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Current database research is concerned with the design

of new programming languages and systems to support

advanced database applications such as software en-

gineering information systems and computer-aided de-

sign. Glue-Nail is a deductive databaze system that of-

fers two complementary languages, one declarative and

the other procedural, for writing such applications. This

paper is concerned with the problem of query optimiz~

tion in the Glue-Nail system.

Glue-Nail programs exhibit characteristics, such as a

predominance of temporary and dynamic relations, that

present problems for conventional query optimizers.

This work explores new approaches to optimization

that accommodate these characteristics. In particular,

it explores the combined use of reoptimization and

automatic indexing to adapt query plans to run-

time changes in the database, A performance study

was conducted to compare and evaluate alternative

strategies. The empirical results of this study support
the use of adaptive techniques over static approaches.

Keywords: query optimization, deductive database

systems, adaptive techniques, performance evaluation,

memory-resident databases.

1 Introduction

A current focus of database research is the design of bet-

ter programming languages and systems to support ad-

vanced applications such as computer-aided design and

manufacturing, office systems, and software engineer-

ing information systems. Glue-Nail [8, 16] is a deduc-

tive database system that offers two complementary lan-
guages, one declarative, the other procedural, for writ-
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query language that uses function symbols to represent

complex objects and is powerful enough to express re-

cursive queries. Glue [15] is a procedural language that

augments query capability with update operations, ag-

gregation, input-output libraries, and procedural con-

trol.

Glue-Nail programs are compiled into a lower level

language called IGlue. The resulting IGlue program

is executed by the back end of the system, the IGlue

interpreter. This paper is concerned with how to opti-

mize the evaluation of IGlue code. In particular, we

are concerned with query optimization-converting a

declarative specification of a query into an efficient plan

for executing the query. IGlue programs exhibit char-

acteristics, such as a predominance of temporary and

dynamic relations, that present problems for conven-

tional query optimizers and query processors. The goal

of this research was to explore adaptive optimization

techniques that are able accommodate these character-

istics. We have designed and implemented a run-time

query optimizer which improves system performance by

automatically reoptimizing query evaluation plans. The

optimizer also creates and drops indexes automatically.

This paper describes the IGlue adaptive optimizer and

presents the results of performance experiments that

evaluate the effectiveness of alternative reoptimization

strategies.

The remainder of the paper is organized as follows.

Section 2 presents an overview of the Glue-Nail sys-

tem architecture and describes the IGlue target lan-

guage and its interpreter. Section 3 reviews query opti-

mization and argues for the use of adaptive techniques

in the Glue-Nail system. Section 4 presents the opti-
mization framework used in the IGlue interpreter. Sec-

tion 5 describes alternative reoptimization strategies

and presents results that compare the performance of

each strategy. Section 6 compares the optimization
techniques found in IGlue to other approaches. Sec-

tion 7 presents a summary and conclusions.
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Figure 1: The Glue-Nail architecture.

2 System Overview

Figure 1 illustrates the architecture of the Glue-Nail

system. The front end of a system is a language compiler

which compiles both Glue code and Nail rules into

the target language IGlue. The Glue compiler maps

each Glue statement into a sequence of one or more

IGlue instructions. The Nail compiler transforms each

Nail query and an associated set of Nail rules into

an IGlue procedure, using variants of the magic set

transformation and evaluation strategies that support

well-founded models. The front end also includes an

IGlue-to-IGlue static optimizer that performs various

peep-hole optimizations and dateflow analyses. The

linker combines separately compiled Glue-Nail sources

into a single IGlue program, The back end of the

system is the IGlue interpreter which is responsible for

optimizing and executing IGlue code and for managing

access to temporary and EDB1 relations. In the

remainder of this section we will focus on the IGlue

language and interpreter.

2.1 IGlue: the Language

IGlue, a relational language with control statements,

was designed as the target language for both Glue

procedures and Nail rule. Below is a brief overview

of the language, with a focus on IGlue’s relational

instructions. A complete description is found in [7].

IGlue provides the following categories of statements:

Declarations. IGlue declarations tell the interpreter

about which EDB relations an IGlue program will

access and which temporary relations each IGlue

procedure will create.

Branches. IGlue branches are used to implement the

loop and if-then-else constructs found in Glue.

Procedure call and return. IGlue provides explicit

procedure call and return instructions to implement

the implicit procedure calls of Glue.

Aggregation. Aggregation operators are implemented

by an explicit ‘call” instruction similar to procedure

calls.

Relational instructions. Relational instructions are

used to to express relational queries (e.g., select,

project, and join) as well as to update relations.

Relation instructions are the “query expressions” of

IGlue. They access and update both persistent and

temporary relations. Relational instructions come in

four varieties:

FOR.ALL(pl, ~, . . .,%)

EXISTS(pl, ~, . . .,%)

MOVE(pl, ~)

ITWWER(P1,PZ)

where each pj refers to a relation, a Glue built-in

predicate, or a condition predicate. Predicates in the

FORALL and EXISTS forms maybe negated.

The FORALL form expresses relational select-project-

join queries. It computes the set of tuples that satisfy a

query, and, in addition, performs any indicated updates.

Relation predicates may be annotated with one of three

update operators: ++ for insert, -- for delete, and --

for clear. More than one relation can be updated in a

single expression. The following example illustrates two

FORALL instructions.

FORALL(--BDB(a( _,_))

FORALL (

EDB(b(g, X, Z)) , LOcAL(C(Z, y)) ,

<( X, Y), ++EDB(a(X,Y))

)

The first instruction clears the EDB relation a. The

second instruction ‘joinsn four predicates. The first

predicate accesses an EDB relation, the second accesses

a local (temporary) relation, the third is a condition

test, and the fourth is an update that inserts tuples

into relation a. Thb instruction is equivalent to the

following SQL statement:

1EDB ntands for Eztemional Databaae, a set of persistent
relations.
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INSBRT INTO A(X,Y)

SELECT DISTINCT B.X, C.Y

FROM B,C

WHERE B.W= ‘g’
AND B.Z = C.z
AND B.X < C.Y;

The EXISTS instruction implements a special case

of the FORALL instruction by computing at most one

solution to its arguments. It is is used as a condition

in IGlue’s branching instructions. The HOVE instruction

implements a special case in which the tuples of a source

relation, PI, are moved to a target relation, ~, first

clearing any previous contents of the target. After

the move, the source relation is empty. The TRANSFER

instruction is similar to the MOVEinstruction except that

the target relation is not cleared before adding new

tuples.

In the example IGlue code above, we see that relation

and procedure predicates are annotated with predicate

class descriptors, EDB and LOCAL. There are additional

descriptors, not shown, for other types of predicates.

The Glue compiler analyzes the type of each predicate

and determines the set of potential referents for each

predicate as early as possible. This avoids the expense

of resolving predicate references at run-time. However,

for readability, the predicate class descriptors will not

be shown in the examples found later in the paper.

2.2 IGlue: The Interpreter

The IGlue interpreter is the back end of the Glue-Nail

system database system. It is responsible for optimizing

and executing IGlue programs, and for managing access

to relations. The interpreter is designed to support

a memory-resident database. That is, it preloads all

EDB relations required by a program into main memory.

All temporary relations created by the interpreter

reside only in main memory. The IGlue interpreter

is designed for single-user applications and does not

provide locking, transactions, or other mechanisms for

concurrency control.

A diagram of the interpreter is shown in Figure 2

The IGlue interpreter reads in an IGlue program and

converts it into an internal representation. It also reads

from disk all the EDB relations that the IGlue program

might access. The interpreter’s abstract machhe then

executes the stored IGlue program, invoking the run-

time optimizer and the relation manager as needed.

When the IGlue program terminates, EDB relations
that have changed are written back to disk.

At the heart of the abstract machine is the query

processor, which evaluates IGlue FORALL and EXISTS

expressions. The query processor uses an index nested-

loop join strategy. Whang and Krishnamurthy [21]
argue that with the appropriate indexes, the nested-

loop join method alone is adequate for memory-resident

IGlue Code

1

Abstract Run-time Relation
Machine Optimizer Manager

Program Relation
Store Store

tl
EDB

Figure 2: The IGlue interpreter

databases. The query processor depends on a run-

time query optimizer to choose a join order and to

select appropriate hash indexes on join and selection

attributes, creating them if necessary.

3 An Argument for Adaptive

Optimization

This section discusses the problem of optimizing IGlue

programs. We begin by reviewing query optimization

for relational database management systems. We then

dkcuss why conventional techniques are inadequate

for IGlue. Finally we argue for the use of adaptive

techniques.

3.1 Relational Query Optimization

In relational database management systems, queries are

expressed declaratively. That is, each query specifies

what is to be computed, but does not specify how

to compute it. It is the job of the query optimizer

to formulate a plan for executing the query. Query

optimization can be thought of as a search problem in

which the search space is the set of alternative query

execution plans. The query optimizer searches for the

plan with the lowest cost.

Because exact execution costs usually cannot be de-

termined without actually executing a query, a query

optimizer must estimate the cost of each alternative

plan. The optimizer calculates cost estimates using p-

rameters that include statistical profiles oft he relations

involved in the query. Typically, the profiles includes

the number of tuples in each relation (cardinality) and

the number of distinct values for each attribute (do-
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main size). Additional information, such as minimum

and maximum values, and histograms of values, may

also be included in the profile.

For efficiency, relational queries are usually optimized

once to produce compiled query plans that are stored

and executed multiple times. In particular, thh ap

preach is applied to queries that are embedded in an
application program written in a host programming lan-

guage. The compiled approach assumes that the pa-

rameters for which the plan is optimal do not change at

run time. Many commercial systems provide mechanism

to invalidate a query plan that has become infeasible,

e.g., when an index on which the query plan depends is

dropped [3]. Commercial systems may also provide util-

ities for manually updating statistical parameters and

manually reoptimizing queries [6]. However, no mech-

anisms exist to reoptimize a query automatically when

changes in statistical parameters indicate that a valid

query plan may no longer be optimal.

3.2 Optimizing IGlue Queries

Relational queries primarily access only persistent rela-

tions. In many relational database applications, persis-

tent relations are large, relatively static, and shared by

multiple users. IGlue programs access persistent rela-

tions and temporary relations, Temporary relations in-

clude relations defined by a Glue programmer that are

local to a procedure, as well as relations introduced by

the Glue compiler to hold intermediate results. Tempo-

rary relations differ from persistent relations in several

ways. Temporary are not shared by other programs or

users. Temporary relations range in size from very small

(one or two tuples) to very large (e.g., a cartesia~ prod-

uct.) In IGlue programs, temporary relation may be

frequently updated. In particular, temporary relations

that are used in the semi-naive bottom-up evaluation [2]

of a recursive query are updated on each loop iteration.

In IGlue programs, temporary relations are referenced

much more frequently than persistent relations [7].

Conventional compile-time query optimization is not

appropriate for IGlue because of the presence of tempo-

rary relations. While statistical profiles may be avail-

able ahead of time for EDB relations, at best, they can

only be estimated for temporaries. Furthermore, queries

that access temporary relations may be embedded in

loops or procedures that are called repeatedly. Over

time, the statistical profiles of temporary relations (and

persistent ones, for that matter), may vary, invahdating

any optimization decisions made at an earlier stage.

To illustrate this problem, consider the fragment of

IGlue code shown in in Figure 3. Each time the loop is

executed, tuples are inserted into relation p and deleted

from relation r. The size of relation q remains constant.
Table 1 shows how the cardhmhties of p, q, and r might
change over time. It also shows how the optimal join

order for the expression in line 4 changes as the relation

i)

2)
3)

4)

5)

6)

7)

8)

lbegl :
IFNOT EXISTS (ent(I) , I < 16)

GOTOIendl
FORALL(--tmpO(., -))
FORALL(

P(X, Y, Z), r(Y, V, T),
q(Z,lf,V), ++tmpO(Y,T)

)
FORALL(

tmp(U, T) , cnt(I) ,
++p(w, I, T), --r(-, -,w)

)
FORALL(cnt(I), II = 1+1, ++tmpl(II))
HOVE(tmpl(I), cnt(I))
GOTOlbegl

lendl:

Figure 3: Example: IGlue code loop with changing

relations.

Table 1: Cardlnality changes and optimal join order

cardinalities change (assuming that domain sizes are

approximately equal and constant).

The above example was constructed to demonstrate

the effect of changing cardlnalities on join order. It

is not difficult to find this same phenomenon in ‘realn

Glue programs. The following query was taken from

a program that computes the bill of materials for a

complex object.

FORALL(

unknown(P), !notyet(P),

assembly (P, S, M), p(S~Fl#) ,

++tmp(P, M, S,R,N)

)

This expression appears in a loop that is executed

until relation unknown (P) becomes empty. During

the execution of the loop, relations unknown(P) and

not yet (P) shrink, relation p ( S ,R ,N) grows, and relw

tion assembly (P, S ,M) remains constant in size. This
pattern is also found in IGlue code that is generated by

the Nail compiler.

9.3 Alternative Approaches to Optimization

Given that conventional optimization is problematic for

Glue queries, how and when should a Glue query be
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optimized? One approach is to optimize queries at

compile-time using statistical profiles for persistent re-

lations and deriving or guessing parameters for tempo-

rary relations. This approach has the advantage that

all decisions are made at compile-time, malchg it possi-

ble to compile query plans instead of interpreting them.

However, by using poor estimates, this solution could

produce bad query plans. Furthermore, even if a plan

performs well the first time a query is executed, it could

perform badly on subsequent executions if the relation

parameters change.

Another approach is to delay optimizing queries that

reference temporary relations until run time [3]. In

IGlue, since most queries involve temporary relations,

this approach defaults to postponing optimization until
the first time a query is evaluated. However, this

approach still has the problem that query plans have

no way to adapt to changing parameters. One solution

is to reoptimize a query each time it is to be executed

to ensure that the query plan would always be optimal

for the current parameters. But this approach would

be expensive in circumstances where parameters don’t

change significantly from one evaluation of a query to

the next.

A third approach is to adapt query plans to significant

parameter changes. When a query is first optimized, its

parameters are stored with the query plan. When the

query is subsequently executed, the current parameters

are compared to the stored parameters. If there

is significant change, such as a relation cardinality

increasing beyond a threshold, the query is reoptimized

and the new plan and parameters are saved. Section 5

proposes and compares several alternative criteria for

deciding when to reoptimize a query.

4 The Adaptive Query Optimizer

The IGlue interpreter features a query optimizer that

constructs query plans at run time. The first time the

interpreter encounters a query, it invokes the optimizer

on that query. Recall from Section 2 that the IGlue

interpreter evaluates queries using an index nested-loop

join algorithm. The interpreter also supports two types

of access methods: scanning all tuples in a relation and

using an index to access selected tuples. To construct

a plan to evaluate a query within this framework, the

optimizer makes two types of decisions: 1) choose the

join order, and 2) determine how to access each relation.

Using a cost model [7] that characterizes the cost of

each query processing method, the optimizer estimates

the cost of alternative join orders and access paths, and

chooses the plan with the lowest cost. The optimizer

then annotates the query with its choices for join order

and access path. To generate alternative query plans,
the IGlue optimizer employs a dynamic programming

algorithm based on the System R approach [18]. As

implemented in IGlue, this algorithm handles queries of

up to fifteen predicates.

The run-time optimizer also makes all indexing

decisions—when to create, use, and drop each index—

automatically. This relieves the programmer or the

compiler from having to select indexes without knowing

the order in which relations will be joined. For each

relation in a particular ordered join, the optimizer

decides which access method, scan or index, has the

lowest cost. In making this decision, it ignores whether

or not an index exists. If the optimizer determines that

indexed access is cheaper than scanning, and the index

already exists, then the optimizer chooses the index

method. However, if the index does not exist, how

should the optimizer count the overhead of building it?

In [7] we compared several approaches on a benchmark

suite of Glue-Nail programs and determined that the

most effective strategy is to ignore the overhead. This

strategy is based on the heuristic that the cost of

creating an index that might be u8ed only once is less

than than the penalty of failing to create an index that

may be used multiple times in the future.

The optimizer also determines whether to maintain

or drop indexes when relations are updated. Indexes

on temporary relations are automatically dropped when

the temporary relation is deleted. However, the system

may want to drop an index earlier to avoid excessive

costs of maintaining it. In [7] several strategies were

compared experimentally and two of them were found

to be effective. The first strategy always maintains

indexes, It implements the heuristic that the benefit

of using an index is greater than the overhead of

maintaining it. The second strategy uses data-flow

analysis information, derived at compile-time by a

static code analyzer, to determine if an index has any

potential uses. The system will drop an index only

if it has no potential uses. This second strategy for

dropping indexes and the ignore overhead strategy for

creating indexes were employed by the optimizer in

the performance comparison described in the following

section.

5 Reoptimizing Queries

As argued in Section 3, one way to achieve good

performance in Glue-Nail is to reoptimize queries when

relation parameters change. However, because the
optimization algorithm itself is expensive, it should

avoid reoptimizing queries when unnecessary. An ideal

algorithm should reoptimize a query if and only if it will

result in a better query plan than the current plan.

5.1 Alternative Strategies

Let us introduce four strategies concerning reoptimiza-

tion. One strategy is never to reoptimize. The other
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Table 2: Changing cardhmhties.

Iteration Cardinalities

m
three strategies monitor changes in relation cardhmlL

ties to trigger reoptimization.

The Never Strategy. The Never strategy never

reoptimizes a query. The IGlue optimizer, using the

Never strategy, chooses a query plan at run time, when

the optimizer has access to parameters that describe

temporary relations. Once a query plan is selected, it

does not change.

The Change Strategy. The alternative to optimiz-

ing each query just once is to reoptimize when param-

eters change. The Change strategy implements an ap-

proach that monitors the relations involved in a query

for changes. Whenever the optimizer chooses a query

plan, it remembers the cardlnalities of the relations that

are involved in the query. Then, each time the query is

to be executed, the optimizer compares the current re-

lation cardinahties with the recorded cardhalities. If

there are any changes the query is reoptimized. Of

course, the fact that relation cardinalities have changed

does not mean that the optimizer should choose a new

query plan.

Again, consider the IGlue code in Figure 3. Table 2

lists some hypothetical cardlnalities for relations p, q,

and r for the first four iterations of the loop. Because

the cardlnalities of relations p and r change on each

iteration, the Change strategy would reoptimize the

query on line 4 of Figure 3 on each iteration. However,

the only time the optimizer would produce a query plan

that is different from the previous one is on the fourth

iteration.

The Pereent Strategy. The Percent strategy tries to

detect significant changes in relation cardinalities. Like

the Change strategy, the Percent strategy remembers

relation cardlnalities when it chooses an initial or a new

query plan. A query is reoptimized only if the optimizer

detects that a relation cardinality has increased by
a factor of k or decreased by a factor of I/k, for

some parameter k. The current implementation of this

strategy uses a value of k = 2.0, which was selected

earlier based on some preliminary tests.

Consider the cardinality changes in Table 2. The

Percent strategy would ignore the changes between the

first and second iteration because 38< 20k and 3562<

3023k. However, the Percent strategy would reoptimize

the query on the third iteration because 178 > 20k.

This strategy would also ignore the cardhudity changes

between the third and fourth iterations.

The Rank Strategy. The Rank strategy considers

how relation cardhmhties change relative to one another

when deciding to reoptimize a query. The first time

a query is optimized, the relations involved in the

query are rank ordered by cardinality and the ranks

are recorded. Each time the query is to be executed,

new ranks are computed and compared to the recorded

ranks. If the rank of any relation changes, the query is

reoptimized.

Again, consider the cardhmhties shown in Table 2.
On the first iteration, the rank order of the relations,

from largest to smallest, is r, q, p. The rank order

remains the same until the fourth iteration when it

changes to r, p, q. Thus, on the fourth iteration, the

Rank strategy would reoptimize the query.

5.2 Comparing Strategies

How well do each of the above four strategies perform on

typical Glue programs? For programs in which queries

are executed multiple times and in which relation

parameters vary at run time, we would expect the

three strategies that monitor cardinality changes to

give better performance than the Newer strategy. Of

these three strategies, which is best? For programs

with queries that are executed only once or whose

relation parameters do not significant 1y change, we

would expect the Never strategy to perform better

than the Change strategy, which reoptimizes a query

if any cardinalities change. But we would hope that the

Percent and Rank strategies, would avoid reoptimizing

queries unnecessarily, and incur only slight penalties

from the overhead of monitoring relation cardlnalities.

To answer these performance questions, we tested

each reoptimization strategy on ten Glue applications

compiled into IGlue. These ten applications are

summarized in Figure 4.

The first program, adapt, which contains code similar

to the example shown in Figure 3, waa designed to favor

the three strategies that reoptimize queries. The other

nine programs are Glue-Nail applications written for a

variety of purposes by several different programmers.

Each Glue-Nail program was compiled into IGlue and

executed on a DEC 5000/200 workstation with 32
megabytes of memory. The programs were executed on

a lightly loaded system. For each program, all relations

were able to fit entirely in physical main memory. The
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adapt

bill

cife

Sg

load

run

prim

span

Oag

car

Contains queries with changing relations
cardinalities. EDB: three relations totaling

3,782 tuples.

Constructs a bdl-o.f-materiti for a part-

subpart hierarchy. EDB: two relations

totaling 15,100 tuples.

Schedules tasks and allocates resources for

constructing an 8-floor, 16-room building.

EDB: twelve relations totahg 725 tuples.

Solves the same generation problem on a
family tree representing eight generations.

EDB: two relations totaling 9,595 tuples.

Converts a circuit description into a set

of relations. EDB: eight relations totaling

1,472 tuples.

Simulates a logic circuit. EDB: ten relations

totaling 1,686 tuples.

Prim’s minimum spanning tree algorithm.

EDB: one relation of 100 tuples.

Minimum spanning tree algorithm, adapted

from an LDL example [4]. EDB: one

relation of 50 tuples.

Searches for flights in an airline database.

EDB: seven relations totaling 764 tuples.

Simulates traffic movement around a circu-

lar track for 100 clock ticks. EDB: one re-

lation of 14 tuples.

Figure 4: Glue-Nail application programs

execution time for each program/strategy combination

was measured and recorded.

In [7] we combined the four alternative reoptimizw

tion strategies with three alternative strategies for cre-

ating indexes and five alternative strategies for drop-

ping indexes. In all, 44 different different combinations

were compared (not all 60 combinations were plausible.)

Here, we report the results for four of those combhm-

tions: each of the four reoptimization strategies com-

bined with the ignore overhead index creation strat-

egy and the potential we index dropping strategy, de-

scribed in Section 4. Figure 5 compares the the execu-

tion times for all four strategies on five of the programs.

To compare performance across programs, the execu-

tion times are normalized with respect to the Never
strategy. For the adapt program, the Change, Percent,

and Rank strategies are 3.9 to 4.2 times faster than the

1.5

1.25

Y’
1=
o
l!j 0.75
i
g
g 0.5

0.25

0
ADAPT BILL SG CAR CIFE

~ NEVER - CHANGE ~ PERCENT m RANK

Figure 5: Comparing reoptimization strategies I. The

horizontal axis is labeled with the names of the

programs. The vertical axis is labeled with execution

time normalized with respect to the Never strategy.

Never strategy. A trace of the optimizer’s actions for

the query involving relations p, q, and r shows that the

Change strategy reoptimized the query 59 times, dur-
ing which it changed query plans (join order and access

method) nine times. The Percent strategy reoptimized

the same query nine times, and changed query plans

five times. The Rank strategy reoptimized the query

three times, and changed query plans each time. This

example demonstrates the importance of being able to

reoptimize queries. The cost to reoptimize a query, even

when the query plan does not change, is small compared

to the penalty of using a single query plan throughout

the execution.

For the other four programs, the reoptimizing strate-

gies provide varying degrees of improvement over no re-

optimization. The only exception is for the ci~e program

where the Rank strategy degrades performance by about

4 percent. This strategy failed to to detect several reop-

timization opportunities found by the Change and Per-

cent strategies. In particular, both Change and Percent

are able to detect absolute changes in a single relation

that result in the use of an index, but not necessarily

a change in join order. The Rank strategy detects rel-

ative changes among a set of relations, which signal a

change in join order. Furthermore, the overhead of the

Rank strategy resulted in slightly slower performance

than the the Never reoptimize strategy.

The most dramatic improvement occurs in the bill

program. An optimization trace for the Percent strategy

shows that this improvement resulted from reoptimizing

two different queries that appear in loops. The first

query, which involves three predicates, was reoptimized

eleven times and changed query plans three times.

The second query, which involves six predicates, was
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6 Related Work
.“

II I This section reviews related research in two areaa: op-

LOAD RUN PRIM SPAN

~ NEVER - CHANGE - PERCENT ~ RANK

Figure 6: Comparing reoptimization strategies IL

The horizontal axis is labeled with the names of the

programs. The vertical axis is labeled with execution

time normalized with respect to the Never strategy.

reoptimized four times and changed query plans three

times.

The results in Figure 5 highlight the performance

advantage of being able to reoptimize queries. All

three alternatives are feaaible, with the Change, and

Percent strategies outperforming the Rank strategy on

one program.

Figure 6 compares the the execution times for

all four strategies on the five remaining programs.

Again, execution time is normalized with respect to

the Never strategy. Here, we see that performance

improvements are less dramatic for the reoptimizing

strategies. The biggest improvement is seen in the span

program, using the Change and Pement strategies. An

optimization trace for the Percent strategy shows that

the performance gain resulted from one query of four

predicates which was reoptimized six times and changed

query plans twice.

While we do not see huge performance gains result-

ing from reoptimization in Figure 6, neither do we see

significant degradation in performance, with one excep-

tion. In the load program, the Change strategy degrades

performance by 46 percent. This slowdown results from

the overhead of repeatedly reoptimizing queries that do

not actually need new query plans.

The combined results in Figure 5 and Figure 6

suggest that the Percent strategy is the best alternative.

Of the three reoptimizing strategies it best meets
the requirements of an ideal algorithm. It improves

performance by generating new query plans when

it detects significant parameter changes. It does

not degrade performance by unnecessarily reoptimizing

queries.

timization for deductive database systems and alterna-

tives to reoptimization.

6.1 Query Optimifiation in Deductive

Database Systems

Optimization research in deductive database systems

has focused more on how to compile recursive queries

into database operations than on how to execute those

operations efficiently. In the NAIL! system, the subgoal

ordering algorithm considered only binding patterns,

in choosing the order in which to evaluate subgoals.

Because Nail rules were ultimately translated into SQL,

the task of ordering joins on the basis of relation

cardinality and domain size was left to the SQL

optimizer.

CORAL [17], like Glue-Nail, employs a two-language

paradgm. The declarative language is based on Horn

clauses. The imperative language is C++, extended

with a relation and tuple class library. CORAL allows

the programmer declare indexes on baae or derived

relations. The Magic Template transformation, one

of the rule rewrite strategies, also declares indexes.

CORAL lets the user specify join order information

for each rule. Otherwise, when relation cardlnalities

are unknown, CORAL selects a left to right join order.

For semi-naive evaluation, CORAL uses a heuristic that

moves any “delta” predicates to the left.

Adlti [20] is a multi-user, disk-based, deductive

database system. Aditi programs are written in a vari-

ant of Prolog and are compiled, via two intermediate

languages, into a low level procedural relational lan-

guage (RL) that is similar to IGlue. RL programs are as-

sembled into bytecodes and interpreted by the database

back end. Because RL supports only binary join oper-

tions, the join order for multi-joins must be determined

at the time the RL code is generated. The RL join

operator also distinguishes between two types of join

conditions: those that are useful for indexing and those

that are not. Information about available indexes for

each relation is contained in a data dictionary.

LDL (a Logical Data Language) [5, 14] is a main

memory, single-user deductive database system. Rules

are compiled into an AND/OR graph representing joins

and unions. The system allows programmers to define

indexes on base relations. If no index is declared for a

relation, then by default, the system builds an index on

the first argument. The LDL optimizer [11] chooses join

orders and annotates the graph with access method and

execution strategy choices, The graph is then translated

into a C program w~lch makes calls to an underlying

database management system. The decisions made by

the optimizer are hardwired into the target code.
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6.2 Alternatives to Reoptimifiation

Instead of reoptimizing queries when parameters change,

several researchers have proposed generating multiple

query plans to accommodate different parameter values.

One example, proposed for the XPRS project [19], is

an optimization strategy that generates multiple query

plans, each of which is (nearly) optimal over a range of

buffer sizes. At query execution time, the actual buffer

size determines which of these query plans to evaluate.

Graefe and Ward [9] propose a technique that uses

dynamic query evaluation plans. In their paradigm, a

dynamic query plan consists of a set of alternatives and

a decision procedure that is evaluated at run-time to

choose the optimal plan. They acknowledge that the

number of alternative plans could be prohibitively large

but suggest that the number could be kept small by

considering only plans that are close to optimal over a

wide range of parameter values.

Ioannidh et al. propose a related approach, called

parametric guery optimization [10], that provides a

strategy for identifying alternative query plans. In prin-

ciple, this approach optimizes a query by identifying

optimal execution plans for all possible value combin-

tions of run-time parameters. In practice, however, the

technique is applied to selected subset of run-time ps

rameters. While experiments have shown this approach

to be effective for a single run-time parameter (either

buffer size or index type), it is not known how well it

would scale to a a large number of run-time parameters.

Antoshenkov [1] describes a dynamic method, called

competition, for optimizing single table access in the

Rdb/VMS2 system. This method, which assumes an

L-shaped selectivity distribution, executes one or more

access strategies simultaneously, may switch to a better

strategy at some optimal point during query evaluation.

7 Conclusion

Glue-Nail programs exhibit characteristics that present

problems for conventional query optimizers, such as

a predominance of temporary and dynamic relations.

Thh work proposes new approaches to optimization

that accommodate these characteristics. In particular,

it explores the combined use of reoptimization and

automatic index selection to adapt query plans to run-

time changes in the database. One advantage of thh

approach is that size parameters of both temporary
relations and persistent relations are known at run time.

A second advantage is the opportunity to reoptimize a

query when these relation parameters change.

Four alternative strategies for deciding if and when

to reoptimize a query were implemented in the IGlue

run-time optimizer. These strategies were combined

with techniques for automatically deciding when to

aRdb/VMS is ~ tra&rnark of D@tal Equipment corporation.

create and drop indexes. All four strategies were

compared on a benchmark of Glue-Nail programs. The

results clearly demonstrate that reoptimizing queries

can result in large performance gains. Of the three

reoptimizing strategies considered, the Percent strategy,

which detects when cardindlty changes by a factor of

k, provided the beat overall performance. This strategy

improves performance by generating new query plans

when it detects significant parameter changes. It does

not degrade performance by unnecessarily reoptimizing

queries.

Although the adaptive optimization techniques de-

scribed here were developed in the context of Glue-

Nail, a deductive database system, they generaEze to

other programming languages and systems that manage

and manipulate collections of temporary and persistent

objects with dynamic properties. Further research is

needed to extend the techniques to other environments,

such as concurrent, disk-based systems. Another inter-

esting direction would be to combine adaptive optimiz~

tion with a framework such as dynamic query evaluation

plans [9]. Once selected, a query plan is cached so that

it may later be reselected by a choice operator.
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