
Optimised Phrase Querying and Browsing of Large Text Databases

Dirk Bahle Hugh E. Williams Justin Zobel
dirk@mds.rmit.edu.au hugh@cs.rmit.edu.au jz@cs.rmit.edu.au

Department of Computer Science, RMIT University
GPO Box 2476V, Melbourne 3001, Australia

Abstract

Most search systems for querying large document

collections---for example, web search engines---are based

on well-understood information retrieval principles• These

systems are both efficient and effective in finding answers

to many user information needs, expressed through infor-

mal ranked or structured Boolean queries. Phrase querying

and browsing are additional techniques that can augment

or replace conventional querying tools. In this paper, we

propose optimisations for phrase querying with a nextword

index, an efficient structure for phrase-based searching. We

show that careful consideration of which search terms are

evaluated in a query plan and optimisation of the order of

evaluation of the plan can reduce query evaluation costs by

more than a factor of five. We conclude that, for phrase

querying and browsing with nextword indexes, an ordered

query plan should be used for all browsing and querying.

Moreover, we show that optimised phrase querying is prac-

tical on large text collections.

1 Introduction

On the world-wide web, document databases of more

than one billion documents I are searched more than 94 mil-

lion times per day.2 Users expect all documents to be stored

online and to be readily able to locate documents in re-

sponse to simple queries. Web search engines are based on

well-understood information retrieval principles. They are

1From http : / / w w w . google, corn/

2From http ://www, searchenginewatch, com/

efficient--that is, able to find documents qu ick ly- -when

users pose informal ranked queries or Boolean queries to

return a list of documents as answers. And they axe effec-

tive, that is, able on average to find documents that satisfy

users' information needs [8].

For some alternative query types, conventional infor-

mation retrieval systems are less efficient. For example,

conventional systems axe not opfimised to evaluate phrase

queries, where the order and adjacency of words are impor-

tant. When posed to a search engine, phrase queries are dis-

tinguised by quotation marks; the phrase query "Richmond

Football Club" only returns matches that contain the exact

quoted phrase. Such query types are important: web search

engine databases are growing in size and new techniques to

refine information needs are becoming more important.

While conventional systems are not optimised for phrase

queries, there are other query types- -such as phrase brows-

ing-- they do not support at all. Phrase browsing permits a

user to explore a document collection by providing a phrase

and exploring the words that occur in the context of that

phrase. Consider a user who begins browsing with the word

"Richmond". Through browsing, the user may discover

that selected words such as "FC", "Football", "precinct",

"station", and "Tigers" can all be added to the word "Rich-

mond" to form a two-word phrase. A two-word phrase such

as "Richmond station" might in turn be able to be extended

to "Richmond station timetable" or "Richmond station plat-

form". After refining a phrase, a user could return to con-

ventional querying to formulate a better informal query, or

the user could retrieve documents containing the browsed

phrase.
We have previously proposed efficient data structures for

l l
1530-0900/01 $10.00 © 2001 IEEE

special-purpose phrase querying and browsing [10]. We

have shown that these structures can permit phrase search-
ing that is two to four times faster than with an efficient

conventional system. Phrase browsing is much slower:
for short two-word phrases, browsing is between three and

thirty times slower than phrase querying, while for longer

five-word phrases it is between one-and-a-half and four

times slower.

In this paper, we propose and test optimisations to im-

prove the efficiency of phrase querying and browsing. We

show that generating query plans and optimising the order

in which words are processed can reduce phrase querying

costs by more than a factor o f five over a naive approach.

With these optimisations, phrase querying and browsing is

practical on large text collections and can be used in most
situations where conventional querying techniques are ap-

plied.

2 Searching Text Databases

Information retrieval (IR) s y s t e m s - - w e b search engines

are the best k n o w n - - a r e most often used to resolve infor-
mal or ranked queries. Ranked queries are typically a bag

of words, and the answers are the documents in a text repos-

itory that have the highest estimated statistical likelihood of

being perceived as relevant to the query [8] [11]. For exam-

ple, a query such as

1980 Richmond premiership victory Bartlett foot-
ball VFL

would be statistically compared to each document in the

text database, using properties including the frequency of

query words in the documents and the relative rareness of

the query words.

Query evaluation in an efficient IR system is supported

by an inverted index consisting of a vocabulary and, for each

term in the vocabulary, a list of information about where the
term occurs [1] [11]. The simplest inverted index structure

for evaluating ranked queries has, for each word in the vo-
cabulary, a list o f documents that contain that word and a

count of occurrences of that word in each document. The
inverted list for the term "Richmond" might have the struc-

ture:

1: 8; 2: 11; 1: 100 ; . . .

showing that the word "Richmond" occurs once in docu-

ment 8, twice in document 11, once in document 100, and
so on. With the document numbers in sorted order, and

the frequencies typically being small integers, this data can

be compressed to less than 10% of the size of the indexed

data [9] [11].

Ranked query evaluation with an inverted index proceeds

as follows. First, each of the query terms is searched for in

the in -memory vocabulary. Second, the inverted list of fre-

quencies and documents in which each query term occurs is

retrieved f rom disk. Third, a similarity between the query

and each of the documents containing the query terms is cal-

culated, with the similarities stored in accumulators. Last,

the top-scoring d o c u m e n t s - - o r short summar i e s - - a r e re-

trieved f rom disk and presented in ranked order to the user,
requiring a two-step lookup through a mapping table that

maps document numbers to physical disk offsets.
This inverted index structure can also be used to evaluate

Boolean queries. For example, the Boolean query:

(1980 AND premiership) OR Richmond

can be evaluated through intersecting the two lists of doc-

uments for the words "1980" and "premiership", followed

by taking the union of the result with the list o f documents

for "Richmond" . To support only Boolean querying, the

document f requency need not be stored.
Ranked and Boolean retrieval are sufficient to meet many

information needs. However, addition of phrases to either
query mode can more clearly specify an information need

and has been shown to improve effectiveness [2] [12]. For
example, a ranked phrase query:

"Richmond Football Club" premiership 1980

contains three terms, one of which is a phrase. Another

technique is phrase browsing, where terms in the vocabu-

lary are explored in the context in which they occur in the

database [3] [7] [10].

To support phrase querying, word positions must be
stored in the index. For example, the inverted list for the
term "Richmond" might be:

1: 8 ; 2 2 2 : 1 1 ; 7 , 4 4 1 : 100; 1 2 . . .

showing that the term occurs once in document 8 as the
22nd word, twice in document 11 as the 7th and 44th words,

once in document 100 as the 12th word, and so on. Phrase

12

browsing cannot be supported with this structure; we de-

scribe a structure that supports phrase browsing in the next

section.

To evaluate the phrase term of our phrase que ry - - "R ich -
mond Football Club" we read in the above list for the

word "Richmond" and create an in-memory list for further
processing. Next, we read in the inverted list for "Football"

and merge this list with our in-memory list. I f the "Foot-

ball" list has the following structure:

1: 7; 122: 11; 8 ,45 1: 100; 3 . . .

our merging process will identify that the phrase does not

occur in documents 7, 8, or 100. The partial phrase "Rich-

mond Football" does occur in document 11 beginning at

positions 7 and 44. Depending on the "club" list, we may

identify the complete phrase at either of these offsets.

In the next section, we describe a structure we have pre-

viously proposed to support more efficient phrase querying.

Moreover, the structure supports phrase browsing, which is

not possible with the structures described in this section.

3 Phrase Querying and Browsing

We have previously described the nextword index struc-
ture for phrase querying and browsing [10]. A nextword

index stores the words that occur in a collection and, for

each such word, the words that immediately follow that

word anywhere in the collection. Stored interleaved with

the following words- - the nextwords- -are pointers to in-

verted lists that store the documents and offsets o f the two-

word phrases in the collection.

Consider an example entry in a nextword index as shown

in Figure 1. The top of the figure represents the in -memory

vocabulary of the collection; selected words in the range
"rich" to "ride" are shown. Each word is interleaved with

pointers to the disk positions of nextword lists. The next-

words for the term "Richmond"---which occurs, say, twenty

times in a document col lect ion--are shown in the middle

section of the figure. There are six nextwords: "FC", "Foot-
ball", "precinct", "premiership", "station", and "Tigers".

Interleaved with the nextwords are pointers to inverted lists.

The bottom of the figure shows that the phrase "Richmond

premiership" occurs four times in three documents, 6, 12,
and 47; the vector structure is as described in Section 2.

FC football precinct premiersh~station Tigers

12:6;4,171:12;251:47;3]

F i g u r e 1. Organisation of a nextword index.

As words and nextwords are sorted, each can be com-

pactly stored using front-coding. With frontcoding, each

word is stored as two integers and a suffix. For exam-

ple, the nextword "premiership" can be stored as "3,8,mier-
ship" since it has a three-character prefix in common with

"precinct" and an eight-character suffix "miership". The

inverted lists for each word-nextword pair are stored com-
pressed using Golomb and Elias variable-bit integer coding

schemes [4] [5] [9] [11].
Phrase querying with a two-word query "Richmond pre-

miership" and a nextword index proceeds as follows. First,

the word "Richmond" is looked-up in the in-memory vo-
cabulary and the disk position of its nextword list retrieved.

Second, the nextword list is decoded, searching for the word
"premiership". Third, when "premiership" is found, the

disk position of the inverted list for the phrase "Richmond

premiership" is retrieved. Fourth, the inverted list for the

phrase is retrieved and decoded. Last, the three documents

containing four occurrences of the phrase can be retrieved

and presented to the user.
For longer phrase queries, nextword inverted lists are

merged in the same way as inverted lists are merged for
phrase querying with conventional structures. An optimi-

sation with nextword indexes for longer phrase queries is
to determine an evaluation order where rare pairs are pro-

cessed first to create the shortest possible in-memory lists.

More importantly, processing rare pairs first may permit fast
early termination of querying when a phrase does not occur

in the collection. We discuss this in detail in the next sec-

tion.
Phrase querying with a nextword index is almost always

13

more efficiem than with a conventional inverted index, with

most phrase queries being evaluated four times as fast as

with a conventional inverted index [10]. The only exception

is where the first word of a pair is a common word (such as
"the") and the second word is a rare word (such as "aard-

vark"). In this case, the nextword list o f " t h e " is long----only

slightly shorter than a regular inverted l i s t - - and querying

with a nextword index is just over two times faster than with
a conventional structure.

Nextword indexes also support monodirect ional phrase

browsing. Given a word, the nextword list can be used
to identify all the words that follow that word without re-

trieving any inverted lists. More generally, for a longer

phrase, the inverted lists for the nextwords following the

last word "in the phrase can be retrieved. These lists then

can be checked against the in -memory list, and the words
that follow the phrase shown to the user. This process of

phrase browsing is much slower than phrase querying and

highly dependent on the length of the nextword list for the
final word in the phrase. In our experiments, we found that

i f the final word is common, phrase browsing can be up to

20 t imes slower than querying, while if the word is rare then

phrase browsing is less than 3 t imes slower.

In the next section, we present new optimisations to
further improve the efficiency of nextword-based phrase

querying and browsing.

4 Optimised Phrase Browsing and Querying

As we discussed in the last section, we have previ-

ously observed that careful query plan generation for longer
phrase queries is crucial to efficiency. In this section, we

propose four al tematives for query plan generation and eval-

uation.

There are two aspects to query plan generation: first, the

selection of which word-nextword pairs are to be evaluated;

and, second, the order o f evaluation of the selected word-

pairs. We begin by discussing selection of word-nextword
pairs, and return to evaluation order later in this section.

Choosing word-pairs

For a two-word phrase, query resolution is simple and

unambiguous. A two-word q u e r y - - s u c h as "Richmond
Tigers" is resolved by retrieving a single inverted list for

the word-nextword pair and decoding this list. A three word

query requires that two lists are retrieved, that is, inverted
lists for both word-nextword pairs in the query must be

evaluated to determine the documents that contain the query
phrase. For example, the query "1980 year o f" requires the

retrieval and merging of the two inverted lists for the word-
pairs "1980 year" and "year of".

For query phrases longer than three words, selected

word-pairs need not be evaluated. A four-word q u e r y - -

such as "1980 year of the" requires only the retrieval and

merging of two inverted lists, in this case for the word-pairs

"1980 year" and "of the". Only two word-pairs need to be

evaluated since, i f "o f the" occurs at an offset o f two after

"1980 year", we know the phrase occurs in the document.

We do not need to retrieve the list for "year o f " since, i f

" o f the" follows "1980 year", then "year" and "o f " are ad-

jacent. More generally, to resolve a query, each word in

phrase need only be evaluated as a m e m b e r of one word-

pair, that is, as either a word or a nextword. The exception,

as we have seen for a three-word query, is when the query

is of an odd-length there is one overlapping word-pair.

For a five-word or longer odd-length query, we have
choice as to which nextword pairs are evaluated. For exam-

ple, for the five-word query "1980 year o f the Tiger" there

are two possible query plans. We could choose to evaluate:

"1980 year", "o f the", and "the Tiger"

or we could choose to evaluate:

"1980 year", "year of" , and "the Tiger"

Both plans are complete since they both evaluate all words

as either the first or second word in a word-pair. The differ-

ence in the plans is which word-pair is chosen as the over-

lapping word pair for the odd-length query.

A naive query plan generator would choose the first al-

ternative, that is, it would choose non-overlapping pairs

f rom left-to-right, and finish by choosing the overlapped

pair "of the" and "the Tiger"; we report experiments with

naive query plans in the next section. We might speculate

that the second query plan would be more efficient, since

it involves evaluating the pair "year of" - - -which is likely to

have a short inverted l i s t - -and avoids the pair "o f the"---

which is likely to require retrieval and merging of a much
longer inverted list.

14

A simple metric for estimating the cost of a query plan is

to sum the nextwords for each first-word in a pair; there are
other alternatives, but nextword-count is efficient since it is

held in memory with the vocabulary. In our example, the
first plan may have a cost of 20 nextwords for "1980", plus

a cost of 10,000 nextwords for "of" , and 40,000 nextwords

for "the", giving a total o f 50,020. The second plan may
have a cost of 20 nextwords for "1980", plus a cost o f 70

nextwords of "year", and 40,000 nextwords for "the", giv-

ing a total o f 40,090. With this min imum query plan metric,

the second query plan is cheaper.

More generally, for an odd-length query of length r~,

there are [n/2J possible minimum query plans, that is,

query plans with the same min imum count of inverted lists

that must be retrieved. For each such minimum query plan,

[n/2J + 1 word-pairs must be evaluated. For an even-length

query, there is exactly one min imum query plan that is iden-
tical to the naive plan, since an overlapping word-pair need

not be evaluated; an even-length query plan requires that

n/2 word-pairs are evaluated. We report experiments in

the next section with a min imum query plan generator that

chooses a query plan with the smallest sum of nextwords.

Interestingly, evaluating more than the minimum set of

word-pairs in both odd and even queries can offer faster

query evaluation. Consider an eight-word query "Richmond
FC then won often in about 1995". We may speculate that

the best query plan for this query would avoid the long lists

for " then" and "in" by avoiding the "then won" and "in
about" word pairs. To do this in our example, we need to

evaluate two overlapping pairs: first, "Richmond FC" and

"FC then"; and, second, "won often" and "often in". To

complete the query, we also need to evaiuate "about 1995"

giving a total o f five pairs in the query plan while the mini-
m u m is four.

We call this scheme of avoiding word-pairs with high

nextword frequencies an ordered query plan. In this
scheme, word-pairs are ordered f rom least-nextwords to

most-nextwords and pairs added to the query plan until all

words are members of at least one word-pair. In the worst

case, for a query of length r~, a total of n - 1 word-pairs

may be evaluated. We report experiments with the ordered

query plan generator in the next section.

Evaluation order of query plans

Evaluation order of query plans is also important. I f a

phrase does not occur in the collection, and we can identify
this without processing the complete query plan, then early

query termination is possible.

For all query plan generators, we first check if the words
in the query occur in the collection. I f any word does not oc-

cur, we can report that the phrase does not occur. I f all terms
do occur in the collection, we can then sort the word-pairs

selected as members of the query plan from least-nextwords

to most-nextwords and evaluate the pairs in that order. This

permits two efficiencies: first, the in-memory list will be

as short as poss ib le- -s ince it is created from the shortest

nextword list in the phrase- -and , second, it permits fast de-

tection of a phrase that does not occur through comparison

of the offsets of rare pairs that are less likely to occur in

proximity by chance.

As an example we return to our phrase query "Richmond

FC then won often in about 1995" and assume that each of
the eight words occur in our collection. For this even-length

query- -assuming we use a naive or minimum query p l a n - -

we might elect to process the pairs:

"Richmond FC", "then won", "often in", and

"about 1995"

We would then sort the query plan from lowest first-word

nextword count to highest:

"Richmond FC", "often in", "about 1995", "then

won"

and begin by evaluating the rarest pair, "Richmond FC". We

retrieve the inverted l i s t - -which is the shortest o f all word-
pairs in the que ry - -and create an in-memory list. To this

list, we merge the list o f "often in". I f "often in" does not
occur immediately after "Richmond FC" in any document,

we can report to the user the phrase does not occur.
For phrase browsing, query plan generation is similar.

The significant difference is that we must retrieve the next-
words of the final word in the phrase, meaning that f rom a

plan generation perspective an even-length phrase becomes

an odd-length phrase, and an odd-length phrase an even one.

15

5 Experiments

In our experiments, we used 981 megabytes of words 3

extracted from the TREC Very Large Collection web data
(WEB) and 508 megabytes of the Wall Street Journal (wsJ)
f rom TREC disks 1 and 2 [6]. TREC is an ongoing interna-

tional collaborative information retrieval experiment spon-

sored by the NIST and ARPA. The nextword index for wsJ

requires 278 MB of disk space or 56% of the collection size,

while the WEB index requires 696 MB or 71% of the collec-

tion size; these indexes are large compared to conventional
indexes, while still being practical. Details o f the index size,

construction, and compression can be found elsewhere [10].

Queries for our query plan generation experiments were

drawn from both ws1 and WEB. For both collections, we

carried out the same three-step process:

1. We extracted 100 random ten-word queries beginning

with a common word; a common word was one of the

100 words with the highest nextword count.

2. We then extracted 100 random ten-word queries be-

ginning with a medium-frequency word; a medium-

frequency word was one of the 100 words around the

median nextword frequency in the collection.

3. Last, we extracted 100 random ten-word queries be-

ginning with a rare word; a rare word is a word with
only one nextword.

After completing this process, we had 600 queries in six

classes, where half were ten-word queries from w s J and

ha l f were ten-word queries from WEB. We call these

six classes COMMON-WEB, MEDIUM-WEB, R A R E - W E B ,

COMMON-WSJ , MEDIUM-WSJ , a n d RARE-WSJ .

We then took each of the 600 ten-word queries and pro-

duced 600 nine-word queries by removing the last word

f rom each query. We then produced 600 eight-word queries

by removing the last word f rom the nine-word queries, and

so on, until we had two-word queries. The final result was
9 sets of 100 queries in each of the six classes described

aWe removed non-words, including punctuation, special characters,
SGML and HTML markup, sequences of ASCII characters containing
more than two integers or beginning with an integer, and sequences of
ASCII characters containing special characters. As an example, the word
"don't" is represented as "dont", while non-words such as "1996", "08-
362-3106", and "27th" are removed.

above, that is, 100 queries of each length between 2 and 10

in each class. In total we had 5,400 queries.

Before running each set o f 100 queries, we flushed all

sys tem caches for a "cold start". That is, we ensured that for
the first query in each set all index data is fetched f rom disk.

After that, index entries may be cached for the 99 remain-
ing queries in the set. All experiments are carried out on

an Intel Pent ium HI-based machine with 256 Mb of RAM

under light-load; all reported measurements are of elapsed

t ime for index processing, without fetching of answer doc-

uments.

Figure 2 shows the average t ime taken to evaluate all

COMMON-WEB queries of lengths two to ten with the naive

unsorted, naive sorted, ordered (by definition sorted), and

min imum sorted query plan generators on the WEB collec-

tion. The results are not surprising: each of the queries oc-

curs in the collection, so early termination o f querying is not

possible and the schemes per form similarly. Overall , the

ordered query plan generation is more efficient for longer
queries, since in some cases processing additional over-

lapped lists permits avoidance of word-pairs with long in-

verted lists. As expected, the min imum scheme chooses bet-
ter overlaps than the naive scheme for odd-length queries,

but is identical for those of even-length. Sorting the naive

plan makes little difference, with the only significant benefit

that a sorted query plan creates a smaller initial in -memory

inverted list. We observed similar results with the MED-

IU M-W E B a n d R A R E - W E B queries on WEB, as a g a i n w i t h

t h e C O M M O N - W S J , M E D I U M - W S J , a n d R A R E - W S J queries

on wsJ ; we do not report these results in detail here.

Figure 3 shows the average t ime taken to evaluate all

COMMON-WSJ queries of lengths two to ten with the naive

unsorted, naive sorted, ordered, and min imu m query plan

generators on the WEB collection. Many o f the COMMON-

WSJ queries do not occur in the WEB collection and, there-

fore, early query termination is possible in m a n y cases, pro-

ducing contrasting results with those of Figure 2. For four-
word queries, the ordered scheme is around 15% faster than

either naive approach, while for longer queries ordered is

more than five t imes faster than the naive unsorted approach

and twice as fast as the naive sorted scheme.

Figure 3 shows the naive unsorted evaluation t imes are
roughly constant for queries of length three or more, sug-

gesting most o f the cost is in evaluating the commonly-

16

0

0.3 Naive Unsorted ~ - " ~ - = - - ' ~ f / I ' ' ~ ' ~ - . .
- - - , - - - Naive Sorted
- ~ - - Minimum Sorted
- ' - ~ - " Ordered .S ' " " ' "

o

, s

Y ".2 --"
. ? . . ~ : ,

0A J

0.0 i i i i

2 4 6 8 10

Q u e r y L e n g t h (W o r d s)

Figure 2. Average time taken to evaluate the COMMON-WEB queries of lengths two to ten (3,600 in total) with the

Naive unsorted, Naive sorted, Ordered (sorted), and Minimum sorted query plan generators on the WEB Collection.

0.20 -

0

0.15 -

0.10 -

0.05

0.00

/p " :-:A ",,
%

Naive Unsorted " -. - . . . \ \ . 1 t ~ " ~ ' ~ , ~
- - ~ - - Naive Sorted "" _.~

. . . . Minimum Sorted "~ -

. Ordered

I I I I
4 6 8 10

Q u e r y L e n g t h

Figure 3. Average time taken to evaluate the COMMON-WSJ queries of lengths two to ten (3,600 in total) with the

Naive unsorted, Naive sorted, Ordered, and Minimum sorted query plan generators on the WEB collection.

17

Common Queries
. Medium Queries
~ ° -

0.10-

.E 0.05 [-

0.00

0.t5 -

I I I I
4 6 8 10

Query length

F i g u r e 4. Average time taken to evaluate the COMMON-WSJ, MEDIUM-WSJ, and RARE-WSJ queries with the ordered

query plan generator on the WEB Collection.

occuring first word and that termination usually occurs after
a few words. For the ordered, m i n i m um sorted, and naive

sorted query plans, average query t imes fall with increasing

query length, as a longer query increases the likelihood o f

finding a term that does not occur in the collection, careful

selection of word-pairs becomes possible, and optimisat ion
of processing order permits early termination. Overall, sort-

ing a query plan has the mos t significant impact on query
cost, while choosing an ordered query plan offers some ad-

ditional improvement.

The ordered approach results are slightly better than the
min imum results, suggesting that selecting more overlap-

ping rare pairs permits earlier termination and that num-

ber of queries is less important than list length. The query

costs for the sorted schemes are slightly less than the naive

scheme for queries of length three, since a shorter initial

i n -memory list is created.

A comparison of the average t ime for evaluating the

COMMON-WSJ, MEDIUM-WSJ, and RARE-WSJ query types

on the WEB collection with the ordered scheme is shown in

Figure 4. The most striking difference in the curves shown

is for shorter queries: this is not surprising since a short

COMMON-WSJ query includes a word such as " the" that re-
quires retrieval o f a tong nextword list, while a RARE-WSJ

query requires only a short list. As query length grows, the
ordered plan permits fast identification of rare pairs and ter-

mination, regardless of the f requency of the first word.

6 Conclusions

The special-purpose nextword index structure supports
fast phrase querying and practical phrase browsing on large

text collections, allowing users to find documents that

would be difficult to locate with other mechanisms.

We have shown that optimised query planning and query

evaluation for querying with a nextword index, can reduce

query times by a factor o f five over the original, naive query

evaluation scheme. With our ordered query plan, the cost
o f evaluating two to ten word phrase queries on a collec-

tion of almost one gigabyte is between 0.1 seconds and

0.3 seconds. Moreover, optimised phrase querying reduces
the costs of nextword-based phrase browsing. Optlmised

phrase querying with nextword indexes is as practical as

ranked or Boolean querying on large text collections.

We are currently investigating techniques to better opti-

raise common-word queries. As part of this work, we are
developing new methods of compressing fists.

A c k n o w l e d g e m e n t s

This work was carried out in the Multimedia Database

Systems group at R M I T University.

18

References

[1] E. Bertino, B. Ooi, R. Sacks-Davis, K.-L. Tan, J. Zobel,
B. Shidlovsky, and B. Catania. lndexing Techniques for Ad-

vanced Database Systems. Kluwer Academic Publishers,
1997.

[2] J. Callan, W. Croft, and J. Broglio. TREC and TIPSTER
experiments with INQUERY. Information Processing and

Management, 31(3):327-343, 1995.
[3] S. Dennis, R. McArthur, and P. Bruza. Searching the world

wide web made easy? the cognitive load imposed by query
refinement mechanisms. In J. Kay and M. Milosavljevic,
editors, Proc. Australian Document Computing Conference,

pages 65-71, Sydney, Australia, 1998. University of Sydney.
[4] P. Elias. Universal codeword sets and representations of

the integers. IEEE Transactions on Information Theory, IT-
21(2):194-203, Mar. 1975.

[5] S. Golomb. Run-length encodings. IEEE Transactions on
Information Theory, IT-12(3):399--401, July 1966.

[6] D. Harman. Overview of the second text retrieval confer-
ence (TREC-2). Information Processing & Management,

31(3):271-289, 1995.

[7] C. Nevill-Manning and I. Witten. Compression and ex-
planation using hierarchical grammars. Computer Journal,

40(2/3): 103-116, 1997.
[8] G. Salton. Automatic Text Processing: The Transforma-

tion, Analysis, and Retrieval of Information by Computer.

Addison-Wesley, Reading, Massachusetts, 1989.
[9] H. Williams and J. Zobel. Compressing integers for fast file

access. Computer Journal, 42(3):193-201, 1999.
[10] H. Williams, J. Zobel, and P. Anderson. What's next? In-

dex structures for efficient phrase querying. In J. Roddick,
editor, Proc. Australasian Database Conference, pages 141-
152, Auckland, New Zealand, Jan. 1999.

[11] I. Witten, A. Moffat, and T. Bell. Managing Gigabytes:

Compressing and Indexing Documents and Images. Morgan
Kaufmann Publishers, Los Altos, CA 94022, USA, second
edition, 1999.

[12] J. Xu and W. Croft. Query expansion using local and global
document analysis. In H.-P. Frei, D. Harman, P. Sch/iuble,
and R. Wilkinson, editors, Proc. ACM-SIGIR International

Conference on Research and Development in Information

Retrieval, pages 4-11, Zurich, Switzerland, Aug. 1996.

19

