1980; 
Lafortune, 19861 that semi-join and generalized join processing 
tactics must integrated. Epstein et al. [ 19781 proposed one of 
the earliest methods which uses joins as a processing tactic; it 
results from is an adaptation of INGRES to the distributed 
environment [Epstein, 19861. A join processing heuristic 
algorithm for the ADD system [Mahmoud, 19791, first 
decomposes a query into “Class A” sub-queries which produce 
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After a user query is parsed and transformed into a canonical 
form [Ceri, 19841, an optimizing algorithm is used to form a 
strategy, i.e., a specification of the sequence and locations of the 
individual relational operations whose result satisfies the query. 
Optimization is carried out on the basis of a specified cost 
function, typically related to processing and/or data transfer 
delay [Bodorik, 1988al. The strategy is distributed to cohorrs, 
that is, to those information processors which participate in its 
execution. 

In static processing a strategy is not modified once its 
execution begins. Static processing thus relies on accurate 
estimation of parameters characterizing the query and the 
distributed environment in which it is processed. In particular, it 
relies on estimates of the size of intermediate results [Epstein, 
1980; Bernstein, 1981; Wong, 1982; Yu, 1982; 
Christodoulakis, 1983; Chao, 1986; Vander Zanden, 1986; 
Ijbema, 1986; Hwang, 1987; Bell, 19891, that is relations 
produced by executing relational operators such as joins. It also 
relies on estimates of the cost of processing and transmission 
over the network [Yu, 19861. If estimates are inaccurate, the 
strategy may be far from optimal. 

There are two possible approaches to dealing with this 
problem. One is to seek accurate estimates. Despite much effort 
in this direction, they are often unobtainable; moreover the 
attempt is expensive in terms of the size and maintenance of the 
required statistical data. Various types of adaptive (dynamic) 
query execution techniques comprise the second approach 
[Nguyen, 1981; Yu, 1983,1986; Bodorik, 1988b, 1988~1. 
Execution of a strategy is monitored, if at some intermediate 
stage a priori estimates used in its optimization prove to be 
inaccurate, corrections am made with updated information. 

Two general decision making methods have been proposed 
thus far to decide when to correct a strategy [Bodorik, 1988b]. 
In reformulation the unexecuted portion of the strategy is 
reformulated at every intermediate stage using available updated 
information. If the new strategy is estimated to reduce cost then 
correction is appropriate. In the second method reformulation 
occurs only when intermediate results exceed a predetermined 
threshold or lie outside a specified band of values. [Nguyen, 
198 l] uses the average size of intermediate results as one single 
dynamically updated threshold for the whole query. [Bodorik, 
1988b] refines this approach by the use of one threshold value 
per intermediate result; however, these values are not updated 
dynamically. [Bodorik, 19891 addresses both the monitoring 
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and execution phases of strategy execution. Available methods 
are identified for each phase; these am analyzed in terms of 
overhead, complexity and accuracy of information used in 
correcting. 

This paper presents a low overhead delay method to decide 
when to cormct a faltering strategy. During execution, 
alternative strategies are prepared. These may be invoked if they 
reduce execution time, including overhead delay. A key 
problem is the preparation of an adequate alternative strategy 
when the estimation error is unknown. It is proposed that 
sampling methods [Vitter, 1985; Olken, 19861 be used to predict 
the size of a join result before it is complete. After a fraction of 
the join is completed, sampling is used to predict the size of the 
result. If it is higher than the initial estimate and the alternative 
strategy is expected to reduce delay, then the original strategy is 
discarded and the alternative one introduced. The join which 
produces the larger-than-expected relation is also aborted. The 
proposed method is evaluated using a model of a Distributed 
Data Base (DDB). 

2. ASSUMPTIONS 

A query is assumed to be a tree query in a conjunctive normal 
form such that each term has at most two relational variables. 
This is a typical approach since it simplifies query representation 
but does not greatly reduce their expressiveness [Ceri, 19841. 
The twovariable terms are processed by joins. As in [ Selinger, 
1980; Kumar, 19871, two relations are considered for joining 
only if they have a term present in the query. It is assumed that 
the values of attributes are distributed uniformly and 
independently of each other. The query’s terms am also 
assumed to he independent in that no predicate is implied 
through others via transitivity. For each two-variable term Ri 
AND R], there exists a selectivity factor which determines the 
expected fraction of tuple pairs from Ri and R’ which satisfy it 
[Epstein, 1980; Bernstein, 1981; Wong, 198 1 I. These 
assumptions imply that an intermediate result of evaluating a set 
of predicates has a cardinal@ which is the product of the 
predicates’ selectivities and the cardinalities of relations referred 
to by these predicates. Restrictions and projections are assumed 
to be locally optimized and executed as quickly as possible in 
order to reduce the sizes of relations involved in the query [Ceri, 
1984; Lafortune, 19861. 

In this paper the optimization objective is miniization of 
query response time. The result of a relational operator 
execution is transferred to another network location only when it 
is completely formed. Consequently pipelining, which may 
improve the query response time, is not considered. Although 
the paper does not explicitly consider semi-joins as a processing 
tactic, the proposed method is applicable to the environment in 
which the join and semi-join tactics am integrated [Lafortune, 
19861. 

3. PROPOSED (AJL) METHOD 

To minimize delay, the decision to correct should be 
computationally simple and, moreover, a corrective strategy 
should already exist when it is decided to correct. The proposed 
method to formulate alternative strategies, termed the Aborted 
Join Last (AJL) method, satisfies both of these requirements. 
An alternative strategy is prepared for each intermediate 
tesult/relation before it is actually formed by a relational 
operation. whenever such a relation is formed, the delay of the 
strategy under execution is estimated using the information on its 
new size. If the estimated delay of the current strategy is higher 

than that of the alternative one, then it is aborted and the 
alternative strategy is instituted. The difficulty here, of course, 
is the formulation of an alternative strategy. It is formulated 
concurrently with the execution of the current strategy and 
before the size of the intermediate result in question is known. 
The proposed solution avoids the necessity of computing an 
intermediate result by using sampling [Vitter, 1985; Olken, 
19861. It proceeds as follows: 

1. Given a query, a formulator/optimizer is used to derive a 
processing strategy. The latter is distributed to cohorts which 
then cooperate in transferring relations and executing relational 
operations according to the strategy’s instructions. 

2. Concurrently with the strategy’s execution, an alternative 
strategy is formed for each intermediate result. 

3. During the course of a join execution sampling methods 
are used to estimate the size of the result. This estimate is then 
used to update the estimated delay of the cutrent strategy and 
compare it with the delay of the alternative strategy. If the 
alternative strategy has a lower expected delay, correction takes 
place; the current strategy is aborted and the alternative strategy 
is adopted Otherwise the original strategy is allowed to 
continue. 

Note the diierence between the size estimation performed in 
the initial Query Processing Strategy (QPS) phase and the 
proposed sampling when a join is being performed. The former 
uses simplifying assumptions, such as a uniform distribution of 
attribute values, independence of joining attributes and some 
simple statistical information such as a selectivity factor. The 
latter is based on samples of actual values from currently 
retrieved tuples, which should provide more accurate estimates. 
Increasing the sample size increases the confidence in accurate 
size prediction, but this is at the expense of higher overhead 
delay. 

ALTERNATlVE STRATEGY 

The proposed method is applicable to SPJ tree queries 
(sub-queries) which are processed by a join processing tactic. It 
is a simple method based on the following observation. 
Consider the situation in which sampling indicates that an 
intermediate result will be larger than expected. If, as a 
consequence, this results in a correction, an optimal corrective 
strategy tends to postpone the manipulation of the relation in 
question. The proposed method postpones a join which 
produces much larger than expected relation to the very end of 
the strategy. 

The method is presented using query graphs. Consider a 
query in graph form in which vertices represent relations and 
edges represent the two-variable terms (Figure l(a)). A strategy 
for this query is shown in a tree form in Figure l(b). Under the 
stated assumptions, a join is identified by the two-variable term 
which it “processes”. For example, a join of R3 with Rq 
“processes” the two-variable term (R3.e 83 R4.f). 

Postponing a join to the end of a strategy implies, of course, 
that its operands are created first. Because of the assumption 
that the query is of a tree type, each operand is a result of a 
separate sub-query, i.e., each sub-query is represented by a 
sub-graph, such that the two sub-graphs are disconnected. In 
reference to Figure 1, for instance, postponement of the join to 
process the term “R3.e 83 R.&’ to the end of the strategy 
implies that its operands are produced by sub-queries shown in 
Figure 2(a) within the context of the original query. Clearly, for 
a strategy to process a tree query, the postponement of a join to 
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Figure 2 Sub-queries and alternative strategies 

the end of a strategy implies that its two 
operands are results of two distinct sub- 
queries which are mutually exclusive with 
reference to the relations of the original 
query. Moreover, the formulation of 
alternative strategies uses estimates of 
intermediate results which shouId already 
be formed when the decision to correct is 
made. With the exception of the sampled 
joins, operations in progress at the time 
of the decision are permitted to complete. 
Consequently, the sub-queries which 
produce the operands for the postponed 
join to process the term “R3.e 03 Q.f 
are such that the join of Rl with R2 and 
the transfer of the relation Rs from Z to Y 
am assumed to be completed as planned 
for the original strategy. The sub-queries 
and the alternative strategy are shown in 
figures 2(b) and 2(c), respectively. 

Recall that an alternative strategy is 
formed for each of the intermediate 
results. The alternative strategy for the 
relation Rt2, which is the result of the 
join of R3 with lQ, consists of two 
sub-strategies to derive the operands of 
the final join, plus the final join. Each of 
the two sub-strategies is prepared in a 
background mode, that is, concurrently 
with the execution of the original 
strategy. In addition, an equation is 
prcparcd to determine the delay of the 
final join of the alternative strategy. It is 
used to quickly estimate the delay of the 
alternative strategy when the size of the 
result is estimated using sampling. A 
brief example in the subsequent section 
should clarify the above statements. 

4. MODELED ENVIRONMENT 

The alternative strategies described above 
are heuristic and hence sub-optimal. 
Modeling was used to compare the 
proposed method to other methods 
including those which use optimal 
strategies. This section describes the 
modeled distributed environment and 
determination of processing and data 
transfer delays. 

Relations are assumed to be complete 
and unique as in modeling reported in 
[Sacco; 1984, Segev, 1984, Lafortune, 
19861; that is, there is no fragmentation 
or replication of data. Relations ate 
located in distinct network locations. A 
query is assumed to be a tree Select- 
Project-Join (SPJ) query. Recall that 
each term has a selectivity factor which is 
used to determine the size of a join result. 
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In order to provide a broad base of varying types of queries 
(within the assumptions adopted of SPJ queries), all possible 
configurations of join graphs for queries involving between two 
and five joins (three and six relations) were determined. Only 
those queries with unique join graph shapes were considered. 
Fifty two queries were modeled such that the cardinalities of 
relations, ranging from ten tuples to one hundred thousand 
tuples, and the selectivities, ranging from 0.1 to O.CKKll, were 
randomly determined. All relations were assumed to have 
equivalent average size per tuple (as in [Kerschberg, 19823) of 
fifty bytes . 

The network delays are directly proportional to the volume 
of transferred data. The unit cost of a network transfer is 
represented by a matrix in which each element represents the 
cost/delay to transfer a unit of data (byte) between two network 
locations. Two types of network environment comparable to 
those used in [Mackert, 1986a] were modeled, they differ in the 
data transfer rates: one corresponds to a long haul network with 
data transfer rates ranging from 2400 to 19200 bps, while the 
other conesponds to a local area network with an average data 
transfer rate of between 1 and 4 Mbps. 

Join delays, which are assumed to be directly proportional to 
the volume of data accessed through secondary storage devices, 
are determined as in [Mackert, 1986al on a ‘per tuple’ basis. 
The average join involves some combination of the following 
essential operations depending on the exact join method used: 

(i) disk access; 
(ii) internal transfer, and 
(iii) comparison. 

Different join processing methods vary in the amount of disk 
access and processing time they require. For simplicity, it is 
assumed that each tuple of the result and some combination of 
the tuples of the operands, as determined by the algorithmic 
complexity of the join method used, contribute a constant factor 
to the overall delay of executing the join. The constant factor is 
the time required to perform the essential operations and a disk 
access. Five machine instructions are assumed to suffice to join 
two tuples and execution proceeds at a rate of of 0.0004 
msec/insmtctions (comparable to IBM 4381 CPU processing). 
The secondary storage I/O time is estimated as a sum of the 
average seek, latency and transfer times per page of data, such 
that each page is 2 Kbytes. The secondary storage device 
statistics were derived from an IBM 3380 disk with I/O time of 
0.02348 seconds per page of data. A join is assumed to be 
executed using one of the following methods: Nested-loop with 
algorithmic complexity of O(mn+r), (perfect) Hashing without 
misses with a complexity of O(m+n+r) and Indexed method 
with a computational complexity of O(n log n + m log n + r); m 
and n are cardinalides of the operand relations, and r is the 
cardinal@ of the join result. Hashing without misses, or perfect 
hashing, implies that there is no overflow of buckets. One 
relation is hashed into buckets. For each tuple of the other 
relation, hashing is used to find the bucket containing tuples for 
joining. For the index method, an index is first buih on one (the 
smaller) of the operand relations with a cardinality of n. This 
index is then used to find appropriate tuples to be joined with 
each tuple of the other relation with the cardinality of m. 

Due to the space limitation, the following report will 
concentrate on reporting the results of modeling the type of 
environment in which joins are executed using the indexed join 
method and data transfer delays are for a long-hauled network. 
Note that the indexed method is “representative” under the 
adopted assumptions: it is better than the nested-loop method, 
but worse than the hashing method without misses. Results of 

modeling the other join and data transfer methods will also be 
high-lighted. 

5. MODELING METHOD AND NOTATION 

Recall that as the proposed method prepares alternative strategies 
in which aborted joins are last; it is called Aborted Join Last 
(AJ&$~thcd. It shall be compared with the following 

Abort Join Optimal (AJO): This method is theoretically 
“optimal”, but not realizable. It is similar to the proposed 
AJL method, but assumes perfect a priori knowledge of the 
intermediate result size just before the join execution 
commences. Without overhead delay, a new corrective 
strategy is formulated and executed for the remaining 
unprocessed portion of the strategy. The new strategy may. 
of course, be the same as the original one. 

Complete Join Optimal (CJO): This is identical to the AJO 
method with the exception that the join is not aborted. Only 
when the join is completed is a new strategy formulated and 
instituted (without delay) for the remaining unprocessed 
portion of the strategy. 

Static Optimal (SO): The strategy execution is static. 

It should be noted that although a join which produces a 
larger-than-expected relation is aborted in the AJL and AJO 
methods, all other operations which are in progress at the time of 
this abort and correction are permit&d to complete. This applies 
to all adaptive processing methods. [Bodorik, 1988c] has found 
that such an approach leads to lower delays in comparison to 
aborting all operations which are in progress at the time of the 
correction. 

An optimizing algorithm which formulates a QPS estimates 
two parameters: size (cardinality) of relations produced by 
relational operations, and average delays due to relational 
processing and data transfer. Since it was shown in [Bodorik, 
1988c] that the former are far more critical than the latter, only 
inaccuracies in size estimation are modeled. To find the effects 
of inaccuracies in estimating the size of intermediate results on 
the query response time, the size of intermediate results, one at a 
time, is increased by a certain factor. How the strategy’s 
execution delay (query response time) is affected is determined 
under the assumption that all parameters, with the exception of 
the size of the one intermediate result under consideration, 
remain unchanged. The modeled strategy execution may be 
either SO (static) or adaptive with one of the AJL, AJO or CJO 
methods. 

Consider a query i pmcessed by the minimal response time 
strategy which forms Ml intermediate results. For each 
intermediate result, one at a time, its size is increased by a factor 
of y (multiplied by y). The strategy execution delay is then 
found assuming static Processing and also adaptive processing 
with the previously described methods. The average increase in 
delays is found for each query and over all of the modeled 
queries. This is performed using various values for the factory. 
In order to remove the effects of queries with high response 
time, what is actually measured is the factor by which the query 
response time is increased. Let 

T,a(i,j,y]. . .delay of query i such that the size of the jtt’t 
intermediate result of its strategy is increased by a factory. 
Depending on the subscript a, the strategy execution is 
assumed to be either static or adaptive. The subscript p, 
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O=$Sl, which appIies only to the proposed AJL method, 
denotes the fraction of the ioin used bv the samnlina method to 
determinethe sizeof thejoinresuh: . a - 

a = “So” . . .the strategy execution is static 
= “AJL”. . the strategy execution is adaptive using the AJL 

method 
= “;;AJ;.t.he strategy execution is adaptive using the AJO 

= “glkthe strategy execution is adaptive using the CJO 

p . . . if a =“AJL”, then p, 0 < p S 1, is the fraction of the join 
used for sampling; 

. . . NA for Not Applicable if a # “AJL” 

AJO method: Before the join of R3 with R4 commences, 
shown as time tNo in Figure 3(b), it is assumed that the actual 
size of the relation Rt2 becomes known. An optimal strategy 
is formulated and instituted for the unprocekl portion of&e 
query without any overhead delay. 

AJL method: The actual size of the relation RI2 is predicted 
using sampling after completing the traction p of the join of R3 
with IQ. Assume that this occurs at time tAn, as shown in 
Figure 3(b). Using this predicted size of R12, the execution 
delays of the current and the alternative strategies are estimated 
for the unexecuted portion of the query. If the alternative 
strategy is estimated to lead to a lower delay than the current 
strategy, correction takes place: the current strategy is aborted 
and the alternative one is instituted. Modeline is such that the 
alternative strategy delay includessm-1~11 
(the time ueriod between the start of the ioin of Rq wi$ R4, 

p: de& 
Fsa{ i,y) . . .the average increase (expressed as a factor) in the 

execution delay of the strategy for the query i, such that 
intermediate results have their sizes increased by a factor y. 
The type of processing depends on the subscripts a and g: 

Mi 
Fa,p(i,y) = Fl (Ta,p(i&y) 1 T=,p(W) ) 1 W 

Note that T,,p (i&l ) is the strategy execution delay under 
the assumption that alI estimates on which the strategy is based 
are wrrect and it therefore does not depend on whether the 
strategy execution is static or adaptive. Finally, average 
increases over all queries are defined: 

E,b{ y) . . .denotes the average increase, expressed as a factor, 
in the execution delay over all queries i = 1.2,. . .,N, where N 
is the number of queries: 

Ea,p(Y) = “c Fa,p(LyJ 1 N 
i=l 

FXAMPLE 

Consider the example of Figure 1. The query is shown in 
Figure I(a), while its initially formulated, optimal strategy is 
shown in Figure l(b) in a “tree” format. Since for the purposes 
of the example the timing considerations are important, the 
strategy is represented by a timing diagram in Figure 3(a). 
Consider now the join of relations R3 with R4 and assume that 
its result, the relation R12, has cardinal@ (and therefore size) 
which is higher than estimated in the initial formulation. In the 
evaluation technique, this is simulated by multiplying the size of 
the relation RI2 by a factory. The query’s delay is then 
determined depending on the method of processing as discussed 
below. 

-method: If static processing is assumed then the strategy 
execution delay is calculated using the “increased” size of the 
intermediate result under consideration (relation RIZ). This 
implies that the execution delays of joins of R3 with R4. R12 
with Rg, and R21 with RI 1 are also affected by this size 
increase. Had the relations RI2 or R21 been transferred then 
these transfer delays would also have been affected. The join 
of R3 with IQ is affected because the join execution delay 
depends not only the size of its operands and the execution 
method, but also on the size of the relation it produces. The 
strategy’s timing diagram as affected by this size increase is 
shown in Figure 3(b). 

which ha&ens to be tM0, and tm). How the overhead delay 
to abort the current strategy and institute the alternative one 
affects the response time will be examined in a later section. 

CJO method: After the completion of the join which produces 
the intermediate result R12, an optimal strategy is formulated 
and instituted without any overhead delay for the unprocessed 
portion of the query, In Figure 3 this occurs at time ~--IO. 

The original strategy may complete in any of the considered 
adaptive processing methods. If the corrective strategy is 
instituted, it applies to the “unexecuted/unprocessed portion of 
the query”. Recall that for the AJO and CJO methods operations 
in progress at the time of the decision to correct are permitted to 
complete. This implies that since under the AJO method the 
decision to correct is made at time tNo, which is just before the 
commencement of the join of R3 with Rq, the corrective strategy 
is formulated for the query as shown in Figure 4(a): the join of 
RI with R2 is permitted to complete. Similarly, as the decision 
to wrrect is made by the CJO method at time &JO, the corrective 
strategy is formulated for the query as shown in Figure 4(b). 
Finally, consider the AJL method. With the exception of the 
aborted “sampled” join in question, all operations which are in 
progress at the time tAn. when it is decided to wrrect are 
permitted to complete. Consequently, the alternative strategy is 
for the “unprocessed portion of the query”, which in this 
example happens to be identical to the one obtained under the 
AJO method (Figure 4(a)). 

6. EVALUATION 

Figure 5 shows Ea,p ( y ) for various values of y and for each of 
the methods under consideration, i.e., for a being SO, AJL, 
AJO and CJO. For instance, if a = AJO, then &,p( y) shows 
the increase, expressed as a factor, in the average delay of 
strategies executed dynamically with the AJO method, when tlte 
actual size of intermediate results, one at a time, is y times higher 
than estimated. In Figure 5, p=O.2 when a = AJL; that is, 20% 
of a join is completed before sampling is used to determine the 
size of the join result and to decide whether or not to abort the 
join and institute the alternative strategy. The delay to execute the 
p = 0.2 fraction of the subsequently aborted join1 is included 
gverhead in modeling the proposed AJL method. 

lThis delay (to complete g = 0.2 fraction of an aborted join) is directly 
proportional to the p fraction of the size of the join’s operands and the 
resulting relation. 
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NOTATION 

R2 is transfmed from W to where it is joined with Rl (already located in V). The result of the 
join, the relation Rll. is transferred immediately to another network location. 

NETWORK 
LOCAnON TIME 

(a) Strategy timing diagram 

t AJO 1 t 
tAJL 

CJO 

(b) Strategy timimg diagram with an increased size of the intermediate relation R12 

Figure 3 The effect of an increase in the size of a join result on the strategy 

(a) A query with compked join of Rl with R2 

(b) AqucxywithaxnpletcdjoiisofRlwith s and% with R4 

Figure 4 “Unexecuted/unprocessed” portions of the query 

As expected, increase in delays of static 
strategies appears to be linear with the 
increases in inaccuracies in estimation which 
are represented by the values of y. This 
dependance follows directly from the 
assumptions made on the size of relations 
produced by joins. Secondly, the proposed 
AJL method is close to the AJO method. In 
other words, the alternative heuristic 
strategies lead to execution delays which are 
close to those of optimal corrective strategies 
produced by the AJO method. This is in 
spite of the fact that the sampling delays of 
the AJL method are included in overhead of 
correcting, while the overhead when 
deciding to correct is completely neglected in 
the AJO method. In the AJL method, 
sampling occurs fust, that is, a l3 fraction of 
a join is completed before the size of the join 
result is determined through sampling and it 
is decided whether or not to correct and 
initiate the alternative strategy prepared in a 
background mode. If correction does take 
place, the overhead sampling delay is 
included in the delay of the alternative 
strategy. 

Finally, for high inaccuracies, i.e., for 
large values of y, aborting the join which 
produces the much larger than estimated 
relation becomes crucial. Consider the Cl0 
method. When a join produces a larger 
result than estimated, it is not aborted. A 
corrective strategy is assumed to be 
formulated and instituted without any 
overhead delay after this join is complete. 
Although this strategy is optimal for the 
remainder of the query, its average delay is 
greater for higher values of y than those of 
the AJO and AJL methods which do permit 
abort of joins producing larger than expected 
relation. If such a join is not aborted, the 
corrective strategy is forced to use the join’s 
result which incurs higher delays than those 
of the AJO and AJL methods which abort 
the join in question and thus can postpone 
the creation of a large relation to the end of a 
corrective strategy. This is also conftrmed 
by the AJL method when the l3 values are 
varied as is shown in Figure 6. It shows 
Ea,p[ y) with a = AJL and several values of 
p in the range between zero and one. 
Increases in delays under the proposed AJL 
method are shown for various fractions of 
sampling as determined by i3. Obviously, 
increasing the value of fi also increases the 
confidence in estimating the size of the 
join’s result and also the delay in correcting. 
Conversely, decreasing its value also 
decreases the confidence in correctly 
predicting the size of the join result [Vitter, 
1985; Olken, 19861. If l3 = 1, the join is 
permitted to complete and hence the cost of 
the alternative strategy is correctly 
determined; however, if correction does take 
place, the join execution time is wasted. If p 
= 0.5, the sampliig method to determine the 
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size of the join result uses half the resulting relation and, consequently, 
should be highly accurate. However, again, if a correction does take place 
the join execution time (or )3 = 0.5 fraction there of) is wasted. As )3 gets 
smaller, wasted overhead delay in case of correction decreases, but the 

confidence in accurately predicting the size of the 
join result also decreases. Consider now the case 
when )3 = 1. Join execution completes and its size 
is used to determine whether the alternative strategy 
should be instituted. If correction takes place, the 
alternative strategy “aborts” this completed join, 
that is, it ignores the relation the join produced 
produced. Even if this is the case, the average 
delays are still lower than those of the CJO 
method. Figure 6 shows that sampling overhead 
delays are more than offset by benefits of 
correction even for high values of fl. 

The reported results are for the distributed 
environment characterized by parameters of a long- 
hauled network type and an index join processing 
method. Modeling of other types of environment, 
not reported herein due to the space limitation, 
produced similar results in that the AJL method 
lead to delays which were close to those of the 
optimal AJO method. For a local area network, 
shorter delays were observed due to the faster 
communication. In addition to the index join 
processing method, the nested-loop and perfect 
hashing without misses join execution methods 
were also modeled. As expected, a “fast” hashed 
join execution method gave lower delays than 
slower join methods. The nested-loop join 
execution method incurred delays which “dwarfed” 
all other delays [Pyra, 19881. In such an 
environment the adaptive methods appeared to have 
been particularly crucial in reducing high execution 
delays due to inaccurate size estimation, 

MONITORING AND CORRECTING 
OVEFtHEAD 

With the exception of sampling delays which are 
inherent in the AJL method, overhead delays were 
neglected for the sake of simplicity. Their effect on 
the performance of the AJL method is now 
examined. For this purpose some assumptions on 
the monitoring and correcting delays arc made. 
Delays due to the initial QPS formulation equally 
apply to all of the methods under consideration and 
are therefore neglected. The strategy execution and 
its potential correction are assumed to proceed 
according to the following simplified method 
adopted from [Bodorik, 19891. Once the QPS is 
initially formulated and distributed by a master 
processor, its execution commences. Concurrently 
with its execution, the master processor creates and 
distributes alternative strategies to cohorts. Since 
formulation of alternative strategies is assumed to 
proceed in a background mode, that is concurrently 
with the execution of the original strategy, it does 
not contribute to overhead delay. It would be 
preferred for cohorts themselves to prepare these 
alternative strategies in order to distribute the load 
created by the strategy formulation/optimization 
process. For that purpose, however, they would 
have to have appropriate schemas and the strategy 
formulator. 

When a processor executes a join, it uses 
sampling to predict the size of the join result and 
(re)calculates the delay of the current and 
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alternative strategies. This is a relatively simple process as it 
does not involve optimization, but only a (relatively) simple 
calculation. The delay of an alternative strategy includes the 
overhead delay due to monitoring and correcting. If the 
alternative strategy has a lower delay, the current strategy is 
aborted and the alternative strategy is instituted for the 
“unprocessed portion of the query”. It is assumed that this will 
induce a delay which is equivalent to transferring one fxed 
length, 2000 byte long message to all other processor. The 
message is assumed to contain the command to abort and also 
the alternative strategy itself. CPU processing associated with 
correction is assumed to be equivalent to the delay caused by 
accessing 100 data units (1024 byte long pages) in the secondary 
data storage devices (about 2.3 seconds). 

The above assumptions are reasonable since an error free 
network is assumed and only one estimation inaccuracy is 
considered at a time. In a real system, however, correcting 
would be far more complex because processors would first have 
to validate the corrective strategy to ensure that it is consistent 
with the state of the strategy execution, including the case when 
more than one estimating errors are detected. One such method 
is proposed in [Pyra, 19881. Alternatively, an additional step 
may be introduced in which the state of the execution is 
ascertained by the master processor which would then either 
validate the alternative strategy or formulate a new one [Bodorik, 
19891. It is for these reasons that generously high overhead 
delays were assumed for the purposes of modeling. 

Let 

&M.JI,,~,~(Y) . . . the average increase, expressed as a factor, in 
the execution delay over all queries i = 1,2,. . ..N. Strategies 
are pmcessed using the AJL method. The overhead corrective 
delays, represented by a transfer of a fixed length message to 
all processors and a fixed duration CPU processing delay, are 
included in the execution deIays. 
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Figure 7 Emov,o.2( y) is shown for various values of y 

The effect of corrective overhead on the execution delays 
(E,=kn~~,b(y)) is shown in Figure 7. The static (SO), optimal 
(A30) and the proposed (AJL) methods without overhead are 
also shown for the purposes of comparison. The sampling 
overhead is B = 0.2. As expected, overhead delays showed to 
be insignificant in an environment in which they are relatively 
small in comparison to the average strategy execution delays 
which was 40 seconds. They appeared to be significant in the 
environment which included both fast communication and a fast 
join processing method, that is, in an environment which 
included a LAN and a hashed join execution method. This was 
due to the fact that overhead delays were not negligible in 
comparison to the strategy execution delays [Pyra, 19881. 

DISCUSSION 

Modeling suggests that the proposed adaptive processing 
technique should be beneficial in dealing with the problems 
arising due to inaccuracies in size estimation. They may, 
however, become beneficial only when inaccuracies are 
relatively high. This depends primarily on the relative 
magnitudes of overhead and strategy execution delays which, in 
turn, depend on the parameters characterizing the distributed 
environment, in particular the join processing and data transfer 
methods. That inaccuracies in size estimation affect optimal 
strategies confirms results of modeling reported in [Epstein, 
19801, but are in direct contradiction with the results reported in 
[Kumar, 19871 which reported that optimal strategies are very 
insensitive to inaccuracies in estimation. Since the report in 
[Kumar, 19871 is on experiments for a centralized DB while the 
report in [Epstein, 19801 and on this work is is for a DDB. it 
appears that the problems of inaccuracies in size estimations are 
negligible in a centralized DB but critical in a DDB. Further 
investigation is required to confirm whether or not this indeed is 
the case. 

7. SUMMARY AND CONCLUSIONS 

This paper has proposed and evaluated a new 
method for deciding when to correct a distributed 
QPS. Once a strategy is fomed and initiated. 
alternative strategies are prepared concurrently with 
the QPS execution. In addition, sampling methods 
are used to avoid the complete processing of 
relations whose results are much larger than 
initially estimated. Modelling has been used to 
demonstrate that alternative strategies, although 
heuristic, lead to delays which are close to those of 
optimal strategies. Furthermore, it has been shown 
that it is usually beneficial to abort an intermediate 
result/relation which is much larger than estimated. 
Although some expended work is wasted, this is 
more than offset by reducing delays by operating 
on smaller relations. The fixed overhead delays 
due to monitoring and correcting proved to be 
insignificant for the modeled environment. 

Integration of the proposed method and the 
methods which can be utilized in monitoring and 
instituting a corrective strategy need to be 
investigated. Modelling was such that only one 
estimation error was considered at any one time. It 
remains to be investigated how multiple errors 
affect the query response time. Further problems, 
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such as the stability of the methods employed and effects of 
pipelining, must be addressed before adaptive processing of 
queries can be shown to provide sufficient benefits to justify its 
widespread development and implementation. 
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