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Abstract: The processing time and disk space re- 
quirements of an inverted index and top-down cluster 
search are compared. The cluster search is shown to 
use both more time and more disk space, mostly due to 
the large number of cluster centroids needed by the 
search. When shorter centroids are used, the effrcien- 
cy of the cluster search improves, but the inverted 
index search remains more efficient. 
1. Jntroduction 

Research by Griffiths et al. suggests that the single 
link clustering method is not as effective as other 
agglomerative, hierarchic clustering methods for 
document retrieval [GRIFM. GRIF851. Recent re- 
search by the author corroborates these findings and 
also shows that the partial ranking produced by a top- 
down search of the complete link hierarchy can be 
more effective than ranking the collection by decreas- 
ing similarity to the query. Furthermore, the evi- 
dence suggests that searches of the complete link 
hierarchy will remain effective independent of collec- 
tion size [VOORSSI. 

However, in order to be useful a search must be 
efficient as well as effective. This paper compares the 
efficiency of the cluster search to the efficiency of an 
inverted index search that ranks the entire collection. 
The efficiency of each search is measured in two ways: 
the number of bytes required to store the auxiliary 
files required by the search, and the mean time 

required to retrieve a set of documents for a query. 
The processing time is further divided into CPU time 
and L/O time. The measurements are obtained by 
observing searches on four test collections. 

The results of the experiments indicate that the 
inverted file search is more efficient in terms of both 
space and processing time since the cluster search re- 
quires many centroid vectors. The maximum length 
of a centroid vector can be significantly decreased be- 
fore the effectiveness of the cluster search suffers, but 
the efficiency increase gained in this way is not suf- 
ficient to make the cluster search as efficient as the 
inverted index search. 

2. The Searches 

The purpose of the inverted index and cluster 
searches is to return a set of documents to the user in 
response to a query. The documents returned are the 
documents encountered in the search that have the 
highest similarities to the query. In the current 
experiments, the documents and queries are repre- 
sented by weighted vectors and the inner product 
similarity is used. The weight of a term in a vector is 
proportional to the number of times the term appears 
in the document or query and inversely proportional 
to the number of documents in which it appears. The 
weights in each vector are normalized so that the 
inner product similarity of two vectors is equal to 
their cosine similarity. 

2.1. The Inverted Index Search 

The inverted index search encounters all docu- 
ments with non-zero similarities to the query, and 
thus is guaranteed to return the documents with the 
highest similarities. The search requires an inverted 
index - a representation of the collection in which 
access to the collection is made through terms instead 
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of through documents. Associated with each term in 
the coIlection is a list of <document id,weight > pairs 
for each document in which that term appears. The 
inverted index search manipulates the inverted lists 
of query terms as described below. 

The search used here is the ‘basic algorithm’ 
described by Buckley and Lewit CBUCK851. The 
search requires enough internal memory space so that 
a partial similarity can be accumulated between the 
query and each document (e.g. 4N bytes where N is 
the size of the collection). Another array contains the 
best x partial similarities seen so far (where x is the 
number of documents to be returned to the user). The 
search begins by setting each of the partial similar- 
ities to zero. The inverted index list for each query 
term is read in turn. For each document, d, on a list, 
the product of the weights of the current term in the 
query and in d is added to d’s partial sum. If d’s cur- 
rent similarity is large enough, it is placed in the top 
similarities array. After all query term lists have . 
been processed, the top similarity array contains the 
documents to be returned to the user. Figure 1 shows 
a sample search for a query consisting. of terms A, B, 
and C when two documents are to be returned. 

2.2. The Cluster Search 

Cluster searches were introduced as both a means 
of improving the efficiency [SMAR71] and the 
effectiveness lJARD711 of a retrieval system. Cluster 
searches do not encounter all document& and there- 
fore. they are not guaranteed to retrieve the docu- 
ments with the greatest similari ties to the query.’ The 
particular search used here requires several auxiliary 
files: the representation of the cluster hierarchy, the 
centxoid tile, and the document file. 

The hierarchy used in these experiments is the 
complete link hierarchy. This hierarchy is formed by 
repeatedly merging the clusters with the maximum 
similarity, where the similarity between clusters is 
defined to be the minimum similarity between any 
pair of documents in the clusters. Due to the strict 
clustering criterion, complete link hierarchies tend to 
be quite shallow and bushy. The content of each clus- 
ter is summarized by a centroid vector; the similarity 
between a query and a cluster is computed using its 
centroid. The centroids in these experiments were 
created as follows: 

0 The sum of the within document frequency of 
each term in the cluster is computed, and the 
terms are sorted by decreasing frequency. 

0 The top 250 terms are selected to be in the 
centroid. The weight of each of the terms in the 
centroid is the rank (from the bottom) of the 
term in the sorted list - equal frequencies are 
assigned the same rank. 

l The rank weights are multiplied by an inverse 
document frequency factor and normalized so 
the sum of the squares of the weights equals 
one (cosine normalization). 

The number of clusters that are encountered in the 
search depends on the parameter NumWanted. This 
parameter,Specilies the number of documents that 
should be retrieved by the search. In general, retriev- 
ing more documents will be more effective but also 
more expensive than retrieving.fewer documents. 

The search begins by placing the rodt of the 
hierarchy into an empty heap. The to@ of the heap 
(corresponding to the cluster with the current largest 
similarity with the query) is popped until sufficient 
documents have been retrieved or the heap is empty. 
If the hierarchy node popped from the heap represents 
a document, that document ‘is retrieved. Otherwise, 
all the children of the node that have non-zero sim- 
ilarities with the query are added to the heap. When 
sufficient documents have been retrieved, the 
retrieved set is ranked by decreasing similarity. 

Since the path down the tree is controlled by the 
nodes that are popped from the heap, the search is 
neither a true depth-first nor a true breadth-first 
search of the hierarchy. In practice, it is closer to a 
depth-first search with some backtracking than to a 
breadth-first search. 

A sample top-down search for a hypothetical 
hierarchy and query is given in Figure 2. In the Fig- 
ure, the squares represent documents and the circles 
represent non-singleton clusters. The numbers with- 
in the circles are node numbers; the documents are 

identified by letters. The number in parentheses next 
to a node is the similarity of that node with the query. 

3. Storage Requirements 

This section investigates the amount of external 
memory space required to store a document collection 
and the data structures needed to search it. (A disk is 

165 



Q = (<A,.4>, <B,.7>, <C,.l>) 
Return two documents 

sims 

1 

top dots 

q l C <1,.9> c5,.3> <6,.2> 5 

6 

a) Before first list processed 

sims sims 

1 

q ll C <1,.9> <5,.3> <6,.2> <1,.9> <5,.3> <6,.2> 5 

6 
b) After list for term A processed b) After list for term A processed 

top dots top dots 

sims top dots 

6 .12 H . 
c) After list for term B processed . 

sims top dots 

1 

<1,.9> <5,.3> <6,.2> 5 

6 

d) Final configuration 

Figure 1: Sample Inverted Index Search 

the secondary storage device assumed in the rest of 
the paper.) The size is measured in the number of 
bytes required to store the data assuming the data 
structures are implemented as described below. The 
storage required for the natural language text of the 
documents is not included in the comparisons since 

the same amount of storage is used for the text re- 
gardless of the searching strategy. 

A vector, either a document vecto; or a centroid 
vector, consists of a fixed length header and an arbit- 
rary number of tuples. The header contains an id 
number and the number of tuples in the vector 
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I t.8) t.5) q.3) t.4) t.21 (0) (0) t.91 t.41 t.21 t.41 

a) Hierarchy to be searched 

add [1,.21 

pop L21 
add [2,.51, 14, .71,[0, .41 

pop [4, .71 
add [8. .81.[9, .31, IL, 81. [K. 61 
POP [L, .81 
POP t&.81 

add [I, .91, tJ, .41 

pop [I, 91 
POP PC.61 

heap: 1 

heap: 2,4,0 

heap: 2,0,8,9, L, K 
1 document retrieved 

heap: 2,0,9,K, I, J 
2 doc,uments retrieved 
3 documents retrieved 

STOP 
Retrieved Documents: 

I sim=.9 
L sim=.8 
K sim=.6 

b) trace ofsearch with NumWanted = 3 

Figure 2: Sample Top-down Cluster Search 

(8 bytes). Each tuple contains a concept number and 
the weight of that concept in the vector (8 bytes). 

An inverted index entry has a similar structure. 
The header contains the concept number, the number 
of documents in which the term appears, and a point& 
to tuples that make up the rest of the entry (12 bytes). 
Each tuple contains the,vector id and the weight of 
the concept in that vector (8 bytes). There is an 
inverted index entry for each distinct concept in the 
collection. 

The hierarchy is described .by a set of fixed length 
nodes, one nodefor each cluster (including singleton 

clusters) in the hierarchy. A node contains six fields: 
the node id, the similarity value at which the cluster 
it represents was formed, a pointer to the vector as- 
sociated with the node, the number of children, the 
node id of its first child, and the node id of its 
rightmost sibling (24 bytes). 

3.1. Disk Usage Experiments 
The inverted index search needs to access only the 

inverted file in order to complete a search. However, 
to perform some other retrieval functions such as 
query expansion for relevance feedback, a direct file of 
the document vectors is also needed, The space meas- 
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Table 1: Collection Characteristics 

mean relevant, dots 

assessments 

ured for the inverted index search, therefore, is the 
amount of space used by both the direct and inverted 
files. The space measured for the cluster search is the 
amount of space required by the hierarchy file, the 
centroid file. and the direct document file. The 
maximum length of a centroid is restricted to 250 
terms in these experiments. 

The auxiliary files needed for the inverted index 
and cluster searches were created for four test 
collections: CACM, a computer science collection; 
CISI, a library science collection; INSPEC, an elec- 
trical engineering collection used by permission of 
The Institution of Electrical Engineers, Hertford- 
shire, England; and MED, a bio-medicine collection. 
Details of these collections can be found in Table 1. 
(The CACM and CISI collections contain information 
other than standard content indicators [FOX831. 
However, only the standard content indicators are 
used in these experiments. As a result, two queries 
have been removed frbm the CACM query collection 
since they contain only non-content indicators.) The 
size of each auxiliary file and the total size for each 
search is given in Table 2. The percentage increase of 
the cluster search over the inverted index search is 
also included in the Table. 

The numbers in Table 2 show that the cluster 
search requires a significant amount more disk space 
than the inverted index search (an increase of 7d- 
100%). The cluster search requires larger amounts of 
disk space due to the number of centroids that need to 
be stored-the centroid file is larger than the inverted 
index for each of the collections. 

Secondary storage is relatively inexpensive; a 
more critical factor of the efficiency of a search is the 
amount of time it takes TV retrieve a set of documents. 
This topic is discussed in the next section. 

4. Processing Time Requirements 
As was mentioned in the introduction, the total 

time to process a query is assumed to be the sum of the 
CPU time and the I/O time. The CPU time is the time 
the main processor devotes to retrieving documents 
for the query. The I/O time is the amount of time the 
search spends waiting for pages to be retrieved from 
the disk. 

4.1. CPU Time 
The CPU time is measured by the number ofideal- 

ized madhine instructions performed in the search. 
Each (floating point) addition, (floating point) multi- 
plication, comparison, pointer increment, and array 
indexing is counted as one operation. The instruc- 

Table 2: External Storage Space in Bytes for Inverted Index and Cluster Searches 
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for (each query term list) { 
if (at end of list) ( 

go to next list; 

1 

(1 instruction) 

sims[current did] + = query term wt + dot term wt, (3 instructions) 
increase list ptr to point to next did in list; (1 instruction) 

1 

a) inverted index search 

m= 0; 

bite (true) { 
if (query concept num > dot concept number) { 

increase dot ptr; 
if (at end of dot) { 

exit loop; 

I 
1 
else if (query concept num < dot concept number).{ 

increase query ptr, 
if (at end of query) { 

exit loop; 

1 
1 
else ( 

4 

sim + = query term wt l dot term wt; 
increase query ptr; 
if (at end of query) { 

exit loop; 

1 
increase dot ptr; 
if (at end of dot) { 

exit loop; 

1 
1 

( 1 instruction) 
( 1 instruction) 
(1 instruction) 

(1 instruction) 
(1 instruction) 
(1 instruction) 

(2 instructions) 
(1 instruction) 
( 1 instruction) 

( 1 instruction) 
( 1 instruction) 

b) cluster search 

Figure 3: Ldeahzed Instruction Counts for Both Searches 

tions are counted only in the main part of each search 
(i.e. no initialization costs are included). For the in- 
verted index search, Figure 3(a), the main loop is the 
loop whkh processes each inverted list. Five machine 
instructions are required for each document id in the 
lists. For the top-down search, Figure 3(b), the main 
part is computing the similarity between a given 
query and document or centroid vector. The cluster 

search performs three instructions for each term that 
appears in exactly one of the query and centroid (or 
document) vectors and six instructions when a match 
occurs. 

4.2. I/O Time 
The amount of information that needs to reside in 

core at any given time is not very large for any of the 
searches. Assuming the inverted lists contain the 
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weights of the terms in the documents, the inverted 
index search requires only the inverted lists of each 
query term. The top-down search needs to keep the 
hierarchy nodes that have been visited and the cur- 
rent centroid or document vector in core. Each vector 
is needed only once (if it is needed at all) so the same 
memory location can be used for each vector. The 
hierarchy nodes may be accessed more than once, so 
they must be stored in separate locations. Since each 
node consists of only 24 bytes and the top-down search 
is closer to a depth-first search than a breadth-first 
search, the amount of space required by the hierarchy 
tiodes is not excessive. For example, the mean num- 
ber of nodes accessed in the top-down search of the 
complete link hierarchy for the INSPEC ‘collection is 
8’73 (requiring only 20,952 bytes of core). These mem- 
ory usage considerations do not include the memory 
needed by the program variables such as the array of 
similarities for the inverted index search and the 
heap used to store the similarities in the cluster 
search. 

Any modem computer..will have enough memory 
to meet these demands, and thus no paging strategy is 
considered in the experiments. That is, it is assumed 
that if a page that has already been brought into main 
memory for this query is accessed again, the page still 

resides in core. The UO time of a search, therefore, is 
proportional to the number of data pages that are 
accessed‘ at least once, and this figure is used as the 
measure of the I/O cost of a search. This measure 
makes the unrealistic assumption that each page 
access takes the same amount of time. In fact,, the 
time necessary to access a page is the sum of the seek 
time, the rotational delay, and the data transfer 
times, so some page accesses are less expensive than 
others. However, the experiments do not use this 
level of detail. 

Another implicit assumption in this measure is 
that the cost of presenting the same number of docu- 
ments as output is approximately equal for the two 

searches. This assumption is also untrue: the natural 
language text for the top-down search can be stored in 
cluster order while the text for the inverted index 
search is stored randomly. Clustering the text should 
cause fewer disk accesses to be required since docu- 
ments on the same page are likely to be retrieved to- 
get&r. Furthermore, the cost of accessing sequential 

. 

pages is less than accessing the same number of 
random pages. However, due to the small number of 
documents retrieved, this difference is negligible 
compared to the difference in the number of disk 
accesses required in the searches themselves. 

In order to count the number of pages accessed 
during a search, some allocation of the data to pages 
must be assumed. The model of page allocation used 
in these experiments is a compromise between mak- 
ing the searches as efficient as possible and accurately 
modeling an operational environment. Collection 
maintenance - retiring old documents and adding 
new documents - is an important consideration in an 
operational environment. Thus the model cannot 
assume the pages are allocated in such a way that the 
efficiency would seriously deteriorate or the entire 
collection would need to be reconfigured if new 
documents are added to the collection. 

The page length is assumed to be 4096 bytes. 
Inverted index headers are packed into as few pages 
as possible without splitting a header across page 
boundaries. Each list starts on a new page and takes 
as few pages as possible without splitting a tuple 
across page boundaries. Starting each list on a new 
page allows the index to be easily enlarged when doc- 

uments are added to the collection, and is more repre- 
sentative of larger collections where each query term 
is likely to require a page access. Hierarchy nodes 
that are siblings are stored together beginning on a 
new page; they take as few pages as possible without 
splitting a node across page boundaries. The vectors 
associated with sibling nodes are also packed into as 
few pages as possible. Having only siblings pn a page 
(as opposed to packing hierarchy nodes as tightly as 
possible) allows the hierarchy to be easily updated 
when documents are added to or removed from the 
collection. It also makes the model more realistic of 
larger collections since this implementation renders 
back-tracking more expensive than it would be with a 
packed representation. 

4.3. Processing Time Experiments. 

The efficiency statistics for the searches are 
presented in Table 3. The statistics given are the 
mean number of idealized machine instructions per- 
formed and the mean number of pages accessed for the 
query set of each collection assuming each query is 
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Table 3: Efficiency Statistics for Inverted Index and Cluster Searches 

independent of all other queries and twenty docu- 
ments are to be retrieved. Table 3 also includes the 
mean number of seconds to process a query assuming 
a page access takes .03 seconds (approximately 30 
pages per second) and a machine instruction takes 1 
microsecond. 

The inverted index search is clearly more efficient 
than the cluster search: the cluster search performs 
663% (INSPEC) to 2184% (MED) more machine 
instructions and accesses 488% WED) to 948% (CISI) 
more pages than the inverted index search. The 
difference is caused by the fact that the inverted index 
search takes full advantage of the sparsity of the 
document vectors. In the inverted index search, only 
the terms that appear in both the document (or cen- 
troid) and the query are used. In the cluster search, a 
large percentage of the documents are avoided, but 
the centroids and documents that are encountered are 
exhaustively examined. Note in Figure 3(b) a term 
that occurs in only one of the query or document vec- 
tor causes three machine operations but contributes 
nothing to the similarity; terms that occur in both 

vectors cause only six machine instructions. This 
problem is exacerbated in the search of the complete 
link hierarchy since that hierarchy is so bushy - every 
search begins by examining many long centroids. 

5. Shorter Centroids 
Both the extra disk space and the extra processing 

time needed by the cluster search have been attrib- 
uted to centroids. Clearly if shorter centroids were 
used the efficiency of the search would improve, al- 
though the effectiveness might suffer. This section 
investigates the effect of decreasing the maximum 
length of centroid vectors. 

5.1. Effectiveness 
The cluster search was repeated on each collection 

using centroids of both maximum length 100 and 
maximum length 75. The effectiveness of the searches 
is summarized in Table 4. Three different statistics 
are given for each search: the mean precision after ten 
(top number1 and twenty (bottem number) documents 
are retrieved, the total number of relevant documents 
retrieved by all queries after ten and twenty docu- 
ments are retrieved, and the total number of queries 

Table 4: Effectiveness of Inverted Index and Cluster Searches 

I collection - 
mean to.aJe~ x q’s ‘7;: total # 
prec . . rel. ret. 

# q’s mean total # x q,s 
prec rel. ret. mean 22Ez prec . . # q’s 

CACM .230 115 -260 130 .252 126 .248 124 .185 185 E .215 215 3 -213 213 ; .199 199 68 

. 
CISI .269 22 5’ .291 ::z 9 :E 108 .260 .241 37 .274 6 177 .237 I%3 36 

INSPEC .384 296 i :E 298 10 -397 306 -373 287 6 
.315 485 475 5 .314 484 

: 
.284 437 4 

I lKED I :!fi I :fP I x I :iE I ~:os I : I :tz I 32:: I 00 I :fXX I ::x .I x 
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Table 5: Cluster Search Sizes for Varying Maximum Centroid Lengths 

I 

, 
centroid file size in bytes % decrease in centroid size % increase in total size over 

inverted index search 

75 100 250 1001250 75l250 75lLOO 75 100 250 

CACM 978,376 1,136,896 1,481,320 23 34 14 34 41 74 

CISI 766,328 936,240 1.375.536 32 44 18 23 39 73 

INSPEC 6J10.384 7,160,564 9;685,704 26 37 15 47 62 99 

MED 564,864 711,512 1,132,544 37 50 21 11 26 71 

that retrieved no relevant documents after ten and 
twenty documents are retrieved. 

For all centroid lengths, the cluster search is more 
effective than the inverted index search after ten 
documents are retrieved; in fact, the mean precision of 
the cluster search using centroids of maximum length 
100 is greater than that of the search using centroids 
of maximum length 250. Note, however, that more 
queries retrieved no relevant documents in the search 
that used centroids of maximum length 100. In gen- 
eral, the search that used centroids of maximum 
length 75 had more queries that retrieved no relevant 
documents than any other search, and its mean,preci- 
sion was worse than that of the search in which cen- 
troids were restricted to a maximum length of 100. 

5.2. Disk Space 
The disk space in bytes used by the cluster search 

is given in Table 5; also included in the Table are the 
percentage decrease in the size of shorter centroids to 
the size of longer centroids, and the percentage 
increase of the total size for the cluster search to the 
total size for the inverted index search. Although 
there is some decrease in the required space when the 
centroids are shortened, the decrease is not large 
enough to make any centroid file smaller than the 
inverted file of the document collection (see Table 21. 
For the large INSPEC collection, the total size needed 
by the cluster search with centroids of maximum 
length 75 is still 47% larger than the total size needed 
by the inverted index search. 

Note that the space required by the centroida does 
not decrease as much as might be expected when the 
maximum centroid length is reduced to 100 from 250. 
Indeed, a decrease of at most 37% is observed in the 
sire of the centroid tile (whereas the maximum cen- 

troid length was reduced by more than half). This 
minimum amount of reduction can be attributed to 
the shape of the complete link hierarchy: since the 
hierarchy contains small, tight clusters, some clu&s 
do not contain more than 100 distinct terms. More 
clusters contain at least 75 terms, so the decrease in 
size from a maximum length of 100 to 75 terms is pm- 
portionally larger. 

5.3. Processing Time 
Although some clusters do not contain 100 terms, 

top-level clusters are the most likely clusters to 
contain many terms since they are the largest clusters 
in the hierarchy. Thus in spite of the relatively small 
reduction in size, significant processing time may be 
saved by using shorter centroids in the cluster search. 

The processing time results are given in Table 6. 
The inverted index search is still the most time eff& 
cient search. Unsurprisingly. using shorter centroids 
is always more effcient than using longer centroids. 
Somewhat more surprisingly, only the INSPEC 
collection exhibits a large decrease in the number of 
pages accessed. An explanation for this behavior can 
be found in Table 7 which contains the mean number 
of pages accessed to retrieve hierarchy nodes and the 
mean number of pages accessed to retrieve vectors. 
When shorter vectors are used, the number of pages 
accessed to retrieve vectors decreases but the number 
of pages accessed to retrieve hierarchy nodes 
increases. It is harder to distinguish among clusters 
when shorter centroids are used, and thus the search 
with shorter centroids is broader than the search with 
longer centmids. The slight increase in the number of 
pages accessed due to’backtracking is negligible only 
for the large INSPEC collection. 
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Table 6: Processing Time of Inverted Index and Cluster Searches 

I inverted index search 
I 

clvster search 
I 

cluster search 
centroids of length 75 centroids of length 100 I 

cluster search 
centroids of length 250 I 

mean 
pages 

133.6 4.09 .91,186 

148.1 4.49 61,021 

218.1 6.76 276,867 

sets mean 
instrs 

mean 
I 

SfXS 

pages 

257.2 1 7.99 1517.9991 418.3 1 13.07 1 

Table 7: Mean Page Accesses to Retrieve Hierarchy Nodes and Vectors in Cluster Search 

0. Summary 
In earlier work, a top-down search of the complete 

link hierarchy was shown to be more effective than an 
inverted index search lGRIF84, VOOR861. Unfortun- 
ately, the results of this study show the cluster search 
is much more expensive than the inverted index 
search in terms of both disk space and processing 
time. Decreasing the maximum length of centroids 
increases the efftciency of the cluster search, espe- 
cially for large collections, and the. centroids can be 
made quite short before the effectiveness of the clus- 
ter search suffers. However, the centroid length can- 
not be reduced enough to make the cluster search as 
effmient as the inverted index search while remaining 
as effective as the inverted index search. 

It should be stressed that these experiments try 
only one method of increasing the efficiency of the 
cluster searches. Other ways of increasing the effi- 
ciency of the cluster search without sacrificing its 
effectiveness should be investigated. For example, 
inverting the top-level centroids of the hierarchy and 
starting the cluster search by doing an inverted 
search on those centxoids shopld save time and would 
not increase the disk storage (since the iqverted 
centroids could be removed from the direct centroid 

file). Furthermore, the effectiveness would remain the 
same since the same clusters would be explored. 

Similarly, it may be possible to modify the 
complete link hierarchy to make searching it easier. 
An obvious possibility is to cluster the top-level 
centroids using some other clustering method and 
thus add several new levels to the hierarchy. Such a 
hybrid hierarchy would be more time efficient to 
search since fewer centroids would be at the new top 
level, but the same effectiveness would no longer be 
guaranteed. 

Cluster searching also affords the possibility of 
storing the natural language text of a document with 
its representative in the cluster hierarchy. This may 
increase the efficiency of the cluster search by avoid- 
ing additional page accesses when displaying the 
retrieved documents to the user. This enhancement is 
not possible with the inverted index search since the 
terms of a document are usually spread throughout 
the index. 
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