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ABSTRACT
On-Line Analytical Processing (OLAP) is a technology
that encompasses applications requiring a multidimen-
sional and hierarchical view of data. OLAP applica-
tions often require fast response time to complex group-
ing/aggregation queries on enormous quantities of data.
Commercial relational database management systems
use mainly multiple one-dimensional indexes to process
OLAP queries that restrict multiple dimensions. How-
ever, in many cases, multidimensional access methods
outperform one-dimensional indexing methods.

We present an architecture for multidimensional data-
bases that are clustered with respect to multiple hi-
erarchical dimensions. It is based on the star schema
and is called CSB star. Then, we focus on heuristi-
cally optimizing OLAP queries over this schema using
multidimensional access methods. Users can still formu-
late their queries over a traditional star schema, which
are then rewritten by the query processor over the CSB
star. We exploit the different clustering features of the
CSB star to efficiently process a class of typical OLAP
queries. We detect special cases where the construction
of an evaluation plan can be simplified and we discuss
improvements of our technique.

1. INTRODUCTION
Decision support applications increasingly rely on On-

Line Analytical Processing (OLAP) to analyze business
related  information. OLAP is a technology that encom-
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passes applications requiring a multidimensional view of
data. In such a view of data there is a set of measures
that are the metrics of interest. The measures contain
numeric data. Each of them is uniquely determined
by a set of different and often independent dimensions.
Dimensions have associated with them hierarchies that
specify different aggregation levels of data and hence
different granularities of viewing data. Many relational
OLAP systems use the star schema [12] to represent
the multidimensional data model. A multidimensional
database organized as a star consists of a fact table and
a table for each dimension. A dimension table comprises
attributes for each (aggregation) level of the dimension
and other (descriptive) attributes that characterize the
different levels of the dimension. The fact table stores
attributes for each numeric measure and foreign key at-
tributes to the attribute of the finest granularity level
of each dimension.

OLAP applications often require fast response time
to complex grouping/aggregation queries on enormous
quantities of data. Common techniques to improve query
performance are materializing views, and making exten-
sive use of clustering and indexing methods. In multidi-
mensional databases these techniques have to be adapted
in order to account for the multiple dimensions. Mate-
rializing views is an efficient technique when the way to
compute a query using the materialized views is known.
However, the general problem of answering and optimiz-
ing grouping/aggregation queries using multiple mate-
rialized views [4,  3, 201  is complex. Another difficulty of
the view materializing technique is the optimal selection
of views to materialize [ll,  191.  View selection becomes
even more complex when the query pattern is not known
in advance [13]. Lastly, this technique incurs important
additional space requirements and intricate algorithms
for incrementally maintaining the materialized views [9].
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Commercial relational database management systems
use mainly multiple one-dimensional indexes, like com-
pound indexes and bitmap indexes, to process OLAP
queries that restrict multiple dimensions. The search
key in compound indexes is a concatenation of multi-
ple attributes (where the order of attributes matter).
Therefore, they are useful for processing only some of
the queries that restrict these attributes. Selecting  views
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and compound indexes for materialization for a given
query set pattern is a difficult task [IO]  and depends
on the specific query set pattern. Bitmap indexes (and
their variants) [16] are very popular because of their
compactness and support of star joins. Nevertheless,
in many cases, multidimensional access methods (e.g.,
R-tree) outperform bit-mapped indexing methods [lg].

Contribution In this paper we focus on heuristically
optimizing OLAP queries in databases that are clus-
tered with respect to multiple hierarchical dimensions
using multidimensional access  methods. The main con-
tributions are the following:

We present a multidimensional database architecture
based on the  star model (called CSB star). The di-
mension tables are organized using one-dimensional
hierarchical clustering and encoding techniques, while
the fact table is organized using a multidimensional
access method.
We show how OLAP queries can be easily expressed
by the users over a traditional star schema. The CSB
star schema is intended to be a storage option only.
The query processor rewrites user queries over the
CSB star schema.
We exploit the clustering features of the CSB star
schema to efficiently process a class of typical OLAP
queries. The expensive star-join operations needed
in a traditional star schema can be essentially imple-
mented as mult,idimensional  range restrictions on the
fact table and range restrictions on the dimension ta-
bles. Supplementary joins are implemented as merge
join operations on sorted tables. Grouping operations
are performed on partially sorted relations.
In this context we detect special cases where joins of
fact table tuples with tuples from the dimensions can
be avoided, and the grouping of the tuples can be
performed only once before all join operations.

This work is done in the context of the European IST
project “EDITH”. In this project we use a multidimen-
sional access method integrated into the kernel of a
database management system [ 171.

Outline The next section reviews related work. Section
3 introduces the basic concepts of multidimensional hi-
erarchical clustering adopted here. In Section 4, the
architecture of the multidimensional database is pre-
sented. Section 5 describes the class of queries consid-
ered, introduces a number of physical operators, and
shows how queries in this class can be heuristically op-
timized by exploiting the clustering scheme of the mul-
tidimensional database architecture. Section 7 contains
concluding remarks and directions for further work.

2. RELATED WORK
Conventional query optimizers exploit the knowledge

about the group-by clause in a query only by including
the  grouping columns in the list of interesting orders
during join enumeration. The  group-by operation can
be pushed past one or more joins. This early grouping
may reduce the query processing cost by reducing the
amount of data participating in the joins. Necessary and
sufficient conditions for deciding when this transforma-
tion is valid are provided in [22]. A generalization of the

early grouping transformation, the coalescing grouping
transformations allow us (a) to perform early group-by
but require additional group-by subsequently  that co-
alesces multiple groups and (b) to deal with the caSe
where not all the aggregating columns are present in
the node of the query evaluation plan where an early
group-by operator is placed [2]. Different other cases of
early grouping and aggregation are studied and catcgo-
rized in [23], along with their reverse transformations of
lazy grouping and aggregation. These latter transfor-
mations postpone the application of a grouping opera-
tion until after a join, and may reduce the number of
input rows to the group-by, if the join is selective. Both
directions of transformation are considered during query
optimization. Transformations as well as optimization
algorithms for queries with aggregate views and queries
containing aggregate nested subqueries are presented in
[3]. The proposed pull-up transformation (the equiva-
lent of lazy grouping and aggregation) makes it possi-
ble to reorder relations that belong to different query
blocks so that these relations can be joined before the
group-by operators are applied. The generalized projec-
tion operator, an extension of the  duplicate  eliminating
projection  operator, captures the semantics of group-by,
aggregation, duplicate-eliminating projection  and dupli-
cate preserving-projection in a common unif,ying frame-
work [8]. In this framework query rewriting rules are
able to push aggregation operators past selection condi-
tions (and vice-versa). The pull-up transformation does
not apply in the evaluation plans that we consider here
because the join operations do not reduce the number
of tuples of the joining tables. In contrast, a coalesc-
ing grouping transformation can be very efficiently ex-
ploited: an early grouping can be pushed past all joins.
It is worth noting that this is due to the architecture of
the CSB star schema that uses hierarchical clustering
and encoding techniques, and does not apply to a tra-
ditional star join schema. Related works dealing with
multidimensional access methods and multidimensional
hierarchical clustering arc cited in the  next section.

3. MULTIDIMENSIONAL HIERARCHI-
CAL CLUSTERING

We present in this section the basic concepts of multi-
dimensional hierarchical clustering and range query pro-
cessing adopted in the paper.

Multidimensional clustering and the UB-tree. A
tuple of a relation in a relational database can be viewed
as a point in a multidimensional space  where the dimen-
sions are determined by the attributes of the tuple. In
this context, the processing of queries can be supported
by multidimensional access  methods [6]. OLAP queries
often impose restrictions on multiple attributes (dimen-
sions). Multidimensional access methods are used to
cluster data with respect to multiple dimensions. Multi-
dimen.sional  clustering can substantially speed up queries
that restrict multiple dimensions. The main problem in
the design of multidimensional access methods is that
there exists no total ordering among the points in the
multidimensional  space that preserves spatial proxim-
ity. One wa,y  to heuristically deal with this problem is
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to discover a total order that preserves spatial proximity
to some extent. This total order is called space-filling
curve. Then, a one-dimensional access method can be
used in combination with the space-filling curve to im-
prove the access of the points in the space. Such a
solution to the problem is provided by the U&tree  [l].

Range queries on UB-trees and the Tetris algo-
rithm. A query that restricts all attributes (dimen-
sions) to an interval is called range query. The multidi-
mensional interval determined by the one-dimensional
intervals is called query box. In order to answer a range
query, [I] presents an algorithm for UB-trees that fetches
from the disk only those regions (pages) that properly
intersect the query box. The Tetris algorithm [15] is a
generalization of the multidimensional range query algo-
rithm that efficiently combines sort operations with the
evaluation of multi-attribute restrictions. The Tetris al-
gorithm takes as input an attribute of a relation and a
query box determined by the restrictions of a query on
the relation, and returns the tuples of the relation sat-
isfying the restrictions, ordered on the input attribute.
Compared to the access methods of commercial systems
for queries in the TPC-D benchmark [21], the Tetris al-
gorithm shows significant speedups, important tempo-
rary storage requirement reduction for the sorting pro-
cess, and multiple times faster production of the first
results of a sort operation [15].

Dimension hierarchies. A dimension hierarchy D
of depth Ic is  a l ist  L”,  ,  L’  of k:  names which are
called &men&on  or hierarchy levels. With every level
L in D, a non-empty finite set of values dam(L)  is as-
sociated through the function dom such that dom(L”)  f~
dom(L,j)  = 0, i # j. In each dimension, we additionally
assume an auxiliary level L”+’  whose domain contains
the single value all. For every two levels Li,  Lif’  , i E
[l,  k], a function parent from dom(Li)  onto dom(Li+‘)
is defined. For every two levels Li+’  , Li,  i E [I, k],
a function children from dom(L;+‘)  to the power set
of dom(L”)  is defined: children(v) is the set of values
‘u’  in  dom(Li)  such that pare,nt(w’)  = w. Clear ly ,  i f
‘u,u’  E dom(Li),  i > 1, and w # w’, children(w) # 0, and
chiZdren(w)nchildren(w’)  = 0.  A value in dom(Li),  i >
1, represents  a set of values in dom(Li)  through the
function children. Level L’  (the lowest level in the hi-
erarchy of dimension D) corresponds to the smallest
(finest) granularity of viewing data. Level L”+’  (the
top level in the hierarchy of dimension D) corresponds
to the largest granularity of viewing data. A dimension
hierarchy defines a hierarchy tree: the nodes of the tree
arc the values in l-l,“=‘,’  dom(L”),  while the edges are de-
termined by the parent function. The leaf nodes of the
tree are the values in dom(Ll).  The root node is the
unique value of dom(L’“+l).  The path of a node (value)
7~’ E dom(Li),  i E [l,k], is defined to be the concate-
nation of the nodes nlC,  nk-‘,  , a2  on the path in a
hierarchy tree from the root node to ni.

Hierarchy clustering and encoding. OLAP queries
impose restrictions on different levels of the dimension
hierarchies. Hierarchy clustering and encoding [24, 141
in combination with multidimensional access methods
can be used to speed up these queries and to optimize

the storage usage.
In order to take into account dimension hierarchies

in the clustering of data, instead of the values 11 of the
lowest level of a dimension, their path p in the hierarchy
tree of the dimension is considered. The concatenated
values can be shortened using the following encoding
schema which is quite similar to that of [14]. Let w be
a value in the domain of level Li,  i E 11,  ICI.  Let also
w’ be the parent of w in the hierarchy tree, V be the
cardinality of chiZdren(w’),  and <Q be the “less than”
comparison operator of the query language. We define
a one-to-one function S : chiZdren(w’)  + [0, V - 11  such
that :  for  every U,U’  E chiZdre,n(v’),  u < Q  ,u’  implies
S(u) < S(u’).  S(w) is called the surrogate of w.  Note
that if <Q is not defined in the query language for the
values in dom(Li),  S is simply defined as a one-to-one
function from childTen  onto [0, V - 11.

Let w be a value in Ufzl  dom(L”).  Then,  the com-
pound surrogate o,f  w, C(w), is the path of w where  the
concatenated values are replaced by their surrogates.
One way to compactly store compound surrogates is as
fixed length strings of bits: for each level Li,  i E [l, k],
in the hierarchy, the maximum surrogate z is defined
as maz{V  ] V is the cardinality of children(w) and
o E dom(L”-l)}.  Then,  at  least  [log,x]  b i ts  are  re-
served in the binary representation of the compound
surrogate for the surrogates of level Li.  The total num-
ber of bits reserved for a level Li  is called spread of Li.

4. THE CSB STAR SCHEMA
We present in this section the architecture of our mul-

tidimensional database. The schema of the multidimen-
sional database is a star with one fact table F and di-
mension tables D1  , , D,.

The dimension tables. The schema of a dimension
table Di  corresponding to a dimension hierarchy Di of
depth lci consists of:
(4

(b)

(cl

A set Hi of hierarchy attributes {Hi’,  H,“, . , Hzki}
that correspond one-to-one to the ti levels of the
dimension hierarchy; H,’ corresponds to the lowest
level in the hierarchy and H7h”  to the highest.
A set F;  of feature attributes that provide descrip-
tive characterizations of the different levels  of the
dimension. A feature attribute F,”  characterizes the
hierarchy attribute H,“.  Feature attributes are op-
tional in the schema of a dimension table.
A compound surrogate attribute C;.

If t is a tuple in,table  D+  t[Hj]  E dom(Hj), j E [l,  /?<I,
and parent(t[Hi])  = t[Hi+‘],  j E [I, k;  - I]. t[C;]  is the
compound surrogate of t[Hi].

By the definition of the compound surrogate of a
value, it is clear that a point restriction on a hierar-
chy attribute of a dimension table can be expressed as
a single range restriction on the compound attribute of
this dimension table.

The compound surrogate attribute C; is the  primary
key of the dimension table Di.  By the definition of a
dimension hierarchy, H,’ is also a key of table Di, and
the following functional dependencies bctwcen  hierar-
chy attributes hold on D; :  Hi  -+ H,3+‘,  j E [l,k;  -
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11. Furthermore, the following functional dependencies
between hierarchy and features attributes hold on D;:
Hi  -+ F:,  i E [l,lci],  where F%T  is a feature attribute
characterizing the hierarchy attribute Hi.

We associate with a dimension table a primary in-
dex Pi on Ci,  and a secondary (compound) index 1i  on
H,+<, , H,!, Ci.  Index 1,  is important for computing
ranges of values on Ci from point or range restrictions
on the different hierarchy attributes of Di.

Since the tuples of D;  are clustered on C;,  range re-
strictions on C; can be computed efficiently. This clus-
tering provides also a grouping of the tuples of the di-
mension table with respect to any hierarchy attribute.
This property is particularly useful for evaluating group-
ing/aggregation queries as those that are extensively
used in OLAP applications.

The fact table. The schema of the fact table F con-
sists of:
(a) The compound surrogate attributes Cl,  , C,,  one

for each dimension table D;,  i E [l, n].
(15) A set of measure attributes M = {MI,.  , Ms}.
The set of attributes Cl,.  , C, is the primary key of
F. Each Ci in F is a foreign key and refers to attribute
C, of the dimension table Di.  In general, a fact table
contains a huge number of tuples. In a traditional star
schema, the lower level hierarchy attributes are stored
as foreign keys in the fact table. Instead, by storing
the compound surrogate attributes as foreign keys in
the fact table, we importantly reduce its size. Table F
is organized as a UB-tree on the attributes Cl,.  , C,.
The schema of our multidimensional database is called
Compound Surrogate Based star schema (CSB star for
short).

User View. The clustering scheme of the CSB star
schema is intended to be a storage option only, without
affecting the formulation of queries by the user. User
queries are easily formulated on a simple star schema
(called user star schema) as this is defined by the view
FT for the fact table, and the views DTI,  . , DT,  for
the n dimension tables:

CREATE VIEW FT AS
S E L E C T H;,...,H,I,M
FROM F,  DI,  , D,
WHERE F.Cl  = D,.Cl,  . . . . F.C,  = D,,.C,

CREATE VIEW DT,  AS
S E L E C T Hi,Fi
FROM Di

Clearly, the views FT and DTl, . , DT,  form a typ-
ical star schema. User queries formulated on the user
schema are rewritten by the query processor over the ta-
bles F and Dl, . , D,  by replacing the views by their
view definitions. In the following we consider queries
that are rewritten over the CSB star schema.

5. OPTIMIZING OLAP QUERIES
We show in this section how to heuristically optimize

OLAP queries by exploiting the clustering scheme and
the  access methods of the multidimensional database
architecture.

5.1 The class of queries considered
We consider OLAP queries of the form shown below.

Typical cases of OLAP operations can be expressed by
this SQL query.

S E L E C T X,  A
FROM F, DI, . . . . Dn
WHERE cJ AND cH AND cF
GROUP BY G
HAVING 2
ORDER BY 0

X is a set of hierarchy and/or feature attributes (called
projected grouping attributes). A is a set of aggregated
measures (aggregate functions on measure attributes).
Using the catergorization  of aggregate functions intro-
duced in [7], we focus on distributive SQL aggregate
functions:  min,  max, sum, count.  G is  a set  of  hi-
erarchy and/or feature attributes (called grouping  ad-
tributes). cJ is a conjunction of equi-joining  conditions
on the compound surrogates. cH is a conjunction of
comparisons involving exclusively hierarchy attributes.
cF  is a conjunction of comparisons involving exclusively
feature attributes; c”  is a conjunction of comparisons
involving exclusively aggregated measures from A. 0
is a list of attributes from X U A. The joining condi-
tions are of the form F.Ci  = Di.Ci.  The comparisons
involving an attribute A are of the form A 0 c where 0
is one of the comparison operators <, 5, =, 2,  >, and
c is a constant value.

We assume that at least one hierarchy attribute from
each dimension is involved in a comparison in the WHERE
clause of the query. We also assume that if comparisons
of the form Ri  B  c, where B  E {<,  5, 2, >)  appear in
the WHERE clause of a query, then the parent function
of the dimension hierarchy Di is mon.otone.  A parent
function is monotone if for every w, Y’  E dom(H~),  j =
1,. . , Ic;,  if v 5 w’ then parent(w) 5 parent( This
assumption guarantees that a range restriction on a hi-
erarchy attribute of a dimension table can be expressed
as a single range  restriction on the compound surrogate
of the table. In this section we consider queries whose
hierarchy and feature attribute restrictions can be ex-
pressed as a multidimensional range restriction on the
compound surrogate attributes of all the dimensions ta-
bles (i.e., a single query box).

5.2 Physical operators
In order to construct an OLAP query evaluation plan,

we use a number of physical operators that are presented
below. Some of them are the traditional relational op-
erators and the others are specific to the organization
of the multidimensional database.

By abuse of notation, we view a compound surro-
gate attribute C; as a composite attribute consisting of
surrogate attributes Sk;,  , St. If t is a tuple in the
dimension table Di,  t[S’i],j  E [l,  .&I,  is the binary rep-
resentation of the surrogate of t[Hj]  (t[Si]  = S(t[Hj])).
t[S:]  is part of t[Ci]  and its length in bits is equal to the
spread of attribute Hi.

We denote by Px the projection with duplicate  reten-
tion operator on the set of attributes X, and by IIx  the



set-theoretic projection operator (SELECT DISTINCT) on
X. cc denotes the selection operator with selection con-
dition c. S[Y]  denotes the sorting operator on the list
of attributes Y. WY denotes the natural join operator
on the list of attributes Y. The natural join operator
is applied on tables that are sorted on the list of at-
tributes Y and is implemented as merge join. rx,~
denotes the generalized projection operator [8]  (group-
ing/aggregation operator), where X is a set of grouping
attributes and A is a set of aggregate functions on mea-
sure attributes.

The T&is  operator, denoted T[[Zl,  ~11,. , [Zn,  u,.];  C;],
i E [l,  n], can be applied to the fact table and represents
the Tetris algorithm. [Zj,  uJ],  j E [l,  n], is a range of val-
ues for the compound surrogate attribute C,i,  and Ci is
the compound surrogate attribute on which the result-
ing table is ordered (refer to Section 3). The schema of
the resulting table is that of the fact table.

The Range operator, denoted R[cr  ; B]  can be applied
to the compound index 1;  of a dimension table Di.  c?
is a condition of the type described in Subsection 5.1,
and involves hierarchy attributes of dimension table Di.
B is a boolean variable that takes values ‘1’ and ‘0’.
R[cH;  0] on 1,  returns a range of values [I;, ui] on C;
such that restricting C, of Di  in this range is equivalent
to applying the restrict ion C: to D;.  R[cP; I] on 1 %
returns, besides  [Z;,u;],  a table T. The schema of T is
H,““,... , H,!  , C,i  and its content is the set of tuples t over
H;“,... , H,‘,  C,i  in 1,  such that 1 ; 2 t[Ci]  < 1~i.

5.3 Construction of the evaluation plan
We show now how to optimize OLAP queries of the

type presented in Subsection 5.1. Our approach is heuris-
tic and is not based on a specific cost model. For ease
of presentation we use an example query that is general
enough to encompass different optimization cases, and
we show how our technique can be applied to produce
an evaluation plan.

EXAMPLE 5.1. We consider the following query de-
fined over a four dimensional schema.

S E L E C T Ff,  Hi,  Hz,  F;,  s u m ( M )
FROM F, DI, Dz, Ds, D4
WHERE F.C1 = Dl.Cl  AND F.Cz  = Dz.Ca AND

F.Cz  = D3.c~  AND F.C4 = D4.C4  AND
cf AND c;’  AND c3”  AND cf AND cc

GROUP BY F;?,  Hi,  Hi,  F:
HAVING c”
ORDER BY Hi,  H; 0

A query evaluation plan for this query that takes ad-
vantage of our multidimensional database architecture
is shown in Figure 1. The expensive star-join operations
required in a traditional star schema are here essentially
implemented by a multidimensional range restriction on
the fact table [14]. The presence of the compound sur-
rogate attributes in the fact table allows for an early
grouping and aggregation  operation. This operation is
facilitated by the fact that the selected fact table tuples
are retrieved sorted on a compound surrogate attribute.
The evaluation plan comprises two kinds of nodes: op-
eration nodes representing operations, and data nodes

representing input data, and intermediate and final re-
sults. An operation node is depicted by a small circle
and is labeled by the operation(s) it represents. Some
operations may be pipelined in which case the corre-
sponding temporary results are not actually stored on
the disk. The fact table and the dimension tables are de-
picted by bigger circles, the compound indexes by rect-
angles, and the ranges of computed compound surrogate
attribute values by triangles. Before discussing, in the
following, the different steps of the evaluation plan, we
provide some definitions.

DEFINITION 5.1. A (hierarchy or feature)  attribute is
called restricted attribute if it is involved in a selection
condition (c” or c”) in the query.

An attribute is called imported attribute if it is a pro-
jected grouping hierarchy attribute or a grouping fea-
ture attribute in the query. A dimension containing
imported attributes is called joini,ng  dimesnsion. 0

An imported attribute needs to be added to selected fact
table tuples. A grouping hierarchy attribute that is not
projected in the query need not be added to the fact
table tuples since the compound surrogate attributes
can be used for performing the grouping operation. For
each joining dimension, a join operation is needed in
order to add the imported attributes of the dimension
to selected fact table tuples.

DEFINITION 5.2. A joining dimension D;  is called can-
didate East joining dimension if one of the following two
conditions hold:

(a) The first attribute in the list of sorting attributes
in the  query (the list 0 of attributes in the ORDER
BY clause of the query) is a hierarchy attribute of
Di.

(b) The first attribute in the list of sorting attributes
in the query is not a hierarchy attribute (or there is
no such a list), there is a grouping feature attribute
in the query, and there is a grouping hierarchy at-
tribute of Di  in the query. 0

Selecting the dimension involved in the last join oper-
ation to be a candidate last joining dimension simplify
the final grouping and sorting operations.

Computing ranges of compound surrogate values
The first step in the construction of the query evaluation
plan is the application of the Range operator n[cy;  B]
to the compound index 1,  of each dimension. R[cF;  B]
computes the lower and the upper bound of the range
of values [Zi,2~;]  of the compound surrogate using the
comparisons in c? and the compound index 1,. The
range [Z;,u,]  is always provided as input to the Tetris
operator. It can also be used for a selection operation
on the dimension table Di.  If only hierarchy (and no
feature) attributes from a dimension arc involved in a
query, then their values can be obtained directly from
the compound index 1,)  without accessing the dimension
table Di. In this case the parameter J3 of R[cy ; B]  is set
to ‘1’. In general the application of the range operator
follows the rules below:

(a) If there is no imported attribute or restricted fea-
ture attribute of the dimension in the  query then

52



(b)

(cl

B is set to ‘0’ and the computed range is used only
by the Tetris operator.
If the imported attributes of the dimension are only
hierarchy attributes and there is no restricted fea-
ture attribute of the dimension in the query then
13 is set to ‘1’. The computed range is provided
to the Tetris algorithm only, while the set of tu-
ples retrieved from 1,  are used in a subsequent join
operation.
If the imported attributes of the dimension include
a feature attribute or there is a restricted feature
attribute of the dimension in the query then B is
set to ‘0’. The computed range is provided both to
the Tetris algorithm and to a selection operation
on the corresponding dimension table.

Restricting the dimension tables If the imported
attributes of the dimension include a feature attribute
or there is a restricted feature attribute of the dimen-
sion in the query, the dimension table needs to be ac-
cessed. The primary index on the compound surrogate
attribute C; of the dimension is used to retrieve the tu-
ples of the dimension table that fall within the range
of values computed by the range operator. Those of
these tuples that satisfy the condition $ are retained
projected over an appropriate  set of attributes. If this
computation returns an empty set of tuples, the whole
processing of the query is ended since the answer is an
empty set. Otherwise, the computed tuples are subse-
quently joined with tuples derived from the fact table.
The set S of attributes of Di  to be projected are deter-
mined as follows:
(a) S includes all the imported attributes of D;, and
(b) Prom the surrogate attributes Sf’,  ,  S,’  of the

compound surrogate Ci,  S includes the surrogate
attributes S,“;, , Si,  where j is the  minimal level
of the imported attributes of D;.

If the minimal level j is high enough in the dimension hi-
erarchy this duplicate elimination projection is expected
to significantly reduce the number of selected tuples.

It is important to note that the tuples from the di-
mension table are retrieved sorted on the compound sur-
rogate attribute C;. Since Ci is the concatenation of the
surrogate attributes Sf;,  . , S!,  these tuples are also
sorted with respect to the list of surrogate attributes
Sfi,.  , S’s, As a consequence, the elimination of du-
plicates required for the projection operation can be per-
formed without extra  cost. Furthermore, the  sort order
of the output tuplcs can be exploited in a subsequent
merge join operation with tuples derived from the fact
table.

Multidimensional range selection and sorting The
Tctris operator takes the ranges of values on the com-
pound surrogate attribute computed in the first step,
and retrieves from the fact table the qualifying tuples
sorted on a compound surrogate attribute Cf.  In gen-
eral, the choice of the sorting attribute Ci does not affect
the performance of the Tetris operator. We assume that
the cache memory requirements of the Tetris algorithm
arc satisfied by the available main memory [15]. The
sorting attribute Ci for the Tetris algorithm is chosen
from a dimension according to the following rules:

(a) Ci is chosen from a joining dimension that is not a
candidate last joining dimension.

(b) If C; cannot be chosen by the rule (a), it is chosen
from a joining dimension.

(c) If Ci cannot be chosen by rules (a) or (b), it is cho-
sen from a dimension that has a hierarchy  attribute
involved as a grouping attribute in the query.

(d) If C; cannot be chosen by the previous rules,  it is
chosen arbitrarily.

Processing of the selected fact table tuples The
presence of the compound surrogate attributes Cl,.  , C,
in the fact table, allows for an early grouping and aggre-
gation of the fact table tuples resulting by the Tetris al-
gorithm [5]. This operation can be performed efficiently
due to the fact that the tuples resulting by the Tetris
operation are already sorted (and thus grouped) with
respect to one compound surrogate attribute Ci,  i E
[l,  n]. The set of attributes on which the grouping is per-
formed comprises the surrogate attributes Sk’,  , S’l
from each dimension D;  that contains a grouping at-
tribute in the query. j is the minimal level of the (hi-
erarchy and feature) grouping attributes of Di in the
query. Usually, in OLAP applications, a fact table con-
tains a huge number of tuples which are grouped to pro-
duce a small number of aggregated results. Therefore,
this early grouping operation is expected to drastically
reduce the number of fact table tuples at an early stage
of their processing.

If there is no grouping feature attribute  in the query
then the final grouping and aggregation operation that
will be presented in the next step is not needed. The
reason is that the compound surrogate  attributes have
already be used instead, for grouping on hierarchy at-
tributes. In this case the selection operation on the
aggregated measures (~,a)  can follow immediately af-
ter the early grouping operation to further reduce the
number of aggregated fact table tuples that are left to
be processed.

If there is at least  one joining dimension, one of them
has provided its compound surrogate attribute as a sort-
ing attribute to the Tetris operator. In this case, the
aggregated tuples are equi-joined on the common at-
tributes with the selected tuples of this dimension. Since
both sets of tuples are sorted on their common attributes,
a merge join algorithm can be efficiently applied. Each
aggregated tuple joins with exactly one tuple from the
dimension table. This operation does not alter the num-
ber of tuples resulting by the grouping/aggregation op-
eration. It does add to these tuples the imported at-
tributes of the joining dimension. Grouping hierarchy
attributes of the dimension table that are not projected
grouping attributes in the query are not needed since
the fact, table tuples have already been grouped  using
the surrogate attributes.

A similar operation is performed on the  resulting tu-
ples for each other joining dimension. This operation
has to be preceded by a sort operation with respect to
the joining attributes, and by a project operation that
eliminates the attributes not needed in subsequent op-
erations. The sort operation has to be performed only
on the tuples resulting from the fact table since the di-
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mension tuples are already sorted with respect to the
joining attributes. The order of the join operations does
not significantly matter. The only rule that has to be
respected is to choose a candidate last joining dimension
for the final join operation. This way the sort order of
the resulting tuples can be exploited in the subsequent
operations.

Final grouping/aggregation and sorting In the last
step of the evaluation plan the tuples resulting by the
last join operation are grouped and aggregated. The
aggregated tuples that satisfy the condition cA on ag-
gregated measures are retained projected over the at-
tributes required in the output. As mentioned previ-
ousl,y,  these operations can be avoided when there is no
grouping feature attribute in the query. If the output
tuples are required sorted, a final sorting operation is
also performed. These operations exploit the sort order
of the tuples resulting from the previous step.

6. CONCLUSION
OLAP applications view data structured in multiple

hierarchically organized dimensions. Complex group-
ing/aggregation queries for OLAP applications process
enormous quantities of data and require fast response
time. Recent research suggests that multidimensional
access methods outperform one-dimensional indexing
techniques.

We have presented the CSB star, an architecture for
a multidimensional database that is based on the star
schema. This architecture uses one-dimensional hier-
archical clustering and encoding techniques to organize
the dimension tables and multidimensional access meth-
ods to organize the fact table. Users can express their
queries over a traditional star schema, which are then
rewritten by the query processor over a CSB star schema.
We have shown how the features of this schema allow
the heuristic optimization of a class of typical OLAP
queries: expensive star-join operations are essentially
reduced to multidimensional and one-dimensional range
restrictions, supplementary joins are implemented as
merge join operation on sorted tables, and grouping op-
erations are performed on partially sorted data. We
have detected special cases where supplementary joins
are avoided, and a grouping operation can be pushed
past all join operations.

An interesting extension of the present work concerns
considering a larger class of queries. In particular relax-
ing a number of the restrictions adopted here can result
in queries that determine multiple query boxes on the
compound surrogate attributes. Our results apply to
this case too by considering the different query boxes
separately. However, a cost based optimization tech-
nique that considers  different groupings of these query
boxes is expected to provide further improvements.

7.
PI

PI

REFERENCES
R. Bayer. The Universal B-Tree for Multidimensional
Indexing: General Concepts. In Proc. of the  Intl. Con,f.
on World- Wide Computing and its  Applications,
Springer, LNCS 1274, pages 98-112, 1997.
S. Chaudhuri and K. Shim. Including Group-By in
Query Optimization. In Proc. of the 20th Intl. Conf.
on Very Large Data Bases, pages 354.-366,  1994.

[31

[41

[51

PI

[71

Nl

PI

1101

PII

[I21

[I31

P41

P51

WI

P71

PI

PI

PO1

WI

PI

[231

P41

S. Chaudhuri and K. Shim. Optimizing Queries with
Aggregate Views. In Proc.  of the 5th I&l.  Conf.  on
Extending Database Technology,  pages 167-1.82, 1996.
S. Dar, H. V. Jagadish, A. Y. Levy, and D. Srivastava.
Answering SQL Queries with Aggregation using Views.
In Proc.  of the 22nd  Intl.  Conf. on Very Large Data
Bases,  pages 318-329, 1996.
K. Elhardt. EDITH query processing. Technical
report, Transaction Software, Jan 2001.
V. Gaede and 0. Giinther. Mult,idimensional  Access
Methods. ACM Computing Surveys, 30(2),  1997.
J. Gray, A. Bosworth, A. Layman, and 1-I.  Pirahesh.
Data Cube: A Relational Aggregation Operator
Generalizing Group-By, Cross-Tab, and Sub-Totals. In
Proc.  of the 12th ICDE,  1996.
A. Gupta, V. Harinarayan, and D. Quass.
Aggregate-Query Processing in Data Warehousing
Environments. In Proc.  of the Zlst  Intl. Conf.  on Very
Large Data Bases,  pages 358-369, 1995.
A. Gupta and I. S. Mumick. Maintenance of
materialized views: Problems, techniques and
applications. Data Engineermg,  18(2):3-18, 1995.
H. Gupta, V. Harinarayan, A. Rajaraman, and .J.  D.
Ullman.  Index Selection for OLAP. In Proc.  of the 13th
Intl. Conf. on Data Engmeering,  pages 20%il9,  1997.
V. Harinarayan, A. Rajaraman, and J.  D. 1Jllman.
Implementing Data Cubes Efficientlv. In Proc.  of the
ACM SIGMSD  Intl.  Co@.,  1996. ”
R. Kimball. The Data Warehouse Toolkit. John Wiley
& Sons,  1996.
Y. Kotidis and N. Roussopoulos. DvnaMat: A
Dynamic View Management System for Data
Warehouses. In Proc.  of the ACM SIGMOD I&l.
Conf. on Management if Data, pages 371-382, 1999.
V. Markl, F. Ramsak, and R. Bayer. Improving OLAP
Performance by Multidimensional Hierarchical
Clustering. In Proc.  of the Intl.  Database Engineeying
and Applicat%ons  Symposium, pages 165-177, 1999.
V. Markl, M. Zirkel, and R. Bayer. Processing
Operations with Restrictions in RDBMS without
External Sorting: The Tetris Algorithm. In Proc.  of
the 15th Intl. Conf. on Data Engineering,  pages
562~571,  1999.
P. O’Neil and D. Quass. Improved Query Performance
with Variant Indexes. In Proc.  of the ACM SIGMOD
I&l.  Conf.,  pages 38-49, 1997.
F. Ramsak, V. Markl, R. Fenk,  M. Zirkel, K. Elhardt,
and R. Bayer. Intergating the UH-Tree into a
Database System Kernel. In Proc.  of the 26st  I&l.
Conf. on Very Large Data Bases, pages 263.-272,  2000.
S. Sarawagi. Indexing OLAP Dat,a.  Data Engmeering,
20(1):36-43,  1997.
U. Theodoratos and T. Sellis.  Data Warehouse
Configuration. In Proc.  of the 23rd Intl. Conf. on Very
Large Data Bases,  pages 126-135, 1997.
D. Theodoratos and T. Sellis.  Answering Queries on
Cubes Using Other Cubes. In Proc.  of the I&l.
Conference on Scientific and Statistical Databases,
pages 109-122, 2000.
TPC benchmark D. Technical report, Transaction
Processing Performance council, 1997.
W. Yan and P.-A. Larson. Performing Group-By
before Join. In Proc. of the 10th Intl.  Conf.  on Data
Engineering, pages 89-100, 1994.
W. Yan and P.-A. Larson. Eager Aggregation and
Lazy Aggregation. In Proc.  of th,e  21st  Intl.  Conf.  on
Very Large Data Bases, pages 1 -13, 3995.
C. Zou, B. Salzberg, and R. Ladin.  Back to the future:
Dynamic hierarchical clustering. In Proc.  of the 14th
Intl. Conf.  on Data Engineering, pages 578-587, 1998.

5 4



. . . . . .
:: ::: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .

D411 Dl I2 D2 13

Figure 1: A query evaluation plan
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