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Abstract

In parallel systems, a number of joins from one or more
queries ean be exeeuted either seriatly or in parallel.
While seriat execution assigns all processors to execute
each join one after another, the parallel execution distri-
butes the joins to clusters formed by certain number of
processors and exeeutes them concurrently. Both
approaches employ parallelism to improve system perfor-
mance. However, data skew may result in load imbal-
ance among processors executing the same join and some
clusters may be overloaded with time-consuming joins.
As a result, the completion time will be much longer than
what is expeeted. In this paper, we propose an algorithm
to further minimize the completion time of concurrently
executed multiple joins. For this algorithm, all the joins
to be executed concurrently are decomposed into a set of
tasks that are ordered according to decreasing task size.
These tasks are dynamically allocated to available pro-
cessors during exeeution. Our performance study shows
that the proposed algorithm outperforms the previously
proposed approaches, especially when number of proces-
sors increases, high skewness is present in the relations to
be joined and relation sizes are large.

Introduction

Today’s DBMS will have to deal with complex queries
which take a long time to complete. The conventional
von-Neumann architecture will soon reach its speed
limi~ and parallelism represents the most feasible alter-
native to achieve any significant breakthrough in perfor-
mance. With the advances in hardware technology and
computer amhittxture, a large number of parallel com-
puters are already being employed to solve database
applications [3, 4, 5, 19, 21].

In relational &tabase systems, the most costly and fre-
quently used (and hence important) operationis thejoin
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operation. With novel applications, such as artificial
intelligence, graphics and geometric modeling, it will not
be uncommon to have queries involving many relations
(and therefore many joins). Object-oriented database sys-
tems are another class of potential applications that will
generate many joins. Even in relational systems, the use
of views ean lead to an increase in the number of joins in
the query being processed. In all cases, we have a set of
joins which can be processed collectively. While optimi-
zation of multi-join queries has been extensively studied
in tmiprccessor environment [6, 7, 18, 20], the develop-
ment of effeetive schemes to exploit parallelism to pro-
cess multi-join queries, in particular inter-join parallel-
ism, are only beginning to be explored [2, 11]. Intra-join
parallelism has atso received much attention in reeent
y- [10, 15, 16, 17,22, 24].

step 1

Figure 1. A sample multi-join query plan.

In this paper, we assume that we are given a query exe-
cution plan where a set of joins could be exeeuted con-
currently. For example, in Figure 1, the query plan con-
sists of 3 sets of joins that could be executed con-
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where Costi is the cost for step i and is equal to the cost
of the most expensive join operation in the step. Since
each step is executed in the same manner, it suffices for
us to examine only a step of the query plan as is done in
[2]. ‘fltus, we reduce the multi-join query processing
problem to the following problem:

Given a set of joins, J = { J,, J2, ,...... , J. )

where Ji = Ri M Si, tkt are scheduled to k

pe~ormed concurrently on p proeessors,jind

the least completion time.

The two approacheswhich has been adopted in the litera-
tureto solve this problem are

1) Execute the set of joins as a series of single joins
one after another. This corresponds to the one-
puaraflelstrategy in [2] where all processors forma

single cluster and a parallel join algorithm is
employed to execute each join. If the elapsed time
for Ji is ii, for 1 S i S n, then the completion time
fcr J is

n

..
::
:.

F@re 2. Conventional multi-join strategies.

currently. Each set is executed in a step and the steps are 2)
orderedbased on the dependency between thejoins in the
sets. The cost of a plan is thus

m
Cost (QEP ) = ~Costi

Partition the set of processors into n clusters of
processors with p ~, ....... , p. pnlcessors respec-

tively, such that ~ pi = p, ~d the join Ji is dlo-
i=$

cated to the i~ cluster, for 1 S i S n. Within each
cluster, a parallel join algorithm is used to perform
the join. Thus, both inter- and intra-joinparallelism
are employed in this strategy. In [2], the n-parafkd
straiegy distributes the number of processors
evenly across the number of joins, that is ewh
cluster contains (approximately) the same numtxx
of processors. Lu, Shari and Tan employ a Ioad-
balancing scheme in the allocation of processors to
joins [11]. Their approach estimates the time for
each join and allocates mom processors to time
consuming joins. If the i“ processor takes titime
to complete the load it is allocated, then the com-

pletion time for J is

Example 1. Let J = {Jl, J2,.13 ) and p =6. Figure 2
shows the two approaches to execute J, In Figure 2(a),
the one-parallel strategy is employed. Assuming a
hash-based join algorithm, each join is sptit into, say, 6
tasks and these tasks are then allocated to the 6 proces-
sors, We define a task to be a single ope.mttionand the
dataassociated with the operation. Hence, thejoin opera-
tion between relations R 1 and R z is a task. However,
using the definition of a task recursively, we can generate
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more tasks from a single task by duplicating the opera-
tion and splitting its data such that some conditions
(which depends on the operations) be satisfied. If we per-
form the join operation using hash-based algorithm, the
join of a buckti of R, with R2 forms a task and the
number of tasks is equivalent to the number of buckets.
SUppO.Wthe join .lI llfX41S time fi tO execute, the comple-

tion time for J is ~ =rl +t2+z3. In Figure 2(b), the
lhree-parallel strategy is used and two processors are
assigned to perform a join. Within each cluster, the join
load is split among the two processors. The completion
time for J is determined by processor p 1.

The two approaches are effective only when the process-
ing load at each processor is approximately the same. In
this case, the completion time to execute 3 is near-
optimal if not optimal. However, in real situation, the
processing load across the processors will not be the
same. In such cases, underloaded processors will soon
become idle. In one-parallel approach, the skew in the
data may cause a load-imbalance across the processors
[9, 23]. Several algorithms that handle skew have been
proposal in the literature [14, 24]. The situation is worse
in multi-join scenario. As shown in Figure 2(a), even
when the amount of idfe time is small for a single join,
the amount of idle time accumulate could be substantial
as the number of joins increases. When the n-parailei
strategy is wed, load imbakwtce arises when some clus-
ters may be assigned more time-consuming joins (each
may involve two targe relations and the join selectivity is
high). Moreover, as in the one-parallel case, within each
cluster, data skew will result in some processors within
the cluster being heavily loaded. For example, in Figure
2(b), the join allocated to processors p, and p2 is the
most time-consuming. The data skew for the join flut.her
worsen the overall performance of the system. All these
indicate the need to develop new algorithms to evenly
distribute the prcx%ssing load across the processors so as
to minimize the completion time of executing the set of
joins in J by reducing the idle time within each proces-
sor.

In this paper, we propose an algorithm — Multi-pin
Merleave eXecution — that better utilizes the system
resources when executing multiple joins. MIX first gen-
erates a set of tasks from aI1 the joins. At runtime, these
tasks are acquired by idle processors and executed. The
main feature of MLY is that there is no predefine set of
processors to execute a join. Tasks from a join may be
processed by several processors and all processors may
be processing different tasks from different joins at any
one time. Our performance study shows that MIX per-
forms best for large number of processors, large relation
sizes and high skewness of join attributes.

In the next section, we describe the proposed algorithm

MfX. In section 3, we study the effectiveness of the
algorithms. We summarize this research and briefly dis-
cuss some future work in section 4.

Multi-Join Processing Strategy

In this section, we describe the interleaved approach for
multi-join processing in parallel systems. We assume the
system architecture to be shared disk (SD). In SD system,
each prccessor has its own private memory but each yo-
cessor can directly access any disk. The processors
cooperate by message passing through an interconnection
network. Each relation is horizontally partitioned across
the disks in the system. In [1], it is shown that SD system
performs as well as a shared nothing (SN) system. More-
over, designing a SD system is easier than designing a
SN system because the database partitioning problem
does not arise. In addition, a SD machine is more amen-
able to load-balancing [12]. Though the shared every-
thing (SE) system is shown to outperform SN system and
SD system, it is limited by the bus and memory
bandwidths. Thus, SD system is more favorable over the
SE system when the throughput requirements were too
large for SE. We assume that the system has a certain
amount of global memory and the global memory is used
to keep up-to-date information of the tasks. This
assumption may be relaxed by using a shared-disk
instead (1/O cost incurred in accessing this information
will be small compared to that for the data). We also
assume a locking mechanism is used to regulate access to
the global memory.

It is assumed that tie system uses conventional disk
drives for secondary storage and databases (relations) are
stored on these disk storage devices. Both disks and
memory are organized in fixed-size pages. Hence, the
unit of iransfer between the secondary storage and
memory is a page. We assume that the relations to be
phed are, initially, evenly distributed among the proces-
sors to facilitate full concurrent access to the relation.

MfX is an extension of the task-oriented approach to
query processing. The task-oriented query processing
approach comprises three phases: 1) task generation
phase where a query is decomposed into independent
tasks, 2) task allocation phase where these tasks are allo-
cated to processors based on some criterion such as
balancing the tuple sizes of data associated to tasks [13]
or balancing the estimated execution time of tasks [24],
and 3) task execulion phase in which all the processors
execute the tasks allocated to it concurrently and
independently. MIX, however, has two phases and is dif-
ferent in the following ways. Firs4 in the task generation
phase, all the joins to be executed in parallel are decom-
posed into tasks before phase 2 begins. In this way, we
have a large collection of tasks from all joins to be
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acquired in phase 2. Second, we combine phases 2 and 3
of ‘the task-oriented approach to arrive at a dynamic
method in which task allocation becomes &mand-driven.
That is instead of allocating all the tasks to processors
prior to their execution as in previous approach, in our
approach, a processor acqui”resa task to be processed at
runtime. Each processor has, at any time, at most one
task to process and it does not know which is the next
task until the currenttask finishes. Once the curmt task
is completed, the processor will acquire another task until
there is no more tasks. In this way, a processor is idle
only when all tasks are allocated and no~ as in previous
approaches,when tasks of a particularpin are exhausted.
Third, since we have a collection of tasks from all joins,
joins may be executed in interleaved fashion, that is tasks
from a join may be executed by several processors and
all processors may execute diffemt tasks from different
joins at any one time. Hence,thereis no predefine set
of processors to performa joinandthenumberof proces-
sors that perform a join varies at runtime. In addition,
both inter-join and intra-join parallelism are exploited.

I -220

Figure 3. Algorithm MIX.

\

The main idea of the algorithm is to view the set of joins
to be executed concurrently as (large) tasks of a single
(pseudo extra large) join query. Each of these tasks
(@s), however,needs to be furtherpartitioned to gen-
erate more (sub-)tasks. If one task is very costly, then the
processor that acquires the task may be the one to deter-
mine the execution time of the joins. Algorithm MIX
remedies this problem using a load-balancing approach
simiku to that employed by Omiecinski [14]. In [14], a
task may be allocated to several processors. However, we
generate a numberof (sub-)tasks instead of allocating the
tasks to the pmceasors. This is done as follows

Let mem denotes the size of memczy avail-
able at each processor sufficient for an in
memory hash table to be built for pin pro-
cessing. Then a task with the smaller bucket
size bsize may producek (sub-)tasks where

(1)

where bsize -f represents the size of the hash
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Figure 3. Task splitting and acquisition.

table for a bucket of size bsize.

Once all tasks are generated, these tasks are acquired by
processors and executed. Figure 3 illustrates this process.
We describe the two phases of algorithmMLYhere.

Phase 1. Task generatwn. In the task generation phase,
all the joins are partitioned into tasks one after another.
For each join, R i N Si, each processor will reads approx-
imately IRi I/p pages of IRi I and hashes the tuples to the
appropriate output buffers (at least one for each task).
Once an output buffer is full, it is written out to the disks.
The pages of a task is striped across all the disks in the
system to avoid disk “hotsPot”.This can be done by writ-
ing the Xti page to disk (x – l) MOD p + 1. The same
hash function is used to c~te partitions for retation Si.
Let l?~ (S~) denotesthe subset of Ri (Si) that ~sides at
disk j, for 1 <j Sd. We call rhe portions of R; (S;), that
hash into the km output buffer the sub-buckets of R; and

den~d.em x~R~ (S~). w~ere 1 S js~ and 1 <k <B.

TttUS Uf?j , ,#29 ... *i-,UR~arethepartitions of Ri.
j=l

The join result of Ri and S: corresponds to the union of
the join results of the respective partitions of R i and Si,
that is

Ri Msi ‘~((LR\)N(LS~))
k=l j=l j=l

The join execution of the pair of partitions

(~ R~k)N (~ S~) correspondsto an independent sub-
j=l j=l

task thatgenerates portion of the join result.

During the partitioning of data, each sub-bucket on exh
disk has associated with it a directory. The directory for a
sub-bucket stores the disk iden@ier and puge Menri@r
for pages belonging to a partition. With this directory, a
processor assigned a partition will have direct access to
the pages. Moreover, such a structurehas ken shown to
f@itate load-balancing in the joining phase [12]. It
should be noted that the sizes of the directories is not
large. Assuming the disk identifier requires 1 byte and
the page identifier requires 2 bytes, a 4 Kbytes page can
house the addresses for more than 1300 pages of data.

Once the partitioning is performed, each processor will
store the information of the subbuckets in the global
memory. Such information includes 1) the join number,
2) the task number, 3) the size of the sub-buckets of the
source and target rdations and 4) the addresses to the
directories of the sub-buckets. A processor (with smallest
index) will then build a single [ask [ub/e containing the
task number with its associated information for a parti-
tion of R i and Si. Tlte size of each partition is the sum
of the corresponding sub-buckets. The addresses of the
directoriesare stored as it is.

Next, the same processor (with smallest index) will sort
the task rable in non-ascending order of the size (in
pages) of the smaller of the two buckets of the tasks.
Where there is a tie, the order is according to the non-
ascending orda of the size (in pages) of the largerof the
two buckets. Once the tasks are sorted, for every task
whose smaller bucket size exceeds the memory available,
the task is split into k subtasks (as determined by Equa-
tion (l)) by dividing the smaller bucket size into k buck-

ets ~d “duplicating~e largerbucket size. In this way, the
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set of tasks is increased by k -1 tasks. It should be noted
that while a task may produce k (sub-)tasks, these tasks
may not necessarily be processed by k different proce-
ssors.This is so because phase 2 is dynamic.

Phase 2. Task acquisitwn and execution. This is the join-

ing phase of the algorithm. During the joining phase, a
free processor reads the global information and acquires
a task to process. Once a task is available, the directories
associated with the sub-buckets of Ri and Si that
correspond to this task are collected at the processor.
The directories from all disks are then linked together. In
this way, each processor has the addresses to all pages
that correspond to the task. The task is then executed,
that is thejoin is performed,as in a uniprocxxworenviron-
ment. Any unipmcessor join algorithm maybe employed.
In our study, we use the hash-based nested ioops join
(HNL) algorithm for simplicity. The result can be easily
generalixd. This algorithm is shown to be superiorover
the other algorithms when we handle medium-sized
source relations, that is the size of the source relation is
no more than 5 times the size of the memory [13]. The
algorithm comprises two phases 1) Several pages of the
source relation, which is determined by the available
memory, is read and the hash table is built 2) The whole
of targetrelation is read a page at a time and each tuple is
probed for joinability with the pardally staged hash table.
These two phases are repeated until all the pages of the
source relation are read.

Whenever a processor finishes the processing of the allo-
cated task, it acquires a new task. At the same time, it
will update the global information — increment the
counter for the join that indicates the number of tasks
completed. This process of acquisitwn and executwn of
tasks is repeated until all the B tasks have been allocated.

The execution time to perform the joins is then deter-
mined by the processor that finishes last.

Figure 4 illustrates how tasks are “chopped” and allo-
cated to processors (on hind-sigh~ that is when process-
ing are completed). There are 3 joins to be exeeuted
concurrently,each of which produces 6 tasks (tasks from
the same join are shown with the same fillings). The
sorted order of the collections of tasks is representedby
the height of the tasks (we assume in this Figure that the
height also corresponds to the execution time). Assume
tasks labeled 1 — 6 in Figure are split into 4,3,2,2,2,2
tasks, we have the allocation as shown in Figure. We see
that the 3 (sub) tasks of task 2 are processed by 2 pro-
cessors only. We also see that the 2 tasks from the same
join in processor 1 are not exeeuted consecutively.

An advantage of the algorithm IUfX is that the number
of processors allocated to a query may vary at runtime.
This is also dependent on the collection of joins to be
processed concurrently. The same join, when exeeuted

with different set of pins may be allocated different
number of processors. ‘Ilds is possible for the following
reasons a) there is no predefine set of processors to per-
form any join, b) the collection of and ordering of tasks
may be different and c) the acquisition and execution
phase is dynamic.

A PerformanceStudy

To study the effectiveness of the proposed algorithms,
we conducted a simulation study. We vary the skewness
of the join attribute(which follows the Zipf-distribution),
the number of processors involved and relation sizes of
joins. We also vary the number of joins to be performed
in parallel. We also use the following two algorithms as
references:

Algorithm Seq. This algorithm uses intra-joinparallelism
only, that is all processors are used to perform a join. All
thejoins are executed serially.

Algoriihm Par. This algorithm employs both intra-join
and inter-join parallelism. It distributes the number of
processors into clusters of (approximately) equal size and
allocate each joh to a cluster.

To evaluate the performance of the proposed algorithm,
we assume that the values of the join column follow a
ZipjVikedistribution [8]. For a relation R with a domain
of D distinct values, the i A distinct join column value,
for 1 <i <D, has such number of tuples as given by the
following expression

IIDiII= ‘: “, (2)

iO”2%
j=l J

where e is the skew factor. When 6 = O, the distribution
becomes uniform. With 9 = 1, it corresponds to the
highly skewed pure Zipf distribution [25]. Though the
join column is skewed, we assume that the relations to be
joined are, initially, evenly dktributed among the proces-
sors to facilitate full concment access to the Mation.

We ako study the effect of different correlationsbetween
the skew values in the two relations. Two types of corre-
lation are modeled Ordered correlation and ranhm
correlation. For ordered cordation, the values in both
the attributes have the same ranking sequences. For
example, the highest rankedvalue in attributeR~ of rela-
tion R is also the highest ranked vake in the correspond-
ing attributeS~ in relation S, On the other hand,random
correlation randomlycorrelates the attributein R andS.

As in [24], we substitute the actual distribution of data
into the cost formulas for the join algorithm HNL to
compute the elapsed time. That is, the actual number of
pages (and tuples) of the source, target and result rela-
tions of each partition are used in the computation. The
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distribution of data for the source and target relations is
generated using Equation (2). A hashing function is then
used to partition the relations into B partitions. Two
hashing functions are used — range-based where parti-
@ i contains ~tuple in the range

l+(i–l)x~
D

,ix — ,
B

for l<i <B, and

kduio-bused where tuple ~ith value w belongs to parti-
tion [fu MOD B + 1]. Both hashing functions show simi-
lar results. To compute the result size, we introduce a
selectivity factor of the join operation, Se/. Se/ gives the
numberof distinct tuples in the source relation that has a
matching value in the target relation. For example,
Sel =0.5 means that for each tuple in the source relation,
there is a probabilityof 0.5 that it will finda match in the
target relation. Sel is modeled using a uniform distribu-
tion UD(O,1). When the ordered correlation is used, for
each dktinct value of the source relation examined, if the
value of UD(O,1) is in the range O — Se/, the
corresponding distinct value in the target relation is a
match and the join result size equal to the productof the
number of tuples with this value in the source and target
relations. Otherwise, the result size is O. For tzmdom
correlation, for each distinct value of the source relation
examined, a random distinct value is picked fi-om the tar-

get relation and the result size is computed in the same

manner as that of ordered correlation.

For purpose of illustrating the performance study here,

the following test values are used The system has 16
disks. The number of processors is varied from 2 — 32
and each processor has 512K of memory. The CPU pro-
cessing rate is 10 MIPS and the Ml bandwidth 10
Mbytes/s. It takes 50 instructions to compare two
keys/atrnbutes. The computation of hash function of a
key costs 100 instructions. The time to move a tuple in
memory is 500 instructions. We also vary the numberof
tuples in relation R (S) from 20K — 300K. Each page of
relation R(S) and the resultant relation contains 50 tuples.
The numberof distinct tuples in relations R and S is 10K.
The skew factors are varied from 0.1 — 1.0. The selec-
tivity factor (Sel ) is 0.5. The numberof joins considered
here are 2 and 3 and each join is partitionedinto 50 buck-
ets initially. We also vary the number of joins and
obtained similar results as reportedhere.

Experiment1: Vary the number of processors

In this experiment, we study the performance of the algo-
rithms as the number of processors vary. Graph 1 shows
the result of the experiment. For both 2-joins and 3-joins,
the response time for all the algorithms decreases as the
number of processors increases. We also made several
interesting observations. First, algorithm Seq and Par

outperformseach other depending on the numberof pro-
cessors. This result differs from that presented in [2].

Deen, in his experiments for 2-joins and 3-joins, cxm-
cluded that it is better to form a single cluster of parallel
processom and to carry out the multi-join in series of sin-
gle joins one after another, This is because the study is
conducted on a small-scale multiprocessor system, that is
the number of processors is small. We agree with this
result for small numberof processors. For Seq, the load
is spread across all the processors. For Par, the cluster
size for a join is even smaller. This will result in the load
imbalance across clusters being more significant. How-
ever, we have observed in our experiment that with large
numberof processors, Par is superior.For Seq, when the
number of processors p goes beyond a certain numlxx,
say q, the most expensive @k dominates performance.
By increasing the number of processors beyond q will
provide no significant gain in response time. On the other
hand, when the number of processors p is large, it

becomes beneficial for k joins to be executed con-
currently using p/k processors per join since the dom-
inating task may still remains dominating within the clus-
ter.

Second, algorithm MM outperforms both Seq and Par.
This shows that interleaving the execution of tasks from
different joins better utilizes resounxs and reduces the
idle time. For Seq, since joins are performed one after
another, a processor becomes idle as soon as all tasks
from a join are acquired. If there are still joins to be pro-
cessed, the processor will be busy only when these joins
are executed. For Par, a processor within a cluster
becomes idle when all tasks of the join allocated to the
cluster are exhausted. Even if there may be tasks from
other joins at other clusters, no transfer of task is permit-
ted. On the other hand, for MJX, all processors acquire
tasks from a large collection of tasks (from all joins). b
this way, a processor will be fnxd only when there is no
more tasks in the system. Next, for Seq or Par, a heavy
load (whete task size > memory available), which may
dominate performance, is acquired and processed by a
single processor. However, in MIX, the same load is
spread across several processors, thus balances the load,
that is arty dominating task would have keen “chopped”
into several smaller tasks and executed by several pro-
cessors.

Experiment2: Effects of load imbalance due to skew
factor

The skewness of data is an important factor that will
cause load imbalances. This experiment studies the
behaviors and relative performance of the algorithms
when the skew factor varies. In our experiment, for m-
rejoins,we 6X the skew factors for the (m-l)-joins and vary
the skew factor of one join. Graph 2 shows tie result of
our simulation. The horizontal-axis represents the skew
factor of the data for the join for which we vary. We have
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two observations regarding algorithm Par. First, algo-
rithm Par perform worse than algorithm Seq when the
skew factors for one of the joins is medium and the rest
low. The reason is that when a smaller cluster (number of
processors) is assigned the join with medium skew factor,
the cluster becomes the more loaded cluster. On the other
hand algorithm Seq is able to spread the load of the
expensive join across a larger cluster. Second, the curve
is flat initially. This is so since the loaded cluster deter-
mines the execution time.

When the skew fmtors are high (for 2 of the joins), some
tasks (buckets) dominate performance. Hence the execu-
tion time for such tasks is approximately the same for
both algorithm Seq and Par. However, since Par distri-
butes the pin across chtsters of processors, the comple-
tion time remains dominated by the loaded tasks. On the
other hand, Seq executes the joins serially, thereby incur-
ring higher completion time.

Algorithm MLY performs best again in thhs experiment
since it divide the load of art expensive task across
several processors. It is able to exploit the large collec-
tion of tasks from all joins and attempts to balance these
tasks across all processors.

Experiment 3: Effects of load imbalance due to rela-

tion sizes

For this experiment, we would like to study the effects of
load imbalance due to relation sizes. We present here the
result when the relations involved in a join has the same
relation sizes, that is only the joins involved have dif-
ferent relation sizes. The other case when each relation of
each joh has different sizes shows similar behavior.

Graph 3 shows the result of the experiment. For the

experiment, we vary only the relation sizes for one join

and keeps the other relation sizes the same. From the
graph, we see that algorithm MIX is superior to the other
algorithms.The performance gain over Seq is small when
the relation sizes are small. This is so since there is little
opportunity for splitting tasks. On the other hand, when
relation sizes becomes large, the number of tasks that
needs to be split increases, allowing MIX to balance the
load across the processors. It should be pointed out that
the performance of Par is worse than Seq since the
numkr of processors is small. The reason is the same as
that in Experiments 1 and 2.

Conclusion

In this paper, we address the problem of minimizing the
execution time for a collection of joins in parallel sys-
tems. Such a collection may be obtained when several
single join queries or when complex queries (such as
multi-join queries) which can be decomposed to multiple
join queries are to be executed. The conventional

method is to form clusters of processors and allocate the
joins to the clusters. In the serial algorithm, all the pro-
cessors form a cluster and all joins are executed serially
one at a time. ‘I%us only intra-join parallelism are
exploited. On the other hand, the k-parallel algorithm
exploit both intra-join and inter-join parallelism by disrn-
buting the k joins into k clusters of processor each clus-
ter has (approximately) equal number of processors. Our
proposed algorithm, MfX, is an extension of the task-
oriented approach. Each of the join is first decompxed
into tasks. These large collection of tasks are then
ordered according to the smaller of the relation sizes of
the task. Large tasks may be “choppd’ into k smaller
(sub-)tasks such that a in memory hash table may be
built. Hence, k processors (not necessarily unique) are
needed to execute these (sub-) tasks. At runtime, these
tasks are dynamically acquired by available processors
one at a time. In this way, tasks from different joins may
be interleaved during execution. Once a processor
finished the execution of the assigned task, it request for
another one until there is no more tasks. The main feature
of MIX is that inter-join and intra-join parallelism are
exploited without predefining the set of processors to per-
form the joins. The number of processors may vary at
runtime.

We study the performance of algorithm MIX in shared-
disk environment. The data skew is modeled by Zipf-
like distribution. Moreover, we use tie actual data distri-
bution of each task to measure the elapsed time in our
simulation. Our results show that algorithm MIX is supe-
rior to conventional methods in all cases — with different
number of prmxssors, skew factors and relation sizes.

We also observe that distributing joins to clusters of pro-

cessors may outperform that of serial execution when the
number of processors is large.

We plan to extend this study in several ways. First, we
have assumed a set of joins to be executed concurrently.
This, however, may not be suitable when the number of
jcins is large. We may explore how to determine the
number of joins to be performed at each step. Second,
we have considered only joins. We are planing to extend
our study to queries. An immediate problem is how the
ordering of tasks within queries may affect algorithm
MfX. Third, we would like to study the possibility of
pipelining.

References

[1] Bhide, A., “An Analysis of Three Transaction Pro-
cessing Architectures,” Proc. 141h VLDB Conf, Los
Angeles, CA., Aug. 1988, pp. 339-350.

[2] Deen, S. M., Kannangara, D. N. P. and Taylor, M.
C., “Multi-join on Parallel Processors,” Proc. 2nd
Ind. Symp. Databases in Parallel and Distributed

291



[31

[4]

[51

[6]

[7]

[8]

[91

[10]

[11]

[12]

[13]

[14]

SySk?tnS,Dublin, IAand, July 1990, pp. 92-102.

DeWitt, D. J., et al., “T%e GAMMA Database
Machine project: IEEE Trans. Knowledge and
Data Engineering, Vol. 2, No. 1, Mar. 1990,
pp.44-62.

Englest, S., et al., “A Benchmark of Nonstop SQL
Release 2 Demonstrating Near-linear Speedup and
Scaleup on Large Database%”Tandem Tech. Rep.
89.4, hkly 1989.

Hsiao, D. K., Advanced Database Machine Archi-
tecture, Prentice Hall, 1983.

Ioannidis, Y. E. and Kang, Y., “Randomized Algo-
rithms for Optimizing Large Join Queries,” Proc.
SIGMOD 90, hby 1990, PP. 312-321.

Krishnamurthy, R., Boral, H., and ~10]0, C.,

“optimization of Nonrecursive Queries: Proc.
VLDB 86, Kyoto,Aug 1986, pp. 128-137.

Knuth, D. E., The Art of Programming, Vol. 3:
Sorting and Searching, Addison-Wesley, 1973.

Lakshmi, M. S., and Yu, P. S., “Effectiveness of
Parallel Joins; IEEE Trans. Knowledge and Data
Engineering, Vol. 2, No. 4, Sept. 1990, pp.410-
424.

hi, H., Tan, K. L, and Shari,M. C., “Hash-based
Join Algorithms for Multiprocessorr Computerswith
Shared Memory,” Proc. VLDB w, Brisbane, Aus-
tralia,Aug. 1990, pp. 198-209.

Lu, H., Shari,M. C., and Tan, K. L,, “Optimization
of Multi-Way Join Queries for Parallel Execution,”
Proc. VLDB 91, Barcelona Spain, Sept. 1991.

Lu, H. and Tan, K, L., “Dynamic and Load-
balanced Task-OrientedDatabase Query Processing
in Parallel Systems,” EDBT 92, Mar. 1992.

Nakayamq M. and KitSUIW@W& M., “Hash-
partitionedJoin Method Using Dynamic Destaging
Strategy,” Proc. 14th VLDB Co~., Los Angeles,
CA., Aug. 1988, pp. 468-478.

Omiecinski, E., “PerformanceAnalysis of a Load
Balancing Relational Hash-Join Algorithm for a
Shared Memory Multiprocessor: Proc. VLDB 91,
Barcelona, Spain, Sept 1991.

[15] Qadah, G. Z., and Irani, K. B., “The Join Algo-
rithms on a Shared-Memory Multiprocessor Data-
base Machine,” IEEE Trans. SofNare Eng. , vol.
14, no. 11, Nov. 1988, pp. 1668-1683.

[16] Richadson, J. P., Lu, H., and Mikkilineni, K.,
“Design and Evaluation of Parallel Pipelined Join
Algorithms,n Proc. SIGMOD 87, San Francisco,
My 1987, pp.39949.

[17] Schneider, D.A. and DeWitt, D. J., “A Performance

Evaluation of Four Parallel Join Algorithms in a
Shared-Nothing Multiprocessor Environment”
Proc. SIGMOD 89, Portland, Oregon, June 1989,
pp. 110-121.

[18] Seliiger, P. G., Astrahan, M. M., Chambedii, D.
D., Lorie, R. A., and Price, T. G., “Access Path
Selection in a Relational Database Management
System; Proc. SIGMOD 79, Boston, Mas-
sachusetts, Jun 1979, pp. 23-34.

[19] Su, S. Y. W., Database Computers, McGraw-Hill,

1988.

[20] Swami, A. and Gupm A., “Optimization of Large
Join Queritx Combining Heuristics and Combina-
torial Techniques: Proc. SIGMOD 89, Portland,
Oregon, June 1989, pp. 367-376.

[21] Teradata coqmation, DBC/1012 Data Base Com-
puter Concepts and Facilities, Teradata Document
C02-0001-05, LCISAngeles, CA, 1988.

[22] Valduriez, P., and Gardarin,G., “Joinand Semijoin
Algorithms for a Multiprocessor Database
Machine,” ACIU Trans. Database Syst., vol. 9, no.
1, Mamh 1984, pp. 133-161.

[23] Walton, C. B., Dale, A. G., and Jenevein, R. M., “A
Taxonomy and Performance Model of Data Skew
Effects in Parallel Joins,” Proc. VLDB 92, Bar-
celo~ Spain, Sept. 1991.

[24] Wolf, J. L., et. af., “An Effective Algorithm for
Parallelizing Hash Joins in the Presence of Data
Skew: Proc. 8th Data Engineering Co#., Japan,
Apr. 1991, pp. 200-209.

[25] Zipf, G. K., Human Behavior and the Principle of
Least Effort, Addison Wesley, 1949.

292


