
Algebras for Querying Text Regions

(Extended Abstract)

Mariano P. Consens

Department of Computer Science

University of Waterloo

Waterloo, Canada N2L 3G1

mconsens@uwat erloo. ca

Abstract

There is a significant amount of interest in combining

and extending database and information retrieval tech-

nologies to manage textual data. The challenge is be-

coming more relevant due to the increased availability

of documents in digital form. Document data has a nat-

ural hierarchical structure, which may be made explicit

due to the use of markup conventions (as it is the case

with SGML). An important aspect of managing struc-

tured and semi-structured textual data consists of sup-

porting the efficient retrieval of text components based

both on their content and structure.

In this paper we study issues related to the expressive

power and optimization of a class of algebras that

support combining string (or pattern) searches with

queries on the hierarchical structure of the text. The

region algebra studied is a set-at-a-time algebra for

manipulating -tezt regions (substrings of the text) that

supports finding out nesting and ordering properties

of the text regions. The region algebra is part of the

language in use in commercial text retrieval systems,

and can be implemented very efficiently.

The results in this work are obtained by showing

a close relationship between the region algebra and

the monadic first order theory of binary trees. We

show that queries in the algebra can be optimized, but

the optimization can be difficult (Co-NP-Hard in the

general case, although there is an important class of

queries that can be optimized in polynomial time). On

the negative side, we show that the language is incapable

of capturing some important properties of the text

structure, related to the nesting and ordering of text

regions. We conclude by suggesting possible extensions

*Research done while the author was at the University of

Toronto.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice ISgiven
that copying is by permission of the Association of Computing
Machinery.To copy otherwise, or to republish, requires
a fee and/or specific permission,
PODS ’95 San Jose CA USA
(3 1995 ACM 0-89791 -730-8/95/0005.. $3.50

Tova Mile*

Department of Computer Science

Tel Aviv University

Tel Aviv, Israel 69978

milo@math. tau. ac. il

to increase the expressive power of the language,

focusing again on optimization and expressibility.

1 Introduction

Recently, there has been much interest in devel-

oping database tools for manipulating structured

documents. Work in this area has studied high

level languages for expressing queries and updates

on files, and efficient execution engines for file ma-

nipulation [ACM93, BGMM93, CM94, GNOT92,

Pae93, SLS+93]. A key observation is that it is

impractical to fully scan large documents while

processing on-line queries. To provide reason-

able response time, some of the data must be in-

dexed. Text indexing systems usually provide one

or two index types: word index recording location

of words in the text, and region index recording

location of various regions.

For example, consider a file cent aining the source

code of a large program. The word index may

record the location of certain keywords in the file

(or even the location of all the words). The re-

gion index may record where each procedure of

the program starts and ends, where in the pro-

gram appear variable definitions, loop constructs,

etc. The interfaces suggested for text indexing sys-

tems range from interfaces supporting only simple

queries like “find where a given word w appears

in the text>’, to powerful set-based algebraic lan-

guages, ala relational algebra[AFS93, ST92, Bur92,

NBY95, CCB95].

Current research has mainly focused on the

design of the interface language and on providing

an efficient execution engine for it. There has been

very little effort to characterize the capabilities of

the resulting systems, and to answer questions like:

what kind of structure-related information can be

11

extracted by the system?; what kind of queries

cannot be expressed?; is it possible to support more

complex queries without harming the performance?

Our goal in this work is to find a suitable

query interface for text indexing systems. We

look for a language that on the one hand is

powerful enough to exploit the structure embedded

in the text, and on the other hand can be

evaluated efficiently. By “efficient evaluation” we

not only mean that the language belongs to a

low worst-case complexity class, but also that

it can have an efficient implementation. We

concentrate on algebraic-based languages, and in

particular on certain subsets of relational algebra.

Clearly such languages cannot express some queries

(e.g. parity [Ehr61]). We are, however, not very

interested here in the expressibility of arbitrary

queries. How many time does a user need to

know the parity of the number of commands in

a program? We are much more interested in the

expressibility of queries with obvious practical use

like “find the name of the procedure where the

variable x was declared”.

We start by studying an algebra that is the

core of the PAT text retrieval system [Ope93], We

chose this algebra because it includes most of the

operators considered in other proposals for index

algebras. Also, the algebra has already been

implemented in the PAT system, and is known to

have a very efficient evaluation engine. Showing

a close relationship between this algebra and the

monadic first order theory of binary trees, we

were able to study issues such as optimization

and expressive power of the language. We show

that queries in the algebra can be optimized, but

the optimization can be difficult (Co-NP-Hard)

in the general case. Nevertheless, there is an

important class of queries that can be optimized

in polynomial time. On the negative side, we

show that the language is incapable of capturing

some important properties of the text structure,

related to the nesting and ordering of text regions.

We then suggest some extensions to increase the

expressive power of the language, focusing again

on optimization and expressibility.

In Section 2 we present the algebra and the con-

cept of a region inclusion graph. The relationship

between the algebra and monadic first order the-

ory of binary trees is studied in Section 3. Section

4 presents two key properties of the algebra, that

are used in Section 5 to show that certain queries

are not expressible. Extensions to the language are

considered in Section 6. Finally, Section 7 presents

the conclusions.

2 Text Regions

We start by presenting a modified version of the

the PAT algebra [Gon87, ST92]. Algebras with

a similar approach in terms of recognizing and

manipulating text structure have been studied

recently in [Bur92, NBY95, CC B95]. Following the

introduction of the algebra we discuss an important

kind of constraint that is imposed by the nature of

the format of the text that is indexed.

2.1 The Region Algebra

PAT is a set-at-a-time algebra for text queries,

that has a very efficient evaluation engine. There

are two types of sets in the algebra: sets of

match points and sets of regions. The match

points correspond to the positions in the text of

indexed strings (the entries of the word index),

while each region is a substring of the indexed text,

and is defined by a pair of positions in the text

corresponding to the beginning and the end of the

region.

Different text indexing systems support different

kinds of word index. Some systems only enable

the user to search for specific words, while other

more sophisticated systems allow searching for

strings having patterns specified in some pattern

language, (e.g., they use don’t care symbols,

regular expressions, etc.). To treat these indexes

uniformly, we make no assumptions about the

specific pattern language being used, and represent

a word index by a binary predicate W, such that

W(r, p) holds for a region r and a pattern p, iff

according to the word index, the text stored in the

region ~ contains the pattern specified by p. We

do assume, however, that we are given a specific

set of named regions on the indexed text. This

assumptions are captured in the definition below.

Definition 2.1 A region index Z is a set of

region names Rl, Rn, together with a word

index W. An instance of a region name Ri is

a set of regions in a file. An instance 1 of a

region index Z is a mapping associating an instance

l?;(l) to each region name l?~, and a mapping

associating a boolean value to IV(r, p), for every

regionr c Ri(l), 1 < i < n, and pattern p in the

pattern language.

As a notational convenience when 1 is under-

stood from the context, we use .Ri for both the

region name and the instance -Ri(l),

Many researchers have concentrated on files with

hierarchical structure [ACM93, Bur92, CACS94,

GT87, GZC89]. Indeed, many text databases

(e.g., programs , news, patents, reports, SGML

documents in general) have a structure described

by a grammar defining a hierarchy of nested

regions. Following this approach we assume below

that the region index defines a hierarchy of nested

regions, where every region r belongs to only one

region set Ri, and every two regions are either

disjoint, or one is strictly included in the other.

Note that a region index can be viewed as a

relational database (with one relations per region

type, and one relation for the word index), and that

relational algebra can be used to express queries on

the index. By restricting the join capabilities of the

algebra, and the use of the word index, one obtains

a restricted algebra that can be implemented very

efficiently. The PAT algebra is an example of such

a restricted algebra that is used by a commercial

system [Ope93]. To simplify the presentation, (and

highlight the aspects of the PAT algebra that are

of interest to us), we describe below a modified

subset of the algebral, that concentrates on the

manipulation of sets of regions. We call this algebra

the region algebra.

Definition 2.2 Region algebra expressions over Z

are expressions generated by the grammar

e+ R;le Ue/enele–e/

e3e\ece le<ele>elaP(e)l (e)

where the Ri’s are the region names in Z.

The semantics of the algebra are described in

the definition below. We use the notation left(~)

1Note that the full PAT algebra is capable of constructing

sets of regions dynamically. From the point of view of this

work we can treat regions defined dynamically as if they were

views. On the other hand, we consider nested region sets,

which are not supported by PAT.

(resp. Tight(r)) to denote the location of the left

(resp. right) endpoint of a region r. Similarly, we

use r o s, where ~,s are two regions, to denote the

fact that the region r strictly includes the region s

(i.e., le~i(r) < le~-t(s) and Tight(r) z right(s), or

le$t(r) s ie~t(s) and right(r) > right(s)). Finally,

we use T < s, to denote the fact that the region r

precedes the region s (i.e., ~igh-t(T) < left(s)).

Definition 2.3 Union (U), intersection (fI)), and

difference (–) are the usual set theoretic operations

on sets of regions. The including (o) and included

(C) operations take two sets of regions R and S

and return the sets

R3S={r ER:%ES, r3s}

RcS={TER:3SES, TCS]

The follows (>) and precedes (<) operations take

two sets of regions R and S and return the sets

R> S={ TCR:ISES, T>SJ

R< S={r ER:ls ES, r<s)

Finally, the selection (aP) operation takes a pattern

p and a set of regions R and returns the regions

T 6 R s.t, ~(r, p) is true.

For an expression e, and an instance 1 we use

e(l) to denote the result of e when evaluated on

1. Note that o, c, <, > are not associative. For

brevity, we omit parentheses and assume that the

operations are grouped from the right.

2.2 The Region Inclusion Graph (RIG)

Observe that files of a specific format have spe-

cific inclusion relationships among regions. For

instance, consider a file containing source code

of programs. Assume that each program has

a header including the program name, and a

body cent aining definition of variables and proce-

dures. Each procedure has header including its

name, and a body that may define more vari-

ables and contain definitions of other procedures.

Let I = {Prog, Prog-header, f’Tog~ody, Proc,

PToc_headeT, Proc-body, Name, Var], be the re-

gion index. Consider the two expressions

el = Name C Proc_headeT C PTOC C P?’og?’am

e2 = Name C PToc.headeT C ProgTam

These two queries do not necessarily have the

13

same result for arbitrary instances of Z. But if

only instances describing programs of the above

structure are considered, then the two expressions

do have the same result: they both retrieve the

names of all procedures. This is because in

programs all the .P~oc_heade~ regions are included

in some ~~oc region. Thus the test for inclusion in

Proc can be omitted. Note that we cannot further

omit the test for inclusion in F’roc_heade~, since

we need to distinguish between names of programs

and names of procedures. The key observation is

that the second expression has less operations than

the first, and can be evaluated more efficiently. In

general, we would like to use the knowledge about

the structure of files when analyzing queries, in

particular to rewrite queries so that they can be

evaluated more efficiently.

To describe the relationships between regions, we

introduced in [CM94] a region inclusion graph

(RIG, for short). The nodes of the graph are

region names, and the edges state the possible

inclusion relationships between the corresponding

region instances. For an instance 1 and two regions

r,s G 1, we say that r directly includes s in

1, if r ~ s and there is no other region t E 1

St. r o t and t o s. An edge (R;, Rj) is in

the RIG, iff an Ri region can directly include an

Rj region. In general, the RIG may contain cycles

(e.g., self-nested regions). The graph is used to

characterize a set of instances that obey certain

inclusion restrictions.

Definition 2.4 An instance 1 of a region index

X= {RI,..., .&} satisfies a RIG (region inclusion

graph) G = (Z, E) iff for every two regions ri E

Ri(~), ~j E Rj(l), if ri directly includes rj then

(Ri, Rj) c E. The set of all instances of Z that

satisfy a RIG G is denoted ~G.

We next consider equivalence of region expressions.

In the standard database approach, two queries

over a given schema are equivalent iff they have

the same result for every instance of the database.

In the context of queries in the region algebra, a

RIG can be viewed as schema. We therefore have

the following definition.

Definition 2.5 Two region expressions el, e2 are

equivalent with respect to a RIG G = (Z, E) iff

for every instance 1 g ZG, cl(1) = e~(l),

For example, the program files mentioned above

are described by the RIG shown in Figure 1. The

queries el and e2 above ,are equivalent with respect

to that RIG.

Pro~prOg\ Prog-body

1 /\
Name Proc Var

\/ \\/
Proc-header Proc-body

Figure 1: A RIG for source code regions.

Note that if the structure of the file follows

some grammar G (where G could be a context

free grammar), then the RIG can be automatically

derived from G. The nodes are the non-terminals

of G, and the graph has an edge (Ai, Aj) iff G has

a rule where Ai appears as the left side, and Aj as

the right side.

A similar approach can be used to take into ac-

count the relative order of regions, and character-

ize inst antes obeying certain order restrictions. We

can define a region order graph (ltOG) that de-

scribe the possible direct precedence relationships

among regions. The nodes of the graph are region

names, and the edges state the possible precedence

relationships between the corresponding region in-

st antes. For an inst ante 1 and two regions r,s E 1,

we say that T directly precedes s in I, if r < s

and there is no other region t c -Is.t. r < t and

t < s. An edge (Ri, Rj) is in the ROG, iff an Ri

region can directly precede an Rj region. As it was

the case with RIG’s, a ROG can also be derived

from a grammar.

3 Relationship with Monadic Tree

Theory

The region algebra is closely related to the first

order monadic theory of finite binary trees (FMFT,

for short) [Tho90, CH90, IK89]. This relationship

helps to identify some of the properties of the

language.

14

To simplify the presentation we use here a

variant of the theory, described in what follows,

Models of the theory have the form

t = ({ Ll}*, o,<, QI,Qn)

where o is the proper prefix order relation over

{O, l}*, < is the lexicographical order relation over

{0,1}*, and QI,. . . . Qn are finite subsets of {O, 1}*

2. For a model t, we use the term the words in t to

refer to the set of binary strings m Ul<i<n Qi.
FMFT formulas are constructed usi;g-variables,

words over {O, 1}*, atomic formulas of the form z =

y, z o y, z < y, Qi(z), and using connective and

quantifiers. The semantics of formulas is defined

in the standard way (see [Tho90] for more details).

We use the notation ~(t) to denote the result of

the formula @ when evaluated w.r.t to a model

t. We are especially interested here in a specific

class of formulas, that we call restricted FMFT

formulas,

Definition 3.1 Restricted FMFT formulas are

FMFT formulas with one free variable, and the

structure defined below:

(1) formulas Qi(z) are restricted formulas,

(2) if #1, #2 are restricted formulas, then the

following are restricted formulas as well:

(i) @l Vg!q, @l A#q, ~1 A m#q, where @l, ~z have

the same free variable,

(ii) (3y)@l A qfq A x o y, and (3y)@l A @2 A y o z,

where o is one of o ,<, and g$,42 have two distinct

free variables z, y resp.

We next study the relationship between queries in

the region algebra and restricted formulas. For a

model t and two words u, v in t, we say that u is

a direct prefix of v in t if there is no other word

w in t s.t. u is a prefix of w and w is a prefix of

v. Observe that a model t can be viewed as an

ordered forest (not necessarily binary) where the

nodes are the words in t, a word u is a parent

2The literature often uses < instead of > to denote the

prefix order, and f instead of < to denote lexicographi-

cal order. We chose the above notation to make the cor-

respondence to the region algebra straightforward. FMFT

is a subset of the more familiar second order theory of two

successors (S2S) [Tho90, Rab69] with models of the form

t = ({O, l}*, SUCCO,SUCCl, O, QI, Q~). where SUCCO,SUCC1

are two successor functions. The lexicographical order (<)

can be defined in terms of Succo and Succl.

of a word v iff u is a direct prefix of v, and a

word u precedes v in the forest iff u precedes v in

the lexicographical order, Also observe that the

operators in the region algebra test the relative

location of regions, but the exact position of

region endpoints is not explicitly used. A forest

representation of instances, recording inclusion and

order relationships, but ignoring the exact position

of regions in the file, is therefore very convenient for

reasoning about the properties of the algebra. The

relationship between models and region instances

is captured by the next definition.

Definition 3.2 Let Z = {l?l, Rn} be a region

index. Let P = {pi, . . ., Pk} be a set of patterns.

Let t = ({O, l}*, o,<, Q1,. . ., Qn+k) be a model.

We say that t represents an instance I of I w.r.t.

P iff all the Qi, 1 s i < n, are disjoint, all the

words in Qj, n < j s n + k appear in some Q:,

1 ~ i’ ~ n, and there is a 1-1 mapping (denoted

regionl) from the words in t to the regions in 1,

such that

(1) a word u in t is a direct prefix of a word v in t

iff regionl(u) directly includes regionI(v) in 1,

(2) a word u in i precedes a word v in t (that does

not have u as a prefix) iff regionl(u) < region~(v),

(3) a word u in t belongs to Qi, for 1< i s n iff

regionl(u) E Ri,

(4) a word u in t belongs to Q.+j, 1 S j < k iff

W(regionl(u), pj) is true.

The next proposition demonstrates the relationship

between algebra queries and restricted formulas. It

states that the algebra and the restricted FMFT

formulas express the same queries on regions.

Proposition 3.3 For every region algebra expres-

sion e using patterns in P, there exists a restricted

FMFT formula +, such that for every instance I,

every model t representing I w. r. t. P, and every

word w in t, regionl(w) c e(I) ifl w ~ #(t). Con-

versely, for every restricted formula 4 there exists

an algebra query e using patterns in P, such that

for every every instance I, every model t repre-

senting I w.r. t. P, and and every word w in t,

region~(w) C e(l) ifl w ~ #(t).

Proof: The proof follows the lines of the classical

algebra-calculus equivalence proofs [U1188] and

works by induction on the structure of queries. We

15

outline here the construction to obtain a restricted

formula from a region algebra expression (the

converse is completely analogous).

As the basis for induction, an algebraic expres-

sion of the form Ri is translated to the formula

{x[Qi(z)}. Now, if we are given two algebraic ex-

pressions el and e2, (by the inductive hypothesis)

we can obtain their corresponding restricted for-

mulas g51 and 42 (and we can further assume that

the only free variable in each of +1 and 42 has

been renamed to z and y, resp.). The transla-

tion for the expressions el U ez, el I_I e2, el – ez

is @I v 42, 41 A 42, #q A 742, respectively. The

translation for the expressions el 2 ez, el < ez, is

(3y)#l(z) A 452(y) A x o y, where o is 2,<, respec-

tively. The translation for the expressions el C ez,

el > e2 is (3 Y)g51(Z)A#2(Y)AY o ~, where o is ~,<,

respectively. Finally, the translation for apt (el) is

(#I A Qn+i(z). ❑

Consider a region index Z = {RI,. . . . R~}, and

a set of patterns P. It is easy to see that every

hierarchical instance 1 has many models t that

represent it w.r.t. -F’. On the other hand, every

model t = ({O, l}*, ~, <, Q1, . . .,Q~+~) where (i)
all the sets Q~, 1 s i s n, are disjoint, and (ii) all

the words u & Q.+j, 1 s j s k, belong to some

Qi, 1< i < n, represents some region instance. We

have that

Theorem 3.4 For every region algebra expression

e, there exists a restricted FiWFT formula ~ s. t.

e(I) is empty for all instances I ifl ~ is unsatisfi-

able.

The proof follows from Proposition 3.3, and from

the fact that restriction conditions (i) and (ii)

above can be expressed by a restricted formula.

Satisfiability of FMFT formulas is decidable

[Rab69], and thus testing if e(l) is empty for

every instance 1 is decidable. We call this the

emptiness testing problem. Emptiness testing

can be used to optimize queries. Suppose we

have a price function p estimating the expected

cost of an algebra expression. Assume also that

every operation adds some cost to the price of an

expression. To optimize an expression e we can

look for an equivalent expression with lowest price

(because of the assumptions we need to check only

a finite number of expressions). Two expressions

el, ez are equivalent iff (el – ez) U (ez – el) is empty

for all instances.

The algorithm for testing satisfiability of FMFT

formulas has non elementary complexity [Rab69,

CH90], thus the above optimization technique

is very expensive. Note that in our case the

algebra queries correspond to a very limited class

of FMFT formulas (restricted formulas). The

following theorems shows that, even in this case,

emptiness testing and optimization cannot be done

in polynomial time (unless P=NP).

Theorem 3.5 Emptiness testing in the region al-

gebra is Co-NP-Hard.

The proof is by reduction from the problem of

checking if a 3-CNF formula is unsatisfiable, known

to be Co-NP-complete. There are, however, some

important practical cases where emptiness testing

and optimization can be done in polynomial time.

We present such cases in Section 5.1.

As mentioned in Section 2.2, given a RIG G, we

are not interested in arbitrary region instances, but

only in instances that satisfy G. We can refine

theorem 3.4 and show that

Theorem 3.6 Let G be some RIG. For every

region algebra expression e, there exists an FMFT

formula ~ s.t. e(I) is empty for all instances I

satisfying G ifl 4 is unsatisfiable.

The proof is based on the fact that the direct

inclusion restrictions imposed by the RIG can

be expressed by FMFT formulas. The refined

theorem can now be used to optimize queries

w.r.t a RIG. Note that the theorem uses general

FMFT formulas and not restricted formulas. This

is because (as we show later in Section 5.1)

direct inclusion cannot be expressed by restricted

formulas.

4 Properties of the Region Algebra

We now present two important properties of

algebra, that are used to prove the results of

the

the

following section. The key observation is that,

under certain conditions, queries are not affected

by the deletion of elements from the input.

4.1 Deletion

Let 1 be some region instance, and let S be a set

of regions in I. We say that an instance I’ is an S-

deleted version of 1, if it was obtained from 1 by

16

deleting some regions, but leaving all the regions in

S. The next theorem shows that a careful selection

of S can guarantee that deletion from the input

does not affect the output of queries.

Theorem 4.1 Let e be an algebra expression. For

every instance I, there exists a set of regions S c I

with region nesting at most 21el, s.t, for every S-

deleted version I’ of I, the following hold

(1) e(I) = @ ifl e(I’) = 0.

(2) for every region r that belongs to both to I and

1’, r ~ e(I) ifl r E e(.1’).

The proof works by induction on the number

of operations in e, and constructively builds the

desired S.

4.2 Reduction

We next consider a more refined deletion of regions

that preserves some containment, ordering and

word indexing properties of the original input.

For that, we use an auxiliary notion of region

isomorphiwn, and define a reduce operation. For

an instance I and a region r c I, we use the

notation ST to denote the set of regions containing

r, and all the regions in 1 that are included in r.

Definition 4.2 Let 1 be in instance, and let P be

a set of patterns. We say that two regions rl, r2 c 1

are isomorphic w.r.t. P, if there is a 1-1 mapping

~ from Srl to STZ s.t. (i) ~ preserves the inclusion

and precedence relationship of regions, and (ii) for

every region r ● Svl, every region name Ri, and

and every pattern p c P, r E Ri iff ~(r) 6 R; and

W(r, p) holds iff W(r(r), p) holds. The operation

reduce(I, rl, r2) tests if r1,r2 are isomorphic, and

if so deletes from 1 all the regions in S’rl.

Observe that the reduction can be used to define a

mapping h from the regions of 1 to the regions of

I’. First consider a single reduction step. Let r be

some region in I. A mapping h can be defined as:

(i) if r E 1’, th en h(r) = r, and (ii) if r @ 1’, and

was deleted due to an isomorphic mapping ~, then

h(r) = ~(r). Now, let I’ be an instance obtained

from 1 by a sequence of reduce operations. The

mapping h defined by a sequence of reductions is

simply the composition of the mappings defined by

each individual reduction. We use the mapping to

define a refined notion of reduction that preserves

certain order relationships bet ween regions.

Definition 4.3 Let F’ be a set of patterns. An

instance I’ is a O-reduced version of 1 w.r.t. P,

if it was obtained from 1 by a sequence of reduce

operations. An instance I’ is a k-reduced (k > O)

version of 1 w.r.t. P iff,

(1) it was obtained from 1 by a sequence of

reductions (defining a mapping hk from 1 to 1’),

and

(2) it has a (k-l) -reduced version I“ (with some

mapping hk_l from 1 to 1“), s.t. for every two

regions r,s E 1, r < s in 1 iff there exists t E

h;!l(hk_l(hk(s))) s.t. hk(r) < t in 1’.

The next theorem shows that if enough order

related information is preserved while reducing the

size of the instance, the modifications to the input

do not effect the behaviour of a query.

Theorem 4.4 Let e be some algebra expression, P

the set of patterns in e, and k the number of< and

> operations in e. For every instance I, and every

k-reduced version I’ of I w. r. t P, the following hold

(1) e(l) = 0 ijf e(I’) = 0.
(2) for every region r that be!ongs both to I and I’,

r E e(I) ifl r E e(I’)

The above result is proved using the following

proposition.

Proposition 4.5 Let e be some algebra expres-

sion, P the set of patterns in e, k the number of <

and > in e, I some instance, I’ a k-reduced ver-

sion of I w. r. t P, and h the mapping defined by

the reduction. For every region r in I, r G e(~) i~

h(r) E e(I’)

Proofi The proposition is proved by induction

on the number of operations in e. It is used to

prove Theorem 4.4 as follows. Part (2) follows

immediately from Proposition 4.5, and the fact

that if r belongs to I’ then h(r) = r. For part (l),

observe that e(l) # 0 iff there exists some region

r 6 1 s.t. r E e(l). But from Proposition 4.5 this

happens iff h(~) 6 e(I’), thus iff e(l’) # 0. ❑

5 Expressiveness

We next use the deletion and reduction theorems

to study the limitations of the region algebra. In

particular we show its inability to capture a refined

17

notion of inclusion of region, called direct inclusion,

and its incapability to mutually capture inclusion

and order relationships. We motivate the practical

importance of the kinds of queries considered in

their respective subsections.

5.1 Direct Inclusion

Consider the file containing source code of a

program, mentioned above. Assume that we

want to find the procedures that define a specific

variable, say z. Note that looking for Proc regions

that contain a Var region defining x, which can be

expressed as Proc o Proc.body o u~~$~~(Var), will

not generate the required result. This is because

procedures can be nested. A procedure may be

select ed not because it defines z, but because

it contains another procedure defining x. What

we want is to select Proc regions that directly

include (i.e., no other region resides in between)

a Proc_body region, also directly including the

required Va~ region, This notion of direct inclusion

is captured by the operators directly including (~~)

and directly included (Cd) defined below:

R3dS={rER:

~sES, r2s Am3t El, r3t At3s}

RCd S={r GR:

3sES, s3r A73t~I, s3t At2r}

Now we can express the query to find Proc

regions that directly contain a Var region defining

z as Proc ~d Proc_body ~d O(W! (VUr).

We show next that direct inclusion cannot be

expressed by the region algebra.

Theorem 5.1 The direct inclusion and directly

included operations cannot be expressed by the

region algebra.

Proof: We first consider the directly includes

operation. Let Z = {A, B} be a region index,

with a RIG containing the edges (A, 1?) and (B, A).

Assume there is an algebra expression e computing

1? ~d A. Consider the instance 1 with region

nesting depth 4] e 1, and with the structure shown

in Figure 2.

From Theorem 4.1, it follows that there exists a

set of regions S c 1 with nesting depth at most

21el (where [el is the number of operations in e),

such that for every S-deleted version 1’ of 1, and

every region r appearing both in 1 and 1’, r < e(I)

A

B

II B

A

B

G

B

A

B

B

Figure 2: Counter-example for direct inclusion.

iff r E e(l’). Since the region nesting in S is at

most 21el, for every S, 1 cent ains two 1? regions

r and r’, where r directly includes r’, and both T

and r’ are not in S. Consider the S-deleted version

I’ of 1 obtained by deleting r’. From the theorem

?’ C e(~) iff r E e(~’), But if e computes 1? ~d A,

then r ~ e(l), while r c e(.1’), which yields a con-

tradiction. The proof for B cd A is similar. ❑

The above result is based on the fact that

regions can be nested to an arbitrary depth. If

the nesting depth is guaranteed to be bounded by

some constant, direct inclusion is expressible. Note

that files with an acyclic RIG have nesting depth

bounded by the length of the longest path in the

RIG.

Proposition 5.2 Direct inclusion is expressible

for jlles satisfying an ac~clic RIG.

Proofi we sketch the proof for ~d (Cd is

completely analogous). If a set of regions Q is not

nested then Q Od R = Q 3 (R – (R C (UT~lT) C

Q)), for every region set R. For Q with nesting

bounded by k, we use k algebra expressions to

select regions in the i’th layer, 1 ~ i s k, then

we compute direct inclusion for each layer (using

the above expression), and take the union of the

results. •l

An implementation of direct inclusion for files

with unbounded nesting is presented in Section 6.

We next consider a restricted class of expressions

18

c c c c c

A B A A II B

Figure 3: Counter-example for both included.

called inclusion expressions. These are expression

that use only the o and o~ operations, or only

C and Cd operations. It was shown in [CM94]

that this class, although seems very restricted, is

very useful for computing high level object oriented

queries on files, Thus the ability to optimize such

queries is crucial. We showed in the previous

section that query optimization is very expensive

in general. Fortunately, it turns out that inclusion

expressions can be optimized in polynomial time

[CM94].

5.2 Both-Included

We have showed above that the region algebra

is incapable of capturing properties related to

the nesting of regions. We show next that the

algebra is also incapable of capturing order related

properties.

Consider again the file containing the source

code of a program. Assume that we want to

find the procedures containing definitions of two

variables, say z and y, where the definition for

z precedes that of y. One may try to use the

expression l%oc o (a((z//(Var) < OLIYIJ(Var)). This

however does not compute the required result.

Some of the procedures may be selected because

they contain an z variable that precedes some

definition of y, but where the y definition is in

another procedure. Unfortunately, it turns out

that queries as the above, involving both inclusion

and order testing, cannot be expressed by the

algebra.

It is important to highlight that this type of

query is the most common kind of request for

traditional document-based text retrieval systems.

Traditional systems recognize one distinguished

unit (the document) within the structure of the

text being indexed. In our source code example

the unit could be each procedure (this will be

particularly appropriate if procedures are kept in

individual files). Then, the system will support

a request to retrieve variable definitions for z

preceding those for g, and only consider those pairs

x and y that occur in the same procedure.

Let’s define the operation both-included, that

takes three sets of regions l?, S and T and returns

the set

ltBI(S, Z’)= {r CR:3SES,3t E T,~o

sAr XAs <t}

The expression Proc BI (o~~z//(Var), al~Y/l(Var))

computes exactly the above query. The result

below characterizes another limitation of the region

algebra.

Theorem 5.3 The operation both-included cannot

be expressed by the region algebra.

Proofi Let Z = {A, 1?, C} be a region index,

with a RIG containing the edges (C, A) and (C’, l?).

Assume there is an algebra expression e computing

C B1 (~, A). Let P be the set of patterns

appearing in e and k the number of < and > in

e. Consider the instance 1, containing 4k + 1 C
regions, with the structure shown in Figure 3.

Let rl,. . . , r4k+1 be the regions corresponding

to the C regions , where r2~+1 is the C region

cent aining two A regions. Let rjk+l be the

first A region included in rzk+l, and let r~h+l

be the second. Consider the instance 1’ =

reduce(~j r~k+l, r~k+l). The regions r~k+l, ‘~k+l

are isomorphic w.r.t. P. Thus I’ contains all the

regions of ~ except r~k+~. If we can show that I’ is

a k-reduced version on 1, then from Theorem 4.4,

it follows that r2~+1 E e(I) iff r2~+1 c e(I’). But,

since e computes C BI (B, A) then rzk+l 6 e(~),

while rzk+l @ e(l’), which yields a contradiction.

Thus all we have to show is that 1’ is a k-

reduced version on 1. Clearly, 1’ is a reduced

version on I. Let hk be the mapping defined by

the reduce operation reduce(I, rjk+~, r~k+~). We

have to show that I’ has a (k – 1)-reduced version

1“ (with some mapping h~-l), such that for every

two regions r,s E 1, r follows s in 1 iff there

exists t E h~~l(hk–.l(hk(s))) s.t. t follows hk(~)

19

in 1’. It is easy to show that the instance I“ =

reduce(~’, r2k+1, ~2k+2) is a (k – 1) reduced version

of 1’ satisfying the above requirement. ❑

The preceding inexpressibility result relies on the

fact that files can have arbitrary number of non

overlapping regions. If the number is guaranteed

to be bounded by some constant k, both-included

becomes expressible. Note that for files satisfying

an acyclic ROG (region order graph) this number

is bounded by the length of the longest path in the

ROG.

Proposition 5.4 Both-included is expressible for

jiles where the number of non overlapping regions

is bounded by some constant k.

The proof is similar to the case of direct inclusion

covered in the previous subsection. We next

show that direct inclusion and both-included are

independent operators.

Proposition 5.5 Direct inclusion cannot be ex-

pressed by the region algebra augmented with both-

inciuded. Similarly, both-included cannot be ez-

pressed by the region algebra augmented with direct

inclusion.

Proofi This follows from the fact that if only di-

rect inclusion is added then the reduction theorem

(4.4) still holds for the extended language. On the

other hand, if only both< ncluded is added, then the

deletion theorem (4.1) still holds for the extended

language. Both proofs are similar to the original

ones, with an additional case in the induction step.

•1

Both operations can be expressed by FMFT for-

mulas. Thus theorem 3.6 holds for the algebra aug-

mented with direct inclusion and both-included,

and queries in the extended language can be op-

timized.

6 Extending the Region Algebra

We show below that if the algebra is embedded in a

programming language with a while construct and

assignments then the operations can be supported.

In particular we consider the execution cost and

optimization. For example, _Rl ~~ R2 can be

expressed as follows (a similar program can be used

to compute .RI Cd -&):

end

return R~esU1f

In many practical applications, one may need to

compute a sequence of direct inclusions of the

form e= R10R20. . . R.._l o Rn, where o can

be any one of ~~ or cd, and Ri,l S i S n,

are region names (examples for the use of such

inclusion expressions are presented in [CM94]). We

consider below the case where o = o~ (since cd can

be handled in a completely analogous manner). A

naive computation, that uses the above program,

may be very expensive, since each direct inclusion

entail loop execution. It turns out that this can

be avoided, and in fact one loop is sufficient for

computing the sequence. For an expression e of

the form discussed above, and a region name T,

we use the notation #~ to denote the number of

occurrences of T in R2 . . . Rn_l. The expression e

can be computed as follows:

The number of iterations of the program is deter-

mined by the nesting depth of the input. The exe-

cution cost of each iteration is dominated by the in-

clusion test involving the set All defined in the first

line of the program, and is heavily influenced by the

size of the set. Can the size be reduced? This is

20

another example where the RIG can be used for

optimization. Assume we consider only instances

satisfying a RIG G. It is easy to see that All should

not necessarily contain all the regions in 1. In fact,

it is sufficient to consider a subset Z’ G Z, where

Z’ contains at least one region name on every path

from Rito R;+l, i= l.. , n – 1, (not including the

endpoints of the path). We would like to use such

minimal set. Computing it is, however, expensive.

We call the problem of testing if there is such an

X’ with IX’ I s k, for some constant k, the minimal

set problem.

Proposition 6.1 The minimal set probiem is NP-

complete.

Proof: (Sketch) The NP algorithm guesses Z’ of

size k and checks if it satisfies the requirements.

The hardness proof is by reduction from the vertex

cover problem known to be NP-complete, ❑

Note that if e contains only one operation, (i.e.

e = RI o R2), a minimal set can be computed in

in time polynomial in the size of the RIG (using a

variant of the rein-cut problem [P S82]).

7 Conclusion

We conclude by discussing two possible extensions

to the algebra. The region algebra studied in the

previous sections can be viewed as a restricted

version of the relational algebra, allowing only 1-

ary relations with attributes whose domain is the

domain of regions, and with a semi-join operation

that uses c, ~, <,>. The language has a very

efficient implementation, and can be optimized.

However, it lacks expressiveness. This is due to

two factors. First, only unary relations are allowed.

Second, the content of regions can be tested only

in a very limited way: only a bounded number of

patterns can be checked by a given expression, and

joins according to the content of regions are not

supported.

To extend the capabilities of the language, one

may allow queries to have n-ary relations (with

attributes over the region domain) as intermediate

results, and support joins and not only semijoins.

Note that expressions in this extended language

correspond to safe FMFT formulas, (where safety

of formulas is defined in the standard way [U1188]).

This is because the input can still be encoded

by monadic predicates. Theorem 3.6 holds for

the extended language, and thus queries can be

optimized. It is easy to see that direct inclusion and

both-included can be expressed by this extended

language.

To enable also to explore the content of regions

(and allow joins that compare the content of

regions), the word index should be part of the

input to the query. The price we pay for this

further extension is that the input is no longer

monadic (recall that the word index is viewed as

a 2-ary relation). Thus emptiness testing, and

optimization become undecidable.

References

[ACM93] S. Abiteboul, S. Cluet, and T. Mile.

Querying and updating the file. In

Proc. of VLDB 93, pages 73-84, 1993.

[AFS93] R. Agrawal, C. I%loutsos, and

A. Swami. Efficient similarity search in

sequence databases. In FODO, 1993.

[BGMM93] D. Barbara, H. Garcia-Molina, and

[Bur92]

[CACS94]

[CCB95]

[CH90]

S. Mehrota. The gold mailer. In IEEE

Data Eng., pages 92-99, 1993.

F. J. Burkowski. An algebra for

hierarchical organized text-dominated

databases. Information procecess-

ing and management, 28(3):333–348,

1992.

v. Christophides, S. Abite-

boul, S. Cluet, and M: Scholl. From

structured documents to novel query

facilities. In Proc. ACM Sigmod, pages

313-324, 1994.

C. L. A. Clarke, G. V. Cormack, and

F. J. Burkowski. An algebra for struc-

tured text search and a framework for

its implementation. The Computer

Journal, 1995. To appear.

K. Compton and C.W. Henson. A uni-

form method for proving lower bounds

on the complexity of logical theories.

Annals of Pure and Applied Logic,

48:1-79, 1990.

[CM94] M. Consens and T. Mile. Optimizing

queries on files. In Proc. ACM Sigmod,

pages 301-312, 1994.

[Ehr61] A. Ehrenfeucht. An application of

games to the completeness problem for

formalized theories. Fund. Math, 49,

1961.

[GNOT92] D. Goldberg, D. Nichols, B. M. Oki,

and D. Terry. Using collabora-

tive filtering to weave an information

tapestry. CACM, 35(12), December

1992.

[Gon87] G. Gonnet. Examples of PAT ap-

plied to the Oxford English Dictio-

nary. Technical Report OED-87-02,

University of Waterloo, 1987.

[GT87] G. Gonnet and F. Tompa. Mind

your grammar: a new approach to

modelling text. In Proc. of VLDB 87,

pages 339-346, 1987.

[GZC89] R. H. Guting, R. Zicari, and M. C,

Choy. An algebra for structured office

documents. ACM transactions on

ofice information systems, 7(4):123–

157, April 1989.

[IK89] N. Immerman and D. Kozen. Defin-

ability with bounded number of bound

variables. Information and Computa-

tion, 83:121–139, 1989.

[NBY95] G. Navarro and R, Baeza-Yates. A

language for queries on structure and

contents of textual databases. In Proc.

of the 18th. SIGIR, 1995. To appear.

[Ope93] Open Text Corporation. PAT Refer-

ence Manual and Tutorial, 1993.

[Pae93] A. Paepcke. An object oriented

view onto public heterogeneous text

databases. In IEEE Data Eng., page

484, 1993.

[Rab69] M. Rabin. Decidability of second or-

der theories and automata on infinite

trees. Trans. American Mathematical

Society, 141:1-35, 1969.

[SLS+93] K. Sheens, A. Luniewski, P. Schwartz,

J. Stamos, and J. Thomas. The Rufus

system: Information organization for

semi-structured data. In Proc. of

VLDB 93, pages 97-107, 1993.

[ST92] A. Salminen and F. W. Tompa. PAT

expressions: an algebra for text search.

In Papers in Computational Lexicog-

raphy: COiWPLEX’92, pages 309–332,

1992.

[Tho90] W. Thomas. Automata on infinite ob-

jects. Handbook of Theoretical Com-

puter Science, Vol. B, pages 135-191,

1990.

[U1188] J.D. Unman. Database and knowl-

edge base systems. Computer Science

Press, 1988.

[PS82] C. H. Papadimitriou and K. Stei-

glitz. Combinatorial optimization, al-

gorithms and complexity. Prentice-

Hall, 1982.

22

