
A Web Odyssey: from Codd to XML

Victor Vianu�

U.C. San Diego
vianu@cs.ucsd.edu

What does the age of the Web mean for database the ory?

It is a challenge and an opportunity, an exciting journey of

rediscovery. These are some notes from the road.

1. INTRODUCTION
The Web presents the database area with vast opportuni-

ties and commensurate challenges. Databases and the Web
are organically connected at many lev els. Web sites are in-
creasingly pow ered b y databases.Collections of linked Web

pages distributed across the Internet are themselves tempt-
ing targets for a database. The emergence of XML as the
lingua franc a of the Web brings some m uchneeded order
and will greatly facilitate the use of database techniques to
manage Web information.
This paper will discuss some of the developments related

to the Web from the viewpoint of database theory. As we
shall see, the Web scenario requires revisiting some of the
basic assumptions of the area. T o be sure, database the-
ory remains as valid as ev er in the classical setting, and the
database industry will continue to represent a multi-billion
dollar target of applicability for the foreseeable future. But

the Web represents an opportunity of an entirely di�erent
scale. We are th us at an important juncture. Database the-
ory could retain its classical focus and turn in w ards.Or,
it could attempt to take heads-on the challenge of the Web
and contribute to an important part of its formal founda-
tions. T o do so, it will have to leave its familiar shores and

reinvent itself. There are good signs that the journey has
already begun.
What makes theWeb scenario di�erent from classical data-

bases? In short, everything. A classical database is a co-
heren tly designed system. The system imposes rigid struc-

ture, and provides queries, updates, as well as transactions,
concurrency, integrity, and recovery, in a con trolled envi-
ronment. The Web escapes any suc h con trol.It is a free-
evolving, ever-changing collection of data sources of various

�Work supported in part by the National Science Founda-
tion under grant number IIS-9802288.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS’01 Santa Barbara, California USA
Copyright 2001 ACM 0-89791-88-6/97/05 ...$5.00.

shapes and forms, interacting according to a
exible proto-
col. A database is a polished artifact. The Web is closer to
a natural ecosystem.
Why bother then? Because there is tremendous need for

database-like functionality to e�ciently pro vide and access
data on the Web and for a wide range of applications. And,

despite the di�erences, it turns out that database kno w-
how remains extremely valuable and e�ective. The design
of XML query and schema languages has been heavily in
u-
enced by the database communit y. XML query processing
techniques are based on underlying algebras, and use rewrite
rules and execution plans much lik e their relational counter-

parts. The use of the database paradigm on the Web is a
success story , a testament to the robustness of databases as
a �eld.
Much of the traditional framework of database theory

needs to be reinvented in the Web scenario. Data no longer

�ts nicely into tables. Instead, it is self-describing and ir-
regular, with little distinction between schema and data.
This has been formalized by semi-structured data. Schemas,
when available, are a far cry from tables, or even from
more complex object-oriented schemas. They provide much
richer mechanisms for specifying
exible, recursively nested

structures, possibly ordered. A related problem is that of
constr aints, generalizing to the semi-structured and XML
frameworks classical dependencies like functional and inclu-
sion dependencies. Specifying them often requires recursive
na vigation through the nested data, using path expressions.
Query languages also di�er signi�cantly from their rela-

tional brethren. The lack of schema leads to a more naviga-
tional approach, where data is explored from speci�c entry
poin ts. The nested structure of data leads to recursion in
queries, in the form of path expressions. Other paradigms
ha ve also pro ven useful, such as structural recursion. Query
languages typically provide mechanisms to construct com-

plex answers. The resulting classes of queries are not always
neat (for example some query languages are not even closed
under composition) so their expressiv enessis not easy to
characterize. The complexity of queries is also hard to eval-
uate in a relevan tw ayby traditional means (can a query

of complexity logspace in the size of the Web be called
tractable?). As a corollary to the rich schema formalisms,
query typecheckinghas become an important issue.
The development of Internet tec hnology has occurred very

rapidly , initially lea ving theory behind.As is often the case
in suc h situations, practical development sometimes seemed

more ad-hoc than well principled. But, as has also happened
before, order and formal beauty ha ve nonetheless emerged

Permission to make digital or hard copies of part or all of this work or
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page. To
copy otherwise, to republish, to post on servers, or to redistribute to
lists, requires prior specific permission and/or a fee.
PODS '01 Santa Barbara, California USA
© 2001 ACM 1-58113-361-8/01/05 ... $5.00.

1

Some text in this electronic article is rendered in Type 3 or bitmapped fonts, and may display poorly on screen in Adobe Acrobat v. 4.0 and later. However, printouts of this file are unaffected by this problem. We recommend that you print the file for best legibility.

&p1

&p3

&p2
child

mother

child

mother

name

age

name

age

name

age

Mary

45 Roy

22

John

23

root

person
person

person

Figure 1: A semi-structured data graph

in surprising and satisfying ways. One of the most elegant
theoretical developments is the connection of XML schemas
and queries to tree automata. Indeed, while the classical
theory of queries languages is intimately related to �nite-
model theory, automata theory has instead emerged as the
natural formal companion to XML. Interestingly, research

on XML is feeding back into tree automata theory and is
re-energizing this somewhat arcane area of language theory.
This connection is a recurring theme throughout the paper.
Database theory has started to tackle the Web, but this is

only the beginning. There is a wide range of Web applica-

tions that provide a new frontier for database theory. Here
are some examples. Managing integrated views of multiple
data sources has raised technical issues including view-based
query answering, also related to query optimization and se-
mantic caching. The emergence of Web communities has
raised the need to establish and use ontologies and meta-

data. Related questions are raised by the need to deal with
non-traditional sources that can be only be accessed by lim-
ited patterns. A special challenge is raised by interactive

Web sites, such as those commonly arising in e-commerce
applications. These can be viewed as sources of information,
but also as special forms of active databases implementing a

work
ow modeling the interaction with customers or other
sites. Repositories of Web data must cope with the highly
dynamic nature of the Web, and must deal with temporal
aspects related to data freshness, consistency, incomplete
information, and push and pull technology. Search engines
use a mix of database and information retrieval techniques.

The interplay of the two is one of the most challenging issues
yet to be addressed.
In the next section we discuss data on the Web, including

semi-structured data and XML, schemas, and constraints.
Section 3 deals with queries on the Web. We revisit the

classical issues of genericity, order, and query complexity.
Then we present the main approaches to querying the Web,
semi-structured data, and XML. Section 4 discusses query
typechecking. New frontiers are discussed in Section 5, and
the last section provides some conclusions.
This paper is by no means a comprehensive survey of the

developments in database theory related to theWeb. Several
excellent articles serving this purpose are referenced in the
paper. The book [2] is an invaluable source of information
on databases and the Web.

2. DATA, SCHEMAS, CONSTRAINTS
To begin, we discuss the kinds of data found on the Web,

and mechanisms to describe its structure by schemas and
constraints.

2.1 Data on the Web
The Web is a fascinating target for databases. But view-

ing the Web as one huge database to be queried is a daunting
proposition. Data on the Web is irregular, heterogeneous,

and globally distributed. The lack of common structure
and meaning makes it di�cult to locate data relevant to
a query or to relate information from di�erent sources. But
there is worse: the Web as a whole is in some sense a �c-
tional, virtual object. Like the blind men discovering the
elephant, centralized repositories of Web data can only re-

trieve by crawling small, locally consistent fragments of the
Web, many of which rapidly become stale. There seems to
be an uncertainty principle at work: it is not possible to cap-
ture, let alone maintain, a consistent snapshot of the entire
Web. This is radically di�erent from the database frame-
work, where queries have full access to their input. Short of

a well-de�ned input, the very meaning of querying the Web
is open to discussion.
Yet there is another side to the story. The Web is a mov-

ing target, but it is not arbitrary. As described by Raghavan
[71], the graph structure of Web pages and their hyperlinks
exhibits interesting and fairly stable structural properties

that could be exploited. Search engines use structural prop-
erties to �nd authoritative Web sites. Identifying and taking
advantage of the stable patterns in the changing Web is a
novel and exciting prospect from a database perspective.
There are more tractable alternatives to viewing the en-

tire Web as a single database. Much of the data exchange
on the Web takes place in more controlled environments. At
one end of the spectrum, many data-intensive Web sites are
really classical databases with XML wrappers. Next, there
are Web sites that provide integrated views of a collection of
distributed data sources. The collection could be statically

de�ned or dynamic, but often limited to some community
of users explicitly or implicitly sharing an ontology and the
metadata for using it. At the other end of the spectrum
are servers that aim to extend search engines by answer-
ing queries as best possible on the entire Web, or perhaps
on the XML-ized portion of the Web, by a centralized or

decentralized approach.

2

R A B C

1 1 2
2 1 3

Q C D

2 1
1 0

Figure 2: A relational database

database

R Q

tup tup tup tup

A B C A B
C

C D C D

1 1 2 2 1 3 2 1 1 0

Figure 3: Data graph for R and Q

There can be no single, well-de�ned notion of the data
that can be found on the Web. One must focus on speci�c
aspects and levels of the Web to �nd the data that best

�ts one's needs. One might be interested in the graph of
all Web pages and their hyperlinks. Or, one might wish to
focus on XML documents available on the Web and their
internal structure. Alternatively, one might be interested
to provide or retrieve information from databases exporting

XML views or interacting with the outside world through
forms providing limited access.

2.2 Semi-structured data and XML
Semi-structured data is a bare-bones abstraction of the

irregular, self-describing data found across the Web. It is
also motivated by applications such as scienti�c databases,
and the integration of heterogeneous data.

Semi-structured data is a labeled graph. The nodes are
viewed as objects and have object ids. They can be atomic
or complex. Complex objects are linked to other objects by
labeled edges. Atomic objects have data values associated
with them. The intent is that schema and data be repre-
sented in the same way, and this yields a very
exible and

powerful formalism for describing data in a uni�ed manner.
Figure 1 shows one such data graph. Relational or object-
oriented databases can also be represented as graphs. For
example, the database in Figure 2 is represented by the data
graph in Figure 3. Note that there is no explicit distinction

between data and schema in the graph.
Several variants of the semi-structured data model have

been proposed, with minor di�erences in formalism. The
�rst semi-structured data model was the Object Exchange
Model (OEM), introduced within the Tsimmis project as
a vehicle for integrating heterogeneous sources [58, 34, 91].

This was soon followed by Lore [6, 75]. Another model,
UnQL, was developed at the University of Pennsylvania [93,
25], motivated by the OEM model and by the ACeDB graph
model used in biological databases [98].
Unlike the semi-structured data models, XML (Extended

Markup Language) does not originate in the database com-

munity. It has been introduced in the document community

<dealer>

<UsedCars>

<ad>

<model>Honda</model>

<year>92</year>

</ad>

</UsedCars>

<NewCars>

<ad>

<model>BMW</model>

</ad>

</NewCars>

</dealer>

dealer

NewCars

ad ad

UsedCars

yearmodel model

Figure 4: Dealer XML document

as a subset of SGML. XML is in some sense an augmen-
tation of HTML allowing annotating data with information
about its meaning rather than just its presentation. An
XML document consists of nested elements, with ordered

sub-elements. Each element has a name (also called tag or
label). The full XML has many bells and whistles, but its
simplest abstraction is as a labeled ordered tree (with labels
on nodes), possibly with data values associated to the leaves.
For example, an XML document holding ads for used cars
and new cars is shown in Figure 4 (left), together with its

abstraction as a labeled tree (right, data values omitted).
The emergence of XML has placed increased importance

on labeled trees capturing the structure of XML documents.
However, XML additionally provides a referencing mecha-
nism among elements that allows simulating arbitrary graphs,
and so, semi-structured data. This aspect has been left

out of some formal models for XML, because neither XML
schemas nor query languages take advantage of it.
It is worth mentioning that XML can also be viewed as an

object model. This is illustrated by a standard API for XML
proposed by W3C, where XML documents are described in
terms of the Document Object Model (DOM). Other exten-

sions to XML and DTDs proposed by W3C, such as RDF,
also have an object-oriented
avor (see [2] and the W3C
Web site).

2.3 Schemas

Schemas for semi-structured data. The
exibility of
semi-structured data comes at a price: the loss of schema.
But schemas are very useful. They describe the data and

help query it, and allow query optimization and e�cient
storage. To retain some of these advantages, there have
been attempts to recover schema information from semi-
structured data.
A schema for semi-structured data constrains the paths

(more precisely the sequences of labels along paths) that
can be found in the data graph. This is the natural exten-
sion to semi-structured data of relational or object-oriented
schemas. For example, this allows specifying that the paths
found in data graphs representing relations R;Q (Figure 3)
are precisely fdatabase.R.tup.A, database.R.tup.B, database.
R.tup.C, database.Q.tup.C, database.Q.tup.Dg (note that this
is not quite equivalent to the relational schema since it does
not ensure uniqueness of the attributes for each tuple). More
generally, it is useful to be able to specify both paths that
must be found in the data and paths thatmay be present but
are not required. This leads to two kinds of schemas: lower-

bound and upper-bound schemas. Both can be speci�ed by

3

graphs summarizing the path information, with semantics

based on the notion of simulation. Consider a data graph D

and another edge-labeled graph G that is used as a schema.
A simulation from G to D is a relation R from the vertices
of G to those of D such that whenever xRu and there is an
edge labeled a from x to y in G, there exists v in D so that
y R v and there is an edge labeled a from u to v in D. It

turns out that simulations can be computed very e�ciently
[59].
A data graph D satis�es the schema graph G as a lower

bound if there exists a simulation from G to D. In partic-
ular, this ensures that every sequence of labels found on a
path in G is also found in D. Similarly, D satis�es G as

an upper bound if there exists a simulation from D to G.
This in turn ensures that every path of D occurs in G. To
allow more
exibility, upper bound schemas have been en-
riched with disjunctions of labels and wildcards (allowing
any label).
In the typical scenario, schemas for semi-structured data

are not provided a priori but are instead extracted from
the data. Both maximal lower-bound and minimal upper-
bound schemas can be extracted from data graphs, as well as
schemas summarizing precisely the paths in the data (e.g.,
the data guides of [53]). Clearly, there is a trade-o� be-
tween accuracy and conciseness of extracted schemas. The

data graph itself can serve as both lower and upper bound
schemas, but this is not satisfactory. Coming up with the
right middle ground is an interesting and largely open prob-
lem.
An interesting problem related to schema extraction is

classi�cation of the nodes in a data graph. Suppose we
have a lower-bound schema G for a data graph D. It is
natural to de�ne the classes as the nodes of G and to place
in a class c all nodes o of D for which cRo holds in the
maximum simulation R from G to D (which always exists).
Interestingly, equivalent classi�cations can be de�ned using

Datalog programs with greatest-�xpoint semantics.
Upper bound schemas were �rst de�ned in [24] as graph

schemas. The data guides of [53] were anticipated by the
representative objects of [81]. The Datalog approach to typ-
ing and classi�cation is explored in [80]. The connection
between Datalog and simulation is a special case of a more

general connection between Datalog and asymmetric pebble
games [68].

Schemas for XML.XMLmarks the \return of the schema"
in semistructured data, in the form of its Data Type De�-

nitions (DTDs). More recently, many schema languages ex-
tending DTDs have been proposed, including XML-Schema,
DSD, SOX, RELAX, etc. Most proposals can be found as
technical reports of the W3C (http://www.w3c.org). Com-
parative presentations of several XML schema languages can
be found in [2] and [72].

A survey of the XML schema languages is beyond the
scope of this paper. We will focus here on DTDs and a very
useful extension allowing to decouple the de�nition of the
structure of an element from its name.
Essentially, a DTD is an extended context-free grammar.

The non-terminals of the grammar are the labels (tags) of

elements in the labeled tree corresponding to the XML doc-
ument. There are no terminal symbols.
Let � be a �nite alphabet of labels. A DTD consists of

a set of rules of the form e ! r where e 2 � and r is a

regular expression over �. There is one such rule for each

e, and the DTD also speci�es the label of the root. An
XML document satis�es a DTD if it is a derivation of the
extended context-free grammar. That is, for label e with
associated rule e! r, and each node labeled e, the sequence
of labels of its children spells a word in r. For example,
a DTD might consist of the rules (with �-rules omitted):

root : section;

section! intro; section
�

; conc

An example of a labeled tree satisfying the above DTD is:

intro section conc

intro section section conc

 intro conc

section

intro conc
Thus, each DTD d de�nes a set of labeled ordered trees,

denoted by sat(d).
It turns out that DTDs have many limitations as schema

languages. Some are addressed in the many extensions that
have been proposed, which are still in a state of
ux. For
example, the set of tree languages de�nable by DTDs is
not even closed under union (nor other Boolean operators).

Another important limitation is the inability to separate the
type of an element from its name. For example, consider the
dealer document in Figure 4. A DTD corresponding to it
might consist of the rules:

root: dealer
dealer ! UsedCars NewCars

UsedCars ! ad�

NewCars ! ad�

ad ! model year j model
However, it may be natural for used car ads to have di�er-

ent structure than new car ads. There is no mechanism to
do this using DTDs, since rules depend only on the name of
the element, and not on its context. To overcome this lim-

itation, extensions of DTDs provide mechanisms to decou-
ple element names from their types and thus allow context-
dependent de�nitions of their structure. Interestingly, this
also leads to closure of the de�nable sets of trees under
Boolean operations. We show one way to formalize the de-

coupling of names from types, using the notion of specialized
DTD (studied in [92] and equivalent to formalisms proposed
in [17, 37] and in XML-Schema). The idea is to use when-
ever necessary \specializations" of element names with their
own type de�nition. More precisely, a specialized DTD for
alphabet � is a 4-tuple h�;�0; d; �i where:
(1) �;�0 are �nite alphabets;
(2) d is an DTD over �0; and,
(3) � is a mapping from �0 to �.
Intuitively, �0 provides for some a 2 �, a set of specializa-

tions of a, namely those a0 2 �0 for which �(a0) = a. Note
that � induces a homomorphism on words over �0, and also

on trees over �0 (yielding trees over �). We also denote by
� the induced homomorphisms. Let us denote specialized
DTDs by bold letters d,e,f, etc.
Let d = h�;�0; d; �i be a specialized DTD. A tree t over �

satis�es d if t 2 �(sat(d)). Thus, t is a homomorphic image
under � of a derivation tree in d. Equivalently, a labeled

4

tree over � is valid if it can be specialized to a tree which is

valid with respect to the DTD over the specialized alphabet.
For example, we can now write a specialized DTD dis-

tinguishing used car ads from new car ads in the dealer
example as follows. � = fdealer, UsedCars, NewCars, ad,
model, yearg, �0 = � [fadused; adnewg, � is the identity on
� and �(adused) = �(adnew) = ad and the DTD over �0

(with �-rules omitted) is:

root: dealer
dealer ! UsedCars NewCars

UsedCars ! (adused)�

NewCars ! (adnew)�

adused ! model year

adnew ! model

A less powerful alternative to specialization is to make
type speci�cation dependent on a context speci�ed by a
path expression. This is done, for example, in XDuce [60,
61]. Such extensions alleviate some limitations of DTDs,

but there are many others. Conspicuously missing is a sub-

typing mechanism, a drawback partially remedied in later
proposals such as XML-Schema (as well as XDuce). An-
other interesting aspect is the speci�cation of ordering con-

strains among children of a given element. DTDs use regu-
lar expressions for this purpose, and this has several draw-

backs, of which we discuss two: excessive power and limited

exibility. On one hand, regular expressions may be too
powerful for most practical situations. For example, they
allow stating properties unlikely to be useful, such as \the
number of UsedCar ads must be even". More restricted for-
malisms, such as the star-free regular languages, are often

su�cient. To understand the signi�cance of such restric-
tions, it is useful to consider a logic-based point of view.
First, note that strings over alphabet � can be viewed as
logical structures over the vocabulary f<; (O�)�2�g where
< is a binary relation and every O� is a unary relation.

A string w = a1 : : : an is represented by the logical struc-
ture (f1; : : : ; ng;<; (O�)�2�) where < is the natural order
on f1; : : : ; ng, and for each i, i 2 O� i� ai = �. It is
well-known that regular languages are exactly those de�n-
able by Monadic Second-Order (MSO) logic1 on the logical
vocabulary of strings [22, 41]. However, this is much more

powerful than needed by most DTDs. In many cases, the
required properties of valid strings can be expressed sim-
ply in First-Order logic (FO). This corresponds to a well-
known subset of the regular languages, called star-free [99].
There is a language-theoretic characterization of star-free
languages: they are precisely described by the star-free reg-

ular expressions, which are build from single symbols and
� using concatenation, union, and complement. Another
nice formalism equivalent to FO on strings is propositional
temporal logic over �nite words [65]. In temporal logic, one
can make statements such as \each name is immediately fol-
lowed by the ssn, eventually followed by city, street, and zip

in some order; a phone and email are optional". These are
very intuitive, commonly arising statements and are often
su�cient. Without going into details, it turns out that re-
placing regular languages by star-free languages decreases
the complexity of various problems related to typing.
Another limitation of DTDs arising from the use of regu-

1MSO is �rst-order logic augmented with quanti�cation over
sets.

lar expressions is the lack of
exibility in specifying ordering

constraints. For example, to state that a1; : : : ; an occur in
any order, one has to write a disjunction of n! expressions
a�(1) : : : a�(n) where � is a permutation of f1; : : : ; ng. Some
extensions of DTDs, such as XML Schema, allow direct spec-
i�cation of such constraints. However, the impact of the
enriched syntax on the complexity of manipulations is yet

unclear (see [66] for results on the succinctness of unordered
concatenation such as above).
Many interesting basic questions arise in connection to

XML schemas. How hard is it to check validity of an XML
document with respect to a schema? When can a set of
XML documents be characterized by a schema? Is there al-

ways a most precise schema describing a given set of XML
documents? Can the union, di�erence, intersection of sets of
valid documents speci�ed by schemas be in turn described
by another schema? If yes, how can that schema be com-
puted? We next discuss a powerful, e�ective tool for deal-
ing with such questions: a remarkable connection between

schemas and tree automata.

XML schemas, tree automata, and logic. We infor-
mally review the notion of regular tree language and tree
automaton. Tree automata are devices whose function is to

accept or reject their input, which in the classical framework
is a complete binary tree with nodes labeled with symbols
from some �nite alphabet �. There are several equivalent
variations of tree automata. A non-deterministic top-down
tree automaton over � has a �nite set Q of states, including
a distinguished initial state q0 and an accepting state qf . In

a computation, the automaton labels the nodes of the tree
with states, according to a set of rules, called transitions.
An internal node transition is of the form (a; q) ! (q0; q00),
for a 2 �. It says that, if an internal node has symbol a and
is labeled by state q, then its left and right children may be
labeled by q0 and q

00, respectively. A leaf transition is of the

form (a; q) ! qf for a 2 �. It allows changing the label of
a leaf with symbol a from q to the accepting state qf . Each
computation starts by labeling the root with the start state
q0, and proceeds by labeling the nodes of the trees non-
deterministically according to the transitions. The input

tree is accepted if some computation results in labeling all
leaves by qf . A set of complete binary trees is regular i� it is
accepted by some top-down tree automaton. Deterministic
and non-deterministic bottom-up automata can also be de-
�ned, and they are both equivalent to the non-deterministic
top-down automata.

There is a strong connection between regular tree lan-
guages and logic, similar to the string case. As discussed
above, regular languages on strings are precisely those de-
�nable by Monadic Second-Order logic (MSO) on the struc-
tures representing strings in a standard way. This can be
extended to trees: regular tree languages are precisely those

de�nable by MSO on structures representing binary trees.
Regular languages of �nite binary trees are surveyed in [50].
There is a prima facie mismatch between DTDs and tree

automata: DTDs describe unranked trees, whereas classical
automata describe binary trees. There are two ways around
this. First, unranked trees can be encoded in a standard

way as binary trees. Alternatively, the machinery and re-
sults developed for regular tree languages can be extended to
the unranked case, as described in [20] (an extension for un-
ranked in�nite trees is described in [5]). Either way, one can

5

prove a surprising and satisfying connection between special-

ized DTDs and tree automata: they are precisely equivalent

[20, 92].
The equivalence of specialized DTDs and tree automata is

a powerful tool for understanding XML schema languages.
Properties of regular tree languages transfer to specialized
DTDs, including closure under union, di�erence, comple-

ment, decidability of emptiness (in ptime) and inclusion (in
exptime), etc. Moreover, automata techniques can yield
algorithmic insight into processing DTDs. For example,
the naive algorithm for checking validity of an XML doc-
ument with respect to a specialized DTD is exponential in
the size of the document (due to guessing specializations for

labels). However, the existence of a bottom-up determinis-
tic automaton equivalent to the specialized DTD shows that
validity can be checked in linear time by a single bottom-up
pass on the document.

2.4 Constraints
Constraints are essential ingredients to classical databases.

While their primary role is as a �lter of invalid data, they
are also useful in query optimization, schema design, and
choice of e�cient storage and access methods. The most
common database constraints are functional dependencies

(fds) and inclusion dependencies (incds). Not surprisingly,
these continue to be important in semi-structured data and
XML. However, the di�erence in frameworks leads to signif-
icant di�erences in how constraints are speci�ed and their
properties.

Constraints in semi-structured data. The constraints
that have emerged for semi-structured data are mostly vari-
ants of inclusion dependencies. These are expressed using
path constraints. There can be viewed as logical statements
whose atoms are expressions of the form r(x; y) where r is a

regular expression over the set � of labels of the data graph.
Intuitively, r(x; y) states that y can be reached from x by a
path whose labels spell a word in r. For example, consider
again the relational database in Figure 2 and its representa-
tion as a data graph in Figure 3. Suppose we wish to state
the inclusion dependency R[A] � Q[C]. In the database,

this is easily done using the schema. In the data graph,
referring to A and C is done by specifying how they can
be reached from the root. This can be done using a path
constraint of the form

8x[database.R.tup.A(root; x)!
database.Q.tup.C(root; x)]

For simplicity, we abbreviate the statement 8x[p(root; x)!
q(root; x)] by p � q (and p = q stands for p � q and q � p).
There are many other scenarios in which path constraints

arise naturally. They may capture, for instance, structural

information about a Web site (or a collection of sites) or
cached information. For example, consider the two paths:

p1 = CS-Department DB-group Ullman Classes cs345

p2 = CS-Department Courses cs345

It may be the case that starting from some site Stanford,
the paths p1 and p2 lead to the same object. Thus, the path
constraint p1 = p2 holds at site Stanford. Similarly, at the

site CS-Department one could have the constraint

�� Stanford-CS-Main = �

stating that all paths starting at site CS-Department whose

�nal label is Stanford-CS-Main lead back to that site.
The implication problem for path constraints is a core

technical issue. For example, testing if a path query p can
be replaced by a \simpler" path query q given structural
constraints and caching information captured by a set � of
path constraints amounts to verifying that � j= (p = q).

For instance, suppose we know that every path ending by
label l returns to the source site, i.e. ��l = ". Suppose
query p = (la + lb)�d must be executed at this site. It
can be shown that p is equivalent to (a + b)d. This query
is likely to be simpler than the original; in particular, it is
non-recursive and so is guaranteed to terminate.

It turns out that the general implication problem for reg-
ular path queries is decidable in 2-expspace [9]. This is
shown by placing a bound of the minimum size of data
graphs providing a counter-example to the implication. A
more tractable case is that of word constraints of the form
u � v where u; v are single words. The implication problem

for word constraints is in ptime, and implication of path
constraints by word constraints is in pspace. Interestingly,
the implication of word constraints can be reduced to testing
satis�ability of an FO2 sentence2, which is known to be de-
cidable in nexptime [54]. The improved ptime bound is ob-
tained in [9] by showing that the language fv j � j= u = vg
is regular and an automaton accepting it can be constructed
in ptime from � and u.
It turns out that more complex path constraints are needed

in many situations. For example, the paths considered above
always start at the root of the data graph. It is useful to also

allow de�ning a limited scope for the constraints by using
as root any internal node reachable from the global root by
some speci�ed path. This gives rise to constraints [p � q]@r,
meaning that p � q holds from every node reachable from
the root by a path in r. Surprisingly, this seemingly benign
extension has dramatic impact on the earlier decidability

results: the implication problem becomes undecidable even
when p; q are words and r is a single letter! (The proof, pre-
sented in [28], is by reduction of the word problem for �nite
monoids.) Such constraints, as well as extensions allowing
to express inverse relationships (e.g. the takes relationship
from students to courses is the inverse of the taken-by re-

lationship from courses to students) are studied in [27, 28].
The interaction of schemas and constraints is also studied
there, and it is shown that schemas have signi�cant impact
on the constraint implication problem: some instances of the
problem that are decidable in the schema-less case become
undecidable when schemas are present, and conversely.

Constraints in XML. Just as in semi-structured data,
there is a natural need to express inclusion dependencies
in XML documents. In addition, key constraints are part
of various schema proposals, such as XML Schema. Both

types of constraints also arise in XML documents that are
generated from databases.
In XML, both key constraints and inclusion dependen-

cies involve the data values associated to the leaves of XML
documents (or to values of attributes viewed as leaf ele-
ments), whereas in semi-structured data inclusion depen-

dencies refer to the nodes themselves (data values can be eas-
ily modeled as nodes, whereas doing this in XML would de-
stroy the tree structure of documents). Inclusion dependen-

2FO2 denotes the FO sentences using only two variables.

6

cies in XML can be expressed much like in semi-structured

data using path expressions, with extensions for the non-
unary case [44]. Key constraints can be formalized as a pair
(q; fp1; : : : ; png) where q and the pi's are path expressions.
Intuitively, q identi�es the elements e to which the key con-
straint applies and p1; : : : pn the nodes whose data values
collectively identify each element e. More precisely, if e; f

are nodes reachable from the root by paths in q, the node ei
is reachable from e by a path in pi, the node fi is reachable
from f by a path in pi, and the values of ei and fi are equal,
1 � i � n, then e and f are the same node. Note that this
de�nition uses separate notions of value equality and node
equality.

The implication problem for key constraints as above is
harder than in the relational case, because it involves reason-
ing about regular path expressions (and recall that equiva-
lence of regular expressions in isolation is already pspace-
hard [47]). Restrictions on the path expressions leading to
an O(n2) algorithm for testing implication are shown in [23].

There is an intricate interaction between XML constraints
and DTDs. As shown in [43], the satis�ability problem for
key and foreign key constraints becomes undecidable in the
presence of DTDs (and is np-complete in the unary case),
whereas it is trivial in classical databases. The impact of
DTDs and other schema formalisms on constraints is inter-

esting both theoretically and practically, and remains largely
unexplored. A survey of constraints in semi-structured data
and XML is presented in [26]. Constraints in semi-structured
data are also discussed in [2].

3. QUERIES ON THE WEB
Much of classical database theory revolves around the

theory of query languages. In the relational framework,

this is solid, familiar ground. Queries are de�ned as com-
putable, generic mappings from relational databases to re-
lations. A language is complete if it expresses all queries.
There is a well-understood hierarchy of languages, ranging
from the conjunctive queries, relational calculus and alge-
bra, and Datalog, all the way to complete languages. Re-

lational calculus is so much a standard that it is used as a
yardstick, yielding the notion of \relational completeness".
Complexity classes provide a language-independent measure
for expressiveness.
In the Web scenario, much of this foundation is shaken.

The data to be queried is often a moving target, so queries

do not always have a well-de�ned input. There are no
well-accepted yardsticks for expressiveness to replace rela-
tional completeness and no nice match to query complexity
classes. Query languages mix declarative and navigational
features, they usually involve limited recursion, and idiosyn-

cratic forms of negation. The expressiveness of the various
languages is hard to characterize, since they are sometimes
not even closed under composition. In short, we are in for a
challenging but fascinating ride.

3.1 Back to Basics
Let us �rst revisit some of the basic elements in the clas-

sical theory of query languages.

Data independence and genericity. Perhaps the single
most signi�cant distinguishing characteristic of a database
is data independence, the separation of the logical and phys-

ical levels of data. A direct consequence is that queries are

generic: their answers depend only on the logical level of

data. More formally, queries commute with isomorphisms
of the input.
On the Web, the distinction between logical and physi-

cal levels is much less clear. Are URLs logical, or physi-
cal? Queries certainly do not treat them equally, and we
would not want them to. Does the display of information

in a Web page convey logical information, or is it purely
physical? How about the geographical location of the Web
site? Unfortunately there is no single, clear-cut answer. As
a corollary, query genericity is also a much less robust and
useful notion.

Order. The issue of order plays a central role in the theory
of query languages. Databases are typically unordered, and
the lack of order has dramatic impact on query language
expressiveness. As one example, on ordered databases the
�xpoint queries express exactly ptime ([100, 62], see also [4]).

In the absence of order, �xpoint cannot express even simple
queries like the parity of a set. In fact, it is conjectured that
there is no language expressing ptime [56].
Data on the Web, as viewed by queries, seems to be in

many cases naturally ordered. Queries against the Web as
a whole tend to be navigational. They explore the Web fol-

lowing hyperlinks from signi�cant entry points (which might
be �xed or obtained by search engines). This induces an or-
dering on the data. In more limited scenarios, the target
of the query may be an XML document, which is again or-
dered. The presence of order is mixed news. In principle,
it should be good news for query language expressiveness,

although this remains to be demonstrated. But unordered
data has some advantages that may be lost, including better
potential for query optimization and parallel evaluation.
Since databases are unordered and XML is ordered, this

leads to a replay of the infamous impedance mismatch be-
tween database query languages and general programming

languages [15]. When databases are exported as XML views,
the order in the XML documents must be made up in some
arbitrary fashion, not determined by the database. This
may lead to inconsistencies when the XML view of the data-
base is consumed by XML queries, which generally assume

the order has semantic signi�cance. Eliminating this mis-
match would require enriching the XML model to accom-
modate a mix of ordered and unordered data.

Query complexity. How to measure the complexity of
a query posed against the Web is a puzzling question. In

database theory, characterizing a query in complexity-theore-
tic terms provides a �rst-cut at evaluating its di�culty. The
�rst-order queries have complexity logspace in the size of
the database, and this is often considered reasonable. How-
ever, this paradigm is unlikely to transfer to the Web. In-
deed, it is hard to imagine that a query that takes logspace

(or any other standard complexity bound) in the size of
the Web could be considered reasonable. Moreover, if a
query is evaluated against the live Web, the cost of accessing
and shipping information across the network is paramount.
There have been various attempts to develop cost models

that take such factors into account. For example, a cost
model distinguishing local and remote links is proposed in
[76] in conjunction with the language WebSQL.
A more radical proposal was put forward in [10], where

it is suggested that the Web is best modeled by an in�nite

graph (where each node has �nite out-degree but possibly

7

in�nite in-degree), just like computers with potentially very

large but �nite memory are best modeled by Turing ma-
chines with in�nite tapes. In this model, exhaustive explo-
ration of the Web is penalized by a non-terminating compu-
tation. This draws a sharp distinction between exhaustive
exploration of the Web and more controlled forms of com-
putation. Consider a simple model of queries as mappings

from the Web (an in�nite rooted graph) returning a subset
of its nodes. Queries can then be classi�ed into several cat-
egories: (i) �nitely computable queries are always evaluated
in �nite time on the in�nite Web; (ii) eventually computable
queries are non-terminating queries with possibly in�nite
answers, and each node in the answer can be output after �-

nite time with no need to backtrack; and (iii) non-eventually
computable queries (all others).
For example, the following query is �nitely computable:

Find all nodes reachable from the root by a path of length

at most 3. The following queries are eventually computable
but not �nitely computable: (i) Find all nodes reachable

from the root, and (ii) Output the root i� it belongs to some

cycle. Note that the latter query always has a �nite an-
swer. Nonetheless it is not �nitely computable. The fol-
lowing seemingly innocuous query (which also has a �nite
answer) is not even eventually computable: Output the root
i� it is not referenced by any other node. It is not clear

whether the above classi�cation has a natural �nitary ana-
log.
A similar classi�cation can be applied to standard query

languages. Relational calculus can express non-eventually
computable queries, but a \positive" fragment can be de-

�ned that only expresses eventually computable queries. The
Datalog: languages yield some surprises: the standard se-
mantics, strati�ed and well-founded [51], are ill-suited for
expressing eventually computable queries, whereas the in-

ationary semantics [8, 69] turns out to be naturally suited
to express such queries, and thus has an advantage over the

�rst two semantics [10].

3.2 Query Languages
The query languages proposed in the context of the Web

vary depending on the target data. Some languages are
aimed at querying the Web as a whole, based on the hy-
perlink structure of Web pages. Such languages include
WebSQL [76] and W3QL [70]. Other languages are aimed
at semi-structured data, such as Lorel [6] and UnQL [25].
StruQL is part of the Strudel Web site management sys-

tem, and allows de�ning linked Web pages as views of semi-
structured data inputs [45]. A query language for semi-
structured data based on the ambient calculus (a modal
logic for mobile computation) has recently been proposed
[32]. There has been a
urry of proposals for XML query

languages, including XML-QL [40], XSLT (W3C Web site),
XMAS [16], XQL [95], XDuce [60, 61], and Quilt [33].
A survey of the query languages for semi-structured data

and XML is beyond the scope of this paper (see [1] for a
survey on querying semi-structured data). Query languages
for XML are in a state of
ux, and there is no de�nitive

winner so far3. However, two fairly stable paradigms seem
to emerge across various languages, well illustrated by XML-
QL (or Lorel) and XSLT.
In the �rst approach, a query consists of two parts: (i) a

3The most recent XML query language proposal from W3C
is X-Query (see the W3C Web site).

pattern used to extract bindings for a set of variables, and

(ii) a construct clause indicating how to build the answer
from the set of bindings found in (i). The pattern in (i) is in
the spirit of conjunctive queries, except more navigational in

avor and extended with limited recursion. The pattern can
be viewed as a \map" indicating how to reach the variables
from the root or from each other by regular path expressions.

Thus, the pattern is a graph of variables strongly connected
to the root and labeled by regular path expressions. In the
case of XML, the graph is a tree and the data values as-
sociated to nodes can be explicitly compared, allowing to
perform data joins (recall that in the semi-structured model
data values are also nodes, so the distinction is not needed).

Variables in the pattern bind to nodes in the input that can
reach each other by paths matching the regular expressions
in the pattern. For example, consider again XML documents

described by the DTD
root : section;
section! intro; section

�

; conc

A query against such documents might use the pattern
root

X

Y

section*

conc

Z

intro

The variable X binds to sections, Y binds to X's intro-
duction, and Z to X's conclusion.
The construct clause speci�es how to build the answer

from the set of bindings. In languages for semi-structured
data, the output is a labeled graph; in languages for XML,
it is a labeled tree. Thus, the construct clause provides, in

languages for XML or semi-structured data, a way to spec-
ify the nodes in the answer, as well as the links between the
nodes and the (node or edge) labels. For example, a con-
struct clause for the query with the above pattern might be:

answer

section(X)

intro(X,Y) conc(X,Z)
This speci�es an answer as follows. One node section(X)
is created for each binding of X. For each binding of X;Y ,
a node labeled intro(X; Y) is created, and for each bind-

ing of X;Z a node conc(X;Z) is created. (The expressions
section(X), intro(X,Y), conc(X,Z) are referred to as Skolem
functions, see [2].) For each binding of X;Y; Z, the nodes are
linked as speci�ed. So the answer consists of the unnested
sequence of sections, and for each section its introduction
and conclusion. Some languages, such as XML-QL, allow

nesting of queries within the construct clause.
Several subtleties distinguish XML from semi-structured

data. First, it must be ensured that the output is a tree, so
care must be taken in how links are speci�ed. Second, the
output must be an ordered tree, so mechanisms are needed
for specifying the desired order. The order induced on the

bindings by the input tree is usually the default. Also, some
query languages (e.g. XMAS, YATL) allow querying the
order of the input tree, by placing ordering conditions on
variables in the pattern bound to sibling nodes, and even
using horizontal path expressions among them.

8

In the languages described above, the depth of nesting

of the construct clause is statically determined by the syn-
tax of the query. This is a serious limitation. For example,
one cannot make a simple change to an XML document,
such as replacing all name labels occurring under person

by pname, without knowing its structure. Intuitively, such
a query has the
avor of a tree transformation, where the

output is obtained by modifying recursively the input tree.
The language XSLT allows de�ning such transformations
(and much more complex ones!) using structural recursion
on trees. For example, (using the notation a(t1; t2) to denote
a tree with root a and subtrees t1; t2), the above transfor-
mation can be expressed on binary trees as the function f

de�ned by structural recursion as follows:

f(x(t1; t2)) = if x 6= person then x(f(t1); f(t2))
else x(g(t1); g(t2))

g(x(t1; t2)) = if x 6= name then x(g(t1); g(t2))

else pname(g(t1); g(t2))

The expressiveness of the query languages for XML and
semi-structured data is not easy to characterize. Languages
in the style of XML-QL appear to be a mix of useful but
rather ad-hoc features. They have limited recursion, in the

style of Datalog chain queries. They mix declarative and
navigational features. The common core is monotonic, but
monotonicity is lost under minor variations in the use of reg-
ular path expressions. Their data complexity is polynomial,
but some variants are not even closed under composition.
For example, suppose the language has horizontal path ex-

pressions. Consider the DTD root ! a
�, a ! b

�. Consider
the query on trees satisfying the DTD, asking whether the
total number of b's in the input is even. This is not express-
ible by a single query in the languages described. However,
it is the composition of two queries: the �rst extracts all

b's under a new root. The second checks the parity of the
sequence of b's using a horizontal path expression.
Thus, the classes of queries expressed by the languages for

XML and semi-structured data appear to be rather idiosyn-
cratic and to lack robustness. Nonetheless, we show next
that there is a formal framework that convincingly subsumes

all of the XML languages: tree transducers.

3.3 XML queries and tree transducers

K-pebble transducers. XML query languages take trees

as input and produce trees as output. Despite their diversity,
it turns out that their tree manipulation capabilities are
subsumed by a single model of tree transducer, called k-
pebble transducer [78]. This provides a uniform framework
for measuring the expressiveness of XML languages, and it

is instrumental in developing static analysis techniques. In
Section 4 we will see how the transducers can be used for
typechecking XML queries.
The k-pebble transducer uses up to k pebbles to mark

certain nodes in the tree. Transitions are determined by
the current node symbol, the current state, and by the ex-

istence/absence of the various pebbles on the node. The
pebbles are ordered and numbered 1; 2; : : : ; k. The machine
can place pebbles on the root, move them around, and re-
move them. In order to limit the power of the transducer
the use of pebbles is restricted by a stack discipline: pebbles
are placed on the tree in order and removed in reverse order,

and only the highest-numbered pebble present on the tree

can be moved.

The transducer works as follows. The computation starts
by placing pebble 1 on the root. At each point, pebbles
1; 2; : : : ; i are on the tree, for some i 2 f1; : : : ; kg; pebble i
is called the current pebble, and the node on which it sits is
the current node. The current pebble serves as the head of
the machine. The machine decides which transition to make,

based on the following information: the current state, the
symbol under the current pebble, and the presence/absence
of the other i � 1 pebbles on the current node. There are
two kinds of transitions: move and output transitions. Move

transitions are of four kinds: they can place a new pebble,
pick the current pebble, or move the current pebble in one

of the four directions down-left, down-right, up-left, up-right
(one edge only). If a move in the speci�ed direction is not
possible, the transition does not apply. After each move
transition the machine enters a new state, as speci�ed by
the transition.
An output transition emits some labeled node and does

not move the input head. There are two kinds of output
transitions. In a binary output the machine spawns two
computation branches computing the left and right child re-
spectively. Both branches inherit the positions of all pebbles
on the input, and do not communicate; each moves the k

pebbles independently of the other. In a nullary output the

node being output is a leaf and that branch of computation
halts.
Looking at the global picture, the machine starts with

a single computation branch and no output nodes. After
a while it has constructed some top fragment of the output

tree, and several computation branches continue to compute
the remaining output subtrees. The entire computation ter-
minates when all computation branches terminate.
It turns out that all transformations over unranked trees

over a given �nite alphabet expressed in existing XML query
languages (XML-QL, Lorel, StruQL, UnQL, and a fragment

of XSLT) can be expressed as k-pebble transducers. This
does not extend to queries with joins on data values, since
these require an in�nite alphabet. However, k-pebble trans-
ducers can be easily extended to handle data values. Details,
as well as examples, can be found in [78].
What is the data complexity of k-pebble transducers? In

the case of a deterministic transducer T , there exists a ptime
algorithm that computes a representation of T (t) for an in-
put tree t. It is easy to see that the actual output T (t) can
have size exponential in t. Still, the algorithm will produce
a polynomial-size encoding of T (t), as a DAG. In the case of
non-deterministic k-pebble transducers we need to be more

careful what the ptime data complexity means. In particu-
lar T can produce an in�nite set of outputs for a given t. It
can be shown, however, that for each input tree t, (1) the
set T (t) is a regular tree language, and (2) one can construct
in ptime (in the size of t) a tree automaton At that accepts

the language T (t).
The k-pebble transducers generalize several known for-

malisms. Aho and Ullman [12] introduce tree-walking au-
tomata. These devices have a single head which can move
up and down the tree, starting from the root. The set of tree
languages accepted by a tree-walking automata is included

in the set of regular tree languages, but it is a long-standing
open problem whether the inclusion is strict [42]. The ques-
tion whether k-pebble transducers can simulate all bottom-
up transducers can be reduced to this open problem (in fact

9

the two problems become equivalent, when k = 1). For the

case of strings, the analog of tree-walking automata are pre-
cisely the two-way automata, which are known to express
all regular languages.
String automata with a rather restricted form of k-pebbles

are considered by Goberman and Harel [52]. They prove
certain lower bounds in the gap of succinctness of the ex-

pressibility of such automata. Similarly, it turns out that
the emptiness problem for k-pebble automata has a non-
elementary lower bound.

Other models. Another transducer model for XML queries,
called query automaton, is described in [85]. This work was

the �rst to use MSO to study query languages for XML.
Query automata, however, di�er signi�cantly from k-pebble
transducers: they take an XML input tree and return a
set of nodes in the tree. By contrast a k-pebble transducer
returns a new output tree. Several abstractions of XML lan-

guages are studied in [74], and connections to extended tree-
walking transducers with look-ahead are established. Vari-
ous static analysis problems are considered, such as termi-
nation, emptiness, and usefulness of rules. It is also shown
that ranges of the transducers are closed under intersection
with generalized DTDs (de�ned by tree regular grammars).

Tree-walking automata and their relationship to logic and
regular tree languages are further studied in [87].
Another computation model for trees, based on attribute

grammars, is considered in [84]. These capture queries that
return sets or tuples of nodes from the input trees. Two
main variants are considered. The �rst expresses all unary

queries de�nable by MSO formulas. The second captures
precisely the queries de�nable by �rst-order inductions of
linear depth. Equivalently, these are the queries computable
on a parallel random access machine with polynomially many
processors. These precise characterizations in terms of logic
and complexity suggest that attribute grammars provide a

natural and robust querying mechanism for labeled trees.
To remedy the low expressiveness of pattern languages

based on regular path expressions, a guarded fragment of
MSO that is equivalent to MSO but that can be evaluated
much more e�ciently is studied in [86, 96]. For example,

it is shown that this fragment of MSO can express FO ex-
tended with regular path expressions. In [18] a formal model
for XSLT is de�ned incorporating features like modes, vari-
ables, and parameter passing. Although this model is not
computational complete, it can simulate k-pebble transduc-
ers, even extended with equality tests on data values. Con-

sequently, and contrary to conventional wisdom, XSLT can
simulate all of XML-QL!

Feedback into automata theory. The match between
XML and automata theory is very promising, but is not
without its problems. The classical formalism sometimes

needs to be adapted or extended to �t the needs of XML.
For example, tree automata are de�ned for ranked trees,
but XML documents are unranked trees. This required ex-
tending the theory of regular tree languages to unranked
trees [20], and has given rise to a fertile line of research into

formalisms for unranked trees. This includes extensions of
tree transducers [74], push-down tree automata [82], at-
tribute grammars [83], and caterpillar expressions [21]. An-
other mismatch arises from the fact that XML documents
have data values, corresponding to trees over in�nite alpha-
bets. Regular tree languages over in�nite alphabets have

not been studied, although some investigations consider the

string case [64, 88]. The k-pebble transducer can be eas-
ily extended with tests on data values, corresponding to the
data joins in most XML query languages. XML schema
languages contain new constructs allowing to specify
exi-
ble order constraints, and in particular to mix ordered and
unordered data. XML query languages in turn provide con-

structs to specify the ordering of nodes in the answer. Nei-
ther aspect is captured by traditional tree automata and
transducer models.
Other interesting questions involve the processing of XML,

including validation with respect to DTDs, and computing
queries. Of special interest is the processing of streaming

XML (e.g., see [63]). Formalizing this would require au-
tomata and transducer models that perform a single traver-
sal of the input tree in depth-�rst, left-to-right order.
XML is already stimulating new research directions in lan-

guage theory, and this trend is likely to amplify. A successful
relationship will be a symbiotic one, in the mold of relational

database theory and �nite-model theory.

4. TYPECHECKING XML QUERIES
In relational databases, typechecking is a non-issue4 : in

the standard relational query languages, the schema of the
result is apparent from the syntax of the query. The situa-
tion is very di�erent for XML. Whether the result of an XML
query (or transformation) always satis�es a target DTD is
far from obvious. Moreover, this is an important question
in many scenarios. A typical one is data integration, where

a user community would agree on a common DTD and on
producing only XML documents that are valid with respect
to the speci�ed DTD.
The (static) typechecking problem is the following: given

an input XML schema d (e.g., a DTD) a query q, and an
output schema d0, is it the case that q(sat(d)) � sat(d0) ?

Related to the typechecking problem is the type infer-

ence problem5: given an input schema d and a query q,
compute an output schema �q(d) for q(sat(d)). This can
mean several things. If q(sat(d)) � sat(�q(d)) then the
inference algorithm computing �q(d) is sound, and this is
clearly a minimum requirement. Ideally, it would also be

the case that q(sat(d)) = sat(�q(d)); then the inference al-
gorithm is said to be sound and complete. Note that, in
particular, a sound and complete inference algorithm would
also solve the typechecking problem. Indeed, to verify that
q(sat(d)) � sat(d0) it would be su�cient to check that

sat(�q(d)) � sat(d0), which is decidable.
Unfortunately, sound and complete type inference is not

possible for standard XML queries. For example, consider
again the input DTD
root : section;
section! intro; section

�

; conc

and the query that collects all the leaves of input documents.

The output consists of the strings of well-balanced parenthe-
sis where intro is the open and conc the closed parenthesis.
This is not a regular language, so cannot be speci�ed by
a DTD. If DTDs are extended with specialization and the
ability to specify the content of elements by context-free

4However, typing polymorphic relational algebra is far from
trivial, see [39].
5The variant we state di�ers from that used in programming
languages by assuming the input type is given.

10

languages, then sound and complete type inference can be

achieved in restricted cases. For example, it is shown in [92]
that this can be done for XML-QL style queries without data
joins, limited to selection of subtrees from the input. This
can be extended to a sound but incomplete inference algo-
rithm for queries with more complex constructed answers.
Another approach to incomplete type inference is taken by

XDuce [60, 61]. In XDuce, types are essentially specialized
DTDs. Recursive functions can be de�ned over XML data
by pattern matching against regular expressions. XDuce
performs static typechecking for these functions, verifying
that the output of a function will always be of the claimed
output type. However, the typechecking algorithm is only

sound, not complete: one can write in XDuce a function
that always returns results of the required output type, but
that the typechecker rejects. This is expected in a general-
purpose language that can express non-terminating func-
tions. XDuce focuses on making the typechecker practical,
both for the application writer and for the language imple-

menter. A similar approach is taken by YATL [37, 36]. This
language for semistructured data has an original type sys-
tem, based on unordered types. Like XDuce, YATL admits
incomplete type inference.
It turns out that sound and complete typechecking can

be performed for a wide variety of XML languages so long

as they query the tree structure of the input but not its
data values. This is explored in [78] using the k-pebble
transducer. As discussed earlier, this subsumes the tree ma-
nipulation core of most XML languages. Typechekcing can
be done by means of inverse type inference. Suppose d is

an input specialized DTD (or, equivalently, a tree automa-
ton), and d0 an output specialized DTD. Consider a k-pebble
transducer T . It can be shown that T�1(sat(d0)) is always
a regular tree language, for which a tree automaton can be
e�ectively constructed from T and d

0. Then typechecking
amounts to checking that sat(d) � T

�1(sat(d0)), which is

decidable.
There are several limitations to the above approach. First,

the complexity of typechecking in its full generality is very
high { a tower of exponentials of height equal to the num-
ber of pebbles, so non-elementary. Thus, general typecheck-
ing appears to be prohibitively expensive. However, the

approach can be used in restricted cases of practical inter-
est for which typechecking can be reduced to emptiness of
automata with very few pebbles. Even one or two pebbles
can be quite powerful. For example, typechecking selection
XML-QL queries without joins (i.e., queries that extract the
list of bindings of a variable occurring in a tree pattern) can

be reduced to emptiness of a 1-pebble automaton with ex-
ponentially many states.
Another limitation has to do with data values. In general,

the presence of data values leads to undecidability of type-
checking. For example, if k-pebble transducers are extended

with equality tests on the data values sitting under the peb-
bles, even emptiness is undecidable. However, the approach
can be extended to restricted classes of queries with data
value joins. One such class consists of the queries where
all equality tests performed are independent of each other.
Consequently, all truth assignments to the equality tests are

consistent. As far as typechecking is concerned, the actual
equality tests can therefore be replaced by nondeterministic
guesses of their truth value, without the risk of inconsistent
guesses. A comprehensive study of typechecking in the pres-

ence of data values is provided in [14], where a fairly tight

boundary of decidability is traced.
Another twist in the typechekcing problem arises in the in-

creasingly common scenario of relational databases export-
ing XML views of the data. Queries are then mappings
from relations to trees. For example, SilkRoute is a re-
search prototype enabling the de�nition of XML views from

a relational database [46]. The typechecking problem now
asks whether all views generated from the database satisfy
a target DTD, possibly specialized. The database itself may
satisfy given integrity constraints. This problem is investi-
gated in [13], using an abstraction of the query language of
SilkRoute. Once again, the general problem is undecidable,

and the limits of decidability are established.

5. NEW FRONTIERS
As we have seen, database theory has made a good start in

providing foundations for semi-structured data, XML, query
languages, schemas, constraints, and typechekcing. But this
is only the beginning. Many Web applications and scenarios
remain to be tackled, and provide a new frontier for database
theory. We brie
y discuss some of them.

Data integration. Providing integrated access to multi-
ple data sources is a long-standing problem that has again
assumed central importance in many Web applications. To
begin, a common schema for the integrated data is chosen.

Then the connection between the sources and the integrated
data must be established. This may be done automatically,
using classi�cation techniques such as described in Section
2.3 [80]. Alternatively, the connection may be explicitly de-
�ned. There are two main ways to do this. First, the inte-
grated data can be de�ned as a view of the sources. Queries

posed against the integrated view must then be translated
into queries against the sources. However, this is not always
easy to do e�ciently if the view is not materialized. Instead,
the relationship between sources and integrated data can be
turned on its head: each source can be de�ned as a view of
the (virtual) integrated data. The problem of answering a

query can then be elegantly modeled as one of view-based
query answering. Answering a query amounts to rewriting
it using the views. This is a well-studied problem, of inter-
est in many applications ranging from query optimization to
caching. It has been mostly investigated and largely solved
for relational databases, and views and queries de�ned by

conjunctive queries (see the survey [57]). In the framework
of data integration, there are speci�c di�culties. First, the
sources may have limited capabilities, including restricted
access patterns requiring that some attributes be provided
before others can be accessed [94]. Second, the requirement

that the rewritten query be equivalent to the original can
often be relaxed: it is su�cient if the rewritten query pro-
vides a subset of the real answer, preferably maximal. Fi-
nally, query rewriting for semi-structured data and XML is
largely unexplored. Complexity results on query rewriting
for queries and views de�ned by regular path expressions are

provided in [29, 31, 30].
An interesting approach to the problem of view-based

query answering is in terms of incomplete information [3,
55]. The views provided by the sources form a representa-
tion system for incomplete information: a set of views rep-
resents the databases in their pre-image. It is then possible

to de�ne the certain answers to a query q. A tuple t is in the

11

certain answer to q given a set V of views, if t 2 q(D) for all

databases D in the pre-image of V . Othogonally, one can
make a closed-world or an open-world assumption on the
sources. Under the open world assumptions, each source
contains only a subset of the tuples in the view de�ning it;
under the closed-world assumption, it contains all tuples in
the view.

Hidden data. Not all Web sources mean to explicitly ex-
port their data. A lot of valuable information is hidden
on Web sites behind restricted interfaces. These may con-
sist of forms accurately modeled by limited access patterns
(such as those studied in [94, 38]), but may also involve

a more complex application-speci�c protocol. Extracting
such data automatically is a di�cult task. It requires de-
veloping formalisms for specifying the operational aspect of
Web applications and using the speci�cations to generate
evaluation plans for queries. Beyond queries, integrated ap-

plications, such as comparative shopping, take data integra-
tion one step further by bringing a work
ow component into
the picture. Some recent research has started tackling such
problems (e.g., see [77]).

Privacy, protection, cryptography. The converse to ac-

cessing hidden data is protecting data as it is transferred
or processed by third-party Web servers, as well as the pri-
vacy of users, including their identity and the data they
access. This brings to the fore the largely unexplored issue
of integrating database technology and cryptography in the

context of the Web.

Work
ows for interactive web sites. Many interactive,
data-intensive applications are governed by intricate work-

ows that are of interest in their own right. These include
e-commerce, digital government, Web-based collaboration,

scienti�c data sources, etc. For example, e-commerce appli-
cations use \business models" to specify a protocol of ex-
changes among partners to a transaction. Typically, this
occurs in a data-intensive fashion, with many agents inter-
acting with a Web site simultaneously. It therefore makes
sense to approach such applications with a database lens, in

order to integrate the data and work
ow aspects. In this
light, business models are reminiscent of active databases.
They can be programmed in a similar manner, and may be
amenable to static analysis.
One formal model that captures the interactive Web site

scenario is the relational transducer [11]. In this model, the
state of the application is described by a relational database.
The interaction from the outside world is captured by a se-
quence of input relations. The application responds by a se-
quence of output relations. Thus, the model can be viewed
as a machine that translates an input sequence of relations

into an output sequence of relations. For example, consider
an e-commerce site where a customer interacts with the site
by two input predicates, order(x; y) and pay(x; y). Cata-
log information about product price is provided by a rela-
tion price(x; y). The system responds to inputs with output
predicates sendbill(x; y) and deliver(x). In the process it

may consult relation price, and update the state informa-
tion. A run of a transducer consists of a sequence of inputs
and the sequence of outputs generated in response to each
of the inputs.
The static analysis of relational transducers is studied in

[11, 97]. For instance, goal reachability asks if some goal

can be achieved by some run of the transducer, possibly

with some preconditions. In the example, one might wish
to verify that it is possible to achieve the goal deliver(x)
as long as 9y price(x; y) holds in the database. In general,
however, the problem can be much more complicated. A
question of a slightly di�erent
avor is verifying temporal
properties satis�ed by all runs. For instance, the supplier

may wish to verify that a product is never delivered before
it has been paid. Such questions turn out to be decidable
for restricted relational transducers. However, this is just a
�rst step in exploring this multi-faceted topic. One inter-
esting, more complex scenario arises from the interaction of
multiple sites, each governed by its own business model.

Data and schema mining. Mining is a useful approach
when dealing with large collections of data holding informa-
tion of potential interest that needs to be discovered. This
makes the Web a prime candidate for mining. In the context

of the Web, di�erent
avors of mining come up naturally, de-
pending on the focus of the application. Data mining may
concern the patterns of hyperlinks among Web pages, used
to identify authorities, hubs, or Web communities (see the
survey [67]). Other variants of data mining may involve
identifying sites of interest to a particular topic or applica-

tion [19]. Data mining on the Web may involve sophisti-
cated algorithms and techniques from information retrieval
and machine learning. XML schema mining arises as data
in various formats is wrapped to produce large collections of
XML data. These collections need DTDs, that may be hard
to extract manually. An alternative is to mine candidate

DTDs from the collection. This raises di�cult questions of
balancing accuracy and conciseness among the many possi-
ble DTDs. As a simple example, suppose the data consists of
a �nite set of words fw1; : : : ; wng. There is always an exact
description of the set as a regular expression: w1+ : : :+wn.
However, this is too large to be practical. The description

should be relaxed at the cost of allowing some words not
in the language. However, the criteria for a good compro-
mise are far from clear. The mining of regular expression
patterns is discussed in [49] (see also the survey [48]).

Querying the XML-ized Web. With the emergence of
XML as the likely standard for data representation and ex-
change on the Web, there is increased interest in services
aimed speci�cally at the collection of XML documents on
the Web. One approach to querying the XML-ized Web is in
a decentralized fashion, exempli�ed by the Niagara project

at the University of Wisconsin [35]. This approach raises
very interesting questions related to the distributed, agent-
based evaluation of Web queries. An alternative approach
is the centralized one, whereby the XML data on the Web
is collected and queries in a central repository. This is ex-
empli�ed by the Xyleme project at INRIA, recently spun

o� as a start-up (see [89, 90]). The centralized approach
raises complex problems related to refresh policies, answer-
ing queries in the presence of partially stale data, etc. On
the other hand, it also provides opportunities for sophisti-
cated services such as temporal querying of XML documents

(with versions), querying changes to XML documents, sub-
scription services, and making use of push and pull technolo-
gies. The problem of detecting and managing change is a
di�cult one. Besides the algorithmic, indexing, and storage
aspects, this is complicated by the lack of uniform seman-
tics attached to the syntax of XML documents. When does

12

a change in the ordering of elements signify a meaningful

change in an XML document? Unfortunately, there is no
uniform answer. In some cases order is semantically crucial,
while in others it is an accident. The latter can arise due to
the impedance mismatch between unordered databases and
ordered XML, as wrappers generate arbitrary orderings for
XML documents representing unordered database.

Since the information in a Web repository is never com-
plete, one interesting problem is the representation and que-
rying of XML documents with incomplete information. This
is explored in [7]. Incomplete information is also useful in
other contexts, such as semantic caching.

Information retrieval and meta-data. TheWeb is by no
means the exclusive domain of databases. To the contrary,
other paradigms such as information retrieval (IR) are tough
competitors and play a central role in extracting information
from the Web. Search engines use a mix of database and

IR techniques, but within a very limited framework. The
integration of the IR and database paradigms in the context
of the Web remains an essential goal.
Meta-data, such as ontologies associated with speci�c ap-

plication domains, may provide a welcome bridge between
IT and databases. Ontologies provide structure and lim-

its missing from IR at large, but essential to the database
paradigm. Technically, they bring to the fore description

logics, used to e�ectively specify and reason about classi-
�cations and properties of objects. Description logics are
fragments of FO, some included in FO2. It is well-known
that FO2 has many nice properties that the full FO lacks,

such as decidability of satis�ability [79]. This explains why
reasoning with ontologies can be tractable. A survey of de-
scription logics is provided in [73].

6. CONCLUSION
In order to meaningfully contribute to the formal foun-

dations of the Web, database theory has embarked upon a
fascinating journey of rediscovery. In the process, some of
the basic assumptions of the classical theory had to be revis-

ited, while others were convincingly rea�rmed. There are
several recurring technical themes. They include extended
conjunctive queries, limited recursion in the form of path ex-
pressions, ordered data, views, incomplete information, ac-
tive features. Automata theory has emerged as a powerful
tool for understanding XML schema and query languages.

The speci�c needs of the XML scenario have in turn pro-
vided feedback into automata theory, generating new lines
of research.
The Web scenario is raising an unprecedented wealth of

challenging problems for database theory { a new frontier

to be explored.

7. ACKNOWLEDGMENTS
The author is grateful to Serge Abiteboul, Peter Bune-

man, Frank Neven, Luc Segou�n, Dan Suciu, and Moshe
Vardi for useful comments and suggestions.

8. REFERENCES
[1] S. Abiteboul. Querying semi-structured data. In

Proc. ICDT, pages 1{18, 1997.

[2] S. Abiteboul, P. Buneman, and D. Suciu. Data on

the Web. Morgan Kau�man, 1999.

[3] S. Abiteboul and O. Duschka. Complexity of

answering queries using materialized views. In Proc.

ACM PODS, pages 254{263, 1998.

[4] S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases. Addison-Wesley, 1995.

[5] S. Abiteboul and P. C. Kanellakis. Object identity as
a query language primitive. JACM, 45(5):798{842,
1998. Extended abstract in SIGMOD'89.

[6] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and
J. Wiener. The LOREL query language for
semistructured data. Journal of Digital Libraries,
1(1), 1997.

[7] S. Abiteboul, L. Segou�n, and V. Vianu.
Representing and querying XML with incomplete
information. In Proc. ACM PODS, 2001.

[8] S. Abiteboul and V. Vianu. Procedural and

declarative database update languages. In Proc.

ACM PODS, pages 240{250, 1988.

[9] S. Abiteboul and V. Vianu. Regular path queries
with constraints. JCSS, 58(3):428{452, 1999.

[10] S. Abiteboul and V. Vianu. Queries and computation
on the Web. Theoretical Computer Science,
239(2):231{255, 2000. Extended abstract in ICDT 97.

[11] S. Abiteboul, V. Vianu, B. Fordham, and Y. Yesha.
Relational transducers for electronic commerce.
JCSS, 61(2):236{269, 2000. Extended abstract in
PODS 98.

[12] A. Aho and J. Ullman. Translations on a context free
grammar. Information and Control, 19(19):439{475,
1971.

[13] N. Alon, T. Milo, F. Neven, D. Suciu, and V. Vianu.
Typechecking XML views of relational databases,
2001. Manuscript.

[14] N. Alon, T. Milo, F. Neven, D. Suciu, and V. Vianu.

XML with data values: typechecking revisited. In
Proc. ACM PODS, 2001.

[15] M. P. Atkinson et al. The object-oriented database
system manifesto. In Proc ACM SIGMOD, page 395,

1990.

[16] C. Baru et al. XML-based information mediation
with MIX. In ACM SIGMOD Conf. Demo., pages
597{599, 1999.

[17] C. Beeri and T. Milo. Schemas for integration and
translation of structured and semi-structured data.
In Int'l. Conf. on Database Theory, pages 296{313,
1999.

[18] G. Bex, S. Maneth, and F. Neven. A formal model
for an expressive fragment of XSLT. In Proc. DOOD,
pages 1137{1151, 2000.

[19] S. Brin. Extracting patterns and relations from the
world wide web. In WebDB (Informal Proceedings),
pages 172{183, 1998.

[20] A. Bruggemann-Klein, M. Murata, and D. Wood.

Regular tree languages over non-ranked alphabets,
1998. Unpublished manuscript.

[21] A. Br�uggemann-Klein and D. Wood. Caterpillars: a
context speci�cation technique. Markup Languages,

2(1):81{106, 2000.

[22] J. B�uchi. Weak second-order arithmetic and �nite
automata. Z. Math. Logik Grundl. Math., 6:66{92,
1960.

13

[23] P. Buneman, S. Davidson, W. Fan, C. Hara, and

W. Tan. Keys for XML. In Proc. WWW-10, 2001.

[24] P. Buneman, S. Davidson, M. Fernandez, and
D. Suciu. Adding structure to unstructured data. In
Proc. Int. Conf. on Database Theory, pages 336{350,

1997.

[25] P. Buneman, S. Davidson, G. Hillebrand, and
D. Suciu. A query language and optimization
techniques for unstructured data. In Proc. ACM

SIGMOD, pages 505{516, 1996.

[26] P. Buneman, W. Fan, J. Simeon, and S. Weinstein.
Constraints for semi-structured data and XML.
SIGMOD Record, 30(1), 2001.

[27] P. Buneman, W. Fan, and S. Weinstein. Path
constraints in semistructured and structured
databases. In Proc. ACM PODS, pages 129{138,
1998.

[28] P. Buneman, W. Fan, and S. Weinstein. Interaction
between path and type constraints. In Proc. ACM

PODS, pages 56{67, 1999.

[29] D. Calvanese, G. D. Giacomo, M. Lenzerini, and
M. Vardi. Rewriting of regular expressions and
regular path queries. In Proc. ACM PODS, pages
194{204, 1999.

[30] D. Calvanese, G. D. Giacomo, M. Lenzerini, and
M. Vardi. View-based query processing and
constraint satisfaction. In Proc. IEEE LICS, pages
361{371, 2000.

[31] D. Calvanese, G. D. Giacomo, M. Lenzerini, and
M. Vardi. View-based query processing for regular
path queries with inverse. In Proc. ACM PODS,
pages 58{66, 2000.

[32] L. Cardelli and G. Ghelli. A query language based on
the ambient logic. In Proc. European Symp. on

Programming, 2001. Invited paper.

[33] D. Chamberlin, J. Robie, and D. Florescu. Quilt: An

XML query language for heterogeneous data sources.
In WebDB (Informal Proceedings), pages 53{62,
2000.

[34] S. Chawathe, H. Garcia-Molina, J. Hammer,

K. Ireland, Y. Papakonstantinou, J. Ullman, and
J. Widom. The TSIMMIS project: Integration of
heterogeneous information sources. In IPJS, pages
7{18, 1994.

[35] J. Chen, D. DeWitt, F. Tian, and Y. Wang.
Niagracq: A scalable continuous query system for
internet databases. In Proc. ACM SIGMOD, pages
379{390, 2000.

[36] V. Christophides, S. Cluet, and J. Simeon. On
wrapping query languages and e�cient XML
integration. In Proc. ACM SIGMOD, pages 141{152,
2000.

[37] S. Cluet, C. Delobel, J. Simeon, and K. Smaga. Your
mediators need data conversion! In Proc. ACM

SIGMOD Conf., pages 177{188, 1998.

[38] H. Davulcu, J. Freire, M. Kifer, and

I. Ramakrishnan. A layered architecture for querying
dynamic web content. In Proc. ACM SIGMOD,
pages 491{502, 1999.

[39] J. V. den Bussche and E. Waller. Type inference in

the polymorphic relational algebra. In Proc. ACM

PODS, pages 80{90, 1999.

[40] A. Deutsch, M. Fernandez, D.Florescu, A. Levy, and
D. Suciu. A query language for XML. In WWW8,
pages 11{16, 1999.

[41] H.-D. Ebbinghaus and J. Flum. Finite Model Theory.
Springer Verlag (Second Edition), 1999.

[42] J. Engelfriet, H. Hoogenboom, and J. Best. Trips on
trees. Acta Cybernetica, 14:51{64, 1999.

[43] W. Fan and L. Libkin. On XML integrity constraints
in the presence of dtds. In Proc. ACM PODS, 2001.

[44] W. Fan and J. Sim�eon. Integrity constraints for
XML. In Proc. ACM PODS, pages 23{34, 2000.

[45] M. Fernandez, D. Florescu, A. Levy, and D. Suciu.
Catching the boat with Strudel: experience with a

web-site management system. In Proc. ACM

SIGMOD Conf., 1998.

[46] M. Fernandez, W. Tan, and D. Suciu. Silkroute:
trading between relations and XML. Computer

Networks, (33):723{745, 2000.

[47] M. R. Garey and D. S. Johnson. Computers and
Intractability. Freeman, 1979.

[48] M. Garofalakis, R. Rastogi, S. Seshadri, and
K. Shim. Data mining and the web: Past, present
and future. In ACM Workshop on Web Information

and Data Management (WIDM), pages 43{47, 1999.

[49] M. Garofalakis, R. Rastogi, and K. Shim. Spirit:
Sequential pattern mining with regular expression
constraints. In Proc. VLDB, pages 223{234, 1999.

[50] F. G�ecseg and M. Steinby. Tree languages. In
G. Rozenberg and A. Salomaa, editors, Handbook of

Formal Languages, volume 3, chapter 1, pages 1{68.
Springer, 1997.

[51] A. V. Gelder, K. Ross, and J. Schlipf. The
well-founded semantics for general logic programs.
J. ACM, 38:620{650, 1991.

[52] N. Globerman and D. Harel. Complexity results for

two-way and multi-pebble automata and their logics.
TCS, 169(2):161{184, 1996.

[53] R. Goldman and J. Widom. Dataguides: Enabling
query formulation and optimization in semistructured
databases. In Proc. VLDB, pages 436{445, 1997.

[54] E. Gr�adel, P. Kolaitis, and M. Vardi. On the
complexity of the decision problem for two-variable
�rst-order logic. Bulletin of Symbolic Logic,
3(1):53{69, 1997.

[55] G. Grahne and A. Mendelzon. Tableau techniques for
querying information sources through global
schemas. In Int'l. Conf. on Database Theory, pages
332{347, 1999.

[56] Y. Gurevich. Logic and the challenge of computer
science. In E. B�orger, editor, Current Trends in
Theoretical Computer Science, pages 1{57. Computer
Science Press, 1988.

[57] A. Halevy. Theory of answering queries using views.
SIGMOD Record, 29(4):40{47, 2000.

[58] J. Hammer et al. Information translation, mediation,
and mosaic-based browsing in the TSIMMIS system.
In Proc. ACM SIGMOD Conf., page 483, May 1995.

[59] M. Henzinger, T. Henzinger, and P. Kopke.

Computing simulations on �nite and in�nite graphs.
In Proc. IEEE FOCS, pages 453{62, 1995.

14

[60] H. Hosoya and B. Pierce. Xduce: A typed XML

processing language (Preliminary Report). In
WedDB (Informal Proceedings), pages 111{116, 2000.

[61] H. Hosoya, J. Vouillon, and B. Pierce. Regular
expression types for XML. In Int. Conf. on

Functional Programming, pages 11{22, 2000.

[62] N. Immerman. Relational queries computable in
polynomial time. Inf. and Control, 68:86{104, 1986.

[63] Z. Ives, A. Levy, and D. Weld. E�cient evaluation of
regular path expressions on streaming XML data.
Univ. of Washington Tech. Rep. CSE000502.

[64] M. Kaminski and N. Francez. Finite-memory

automata. Theoretical Computer Science,
134(2):329{363, 1994.

[65] J. Kamp. Tense logic and the theory of linear order,
1971.

[66] P. Kilpel. SGML and XML content models. Markup

Languages, 1(2):53{76, 1999.

[67] J. Kleinberg. Hubs, authorities, and communities.
Computing Surveys, 31(4es), 1999.

[68] P. Kolaitis and M. Vardi. Conjunctive-query
containment and constraint satisfaction. JCSS,

61(2):302{332, 2000.

[69] P. G. Kolaitis and C. Papadimitriou. Why not
negation by �xpoint? In Proc. ACM PODS, pages
231{239, 1988.

[70] D. Konopnicki and O. Shmueli. W3QS: A query
system for the World Wide Web. In Proc. VLDB

Conf., pages 54{65, Z�urich, Switzerland, Sept. 1995.

[71] S. Kumar, P. Raghavan, S. Rajagopalan,
D. Sivakumar, A. Tomkins, and E. Upfal. The Web
as a graph. In Proc. ACM PODS, pages 1{10, 2000.

[72] D. Lee and W. Chu. Comparative analysis of six
XML schema languages. SIGMOD Record,
29(3):76{87, 2000.

[73] M. Lenzerini. Description logics and their

relationships with databases. In Int'l. Conf. on

Database Theory, pages 32{38, 1999.

[74] S. Maneth and F. Neven. Structured document
transformations based on XSL. In Proc. DBPL,
pages 79{96. LNCS, Springer, 1999.

[75] J. McHugh, S. Abiteboul, R. Goldman, D. Quass,
and J. Widom. Lore: A database management
system for semistructured data. SIGMOD Record,
26(3):54{66, 1997.

[76] A. Mendelzon, G. Mihaila, and T. Milo. Querying
the World Wide Web. In Proc. PDIS Conf., 1996.

[77] T. Milo and A. Eyal. Integrating and customizing
e-commerce applications. In VLDB Workshop on

Technologies for E-Services, Cairo, 2000.

[78] T. Milo, D. Suciu, and V. Vianu. Typechecking for

XML transformers. In Proc. ACM PODS, pages
11{22, 2000.

[79] M. Mortimer. On languages with two variables.
Zeitschr. f. math. Logik u. Grundlagen d. Math,

21:135{140, 1975.

[80] S. Nestorov, S. Abiteboul, and R. Motwani. Infering
structure in semistructured data. SIGMOD Record,
26(4):39{43, 1997.

[81] S. Nestorov, J. Ullman, J. Wiener, and S. Chawathe.
Representative objects: Concise representations of

semistructured, hierarchial data. In Proc. ICDE

Conf., 1997.

[82] A. Neumann and H. Seidl. Locating matches of tree
patterns in forests. In Proc. Foundations of Software

Technology and Theoretical Computer Science, pages

134{145. LNCS, Springer, 1998.

[83] F. Neven. Extensions of attribute grammars for
structured document queries. In Proc. DBPL, pages
97{114. LNCS, Springer, 2000.

[84] F. Neven and J. V. den Bussche. Expressiveness of
structured document query languages based on
attribute grammars. In Proc ACM PODS, pages
11{17, 1998.

[85] F. Neven and T. Schwentick. Query automata. In
Proc. ACM PODS, pages 205{214, 1999.

[86] F. Neven and T. Schwentick. Expressive and e�cient

pattern languages for tree-structured data. In Proc.

ACM PODS, pages 145{156, 2000.

[87] F. Neven and T. Schwentick. On the power of
tree-walking automata. In Proc. ICALP, pages

547{560, 2000.

[88] F. Neven, T. Schwentick, and V. Vianu. Towards
regular languages over in�nite alphabets, 2001.
Manuscript.

[89] B. Nguyen, S. Abiteboul, G. Cobena, and L. Mignet.
Query subscription in an XML webhouse. In
Workshop on Information Seeking, Searching and

Querying in Digital Libraries, 2000.

[90] B. Nguyen, S. Abiteboul, G. Cobena, and M. Preda.
Monitoring XML data on the web. In Proc. ACM

SIGMOD, 2001.

[91] Y. Papakonstantinou, H. Garcia-Molina, and
J. Widom. Object exchange across heterogeneous
information sources. In Proc. ICDE Conf., pages
251{60, 1995.

[92] Y. Papakonstantinou and V. Vianu. Dtd inference for
views of XML data. In Proc. ACM PODS, pages
35{46, 2000.

[93] P.Buneman, S. Davidson, and D. Suciu.
Programming constructs for unstructured data. In
Proc. DBPL, 1995.

[94] A. Rajaraman, Y. Sagiv, and J. Ullman. Answering

queries using templates with binding patterns. In
Proc. ACM PODS, pages 105{112, 1995.

[95] J. Robbie, J. Lapp, and D. Schach. XML query
language (xql). In The Query Languages Workshop

(QL'98), 1998.

[96] T. Schwentick. On diving in trees. In Proc. MFCS,
pages 660{669, 2000.

[97] M. Spielmann. Veri�cation of relational transducers
for electronic commerce. In Proc. ACM PODS, pages
92{103, 2000.

[98] J. Thierry-Mieg and R. Durbin. Syntactic de�nitions

for the ACeDB data base manager. Technical Report
MRC-LMB xx.92, MRC Laboratory for Molecular
Biology, Cambridge, UK, 1992.

[99] W. Thomas. Languages, automata, and logic. In

G. Rozenberg and A. Saloma, editors, Handbook of

Formal Languages. Springer-Verlag, 1997.

[100] M. Y. Vardi. The complexity of relational query
languages. In Proc. STOC, pages 137{146, 1982.

15

