
The Effkiency of Inverted Index and Cluster Searches

Ellen M. Voorhees

Cornell University

Abstract: The processing time and disk space re-
quirements of an inverted index and top-down cluster
search are compared. The cluster search is shown to
use both more time and more disk space, mostly due to
the large number of cluster centroids needed by the
search. When shorter centroids are used, the effrcien-
cy of the cluster search improves, but the inverted
index search remains more efficient.
1. Jntroduction

Research by Griffiths et al. suggests that the single
link clustering method is not as effective as other
agglomerative, hierarchic clustering methods for
document retrieval [GRIFM. GRIF851. Recent re-
search by the author corroborates these findings and
also shows that the partial ranking produced by a top-
down search of the complete link hierarchy can be
more effective than ranking the collection by decreas-
ing similarity to the query. Furthermore, the evi-
dence suggests that searches of the complete link
hierarchy will remain effective independent of collec-
tion size [VOORSSI.

However, in order to be useful a search must be
efficient as well as effective. This paper compares the
efficiency of the cluster search to the efficiency of an
inverted index search that ranks the entire collection.
The efficiency of each search is measured in two ways:
the number of bytes required to store the auxiliary
files required by the search, and the mean time

required to retrieve a set of documents for a query.
The processing time is further divided into CPU time
and L/O time. The measurements are obtained by
observing searches on four test collections.

The results of the experiments indicate that the
inverted file search is more efficient in terms of both
space and processing time since the cluster search re-
quires many centroid vectors. The maximum length
of a centroid vector can be significantly decreased be-
fore the effectiveness of the cluster search suffers, but
the efficiency increase gained in this way is not suf-
ficient to make the cluster search as efficient as the
inverted index search.

2. The Searches

The purpose of the inverted index and cluster
searches is to return a set of documents to the user in
response to a query. The documents returned are the
documents encountered in the search that have the
highest similarities to the query. In the current
experiments, the documents and queries are repre-
sented by weighted vectors and the inner product
similarity is used. The weight of a term in a vector is
proportional to the number of times the term appears
in the document or query and inversely proportional
to the number of documents in which it appears. The
weights in each vector are normalized so that the
inner product similarity of two vectors is equal to
their cosine similarity.

2.1. The Inverted Index Search

The inverted index search encounters all docu-
ments with non-zero similarities to the query, and
thus is guaranteed to return the documents with the
highest similarities. The search requires an inverted
index - a representation of the collection in which
access to the collection is made through terms instead

164

of through documents. Associated with each term in
the coIlection is a list of <document id,weight > pairs
for each document in which that term appears. The
inverted index search manipulates the inverted lists
of query terms as described below.

The search used here is the ‘basic algorithm’
described by Buckley and Lewit CBUCK851. The
search requires enough internal memory space so that
a partial similarity can be accumulated between the
query and each document (e.g. 4N bytes where N is
the size of the collection). Another array contains the
best x partial similarities seen so far (where x is the
number of documents to be returned to the user). The
search begins by setting each of the partial similar-
ities to zero. The inverted index list for each query
term is read in turn. For each document, d, on a list,
the product of the weights of the current term in the
query and in d is added to d’s partial sum. If d’s cur-
rent similarity is large enough, it is placed in the top
similarities array. After all query term lists have .
been processed, the top similarity array contains the
documents to be returned to the user. Figure 1 shows
a sample search for a query consisting. of terms A, B,
and C when two documents are to be returned.

2.2. The Cluster Search

Cluster searches were introduced as both a means
of improving the efficiency [SMAR71] and the
effectiveness lJARD711 of a retrieval system. Cluster
searches do not encounter all document& and there-
fore. they are not guaranteed to retrieve the docu-
ments with the greatest similari ties to the query.’ The
particular search used here requires several auxiliary
files: the representation of the cluster hierarchy, the
centxoid tile, and the document file.

The hierarchy used in these experiments is the
complete link hierarchy. This hierarchy is formed by
repeatedly merging the clusters with the maximum
similarity, where the similarity between clusters is
defined to be the minimum similarity between any
pair of documents in the clusters. Due to the strict
clustering criterion, complete link hierarchies tend to
be quite shallow and bushy. The content of each clus-
ter is summarized by a centroid vector; the similarity
between a query and a cluster is computed using its
centroid. The centroids in these experiments were
created as follows:

0 The sum of the within document frequency of
each term in the cluster is computed, and the
terms are sorted by decreasing frequency.

0 The top 250 terms are selected to be in the
centroid. The weight of each of the terms in the
centroid is the rank (from the bottom) of the
term in the sorted list - equal frequencies are
assigned the same rank.

l The rank weights are multiplied by an inverse
document frequency factor and normalized so
the sum of the squares of the weights equals
one (cosine normalization).

The number of clusters that are encountered in the
search depends on the parameter NumWanted. This
parameter,Specilies the number of documents that
should be retrieved by the search. In general, retriev-
ing more documents will be more effective but also
more expensive than retrieving.fewer documents.

The search begins by placing the rodt of the
hierarchy into an empty heap. The to@ of the heap
(corresponding to the cluster with the current largest
similarity with the query) is popped until sufficient
documents have been retrieved or the heap is empty.
If the hierarchy node popped from the heap represents
a document, that document ‘is retrieved. Otherwise,
all the children of the node that have non-zero sim-
ilarities with the query are added to the heap. When
sufficient documents have been retrieved, the
retrieved set is ranked by decreasing similarity.

Since the path down the tree is controlled by the
nodes that are popped from the heap, the search is
neither a true depth-first nor a true breadth-first
search of the hierarchy. In practice, it is closer to a
depth-first search with some backtracking than to a
breadth-first search.

A sample top-down search for a hypothetical
hierarchy and query is given in Figure 2. In the Fig-
ure, the squares represent documents and the circles
represent non-singleton clusters. The numbers with-
in the circles are node numbers; the documents are

identified by letters. The number in parentheses next
to a node is the similarity of that node with the query.

3. Storage Requirements

This section investigates the amount of external
memory space required to store a document collection
and the data structures needed to search it. (A disk is

165

Q = (<A,.4>, <B,.7>, <C,.l>)
Return two documents

sims

1

top dots

q l C <1,.9> c5,.3> <6,.2> 5

6

a) Before first list processed

sims sims

1

q ll C <1,.9> <5,.3> <6,.2> <1,.9> <5,.3> <6,.2> 5

6
b) After list for term A processed b) After list for term A processed

top dots top dots

sims top dots

6 .12 H .
c) After list for term B processed .

sims top dots

1

<1,.9> <5,.3> <6,.2> 5

6

d) Final configuration

Figure 1: Sample Inverted Index Search

the secondary storage device assumed in the rest of
the paper.) The size is measured in the number of
bytes required to store the data assuming the data
structures are implemented as described below. The
storage required for the natural language text of the
documents is not included in the comparisons since

the same amount of storage is used for the text re-
gardless of the searching strategy.

A vector, either a document vecto; or a centroid
vector, consists of a fixed length header and an arbit-
rary number of tuples. The header contains an id
number and the number of tuples in the vector

166

I t.8) t.5) q.3) t.4) t.21 (0) (0) t.91 t.41 t.21 t.41

a) Hierarchy to be searched

add [1,.21

pop L21
add [2,.51, 14, .71,[0, .41

pop [4, .71
add [8. .81.[9, .31, IL, 81. [K. 61
POP [L, .81
POP t&.81

add [I, .91, tJ, .41

pop [I, 91
POP PC.61

heap: 1

heap: 2,4,0

heap: 2,0,8,9, L, K
1 document retrieved

heap: 2,0,9,K, I, J
2 doc,uments retrieved
3 documents retrieved

STOP
Retrieved Documents:

I sim=.9
L sim=.8
K sim=.6

b) trace ofsearch with NumWanted = 3

Figure 2: Sample Top-down Cluster Search

(8 bytes). Each tuple contains a concept number and
the weight of that concept in the vector (8 bytes).

An inverted index entry has a similar structure.
The header contains the concept number, the number
of documents in which the term appears, and a point&
to tuples that make up the rest of the entry (12 bytes).
Each tuple contains the,vector id and the weight of
the concept in that vector (8 bytes). There is an
inverted index entry for each distinct concept in the
collection.

The hierarchy is described .by a set of fixed length
nodes, one nodefor each cluster (including singleton

clusters) in the hierarchy. A node contains six fields:
the node id, the similarity value at which the cluster
it represents was formed, a pointer to the vector as-
sociated with the node, the number of children, the
node id of its first child, and the node id of its
rightmost sibling (24 bytes).

3.1. Disk Usage Experiments
The inverted index search needs to access only the

inverted file in order to complete a search. However,
to perform some other retrieval functions such as
query expansion for relevance feedback, a direct file of
the document vectors is also needed, The space meas-

167

Table 1: Collection Characteristics

mean relevant, dots

assessments

ured for the inverted index search, therefore, is the
amount of space used by both the direct and inverted
files. The space measured for the cluster search is the
amount of space required by the hierarchy file, the
centroid file. and the direct document file. The
maximum length of a centroid is restricted to 250
terms in these experiments.

The auxiliary files needed for the inverted index
and cluster searches were created for four test
collections: CACM, a computer science collection;
CISI, a library science collection; INSPEC, an elec-
trical engineering collection used by permission of
The Institution of Electrical Engineers, Hertford-
shire, England; and MED, a bio-medicine collection.
Details of these collections can be found in Table 1.
(The CACM and CISI collections contain information
other than standard content indicators [FOX831.
However, only the standard content indicators are
used in these experiments. As a result, two queries
have been removed frbm the CACM query collection
since they contain only non-content indicators.) The
size of each auxiliary file and the total size for each
search is given in Table 2. The percentage increase of
the cluster search over the inverted index search is
also included in the Table.

The numbers in Table 2 show that the cluster
search requires a significant amount more disk space
than the inverted index search (an increase of 7d-
100%). The cluster search requires larger amounts of
disk space due to the number of centroids that need to
be stored-the centroid file is larger than the inverted
index for each of the collections.

Secondary storage is relatively inexpensive; a
more critical factor of the efficiency of a search is the
amount of time it takes TV retrieve a set of documents.
This topic is discussed in the next section.

4. Processing Time Requirements
As was mentioned in the introduction, the total

time to process a query is assumed to be the sum of the
CPU time and the I/O time. The CPU time is the time
the main processor devotes to retrieving documents
for the query. The I/O time is the amount of time the
search spends waiting for pages to be retrieved from
the disk.

4.1. CPU Time
The CPU time is measured by the number ofideal-

ized madhine instructions performed in the search.
Each (floating point) addition, (floating point) multi-
plication, comparison, pointer increment, and array
indexing is counted as one operation. The instruc-

Table 2: External Storage Space in Bytes for Inverted Index and Cluster Searches

168

for (each query term list) {
if (at end of list) (

go to next list;

1

(1 instruction)

sims[current did] + = query term wt + dot term wt, (3 instructions)
increase list ptr to point to next did in list; (1 instruction)

1

a) inverted index search

m= 0;

bite (true) {
if (query concept num > dot concept number) {

increase dot ptr;
if (at end of dot) {

exit loop;

I
1
else if (query concept num < dot concept number).{

increase query ptr,
if (at end of query) {

exit loop;

1
1
else (

4

sim + = query term wt l dot term wt;
increase query ptr;
if (at end of query) {

exit loop;

1
increase dot ptr;
if (at end of dot) {

exit loop;

1
1

(1 instruction)
(1 instruction)
(1 instruction)

(1 instruction)
(1 instruction)
(1 instruction)

(2 instructions)
(1 instruction)
(1 instruction)

(1 instruction)
(1 instruction)

b) cluster search

Figure 3: Ldeahzed Instruction Counts for Both Searches

tions are counted only in the main part of each search
(i.e. no initialization costs are included). For the in-
verted index search, Figure 3(a), the main loop is the
loop whkh processes each inverted list. Five machine
instructions are required for each document id in the
lists. For the top-down search, Figure 3(b), the main
part is computing the similarity between a given
query and document or centroid vector. The cluster

search performs three instructions for each term that
appears in exactly one of the query and centroid (or
document) vectors and six instructions when a match
occurs.

4.2. I/O Time
The amount of information that needs to reside in

core at any given time is not very large for any of the
searches. Assuming the inverted lists contain the

169

weights of the terms in the documents, the inverted
index search requires only the inverted lists of each
query term. The top-down search needs to keep the
hierarchy nodes that have been visited and the cur-
rent centroid or document vector in core. Each vector
is needed only once (if it is needed at all) so the same
memory location can be used for each vector. The
hierarchy nodes may be accessed more than once, so
they must be stored in separate locations. Since each
node consists of only 24 bytes and the top-down search
is closer to a depth-first search than a breadth-first
search, the amount of space required by the hierarchy
tiodes is not excessive. For example, the mean num-
ber of nodes accessed in the top-down search of the
complete link hierarchy for the INSPEC ‘collection is
8’73 (requiring only 20,952 bytes of core). These mem-
ory usage considerations do not include the memory
needed by the program variables such as the array of
similarities for the inverted index search and the
heap used to store the similarities in the cluster
search.

Any modem computer..will have enough memory
to meet these demands, and thus no paging strategy is
considered in the experiments. That is, it is assumed
that if a page that has already been brought into main
memory for this query is accessed again, the page still

resides in core. The UO time of a search, therefore, is
proportional to the number of data pages that are
accessed‘ at least once, and this figure is used as the
measure of the I/O cost of a search. This measure
makes the unrealistic assumption that each page
access takes the same amount of time. In fact,, the
time necessary to access a page is the sum of the seek
time, the rotational delay, and the data transfer
times, so some page accesses are less expensive than
others. However, the experiments do not use this
level of detail.

Another implicit assumption in this measure is
that the cost of presenting the same number of docu-
ments as output is approximately equal for the two

searches. This assumption is also untrue: the natural
language text for the top-down search can be stored in
cluster order while the text for the inverted index
search is stored randomly. Clustering the text should
cause fewer disk accesses to be required since docu-
ments on the same page are likely to be retrieved to-
get&r. Furthermore, the cost of accessing sequential

.

pages is less than accessing the same number of
random pages. However, due to the small number of
documents retrieved, this difference is negligible
compared to the difference in the number of disk
accesses required in the searches themselves.

In order to count the number of pages accessed
during a search, some allocation of the data to pages
must be assumed. The model of page allocation used
in these experiments is a compromise between mak-
ing the searches as efficient as possible and accurately
modeling an operational environment. Collection
maintenance - retiring old documents and adding
new documents - is an important consideration in an
operational environment. Thus the model cannot
assume the pages are allocated in such a way that the
efficiency would seriously deteriorate or the entire
collection would need to be reconfigured if new
documents are added to the collection.

The page length is assumed to be 4096 bytes.
Inverted index headers are packed into as few pages
as possible without splitting a header across page
boundaries. Each list starts on a new page and takes
as few pages as possible without splitting a tuple
across page boundaries. Starting each list on a new
page allows the index to be easily enlarged when doc-

uments are added to the collection, and is more repre-
sentative of larger collections where each query term
is likely to require a page access. Hierarchy nodes
that are siblings are stored together beginning on a
new page; they take as few pages as possible without
splitting a node across page boundaries. The vectors
associated with sibling nodes are also packed into as
few pages as possible. Having only siblings pn a page
(as opposed to packing hierarchy nodes as tightly as
possible) allows the hierarchy to be easily updated
when documents are added to or removed from the
collection. It also makes the model more realistic of
larger collections since this implementation renders
back-tracking more expensive than it would be with a
packed representation.

4.3. Processing Time Experiments.

The efficiency statistics for the searches are
presented in Table 3. The statistics given are the
mean number of idealized machine instructions per-
formed and the mean number of pages accessed for the
query set of each collection assuming each query is

170

Table 3: Efficiency Statistics for Inverted Index and Cluster Searches

independent of all other queries and twenty docu-
ments are to be retrieved. Table 3 also includes the
mean number of seconds to process a query assuming
a page access takes .03 seconds (approximately 30
pages per second) and a machine instruction takes 1
microsecond.

The inverted index search is clearly more efficient
than the cluster search: the cluster search performs
663% (INSPEC) to 2184% (MED) more machine
instructions and accesses 488% WED) to 948% (CISI)
more pages than the inverted index search. The
difference is caused by the fact that the inverted index
search takes full advantage of the sparsity of the
document vectors. In the inverted index search, only
the terms that appear in both the document (or cen-
troid) and the query are used. In the cluster search, a
large percentage of the documents are avoided, but
the centroids and documents that are encountered are
exhaustively examined. Note in Figure 3(b) a term
that occurs in only one of the query or document vec-
tor causes three machine operations but contributes
nothing to the similarity; terms that occur in both

vectors cause only six machine instructions. This
problem is exacerbated in the search of the complete
link hierarchy since that hierarchy is so bushy - every
search begins by examining many long centroids.

5. Shorter Centroids
Both the extra disk space and the extra processing

time needed by the cluster search have been attrib-
uted to centroids. Clearly if shorter centroids were
used the efficiency of the search would improve, al-
though the effectiveness might suffer. This section
investigates the effect of decreasing the maximum
length of centroid vectors.

5.1. Effectiveness
The cluster search was repeated on each collection

using centroids of both maximum length 100 and
maximum length 75. The effectiveness of the searches
is summarized in Table 4. Three different statistics
are given for each search: the mean precision after ten
(top number1 and twenty (bottem number) documents
are retrieved, the total number of relevant documents
retrieved by all queries after ten and twenty docu-
ments are retrieved, and the total number of queries

Table 4: Effectiveness of Inverted Index and Cluster Searches

I collection -
mean to.aJe~ x q’s ‘7;: total #
prec . . rel. ret.

q’s mean total # x q,s
prec rel. ret. mean 22Ez prec . . # q’s

CACM .230 115 -260 130 .252 126 .248 124 .185 185 E .215 215 3 -213 213 ; .199 199 68

.
CISI .269 22 5’ .291 ::z 9 :E 108 .260 .241 37 .274 6 177 .237 I%3 36

INSPEC .384 296 i :E 298 10 -397 306 -373 287 6
.315 485 475 5 .314 484

:
.284 437 4

I lKED I :!fi I :fP I x I :iE I ~:os I : I :tz I 32:: I 00 I :fXX I ::x .I x

171

Table 5: Cluster Search Sizes for Varying Maximum Centroid Lengths

I

,
centroid file size in bytes % decrease in centroid size % increase in total size over

inverted index search

75 100 250 1001250 75l250 75lLOO 75 100 250

CACM 978,376 1,136,896 1,481,320 23 34 14 34 41 74

CISI 766,328 936,240 1.375.536 32 44 18 23 39 73

INSPEC 6J10.384 7,160,564 9;685,704 26 37 15 47 62 99

MED 564,864 711,512 1,132,544 37 50 21 11 26 71

that retrieved no relevant documents after ten and
twenty documents are retrieved.

For all centroid lengths, the cluster search is more
effective than the inverted index search after ten
documents are retrieved; in fact, the mean precision of
the cluster search using centroids of maximum length
100 is greater than that of the search using centroids
of maximum length 250. Note, however, that more
queries retrieved no relevant documents in the search
that used centroids of maximum length 100. In gen-
eral, the search that used centroids of maximum
length 75 had more queries that retrieved no relevant
documents than any other search, and its mean,preci-
sion was worse than that of the search in which cen-
troids were restricted to a maximum length of 100.

5.2. Disk Space
The disk space in bytes used by the cluster search

is given in Table 5; also included in the Table are the
percentage decrease in the size of shorter centroids to
the size of longer centroids, and the percentage
increase of the total size for the cluster search to the
total size for the inverted index search. Although
there is some decrease in the required space when the
centroids are shortened, the decrease is not large
enough to make any centroid file smaller than the
inverted file of the document collection (see Table 21.
For the large INSPEC collection, the total size needed
by the cluster search with centroids of maximum
length 75 is still 47% larger than the total size needed
by the inverted index search.

Note that the space required by the centroida does
not decrease as much as might be expected when the
maximum centroid length is reduced to 100 from 250.
Indeed, a decrease of at most 37% is observed in the
sire of the centroid tile (whereas the maximum cen-

troid length was reduced by more than half). This
minimum amount of reduction can be attributed to
the shape of the complete link hierarchy: since the
hierarchy contains small, tight clusters, some clu&s
do not contain more than 100 distinct terms. More
clusters contain at least 75 terms, so the decrease in
size from a maximum length of 100 to 75 terms is pm-
portionally larger.

5.3. Processing Time
Although some clusters do not contain 100 terms,

top-level clusters are the most likely clusters to
contain many terms since they are the largest clusters
in the hierarchy. Thus in spite of the relatively small
reduction in size, significant processing time may be
saved by using shorter centroids in the cluster search.

The processing time results are given in Table 6.
The inverted index search is still the most time eff&
cient search. Unsurprisingly. using shorter centroids
is always more effcient than using longer centroids.
Somewhat more surprisingly, only the INSPEC
collection exhibits a large decrease in the number of
pages accessed. An explanation for this behavior can
be found in Table 7 which contains the mean number
of pages accessed to retrieve hierarchy nodes and the
mean number of pages accessed to retrieve vectors.
When shorter vectors are used, the number of pages
accessed to retrieve vectors decreases but the number
of pages accessed to retrieve hierarchy nodes
increases. It is harder to distinguish among clusters
when shorter centroids are used, and thus the search
with shorter centroids is broader than the search with
longer centmids. The slight increase in the number of
pages accessed due to’backtracking is negligible only
for the large INSPEC collection.

172

Table 6: Processing Time of Inverted Index and Cluster Searches

I inverted index search
I

clvster search
I

cluster search
centroids of length 75 centroids of length 100 I

cluster search
centroids of length 250 I

mean
pages

133.6 4.09 .91,186

148.1 4.49 61,021

218.1 6.76 276,867

sets mean
instrs

mean
I

SfXS

pages

257.2 1 7.99 1517.9991 418.3 1 13.07 1

Table 7: Mean Page Accesses to Retrieve Hierarchy Nodes and Vectors in Cluster Search

0. Summary
In earlier work, a top-down search of the complete

link hierarchy was shown to be more effective than an
inverted index search lGRIF84, VOOR861. Unfortun-
ately, the results of this study show the cluster search
is much more expensive than the inverted index
search in terms of both disk space and processing
time. Decreasing the maximum length of centroids
increases the efftciency of the cluster search, espe-
cially for large collections, and the. centroids can be
made quite short before the effectiveness of the clus-
ter search suffers. However, the centroid length can-
not be reduced enough to make the cluster search as
effmient as the inverted index search while remaining
as effective as the inverted index search.

It should be stressed that these experiments try
only one method of increasing the efficiency of the
cluster searches. Other ways of increasing the effi-
ciency of the cluster search without sacrificing its
effectiveness should be investigated. For example,
inverting the top-level centroids of the hierarchy and
starting the cluster search by doing an inverted
search on those centxoids shopld save time and would
not increase the disk storage (since the iqverted
centroids could be removed from the direct centroid

file). Furthermore, the effectiveness would remain the
same since the same clusters would be explored.

Similarly, it may be possible to modify the
complete link hierarchy to make searching it easier.
An obvious possibility is to cluster the top-level
centroids using some other clustering method and
thus add several new levels to the hierarchy. Such a
hybrid hierarchy would be more time efficient to
search since fewer centroids would be at the new top
level, but the same effectiveness would no longer be
guaranteed.

Cluster searching also affords the possibility of
storing the natural language text of a document with
its representative in the cluster hierarchy. This may
increase the efficiency of the cluster search by avoid-
ing additional page accesses when displaying the
retrieved documents to the user. This enhancement is
not possible with the inverted index search since the
terms of a document are usually spread throughout
the index.

Acknowledgments
Thanks go to Professor Gerard Salton and the

members of the SMART group at Cornell for many
helpful discussions, and especially for suggestions on
how to improve the efficiency of the cluster searches.

173

References
[BUCK851 Buckley, C. A., Lewit, A. F., “Optimiza-
tion of Inverted Vector Searches”, Proceedings of the
Eighth Annual Znternational ACM SZGZR Conference
on Research and Development in Information Retriev-
al, pages 97-110,1985. ACM order number 666850.

[FOX831 Fox; E. A., “Characterization of Two New
Experimental Collections in Computer and Informa-
tion Science Containing Textual and Bibliographic
Conceptz?, Technical report 83-560, Department of
Computer Science, Cornell University, September
1983.

[GRIF84] Griffiths, A., Robinson, L. A., Willett, P.,
“Hierarchic Agglomerative Clustering Methods for
Automatic Document Classification”, The Journal of
Documentation XL(3):175-205,1984.

[GIUFSS] Griffiths, A., Luckhurst, H. C., Willett, P.,
“Using Interdocument Similarity Information in
Document Retrieval Systems”. Journal of the Amer-
ican Society for Information Science XXXVII(1):3-11,
1986.

[JARD711 Jardine, N., van Rijsbergen, C. J., The
Use of Hierarchic Clustering in Information Retriev-
al”, Znformation Storage and Retrieval VII(5):217-
240,197l.

@MAR711 Salton, G., editor, The SMART Retrieval
System: Experiments in Automatic Document Process-
ing. Prentice-Hall, 1971.

[VOORSS] Voorhees, E. M., The Effectiveness and
Eficiency of Agglomerative Hierarchic Ctustering in
Document Retrieval, PhD thesis, Cornell University,
1986.

