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Abstract 

Bitmaps are popular indexes for data warehouse (DW) 
applications and most database management systems 
offer them today. This paper proposes query optimiza- 
tion strategies for selections using bitmaps. Both con- 
tinuous and discrete selection criteria are considered. 
Query optimization strategies are categorized into static 
and dynamic. Static optimization strategies discussed 
are the optimal design of bitmaps, and algorithms based 
on tree and logical reduction. The dynamic optimiza- 
tion discussed is the approach of inclusion and exclusion 
for both bit-sliced indexes and encoded bitmap indexes. 

1 Introduction 
Bitmap indexing has become a promising technique 
for query processing in DWs. Variations of bitmap 
indexes include bit-sliced indexes [14, 31, encoded 
bitmap indexes (EBI) [18], bitmapped join indexes [13], 
range-based bitmap indexes [20], and others[l6]. 

For query operations, such as selections, aggregates, 
and joins, query evaluation algorithms using bitmaps 
have been proposed in recent years. In this paper, we 
further explore the issues of query optimization using 
bitmaps and concentrate on optimizing selections. 

Indexes are used to speed up the evaluation of 
selection conditions followed by the retrieval of desired 
data. If no pipelining or parallelism is applied, the 
query response time can be expressed by the sum of the 
time of index processing plus the time of data retrieval. 
If the selectivity of a query, which is defined as the 
ratio of the cardinality of the final result to that of the 
base table, is high, the time of data retrieval may close 
in on the time of a costly table scan. For example, 
for a selectivity about 35%, over 99.8% data pages 
of the underlying table will be hit?. For such cases, 

‘The expected number of pages which are hit by se- 
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using indexes has negative effects on query performance. 
Even for low selectivities, if the time of index processing 
is high, the total time spent on index processing and 
data retrieval may be longer than that of a table scan. 
Consequently, query optimization techniques discussed 
in this paper, which reduce the index processing time, 
do not only contribute to a better query performance 
at low selectivities, but also extend the feasibility of 
bitmap indexes at medium selectivities. 

We divide query optimization techniques into static 
and dynamic ones. Static optimization is performed 
at design-time. It includes optimal index designs and 
improved algorithms for index processing. Dynamic 
optimization is performed at run-time. It is achieved 
by strategies which exploit run-time information, such 
as constraints, statistics, or distribution information of 
underlying data, to determine a better execution plan. 

For index design, we explore the effects of two 
different selection types - continuous range selections 
and discrete range selections. In [3], design criteria 
for bit-sliced indexes with respect to continuous range 
selections were proposed. We extend their results to 
cover both types of selections and define a new design 
criterion for finding global time-optimal indexes. As 
for EBIs, we introduce well-defined encoding, which 
improves the time efficiency of the indexes without 
sacrificing space efficiency. 

As for algorithm design, we develop a tree-reduction 
technique to improve the performance of the algorithm 
RangeEval-Opt (proposed by [3]) for bit-sliced indexes. 
For EBIs, logical reduction techniques are used to reduce 
the index processing time. 

The dynamic query optimization technique intro- 
duced in this paper is the principle of inclusion and 
exclusion. We show how this principle can be applied 
to both bit-sliced indexes and EBIs. Cost models, both 
analytical and probabilistic, are defined to determine a 
better evaluation plan for selections. 

The following example is used throughout this paper. 

letting k tuples from a table of n pages is computed by 
n.(l - n~=l(p”.~-r+l)/(pn-r+l)), where each page con- 
tains p tuples. The hit rate depends, of course, highly on the value 
p, clustering criteria, distribution of the indexed attribute, etc. 
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Example 1 Given are two attributes A and B of a table 
T. Let the domain oj’ A, denoted by Dam(A), be (A1100 5 
A 5 900, A E Z+} and Dam(B) = {a, b, c, d, e, f, t, u, v, w}. 
The cardinality of T is defined by ITI and the cardinality of 
an attribute is defined by the cardinality of its domain. 

The rest of the paper is organized as follows: 
We revidt EBI and variants of bit-slicing briefly in 
section 2.‘1, and give a cost model for index performance 
analysis in section 2.2. In section 3, we discuss 
issues concerning static query optimization, including 
index design in section 3.1 and algorithm design in 
section 3.2. Strateg:ies for dynamic query optimization 
are introduced in section 4, followed by conclusions in 
section 5. 

2 Variants of bitmap indexes 

The first member of the bitmap indexing family, named 
simple bitmap indexing here, was introduced in the 
1960’s [12]. A classical example of simple bitmap 
indexing is an index on an attribute GENDER. Suppose 
that the domain of the attribute is {M, F}. A simple 
bitmap index on it consists of two bit vectors, one for 
M and the other for F. The length of the bit vectors is 
equal to the cardinality of the indexed table. The bits of 
the bit vector M are set if the tuples of the corresponding 
bit-positions have GENDER=M. Likewise, the bit vector 
for F is set for GENDER=F. If deleted tuples are only 
tagged as “deleted’ but kept in the database, as most 
of the database management systems do, an extra bit 
vector for “existing” tuples, E, is required. The bits of 
E are set if the corresponding tuples are not deleted. 

The space requirement of a simple bitmap index 
is a linear function of the cardinality of the indexed 
attribute and of the indexed table, and the index 
processing time for a single value selection is a linear 
function of the length of bitmaps. The sparsity of the 
bit vectors increases with the cardinality resulting in 
poor space utilization and high processing cost. 

Many variations of bitmap indexing have been pro- 
posed to solve the sparsity problems. Two common 
objectives of the proposed methods are (1) reducing 
the space complexity of the index and (2) improving 
the performance of index processing. Solutions include 
compressing bitmaps, e.g., through run-length encod- 
ing, and transforming bitmap representation to tuple-id 
lists. Although these two methods are quite efficient in 
reducing the space requirements of bitmap indexes, they 
sacrifice the advantages of bitmap indexing in query 
processing - namely, the low-cost bitwise operations 
in index processing and the capability of multiple index 
scans2. In this paper, we discuss approaches that do 
preserve the advanta.ges of bitmap indexing. They are 
encoded bitmap indexing (EBI) and bit-slicing. 

2That is, combining multiple index structures to evaluate 
logical conjunction or disjunction of selection predicates. 

2.1 Bit-slicing and EBI revisited 

2.1.1 Bit-slices 

A bit-sliced index (named binary bit-sliced index lal:er) 
of an attribute is a bitwise projection of the at- 
tribute [14]. For example, suppose that the attribute 
A from Example 1 is defined as a two-byte short inte- 
ger. A binary bit-sliced index on A consists of 16 bit 
vectors and is defined as shown in Figure 13. Bits bo 

A . . . b1.5 . ho bs bs b7 be bs b4 bz bz bl bo 

201 o...o 0 0 1 1 0 0 1 0 0 1 
100 o...o 0 0 0 1 1 0 0 1 0 I) 
900 

1 
o...o 1 1 1 0 0 0 0 1 0 I) 

Figure 1: A Binary Bit-Sliced Index on Attribute A 

to b15, store the internal binary representation of the 
corresponding attribute values. (bie to b15 are all zeros, 
since A 5 900). The number of bit vectors is equal. to 
the length of the attribute’s data type in bits, and the 
length of each bit vector is equal to the cardinality of 
the indexed table. 

A bit-sliced index can also have non-binary or non- 
uniform base. For example, a decimal, uniform- 
based bit-sliced index on A has 3 components. E,ach 
component has 10 bit vectors, i.e., each decimal d.igit 
forms one lo-bit-vector component. Figure 2 shows 
how these bits are set for the value 124. Bit-l of the 
component 3, bit-2 of the component 2 and bit-4 of 
the component 1 are set to 1, and other bits are set 
to 0. The notation, bf , denotes the j-th bit vector of 
the component i, and the above index is expressed by 
1<io,ie,rc,. To evaluate a single value selection using 
k0,10,10>, e-g., “A = 124”, bf , bz and bi are read 
and AND-ed to get the final bitmap for data retrieval. 

component3 component 2 component 1 

Figure 2: A Bit-Sliced Index on Attribute A with Base 10 

In addition to equality bit-encoding (i.e., the bit is set 
if the equality is satisfied), the bitmaps can be range 
bit-encoded. That is, for the attribute value 124: if 
the bitmaps are <-encoded, then all bit vectors, b:, of 
component 3 where i 5 1 are set to 1, and so on, as 
Figure 3 shows. Since for the decimal base, all digits 
are less than or equal to 9, bit-9 of all components are 
all set and can therefore be ignored. 

ml b,Sbf.. .b;b;bfb; b;b;. . .b;bzb;bfb; blb=bfblb’blblb’bl 876543210 

~RFttFA~RAARa 
00...0011 00...00111 000011111 

component 3 component 2 component 1 

Figure 3: A Bit-Sliced Index on Attribute A with Base 10 
and Range Bit-Encoding 

3Later in this paper, we do not explicitly express the necessity 
of an existing bitmap, unless the existing bitmap is not needed. 
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The choice of the base affects the space requirements 
and the performance of the index in query processing. 
For the above example, the binary bit-sliced index on 
A has 16 bitmaps, while the lo-based bit-sliced index 
with equality bit-encoding consists of 30 bitmaps. To 
evaluate a selection predicate, such as “A = 124”, 
requires 16 bitmap scans using the binary bit-sliced 
index, but only 3 bitmap scans with a decimal base 
bit-sliced index. Generally speaking, for bit-sliced 
indexes with uniform base, as the magnitude of the base 
increases, the index requires more space but performs 
better. Other query types are defined and discussed in 
section 2.2. 

The base of bit-sliced indexes can be non-uniform. 
Non-binary, uniform-based bit-sliced indexes are often 
less efficient in both space and time than non-uniform- 
based indexes with the same number of components. 
For example, the smallest base for a 4-component 
uniform-based bit-sliced index on A is < 6,6,6,6 >. 

Using non-uniform bases, the index with the base < 
5,6,6,6 > requires less space than 1<s,s,s,s>, and the 
index with the base < 2,8,8,8 > requires less bitmap 
scans than &s,s,s,s> in query processing4. In [31, 
theorems are defined as guidelines for finding bases of 
either time optimal or space optimal n-component bit- 
sliced indexes. They are defined as follows: 

Space-optimum Given an integer n, the space-optimal 
n-component bit-sliced index is the n-component bit- 

&A 
sliced index with the base < b-l,. . ,b-l,b,.. . ,b >, 
where b=[mj d an r is the smallest positive integer 
such that b’(b-1)“~’ 2 (Al. 

Time-optimum Given an integer n, the time-optimal n- 
component bit-sliced index is the index with the base 
< 2 )‘.‘) 2, [&t&l >. \ d 

n-1 
Three points need to be stated here. First, the 

optimal time is calculated based on the index processing 
algorithms proposed in [3,14]. Second, the optimal time 
is only true for a subset of selection types, (continuous 
range selections), which will be discussed further in 
section 3. Third, the optimal space and time defined 
above are subject to a given number of components, 
i.e., they describe a local optimum. For example, a 3- 
component space-optimal index might perform better 
than a 5-component time-optimal index with respect 
to both time and space, or vice versa. Globally, for 
all bit-sliced indexes, those with binary uniform bases, 
1<...,s,s,, are space optimal; in contrast, those with the 
base equal to the cardinality of the indexed attribute, 
I <ill,, are time optimal. However, the global time 
optimum (with or without space constraints), which is 
the main interest of query optimization, requires further 
classification of query types and performance analysis 

4Both < 5,6,6,6 > and < 2,8,8,8 > are well-defined bases[3]. 
A well-defined base, < b,,. . $1 >, consists of finite number of 
components, i.e., n E Z+, such that 6, = [jAl/(fl;“-’ bi)]. In this 
paper, we discuss only bit-sliced indexes with well-defined bases. 

of query evaluation algorithms. These are discussed in 
detail in section 3. 

2.1.2 Encoded bitmap indexes 

From the above discussion, we see that there exists a 
dilemma between space and time in the design of bit- 
sliced indexes. Another variation of bitmap indexing, 
encoded bitmap &&zing (EBI) proposed in [lg], pro- 
vides possibilities for solving such a dilemma between 
space and time, with help of encoding functions. 

EBI applies an encoding function on the attribute do- 
main and builds a binary-based bit-sliced index on the 
encoded domain. Through its binary base and domain 
encoding, EBI minimizes the space requirement. At the 
same time, it provides possibilities for query optimiza- 
tion through well-defined encoding (discussed later). 

For example, to build an EBI on attribute B of 
Example 1, we define an encoding function, Mn : 
B -+ {(b3b2blb0)(bi E (0, l}, 0 <_ i 5 3). The function 
Mn maps the domain of B onto a set of four-bit 
numbers, as Figure 4(a) shows. The number of bits 
is determined by [log,((B( + 2)l. (The addition of 2 is 
due to the inclusion of non-existing tuples and Nulls in 
the attribute domain.) 

[r] b3 b2 bl bo 1 Keys 1 Encoding 1 Keys 1 Encoding 1 

0 010 
0 1 1 0 
010 1 

Fliii 

1111 
1 1 0 1 

(a) Mapping table 

- - - - 
fudd =bbzblbo - - - fb=&1;2blbO fe =$bzf$h fu =W+&o 
fNuLL=~.$‘zbl~o fc=$bzhbo ff=bbblbo fv =bsbblbo 
fa =babzb,bo fd=b3bzblbo ft=b3b2blbo fw=b3b&16,, 

(b) Retrieval min-terms 

Figure 4: An Example of Encoded Bitmap Indexing on B 

Based upon the mapping table, four bitmaps and 
a set of retrieval Boolean functions are defined. A 
retrieval Boolean function (or min-term5) is defined 
for each attribute value, based on the encoded values. 
One bit corresponds to one Boolean variable, and “0” 
bits are expressed by the negation of the variables. - - 
For example, the min-term for value a is bsbzblbo, 
which corresponds to its encoded value 0010(s). Four 
bitmaps of length equal to the cardinality of the indexed 
table are constructed as follows. For any tuple in the 
indexed table with offset j, all j-th bits in all bitmaps 
bi (i=O,. . ., 8) are assigned its encoded value (bsbzblbo), 
e.g., for all tuples with B = a, b3 = 0, bz = 0, bl = 1 and 
bo=O. 

Using the EBI to evaluate a selection, e.g., “B E 
{a, b, c, d}“, the retrieval min-terms of selected values 

5A min-term of n Boolean variables is a logical conjunction of 
all n variables, or their negations. 
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are selected to form a retrieval Boolean expression6, i.e., 
fa+fa+fc+fd, whichisfurther reduced to&bl. That 
is, ANDing the negation of b3 to bl , the l’s bits indicate 
those tuples satisfying the selection condition. 

In principle, an EBI is a binary bit-sliced index 
defined on the encoded attribute domain. EBIs have 
two advantages over binary bit-sliced indexes. First, the 
number of bit vectors of an EBI is no larger than that 
of bit-slices, since the number of bit vectors of an EBI 
is decided by the logarithmic of the indexed attribute’s 
cardinality of base 2, while the number for binary bit- 
slices is decided by the size of the indexed attribute’s 
data type. Furthermore, for deleted tuples, bit-sliced 
indexes need an extra bit vector for the existing tuples, 
while defining ken-existing” as void, 0, eliminates the 
extra processing of tbe bit vector E [X3]. It reduces not 
only the space requirement but also the processing time. 

Second, EBIs have more optimization potential than 
binary bit-slices. Through some proper encoding 
functions, the number of bit vectors accessed in query 
processing can be reduced to one, while all the bit 
vectors, including the bit vector E, in bit-sliced indexes 
must be read. Cases for proper functions in specific 
application environments in DWs are discussed in [18]. 

So far, we have discussed the two major approaches to 
variate bitmap indexles. In the next subsection, we in- 
troduce the cost mod’els to evaluate index performance. 

2.2 Cost models for performance analysis 

Two metrics are used to evaluate the performance of an 
index in this paper: space and time. Both are denoted 
in terms of the number of bitmaps. We use space(l) 
to denote the space requirement of the index I, and 
time(l) to denote thse number of bitmap scans for a 
selection predicate evaluation using I. We discuss in 
this paper only the cost of selection operations, and 
selection predicates are defined by “A op V” , where A 
is a single aktribute, op E {<, 5, >, 2, =, #, E, @} and 
Visasinglevalueforop E{<,<,>,>,=,#}oraset 
of values for op E {E, $Z} . 

In the following discussion, we must distinguish the 
time-function of evaluating continuous range operators 
(w,s>,~,=,#~)7 f rom that of evaluating discrete 
range operators ({E, $)). Therefore, we define timeC(I) 
and tim@(I) to denote the time-functions of the 
index I for evaluating continuous and discrete selection 
predicates, respectively. A global time-function is 
defined by the weighted sum of timeC(I) and tim@(I): 

time(I) - p. timeC(I) + (1 -p) . tameD( (1) 

where p is the probability of occurrence of continuous 
range predicates. 

61n this paper, we use + to denote the logical operator OR and 
. to denote the logical operator AND. 

7Without loss of generality, we consider equality operators 
{=,#} as continuous range operators. This does not affect the 
result of performance analysis. 

3 Static query optimization 
Query optimization using bitmap indexing can be 
achieved by two different, complementary approaches. 
Static optimization is a design-time optimization. It in- 
cludes optimal index design and improved algorithms 
for index processing. Dynamic optimization is per- 
formed at run-time. It is achieved by strategies 
which exploit run-time information, such as constraints, 
statistics, or distribution information of underlying 
data, to determine a better execution plan. 

3.1 Index Design: time optimal index 
The following discussion concentrates on finding time 
optimal indexes for different types of range selections. 
We propose two algorithms for evaluating discrlete 
range selections and define their time functions. Based 
upon the time functions and the time functions int:ro- 
duced in [3], we define a new design criterion of global 
time optimal indexes for both types of selections, with 
and without space constraints. Finally, we explore the 
design issues involving EBI. 

Continuous range selections In [3], the algorith:m, 
RangeEval-Opt, for evaluation of continuous range se- 
lection predicates using bit-sliced indexes was proposed. 
Based upon this algorithm, the time-function of an n- 
component bit-sliced index I with base <b,, . . , b+ and 
range bit-encoding was derived as 

timeC(I) = 2(n-f:$+$(i - 1)) (2) 
kl 2 1 

M 2n - 8, for the worst case, (:3) 

whereB= l,iftherangeoperatorisoneof{<,<,>,L}, 
and 0 = 0, if the range operator is one of {=, #}. 

From Equation (3), we can see that the time efficienc:y 
of a bit-sliced index is getting worse, as the number 
of components, 72, increases. In principle, the fewer 
components a bit-sliced index has, the more time- 
eficient the index is. 

However, the above time efficiency analysis is only 
true, if the range operators are confined to the set 
i<, L, >, L, =, #I, i.e., continuous range selections. 
Anomalies arise for discrete range selections. Although 
discrete range predicates (A E V, or A $! V) could b’e 
replaced by a disjunction of equality selection predicates 
(A = w), it would be very inefficient to evaluate discrete 
range predicate in such a way using the algorithm 
RangeEval-Opt. Therefore, it is unreasonable to use 
the time function based on RangeEval-Opt to analyze 
the performance of the index in answering discrete range 
selections. 

Suppose that a bit-sliced index, 1;10,10,10>, on 
attribute A using a range bit-encoding scheme is 
defined. For the selection predicate “A E (864,764)“) 
12 bitmap scans are required using RangeEval-Opt, 
since RangeEval-Opt treats and evaluates each value 
in the operand set separately, namely A = 864 OR A = 
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764. Six bitmap scans are required for evaluating each 
of the values. Obviously, discrete range predicates 
can be evaluated more efficiently by simply avoiding 
reading the same bitmap more than once. In the 
above example, the bitmaps for evaluating the two least 
significant digits - “6” and “4” are read twice using 
RangeEval-Opt . 

In order to define a reasonable time-function for 
evaluating discrete range predicates, we first develop 
two algorithms for evaluating discrete range predicates 
using bit-sliced indexes, and then define the time- 
function, timeD( based upon them. 

Discrete range selections Algorithms 1 and 2 evalu- 
ate discrete range predicates using bit-slices with range 
bit-encoding and equality bit-encoding, respectively. 
The basic idea of these algorithms is to avoid rescan- 
ning the same bit vector for consequent equality tests. 
Every required bitmap is scanned exactly once, and 
all the comparisons involving the memory-resident bit- 
segments are performed at a time. 

The algorithms work as follows: Before evaluating 
the predicate “A E V”, the values in the set V are 
parsed once to examine what bitmaps are required for 
the evaluation. Then, all the required bitmaps are read 
into the buffer, and the algorithms loop for each value 
in V and perform the equality comparisons digit by 
digit. In reality, the total size of required bitmaps might 
not fit into memory, therefore an implementation of the 
algorithms might loop for the reading of bitmaps and 
comparisons page by page. 

Let us define the time function of the algorithms 
now. For evaluation of each distinguished digit in each 
component, Algorithm 1 reads two bit vectors (except 
one bit vector for 0 or vj,i - l), while Algorithm 2 
reads only one bit vector for each digit. For example, 
to evaluate the equality-test involving the digit “6” of 
the component-2, the bitmaps, bg and bg, are read in 
Algorithm 1, and bg is read in Algorithm 2. 

Generally speaking, to evaluate the digit, a, in 
component i, the bit vector representing Q in the i-th 
component, b: , is read. (For range bit-encoded indexes, 
b:-, , is also read, if 0 < a < bi - 1.) Assuming that 
the digits, vj,i (1 5 j < k), are evenly distributed within 
the range, 0 5 vj,i < bi (1 5 i 5 n), we define the time 
functions of Algorithms 1 and 2 as follows. 

For range bit-encoding, 
n k-l 

timeD(I)=x c -+& (min(z(k-j),bi,.C~~‘.C~~) 9 (4) 
i=l j=o 

and for equality bit-encoding, 
7% k-l 

timeDV)=C C + ((k-j). cj”l . ckj) , 
i=lj=O 

(5) 

where C” = .& b denotes the number of combina- 
tions of choosing b from a. 

For the worst cases, or with a large number of k (the 
cardinality of the selection range) both Algorithm 1 and 

2 read all the bit vectors of the index. In such cases, the 
time-function for discrete range evaluation is defined by 
its space-function. 

timeD (I) = space(I) = n 
, ifbi=2, l<i<n -- 

C~&(bi-O), if b;>2, l<i<n (6) 
-- 

where B = 0 for equality bit-encoding, and 8 = 1 
for range bit-encoding. As a result, the n-component 
time optimal indexes for discrete selections are those 
n-component space optimal indexes. 

Global time optimal indexes The above discussion 
shows that conflicting index design criteria exist for 
continuous and discrete range selections. Since most 
attributes might be involved in both types of selections, 
it is a dilemma to choose either of the design criteria. 
One straightforward solution is to design for each type 
of selections an index, i.e., an index with possibly 
fewest components for continuous range selections, and 
another index with binary bases for discrete range 
selections. 

2 
% 
; 256 

Time-optimal Indexes 

L 128 
Y 

Time-optimal indexes for discrete selections - 

s 6%. 
Time-optimal indexes for contimous selections - 

n 1 
ii 

I 

," 
8 16 32 64 128 256 512 1024 

#of bitmap scans for discrete selections 

Figure 5: Time-Optimal Indexes, IAl = 1024 

A better approach is to find a global time optimal 
index for both types of selections. In Figure 5, 
time optimal indexes for either continuous selections 
or discrete selections on an attribute A with IAl = 
1024 are illustrated. A point on a curve represents 
an index (labeled with the number of components), the 
x-distance denotes the time of evaluating a discrete 
selection predicate using the index, i.e., timeD( 
and the y-distance denotes the time of evaluating a 
continuous selection predicate using the index, i.e., 
timeC(.). The computation of the time functions is 
based on Equations (2) and (6). As Figure 5 shows, 
choosing an index which reduces the time of evaluating 
continuous selection types will increase the time of 
evaluating discrete ones, and vice versa. In order to find 
the global time optimal index, we define the following 
time function: 

p. timeC(I) +(1-p). timeD( I E Z, 

where Z is the universal set of bit-sliced indexes, and 
p is the probability of occurrence of continuous range 
selections. The minimum of the function, which is 
defined as the break-even point, characterizes the global 
time optimal index for both types of selections. 
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- 
Algorithm 1 (Discrete Selection, <-encoded) Algorithm 2 (Discrete Selection, =-encoded) 
Input: A bit-sliced index with the base,,< b,,. . , bl >, where n is Input: 

the number of components and b3 denotes the j-th bit vector 
A bit-sliced index with the base,. < b,,, . , b1 >, where n is 

of i.-th component. 
the number of components and bf denotes the j-th bit vector 
of i-th component. 

Selection predicate A EV, where V = (~1,. , vb}, where each Selection predicate A E V, where V = (vl,. , Q), where each 
value Vj (I < j 5 k) is represented a~ Vi,, “vj,l (II 5 uj,i < value Uj (I < i 5 k) is represented as tJj,n Vj,l (II < ~j,~ < 
b;, I < i 5 n). bi, 1 5 i < 7%). 

0utput:A bitmap vector representing the set of tuples which satisfy 0utput:A bitmap vector representing the set of tuples which satisfy 
the range-selection predicate, A E V. the range-selection predicate, A E V. 

Begin Begin 
I) B = 1. and B’ = 8 I) B = 1 and B’ = 0 
2) initialize n arrays of bits Mi[bi -11, 2) initialize n arrays of bits Mi[bi], 

l<i<n, /: M;[O]...M;[b;-21 */ l<i<n,/* Mi[O]...Mi[b;-l]*/ 
3) for i = 1 to 12 3) for i = 1 to n 
4) for j = 1 to k 4) for j = 1 to k 
5) if (uj,i <bi-1) then Mi[vj,i] = 1 5) Mi[Vj,i] = 1 
‘3) if (Vj,i>O) then Mi[Vj,i-l] = 1 6) for i = 1 to n 
7) for i = 1 to n 7) for j = 0 to bi - 1 
8) for j = 0 to bi - 2 8) if (Mib] = 1) then read bi 
9) if (Mi Ij] = 1) then read bi 9) for j = 1 to k 
IO) for j = 1 to k 10) for i = 1 to n 
11) for i = 1 to n 11) B = B . b;, i 
12) if (Vj,i = bi - 1) then B = B . (b5ji_,) 12) B’ = BT +B ’ 

13) else if (ljj,i=O) then B = B . (bi,,,) 13) return B’ /* filter out non-existing tuples before return */ 

14) else B =’ B.(bkj,<.G) /+ O<vj,i<bi-1 */ 
End. 

15) B’ = B’ + B 
16) return B’ /* filter out non-existing tuples before return */ 

End. - 

Note that in our example, for the sake of clarity, 
we confine Z to the set of Ic U ID, where Ic 
(ID) denotes the time optimal indexes for continuous 
(discrete) selections. As a matter of fact, this restriction 
provides an efficient way to find an approximate optimal 
solution, since Ic and ID describe boundaries of the 
bit-sliced index space. One describes the optimum for 
continuous selection evaluation, and the other describes 
the optimum for discrete selection evaluation. 

The two functions - p. timeC(IC) + (1-p). timeD 
and p . timeC(ID) + (1 -p) . timeD - are plotted 
in Figure 6(a), and the minimum point of the curves, 
(10, lo), is the break-even point. That means a lo- 
component bit-sliced index on attribute A ([AI = 1024) 
is optimized for both types of selections. (At the point 
n = 10, the index is a a binary uniform bit-sliced index 
with ten components.) 

Figure 6(b) reveals the curves with p = 0.75, i.e., 
75% of the selections are continuous. The point 
(5,9.75) is the brea.k-even point, which means the 
5-component time optimal index for discrete selections 
is also the global time optimal index. 

Global time optimal indexes under space con- 
straint Under a space constraint M, the global time 
optimal index is defined by 

min (0. timeC(I) + (1 - p) . timeD( , I E Z’, 

where 1’ = {IIspace(I) 5 M}. 
To avoid the exhaustive search in the whole in- 

dex space, we also confine the search space to the 
boundaries, i.e., find the smallest n and n’, such that 

space( I;) 5 M and space( I$) 2 M, and let 1” = {I? Ii 1 
n} U {Ij ]j > n’}. I,” and I: denote the n-component 
time optimal index for the continuous selection type and 
the n’-component time optimal index for the discrete (se- 
lection type, respectively. Then, the approximate global 
time optimal indexes under the space constraint M is 
given by min (p. timeC(I) + (1-p). timeD(I I E Z”. 

Following the example in Figure 6(b), suppose 
that M = 50 bitmaps, i.e., maximal 50 bitmaps 
can be stored in the system, then n’ = 3 and 
n = 6, since space(If) = 28 and space(lz) = 36. 
Figure 7 shows that among the bitmap indexes in 
{Iyli 2 6) U {Iylj 2 3}, the minimal point is (5,9.78). 

Domain encoding An EBI is a binary bit-sliced 
index on the encoded attribute domain. In principle, 
all bit vectors of an EBI must be read in a query 
evaluation. However, for a pre-defined set of selections, 
performance of EBIs can be improved through well- 
defined encoding [18]. With a well-defined encoding, 
the number of bitmap scans in query processing is 
minimized, while the space requirement of the index 
is unchanged. Let us demonstrate how it works. 

Let an EBI be defined on attribute A of Example 1 
as Figure 8 shows, and a frequently asked selection 
predicate is given as “100 5 A <_ 107”. To evaluate the 
selection, the retrieval min-terms for all the values in the 
selection range are taken and form a logical disjunction 
of min-terms - flOO~flOl~fl02~fl03ffl04~fl05_~fl0_6~ 

ficr, which can be further reduced to b9b8b7bGb5blbo. 
That is, for evaluating “100 5 A 5 107”, instead of 1.0 
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Figure 6: Global Time Optimal Indexes 
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Figure 7: .Global Time Optimal under Space Constraints 

bitmap scans, seven bitmaps are accessed. 
The encoding function shown in Figure 8 is a well- 

defined encoding subject to the selection predicate 
“100 < A _< 107”. There does not exist any other 
encoding function which can result in a reduction of 
more than three variables for logical disjunction of eight 
min-terms. 

We can see that in an environment where selection 
patterns can be predefined, by a well-defined encoding 
we improve the time efficiency of an EBI in query pro- 
cessing without sacrifice of space efficiency. However, 
finding a well-defined encoding is an NP-problem [18]. 
The involvement of human experts in the index design 
phase is required. In [18], examples of well-defined en- 
coding for some typical DW operations are given, in- 
cluding hierarchical encoding and range based encoding. 

A quick and dirty, but efficient, variation of finding 
a well-defined encoding is to define extra bit vectors 

(a) Mapping Table 

------_--_ 
fyoid=bobsb7bebsb4bsb2blbo 

- - -- - - 

fNULL=686g6,66bSb4b3bP1;1bo 
flo3=bgbsb7bebsb4b3az~l~o 

- - - - - - 
floe =6obs6,bsbsb4bsbzblbo 

flo4=bsbs~rbabsb4b3bz~l~o 

fiol =~obe6,bsbsb49sb2~16o 
flos=~sbs~~be~sb4bs~z~l~o 

floz =6gbs6,ba6664bs62616o 
floa=bsbsb7bsbsb4b3bz~l~o 
flo7=bsbsb7bebsb4b3bzblbo 

. . . . 

(b) Retrieval Min-terms 

Figure 8: A Well-Defined Encoding for 100 5 A < 107 

for frequently asked selections. The resulting bitmap is 
precomputed and stored in the system. This approach 
increases the space requirement of EBIs, but since EBIs 
are space optimal bit-sliced indexes, they have more 
elbowroom for such space expansion. 

For the worst cases, the time function of an EBI 
(without considering the effect of well-defined encoding 
and logical reduction, discussed later) is the same 
as that of a binary bit-sliced index time(EBI) = 
space(EB1) = n, where n = [log, IA)] and A denotes 
the indexed attribute. 

3.2 Algorithm design 

In this subsection, we discuss static query optimization 
through better design of evaluation algorithms. 

Tree reduction for RangeEval-Opt In [3], an algo- 
rithm - RangeEval-Opt , has been proposed to improve 
its former version proposed in [14]. Here we introduce 
a further improvement of RangeEval-Opt by the ezecu- 
tion tree reduction. 

Taking the example in [3], a S-component range 
(5) bit-encoded bit-sliced index with decimal base 
on attribute A and the predicate “A < 864” are 
given. Using Algorithm RangeEval-Optto evaluate 
the predicate results in the execution tree as shown in 
Figure 9(a). 

(a) the original tree (b) the reduced tree 

Figure 9: Transformation of Execution Tree for A < 864, 
U denotes OR and n denotes AND 

Suppose that for a certain running state of a 
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database, the second digit of all the values of A is no 
larger than 5, i.e., in the component-2 of the index, 
the bit vectors bf , bg, b% and bi are all set to “1”. 
By replacing the corresponding bit vectors with “1” 
vectors, we have the first tree in Figure 9(b). By 
applying x.1 =z (idlentity law) and z+l= 1 (dominance 
law) of Boolean algebra, the execution tree is reduced 
down to one node, i.e., instead of 5 bitmap scans plus 
4 logical operations (the tree in Figure 9(a)), only 1 
bitmap (the bit vector bf of component-3) is read. 

The reduction of a partial sub-tree is depicted next. 
Following the above example, if the most significant 
digit of A is no larger than 8, then the original execution 
tree can be replaced by the tree in Figure 10(a). 
Applying the rule x . 1 = x, we can connect the right 
sibling subtree of the l-node directly to the root, as 
shown in Figure 10(b). We reduce the computation 
complexity from 5 bitmap scans plus 4 logical operators 
to 4 bitmap scans and 3 logical operators. For equality 
predicates (=, f), the idea also works. Because of the 
space limit, we do not provide a worked out example. 

(a) execution tree - A 5 864 (b) reduction of the execution tree 

Figure 10: Transformation of Execution Tree for A 5 864, 
U denotes OR and FU denotes AND 

Obviously, in order to be able to apply such a 
reduction, the information about the percentage of 
population of each bit vector is needed. Without much 
extra cost, this information can be computed at the 
time of index creatio:n and can be synchronized every 
time the data are uploaded in batch mode to the data 
warehouse. The revised version of RangeEval-Opt, 
which suppresses unnecessary bitmap scans as described 
above, is defined in Algorithm 3. 

Logical reduction for EBI In the last section, we in- 
troduced well-defined encoding for EBI, which improves 
the query performance of a predefined set of selection 
patterns. However, ad-hoc queries dominate in the DW 
environment. Given any query, EBIs transform the 
selection predicates into a retrieval Boolean function. 
Before directly evaluating the Boolean expression on 
bitmaps, two potential. reductions should be tested: re- 
ducing the number of BooEean variables and reducing the 
number of redundant logical operations. Both of them 
can be done by performing a logical reduction on the 
retrieval Boolean functions. 

Each Boolean variaible corresponds to a bit vector, 
if one variable in the retrieval expression is reduced, 

-. 

Algorithm 3 (Range evaluation with tree-reduction) 
Input: A bit-sliced index with the base, < b?, , b1 >, wh,are 

7~ is the number of components and bf denotes the j..t,h 

bit vector of i-th component. For a bit vector, b:, O(t,:) 

denotes the percentage of “1”s in bi. 
Selection predicate A op v, where op E {<, >, 5, >,=,$). 

Dutput:A bitmap vector representing the set of tuplcs which satisfy 
the selection predicate, A op ~1. 

Begin 
B=l 
if (op E {<, 2)) then v = v-l 
v = V*V+l . . ’ 211 
if (op E {<, >, I,>}) then 

if (~1 < bl-1) and (C)(b:,) # 1) then B = bt, 
for i = 2 to n 

if (vi#b;-1) and (O(bi,)#l) then B=B.bb, 
if (vi#O) and (O(b~,-l)#l) then B=B+bLi- 

else 
for i = 1 to n 

switch (v;) 
case Vi = 0: 

if (O(bb) # 1) then B = B. bb 
case vi = b;-1: 

if (O(bL;-,) # 1) then B = B .b5,_, 
else return (B = 8) 

case 0 <vi < b;-1: 
if (O(b&) # 1) and (C)(b&-,) # 1) then 

B=B.(b;; @bt;-,) 
else if (O(b&-1) = 1) then return (B= 0) 

elseB=B.bl,_l 
end switch 

/* filter out non-existing tuples before return */ 

if (op E {>,>_,#I) then return B else return B 
End. 

the corresponding bit vector needs not be read, i.e., 
reducing the number of bitmap scans by 1. In addition, 
by reducing the Boolean expression to its minimal form, 
redundant operations are avoided. 

For example, given is a selection on attribute B ‘of 
Example 1 “B E {e, f, t, u, V, w}“. Suppose that an EBI 
is built on B, as Figure 4 shows. The retrieval Boolean 
function for the above selection will be fe + ff + ft ,+ 
fU + fV + ful. By applying logical reduction on it, 

= 1;3b2blb0+i;3b2~~b0+b3b2blb0+b3b2b160 

+b&dhbo + hb&16o 

= b3bz+blb2=bz(bl+bs) 

the expression is reduced to bz(& + bs). That is, the 
time complexity is reduced from 4 bitmap scans plus 32 
bitwise logical operations down to 3 bitmap scans plus 
3 bitwise logical operations. 

Some logical reduction algorithms have been intro- 
duced in the literature, such as ordered binary decision 
diagram (OBDD), binary decision diagram (BDD), tab- 
ular method [l, 2, 8, 11, 151. The details of how these 
algorithms work are beyond the scope of this paper. 
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4 Dynamic query optimization 
So far, we have discussed optimization that can be done 
at design time. In this section, we introduce query 
optimization strategies for run time. Cost models are 
also defined for the cost-efficiency analysis. 

4.1 Principle of inclusion and exclusion 

Selection evaluation consists of two phases - e’ndex 
scanning phase and data fetching phase. In the index 
scanning phase, selection predicates are evaluated 
using index structures, and the results of this phase 
are used as access plan in the data fetching phase. 
The idea of the principle of inclusion and exclusiona 
is as follows: by using a “coarse” filtering (instead 
of exact matching), the time of the index scanning 
phase is reduced. However, the desired data as well as 
some undesired data is included in the second phase. 
Therefore extra tests must be performed to exclude 
the unqualified data. If the extra cost for eliminating 
superfluous tuples in the second phase is smaller than 
the time-saving in the first phase, query performance 
improves. 

Dynamic optimization for EBI The basic idea 
of the inclusion/exclusion approach is to identify the 
conditions under which an approximate access plan in 
the index scanning phase will still provide a globally 
optimized query processing time. 

We give an example to illustrate how the idea works. 
Given is a selection predicate “g E {u,v,1u}“, and an 
EBI on B is defined as Figure 4 shows. The retrieval 
Boolean functio_n for the predicate, fu+fu+fw, is reduced 
to bsbz(bl + bo). (Th e f unction is illustrated using a 
Karnaugh Graph in Figure 11(a).) That means, 4 bitmap 
scans plus 5 logical operators are required in the index 
scanning phase. 

However, if we include the value t in the selection 
predicate and make it “B E {t,u,v, w}“, as shown in 
Figure 11(b), then the corresponding retrieval function, 
ft+fu+f,,+fw, is reduced to bsbz. The time complexity 
is reduced from 4 bitmap scans plus 5 logical operators 
down to 2 bitmap scans plus 1 logical operator. 

b, 

(4 64 

Figure 11: Karnaugh Graph of Retrieval Boolean Functions 

However, the deliberate inclusion of t in the index 
scanning phase causes extra cost in the second phase. 
For the above example, if we use the resulting bitmap of 
babz to fetch the data, some undesired tuples are also 
read, which might cost extra I/O time, and in order to 

sThe name, the principle of inclusion and exclusion, has been 
borrowed from the set theory, and it describes a different scenario 
here in this paper from that in the set theory. 

filter those undesired tuples out of the final result, extra 
CPU time is involved. In spite of the extra cost, the 
inclusion/exclusion approach might still result in better 
query performance, due to the characteristics of block- 
I/OS and different distributions of underlying data. 

In order to determine which of the two query execu- 
tion plans (exact match or coarse filtering) is better, 
we propose the following cost model. 

Cost model for inclusion-and-exclusion method We 
define the cost of query processing by the I/O time, i.e., 
the total number of pages read in both index scanning 
and data fetching phases. Let us first define the terms 
and the extra data structure used in the cost model. 

The page-level bitmap of a bitmap contains informa- 
tion about the distribution of the “1” bits into the log- 
ical page space of the indexed table. That means, the 
“1” bits in the page-level bitmap indicate those logi- 
cal pages which contain the tuples represented by the 
original bitmap, (named tqle-level bitmap). Figure 12 
depicts the construction of a page-level bitmap from its 
tuple-level bitmap. The tuple-level bitmap is divided 
into m p-bit segments, except the last one. Each pbit 
segment of the tuple-level bitmap corresponds to one 
bit in the page-level bitmap. The bits in the page-level 
bitmap are set, if any bit in their corresponding p-bit 
segments is set. Other terms are defined in Table 1. 

: i .:’ 
: ,:’ 

i-4 
.’ 

,:’ 
:“pa~;l~l bitmap 

‘., ,:’ 

bitmap 6 

Figure 12: Transforming Tuple-ids to Data-Block-ids 

NOTATION DESCRIPTION 

b a bit vector 
Ibl the number of bits in b 
I I 

T a table 

Ial the cardinality of 5, i.e., (bl = ITI 
w(T) width of table 5 in bytes 

p”=&J 

logical page size in bytes 
blocking factor (the number of tuples per 
page for I) 

bP a page-level bitmap of b with respect to p 

C(v) the number of “1” bits in the bit vector v 

Table 1: Notations Used in the Cost Analysis 

For the above example, the cost-efficiency analysis is 
performed as follows. Using the exact-match approach, 
& the index scanning phase the bitmap B = b3b2(& + 
bo) is evaluated, and it is used to access the desired 
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tuples in the data fetching phase. The total I/O cost of 
this approach will be 

4 , [‘bl 
~~7 + Wf) paw, (7) 

where the first term denotes the cost of index scanning 
phase, and the second one denotes the cost of data 
fetching phase. On the other hand, using the approach 
of inclusion/exclusion, the bitmap B = bsbz is 
evaluated in the index scanning phase, and B is used to 
fetch data in the second phase. The total I/O cost is 

2 . (bl -- 8~ + C(BP) pages. (8) 

Obviously, if EquaCon (8) is less than Equation (7), it is 
beneficial to perform the inclusion/exclusion approach. 

2 + C(BP) < 9 + C(B=) ==+ C(BP) - C(B=) < z 

A general form for the cost-efficiency analysis can be 
derived as follows. 

A. I’4 -W$) - C(bP) < 8n, (9) 

where b is the resulting bitmap of the exact-match 
approach, b4 is the resulting bitmap of the inclu- 
sion/exclusion approach, b’ and bi are the page-level 
bitmaps of b and b,b, respectively, and X is the number 
of variables (bitmaps) which are reduced from the re- 
trieval Boolean function after the inclusion of additional 
values into the selection predicate. Simply speaking, the 
right hand side of Inequality (9) denotes the total num- 
ber of I/O-saving in pages gained through the principle 
of inclusion and exclusion in the index scanning phase, 
and the left hand side denotes the additional I/O cost of 
reading the extra data pages arising from the approach 
of inclusion/exclusion in the data fetching phase. If 
Inequality (9) is true, then the inclusion/exclusion ap- 
proach provides a better query performance. 

In practice, the calculation of the term C(bi)-C(bP) 

(in Inequality (9)) could be expensive and I/O intensive, 
since both page-level bitmaps b’ and b+ have to be 
read. In order to reduce the overhead of optimization, 
the term above can be replaced with an approximation 
using a statistic model. It can be estimated by the 
ezpectednumber of page accesses. The expected number 
of page accesses of a query is defined as a function of 
the selectivity of the query and can be computed by the 
following probability model. 

Let n, p and Ic denote the total number of data pages 
of a selected table, the blocking factor of a page and 
the number of selected tuples of a query (estimated 
by selectivity of a query), respectively. The term - 
prob(~lz’~) denotes the probability that exactly z pages 
are accessed subject -to n, p and L. Then, the expected 
number of data page accesses in processing a query Q, 
denoted by E(Q),js calculated by 

E(Q) = xi .pr~b(iJ;~~), where 00) 
i=l 

. + (-l)icj . c(~-+P) 
k 

The inclusion/exclusion approach increases the selec- 
tivity of the query by including additional values into 
the range selection. Say, the number of selected tuples 
is changed to Ic’ and the revised query is denoted by Q’. 
Then, Inequality (9) can be estimated by 

E(Q') - E(Q) < 2 

The probability, p~b(il;‘~), is proven in [19]. 

What to include Another issue concerning the inclu-. 
sion/exclusion approach is what to include. It itself is 
an optimization problem. Let us formally define the 
cardinality of a selection range first. Given an attribute 
A and a range selection on A, “A op V”, the cardinal-, 
ity of the selection range is the cardinality of the set 
S, such that S = {v[v E A, and w op V}. If V 5, A, 
then ISJ = IVj. Following the above example, for the 
selection, “BE {u, v, w}“, since {u, w, w} c A, the cardi- 
nality of the selection range is I{u, w, w}[ = 3. For ICater 
discussion, we assume that V CA. 

To find out vrhat to include, One must answer the 
following questions, to avoid unnecessary attempts: how 
many additional values must be included at least in the 
operand set, V, in order to make a further reduction? 
And, how much reduction can be achieved? 

To answer the first question, a simple test on the 
operand set, V, is performed. If the cardinality of the 
selection range, denoted by IVl, is even, then at least 
2i-(VJ values must be included in V to make a further 
reduction possible, where i is the smallest integer s-uch 
that 2i-JVJ 10. If JVJ is odd, then a further reduction is 
possible by including one additional value into V. The 
reason why the minimum number of additional inclusion 
is 1 or 2i - IV/ is behind the idea of making 2j (j E Z+) 
neighboring cells in a Karnaugh graph, as Figure 11(b) 
shows. Note that this is only the necessary condition. 
Satisfying this condition does not imply the existence 
of a reduction. 

To answer the second question, we should explore the 
relationship between the cardinalities of selection ranges 
and the probably minimal numbers of bitmap scans in 
the index scanning phase. Assuming the existence of a 
well-defined encoding, Table 2 lists the minimal number 
of bitmap scans with respect to different cardinalities 
of selection ranges for attribute A and (Al = 8. For 
example, if we extend the cardinality of the selection 
range from 3 up to 4, for the best case, the number of 
bitmap scans could drop from 3 down to 1. 

The computation of the table is based on Property 3.1 
in [18], which describes the following scenario: for 
best cases, the number of bitmap scans in processing 
a selection on A is ([log, IAll - i) + 19(6, i), where S is 
the cardinality of the selection range and i is the largest 
integer, such that $- 2 1. The function, 0(S, i) is defined 
as follows. 

B(b, i) = 
0, if (6 mod 2”) = 0, 

i-7, if ((6 mod 2i) mod Z-f+‘) = 27, y = 0,. . ,i--1 
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Cardinality of Optimized # of 
selection (6) bitmap scans 

1 3 
2 2 
3 3 
4 1 
5 3 
6 2 
7 3 
8 0 

Table 2: Optimized Number of Bitmap Scans with respect 
to Cardinality of Selection Range 

Note that there does not exist an unconditional 
implication from the cardinality of selection range to 
the number of bitmap scans in Table 2. Nevertheless, 
the numbers provide for a quick estimation of the saving 
in the index scanning phase and the cost arising in the 
data fetching phase. For an extreme example, if the 
cardinality of selection is expanded to 8 in Table 2, 
although the cost of the index scanning phase is reduced 
to 0, a table scan is required to access all the data, since 
all attribute values are included in the predicate. 

In addition, Table 2 is used not only to check how 
much reduction an inclusion might lead to, but also to 
determine how effective an inclusion is. An effective 
inclusion is one that can lead to further reduction of 
the retrieval function. For example, to expand the 
cardinality of a selection from 4 to 6 can never be an 
effective inclusion. 

For some situations, a less optimal solution might 
perform even better than an optimal solution. For 
example, instead of finding the best inclusion, we could 
coarsely expand the cardinality of selection range by 
finding the common variables of the retrieval min-terms. 
For the example in the beginning of this section, the 
common variables of b?b2& and bsbzi$, are bsb2, i.e., 
expanding b3b2(&+bO) to bzb2. In this example, it 
is also the best expansion. Although there might exist 
another better way of inclusion, the cost of finding it 
might not .be compensated by its benefit. Algorithm 4 
finds the set of common variables of the retrieval 
Boolean function at a complexity of 0( IV]). 

So far, we have discussed the application of the 
inclusion/exclusion approach on EBIs for the selection 
operator ‘<Q’. For finite domains, other operators, 
such as 6, =, #, < and >, can all be rewritten using 
E. Therefore, the above discussion does not lose its 
generality. In addition, if the encoding function of an 
EBI is total-order preserving9 , another way of applying 
the inclusion/exclusion approach is discussed next. 

Dynamic optimization for bit-slices For both bit- 
sliced indexes and EBIs with total-order preserving 
encoding, there exists a total ordering in the bitmaps 
that is the same as that in the attribute domain. With 
this characteristic, the principle of inclusion/exclusion 

gAn encoding function is called total-order preserving, if there 
exists a total order in the domain of the indexed attribute, and 
the same total order still exists in the encoded attribute domain. 

Algorithm 4 (Finding common variables) 
Input: Selection predicate A E If, V = (~1, . , vk} 

An EBI on A with the mapping function MI : A + 
{(Ll . bO)(bi E (0, l}, 0 5 i < n} 
A set of Boolean variables used in the retrieval m&terms, 
{bn-1, > bo} 

0utput:A set of common variables, @ of the retrieval function for 
AEV 

Begin 
set @ = 0 
initialize an array of bits, B[n] 
set B = 1 
for i = 2 to k 

B = B . (WV,-,) @ M(v;)) 
/* 0 denotes exclusive-NOR, denotes AND, 

and M(v; ) denotes the encoded value of v; */ 

foi i = 0 to n-l 
if B[i] = 1 then C = Cc U {bi} 

return @ 
End. 

can be applied in the following way. 
Let us first quickly review selection evaluation using 

bit-sliced indexes. Following the example in section 3.2, 
to evaluate the predicate “A < 864”, the execution tree 
is shown in Figure 9(a). 

The idea of the principle of inclusion/exclusion 
is to expand the range of the selection such that 
tree-reduction on the execution tree occurs, e.g., by 
enlarging the range of the selection from “A < 864” to 
“A 5 894”) the execution tree is reduced as Figure 13(a) 
shows. 

(a) A < 894 (b) A<869 

Figure 13: Execution Trees for A < 894 and A 5 869 

In addition, if we change the predicate to “A 5 
869”, the execution tree is reduced further as shown in 
Figure 13(b). We can see that the scale of enlargement 
in selection ranges does not imply the scale of reduction 
in bitmap scans. The latter case of the last example 
reduces the number of bitmap scans down to 3, while 
the former case reduces the number of bitmap scans to 
4, in spite of larger expansion of the selection range. 

Inequality (11) is also used as the cost model to de- 
termine whether an expansion in selection range im- 
proves the query performance or not. However, in- 
stead of using page-level bitmaps to compute the extra 
cost arising in the data fetching phase, the distribution 
of the underlying data is used to estimate the change 
in query selectivity. For the above example, assuming 
the attribute values of A are evenly distributed within 
100 5 A 5 900, changing the predicate from “A 5 864” 
to “A <_ 869” increases the query selectivity by &, 
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while changing the predicate to “A 2 894” increases 
the query selectivity by 30 801* 

For numeric data types with even distribution, it 
is preferable to expand the selection range of the 
least significant digit first, since the higher the query 
selectivity increases, the higher the extra cost in the 
data fetching phase. Because of space limitation, we do 
not give another example for EBIs. 

5 Conclusio.ns 
We discussed issues of static and dynamic query 
optimization for bit-sliced indexes and encoded bitmap 
indexes. The main contributions of this paper are: 

For static query optimization, 

we divide selections into continuous and discrete 
ones. We have proposed two algorithms for eval- 
uation of discrete selections using bit-sliced indexes. 
Time complexities’ of these two algorithms are also 
derived. 
We have defined a global time function of bit-sliced 
indexes for both types of selections, and the “break- 
even” point is defined as the minimum point of the 
function. The “break-even” point serves as a new 
design criterion for global time-optimal bit-sliced 
indexes, with respect to both types of selections. 
The effect of space constraints on finding a global 
time-optimal index is studied. 
In [3], an algorith:m RangeEval-Opt was proposed 
to improve its former version proposed in [14]. In 
this paper, we have proposed further improvements 
on RangeEval-Opt using the “tree-reduction” tech- 
nique. 
To optimize the processing time of EBIs, we propose 
to use known methods, such as ordered binary 
decision diagram (OBDD), binary decision diagram 
(BDD), or tabular method to minimize the retrieval 
Boolean function. 

For dynamic optimization, 

The principle of inclusion and exclusion is intro- 
duced, and its application to both EBIs and bit- 
sliced indexes is discussed. 
Cost models, both analytical and probabilistic, have 
been defined to select better execution plans. 
An algorithm is defined to quickly find a set of 
common variables in the retrieval Boolean function. 
This set of common variables serves as the retrieval 
function for the “coarse” filtering in the approach of 
inclusion and exclusion. 

Future work includes: 
l Defining heuristics or tools that assist human ex- 

perts to define well-defined encodings. 
l To apply the inclu,sion/exclusion principle in dy- 

namic query optimization, finding what to include 
or how to expand is itself an optimization problem. 
For EBIs, we have proposed an algorithm to find 
the set of common variables in the retrieval Boolean 

function. However, for bit-sliced indexes, guidelines 
for quickly finding how to expand the selection range 
are still required. 
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