
A Complex Biological Database Querying Method
Jake Yue Chen

School of Informatics and School of
Science CIS Department

Indiana University – Purdue
University Indianapolis

Indianapolis, IN 46202, USA
Tel: (01) 317-278-7604

jakechen@iupui.edu

John V. Carlis
Computer Science Department

University of Minnesota
Minneapolis, MN 55455, USA

Tel: (01) 612-625-6092

carlis@cs.umn.edu

Ning Gao
School of Engineering and

Technology ECE Department
Indiana University – Purdue

University Indianapolis
Indianapolis, IN 46202, USA

ngao@iupui.edu

ABSTRACT
Many biological information systems rely on relational database
management systems (RDBMS) to manage high-throughput
biological data. While keeping these data well archived,
organized, and integrated in a common repository is still a
challenging task, performing complex queries, i.e., explorative
and abstract ad hoc user questions in biology, is an even
formidable task often substituted by writing complicated software
programs. In this work, we propose a “complex query modeling”
method to address the challenge of complex querying in
biological domains. Query modeling consists of four distinct but
interdependent phases of activities: representation of high-level
problems, transformation of problems into connected query
interfaces, designing database query structures, and translating
query plans into high-performing SQL statements. At each stage,
we use different notations and query modeling practices. Using
gene indexing project as a case study, we show that query
modeling enables prototypical development of high-quality SQL
solutions to an inherently abstract and vague user query question,
which requires GeneChip designers to sift through millions of
database records, process data in dozens of steps, and make
myriads of intermediate decisions. We believe our “complex
query modeling” method is applicable to other bioinformatics
domains with needs for complex database queries.

Keywords
Database Management System (DBMS), Complex Queries, Query
Modeling

1. INTRODUCTION
1.1 Background
Biological data analysis tasks have become increasingly complex.
An accelerated number of completed genome sequences (more
than 1,000 as reported by NCBI in August 2004) and hundreds of
gigabytes of microarray experimental data sets, for example, have
created an information overload for biologists [1]. On one hand,
there is a great need for new biological information systems to
support data management and data mining efforts in these large
data sets. On the other hand, there is an even greater need for

these systems to support ad hoc scientific data explorations and
hypothesis-driven biological discovery research. It remains a
grand challenge for large biological information systems to
support the above combined goals of biological data miners and
data explorers, due to the inherently different nature of two types
of activities—one emphasizing automated reasoning and the other
emphasizing manual explorations.
A practical scenario of such a grand challenge for existing
biological information systems can be described as follows. A
user, a computer scientist or a biologists or a research team,
usually does not know in advance the detailed cost of an open-
ended complex biological question. Examples of such questions
are “can we define the role of protein X in Wnt signaling
pathways from existing pathway data?” and “find all the gene
expression regulation models of gene family Y from publicly
available microarray experiments”. If a biological information
system attempts to make its own assumptions and present its
automated solutions to the end user, the results will be seldom
significant—since the structure of novel scientific questions
always requires guidance of the innovative minds of domain users
(biologists). In contrast, if the system let the domain user take
complete control and follow the conventional software
development route of solving these questions, it will be too time-
consuming and programming-intensive to accomplish. By the
time a software program solution is fully developed, the initial
question from the user may have evolved into a related one that
requires a different software solution. Therefore, existing
biological information systems, in essence, discourage discovery-
minded users from asking data-intensive complex biological
questions.

1.2 Concepts
In this research, we present a method called complex query
modeling to address the challenge of conquering complex
biological questions in the database context. By complex query
modeling, we refer to the collaborative database query design
process among a team of domain users and database developers to
answer open-ended, explorative, and abstract questions in a
relational database management system (RDBMS). Complex
query modeling consists of four distinct but interdependent phases
of query design activities, which include:

1) Representation of high-level problems, using the task-
action analysis model (Section III-c);

2) Transformation of problems into connected query
interfaces, using the query interface model (Section III-d);

3) Designing database query structures, using the query
structure model (Section III-e);

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAC’05, March 13-17, 2005, Santa Fe, New Mexico, USA.
Copyright 2005 ACM 1-58113-964-0/05/0003…$5.00.

110

2005 ACM Symposium on Applied Computing

4) Translating query plans into high-performing SQL
statements (Section III-f).

Note that we choose to address complex querying problems in the
RDBMS due to two observations in biology. First, most existing
biological information systems are built on RDBMS. Second,
even for specific biological tasks such as BLAST, which has to be
performed outside of the RDBMS, many well-implemented
biological information systems keeps the input/output data of
BLAST in database tables. In either observation, we can make an
abstraction of the user-to-system query environment as database
operators or “virtual database operators” (such as BLAST)
manipulating on data stored in regular or temporary relational
tables.
Representing the structures of complex user questions as different
types of query models graphically characterizes the main
advantage of complex query modeling over other related
approaches, including extended SQL scripting, custom software
development, and workflow management systems [2]. Extended
SQL scripting refers to the use of extended SQL operators and
extended SQL syntax in a specialized RDBMS to write expressive
SQL statements that would otherwise be difficult to write.
Although this querying approach is popular in data integration,
temporal databases, and spatial database applications [3-5], it
cannot help biology users to decompose initially highly abstract
scientific questions in general. Custom software development
supports the documentation of user requirements based on
software engineering principles. However, the development cost
and performance cost (round-trip movement of large amounts of
data from the RDBMS to the software system) are prohibitively
more expensive than developing and running queries in an
RDBMS. Some biological information systems incorporate
workflow management system concepts into their components,
for example, SRS[6], SIBIOS[7], and TAMBIS [8]. These
systems alleviate user custom software development by providing
user customized control flow and data flow design/mapping
support, which is particularly useful in addressing challenges for
information integration from disparate data sources and software
tools. However, none of the workflow-based systems were
developed with solving complex database queries as a specific
goal. We summarize the differences between complex query
modeling and workflow-based system as the following:

1) Complex query modeling provides a formal framework to
analyze, decompose, and translate high-level abstract
biological questions into computationally efficient
database queries, whereas a workflow-based system is a
software platform that uses control flow or data flow
models to enable pipelined execution of complex tasks as
“computational subtasks”.

2) Complex query modeling supports a hierarchical set of
query models at different abstraction levels, while
workflow-based models are represented in just one level.

3) In complex query modeling, query designers ultimately
think of all data sets as “relational tables” in a RDBMS;
they also think of query design as structuring database
operators to work on these “relational tables”. In workflow
modeling, application developers determine a common
data format (e.g., flat file or XML), and use/write software
programs to process these data outside the RDBMS.

For the rest of the paper, we present the complex query modeling
method using the following structure. First, we will present a
practical biological complex query, “how to index all human
genes from public cDNA databases to design microarrays?”
Second, we show a data model design used to support finding
solutions to this complex query. Third, we present four distinct
stages of complex query modeling, each using a different set of
notations to show solutions at different abstraction levels to the
above complex querying problem. Lastly, we discuss the future
development of a database query modeling tool, based on our
prototypical experimentation, to facilitate the adoption of
complex query modeling method in practice.

2. A COMPLEX QUERY EXAMPLE
“How to index all the genes in a target genome from publicly
available DNA/mRNA sequence databases?” is a complex
biological query, which the designers of spotted cDNA
microarrays [9] or high-density microarrays (also called
“GeneChips”) must answer.

The goal of this complex query is to perform gene indexing, or
sequence selections, i.e., to derive a complete set of high-quality,
non-redundant representative sequences to put (called “tile”) on
microarrays by sifting through millions of mRNA, genes, and
expressed sequence tags (ESTs).
To GeneChip designers at Affymetrix, this querying task consists
of these complex steps. [10] First, GeneChip designers collect
gene “superclusters” to be downloaded from public databases.
Then, they “clean out” poor-quality sequences and split initial
superclusters into refined clusters called “subclusters”—each
corresponding approximately to a gene transcript. Next, they
perform a multiple sequence alignment for all sequences within
each subcluster to generate an “assembly”. Then, they determine
a “consensus” (virtual sequence) or an “exemplar” (real
representative sequence) for each subcluster assembly. Lastly,
they keep most representative design sequences (consensi or
exemplars) as the final “design sequences”.
This querying task is challenging, because GeneChip designers
(primary users) must deal with unknown genome biology issues
and large-scale computing issues altogether. On the biology side,
users need to address discovery surprises that arise daily. For
example, UniGene database was found to have inherited many
poor sequence quality problems from GenBank and dbEST
databases, contrary to what UniGene database providers had
claimed. Therefore, gene indexing cannot proceed unless
GeneChip designers developed additional sequence cleaning
procedures such as ribosomal RNAs filtering and low-complexity
region masking. Sometimes, these added quality-guarding data
processing procedures, e.g., subclustering and consensus sequence
determination, introduce additional concerns such as the
introduction of ambiguity nucleotides into designed consensi or
the assembly of wrong sequences into “chimeric consensi”.
Therefore, manual user examination of intermediate query results
and trial-and-error type of experimentation are necessary. On the
computing side, sequence selection involves managing millions of
sequences and moving them through intricate data processing
steps. The starting and ending data sets must be managed by a
RDBMS, which also provides intermediate data tracking
capabilities during the complex querying process. There are
significant challenges for maneuvering large data sets effectively,
because the entire querying process will likely run for days on

111

high-end computer hardware even after the software program are
optimized.
In the next section, we show that complex query modeling makes
it possible to conquer complex biological database queries.

3. COMPLEX QUERY MODELING
3.1 Preparation: Data Model Design

Consensus Sequence
ConsensusID

Supercluster ID (FK)
Subcluster ID (FK)
IdentifiedConsensusID (FK)
Description
Seq String
Region Start
Region End
Direction Flag
Creation Date
Quality_score_5
Quality_score_3

Cluster Method
Method Code

Creation Date
Subcluster Method Flag
Description

Sequence
Sequence ID

Project Code
Reference Seq Flag
Description
Gene Flag
Parent Seq ID (FK)

Supercluster
Supercluster ID

SuperMethod Code (FK)
Creation Date
Description
Discard Flag
Withdrawn Flag
Type
Sequence Count

Cluster Sequence Member
Supercluster ID (FK)
Sequence ID (FK)

Examplar Flag
Discard Flag
Withdrawn Flag
source ID
accession ID
derivation ID
Direction Flag
Duplication Flag
Sequence Type
Description
CAT Description
Trim Flag
Filter Flag
GB Accession ID
Trim Start
Trim Stop
Recluster Flag

Subcluster
Subcluster ID
Supercluster ID (FK)

SubMethod Code (FK)
Creation Date
Description
Withdrawn Flag
Discard Flag
Sequence Cnt
subcluster Type
Redo Flag
Tilling Flag
Tilling Description

Figure 1. A relational data model (schema fragment) to
support the complex querying of GeneChip sequence
selections.
In Figure 1, we show a data model for the GeneChip sequence
selection system, using a relational data modeling notation
described in [11]. A description of how to develop the data model
for the GeneChip sequence selection complex query is beyond the
scope of this paper. Note, though, that a well-developed data
model preludes complex query model development. These
relational entities are used directly in the construction of query
interface model (as “virtual schema entities”) and query structure
model (as “relations”), which we will describe later.

3.2 Overview: Complex Query Modeling
We can divide complex query modeling into four distinct but
interdependent phases of design activities (Table 1). At each
phase, team members with different roles participate in the
modeling process using specific notation and addressing specific
concerns. For example, in the second phase, the architect and the
query designer develop “query interface models” together; they
must transform a maze of tasks and actions (detailed/structured
sub-tasks) produced from the first phase into connected database
query interfaces, and map data sources to “virtual schema
entities” (explained later) derived from entities in the data model.
As complex query modeling progresses from the first phase to the
fourth phase, uncertainty becomes gradually exposed and
addressed in increasing levels of details. At the last phase, query
models are replaced by high-quality SQL scripts that are
optimized for execution in tested RDBMS environments.
Compared to traditional ad hoc database query design process
using precedence chart [12], complex query modeling can be

characterized as the following. First, complex query modeling is
too complicated to be completed in a few hours or even a few
days, and requires successful collaborations among a whole
database query development team. Second, the scale of complex
tasks involved in the complex query modeling design requires
writing database queries measured by dozens of pages of SQL
scripts, which could equate to hundreds of thousands of lines of
traditional C/Java codes. Third, complex query modeling requires
problem-solving skills at different abstraction levels, from high-
level task decomposition to database query optimizations. Fourth,
complex query modeling also supports query design outside of the
RDBMS environment, as long as the input/output data are tracked
in relational tables and the external program can be regarded as a
“virtual database operator”.

Table 1. An overview of query modeling

Query Modeling Details

Notation Concerns Roles
Involved

1. Represent
High-Level
Problem
Solutions

Task-Action
Analysis
Model

Tasks,
actions, and
available
data stores

Manager,
Biologist,
Architect

2. Transform
Solutions Into
Connected DB
Query Interfaces

Query
Interface
Model

Query
interfaces
and virtual
schema
entities

Architect,
Query
designer

3. Design
Complex
Database Query
Structures

Query
Structure
Model

Relational
operators
and relations

Query
designer,
SQL
programmer Q

ue
ry

 M
od

el
in

g
Ph

as
es

4. Improve SQL
Query
Implementation

SQL blocks
and stored
procedures

Database
objects and
SQL query
scripts

SQL
programmer,
DBA

3.3 Query Modeling: Phase One
At the first phase of complex query modeling, the goal of a query
design team is to engage domain users (biologists) in finding the
detailed structures of high-level “tasks” (phrases shown in Fig. 1).
Complex query modeling at this phase is not much different from
designing control flow and data flow models during software
development requirement analysis phases. These “tasks” become
detailed structured subtasks which we call “actions”, connecting
to one another within control flow blocks, and taking available
data sources as either the input or the output. The “task-action
analysis model” notation and model design concepts are not
unique to complex query modeling. For a detailed description of
complex query modeling in this level, refer to [13].

3.4 Query Modeling: Phase Two
At the second phase of complex query modeling, the goal of a
query designer is to develop “query interface models” with the
data architect, who can map the workflow-based “task-action
analysis models” onto a design that establishes the connection
between user questions and database query vocabularies, i.e., as
“database query interfaces” and “virtual schema entities”. For
“database query interface”, we refer to the specification of a

112

database query using unambiguous English terms. For “virtual
schema entity”, we refer to an entity that is represented in the data
model either directly or indirectly (by joining database relations
found in the data model).
In Figure 2, we show a query interface model that addresses the
“backward compatibility check” action found in the last task (”to
design/pick sequences”) of a GeneChip sequence selection
complex query design. We use oval or circular boxes as a notation
for query interfaces, whose titles are always underlined. We use
rectangular boxes as a notation for virtual schema entities, whose
names appear in the top row with a dark background and whose
primary keys appear in the top rows of the same box with a light
background. We also use thick horizontal lines to represent filters
with filtering conditions specified in brackets nearby. The four
“query interfaces” in the model has been transformed from
“actions” in the “task-action analysis model”, and will be
translated into SQL queries in subsequent query modeling phases.
The “virtual schema entities”—Design Sequence, Old Design
Sequence, Design Subcluster, and Subcluster Match Decision
Matrix—are derived from corresponding entities in the data
model (in Fig. 2), which include “Cluster Sequence Member”,
“Sequence”, “Subcluster”, and “Cluster Method”. This query
interface model provides query designers with an unambiguous
plan how to classify subclusters into several different types (using
the shown “subcluster Maptype”), which suggest the lineage
between new and old GeneChip designs.

Figure 2. A query interface model to perform “backward
compatibility check”.
We believe that the query interface model notation can encourage
query designers to find complex query solutions using relational
database constructs. Compared with the “task-action analysis
model”, query interface model can provide users with notational

hints that data should be processed one data set at a time instead
of one data item at a time—by using a “filtering line” with
guarding filtering conditions instead of using a “branching point”
with branching conditions. Furthermore, it liberates the
predominant use of looping constructs on data items because of
the implied set-oriented processing mechanism.

3.5 Query Modeling: Phase Three
At the third phase of complex query modeling, the goal of a query
design team is to further define structures of complex queries
from previous query interface models. Each query structure model
unravels a query statement by exposing how interleaving
relational operators manipulate on relations. Figure 3 shows an
example of the query structure model, which shows how to
unravel the following query specifications seen in a query
structure model:
“Update the consensus sequence type to ‘low’, if any of the three
conditions apply: the sequence contains more than 20%
ambiguous bases; the sequence contains less than 3% ambiguous
bases, but derives from a subcluster entirely consisting of ‘ESTs’;
the sequence contains between 3% and 20% ambiguous bases, but
derives from a subcluster not entirely consisting of ‘mRNA’ or
‘CDS’ sequences”.
In this model, we use ovals to represent relational database
operators, including “Filter”, “Union”, “Join”, and “Update” (not
a “true” one). We use rectangles to represent database relations as
we did for “virtual schema entities”. Note that there is a slight
distinction among temporary relations (relations labeled as
“temp”), intermediate relations (temporary relations with name
labels other than “temp”), and permanent relations (relations with
relational table names in a dark background). We use directed
solid lines pointing towards or away from a database operator to
distinguish the query operation’s input or output relations.

Figure 3. A query structure model to identify low quality
consensus sequences.

3.6 Query Modeling: Phase Four
At the fourth and last phase of complex query modeling, the goal
of a query design team is to turn fully-developed query structure

Update_Design_Subcluster_Map Type
Using the Decision Matrix, determine subcluster Maptype

based on old Seq Match Bit 1, 2, and 3.

Design Sequence

Sequence_ID
GB Number
Direction Flag
Duplication Flag
Subcluster Type
Supercluster ID
Subcluster ID

Old Design Sequence

GB Number
Direction Flag
Duplication Flag
Chip Name

{FILTER: A: [Old Design Sequence].[GB Number] = [Design Sequence].[GB Number] and
[Old Design Sequence].[Direction Flag] = [Design Sequence].[Direction Flag];
B: [Design Sequence].[Duplication Flag] <> 'Y';
C: [Design Sequence].[Subcluster Type] = 'pure EST'}

Update_Design_Seq_
Match_Bit (1, '1') HUpdate_Design_Seq_

Match_Bit (2, '1') HUpdate_Design_Seq_
Match_Bit (3, '1')

A and B
s LIKE 'chip 2%'

A and B and C and
s LIKE 'chip 3%'

A and
s LIKE 'chip 1%'

{FILTER: s = [Old Design
Sequence].[Chip Name]}

Design Sequence

Sequence_ID
old Seq Match Bit 1

Design Sequence

Sequence_ID
old Seq Match Bit 2

Design Sequence

Sequence_ID
old Seq Match Bit 3

TO queries using
filter A, B, and C

TO queries using
filter s, A, B, and C

Subcluster Match
Decision Matrix

Rule_ID
old Seq Match Bit 1
old Seq Match Bit 2
old Seq Match Bit 3
subcluster Match String
subcluster Maptype

Design Subcluster

Supercluster_ID
Subcluster ID
subcluster Match String
subcluster Maptype

HPrevious Query X

HNext Query Y
UPDATE

A.[Consensus Seq ID] =
B.[Consensus Seq ID]

UNION

UNION

A

B

A.[Quality Label] = "Low"
Low Quality

Consensus Sequence

Consensus Seq ID
Ambiguity Perc T
Composition Type

Consensus Sequence

Consensus Seq ID
Seq String
Ambiguity Perc T
Composition Type
Quality Label
dEST Plus1 Flag

Consensus Sequence

Consensus Seq ID
Seq String
Ambiguity Perc T
Composition Type
Quality Label
dEST Plus1 Flag

Consensus Sequence's
Ambiguity Perc and
Composition Type

Consensus Seq ID
Ambiguity Perc T
Composition Type

FILTER
[Ambiguity Perc] < 3% AND
[Composition Type] = "pure

dEST"

FILTER
3% < [Ambiguity Perc] <= 20% AND

[Composition Type] not IN
("misc mRNA", "misc CDS")

FILTER
[Ambiguity Perc] > 20%

PROJECT
{[Consensus Seq ID], [Ambiguity

Perc T], [Composition Type]}

Temp

Temp

Temp

Temp

113

models into high-performance SQL scripts. Along with the
database administrator (DBA), SQL programmers need to
consider how to take advantage of a specific RDBMS indexing
and/or SQL query features in order to write efficient SQL
statements. The query design team also need to consider adding
database transaction control blocks into the SQL scripts to ensure
smooth execution of queries that can be restarted in case of
hardware failures. For example, the following final SQL scripts
are a sample translation of the query structure model (in Fig. 4):
 /* LOW QUALITY CONSENSUS SEQ SELECTION*/

UPDATE
/*+ PARALLEL (CONSENSUS_SEQUENCE, 6) */
CONSENSUS_SEQUENCE A
SET A.Quality_Label = ‘Low’
WHERE A.Consensus_Seq_ID =
(SELECT B.Consensus_Seq_ID
 FROM CONSEQ_AMBPERC_AND_COMPTYPE B
 WHERE B.t > 0.2
 UNION
 SELECT B.Consensus_Seq_ID
 FROM CONSEQ_AMBPERC_AND_COMPTYPE B
 WHERE B.t > 0.03 AND B.t <= 0.2 AND B.c
NOT IN (‘misc mRNA’, ‘misc CDS’)
 UNION
 SELECT B.Consensus_Seq_ID
 FROM CONSEQ_AMBPERC_AND_COMPTYPE B
 WHERE B.t < 0.03 AND B.c = ‘dEST’
);

Note that in the comment line of the above SQL script, the
content between /*+ and */ is a Oracle 9i RDBMS hint to the SQL
query engine, indicating that this query should be performed on
the Consensus_Sequence table using 6 threads.

4. RESULTS
Complex query modeling has been successfully applied to the
gene indexing complex querying process at Affymetrix during the
GeneChip design of the rat, human, and mouse genome
microarrays [10]. We take the design of the human genome
microarray for example. The query design team, which included
one of us authors, began the complex querying with more than 1.3
million UniGene sequences from 88,703 superclusters. Using
Microsoft Visio as the complex query modeling tool, the team
developed a complete task/action analysis model, a complete
query interface model, and a set of query structure models for
query specifications that are challenging to translate into SQL
directly. The SQL scripts, which the team developed over the
course of approximately 6 months, were several thousand lines
long and took a Sun E10000 machine (with 11 CPUs and 16GB of
memory) more than 10 CPU hours over a period of 2 weeks to
complete its execution. The end result of this complex querying is
a collection of 84,395 consensus sequences (each likely
corresponding to a transcript variant form of human mRNA) from
139,250 intermediate subclusters. During the six months of
complex querying, our team developed increasingly detailed
query models with hundreds of decomposed query specifications.

5. DISCUSSION
Complex query modeling is a novel method that we developed to
support complex database querying. Through a biological
querying example, we have found that evolving querying solution
over time while engaging the entire query design team at different
phases of the query development stage to be critical to our
success. Complex query modeling method enables the user and

the query design team to spend time together on communicating
scientific discovery needs or results, instead of on software
implementation details. The final SQL scripts, although long and
complicated, becomes easily maintainable, since these scripts
have been developed using modular approaches—each module
corresponding to the decomposed query specification from the
query interface model as query structures captured in the query
structure model. Note that even though we use biological complex
queries in this work, the significance of our method may not be
limited to the biology domain only; in fact, our method may be
applicable to any knowledge application domains with similar
high-level open-ended explorative querying needs.
Future work in complex query modeling will be both exciting and
challenging. Major research issues such as “Are there common
patterns in query models, which may help beginning query
designers acquire query modeling skills quickly?” and “What are
the query modeling principles?” still remain open. To expand the
impact of complex query modeling in practice, researchers need
to consider developing practical complex query modeling design
tools as the next step.

6. REFERENCES
1. Persidis, A., Bioinformatics. Nature biotechnology, 1999.

17: p. 828-30.
2. Lawrence, P., Workflow handbook 1997. 1997,

Chichester; New York: John Wiley. xxiii, 508.
3. Lakshmanan, L.V.S., F. Sadri, and S.N. Subramanian,

SchemaSQL: An extension to SQL for multidatabase
interoperability. ACM Transactions on Database Systems,
2001. 26(4).

4. Chen, C.X., J. Kong, and C. Zaniolo. Design and
Implementation of a Temporal Extension of SQL. in 19th
International Conference on Data Engineering. 2003.

5. Egenhofer, M.J., Spatial SQL: A Query and Presentation
Language. IEEE Transactions on Knowledge and Data
Engineering, 1994: p. 86-95.

6. Etzold, T., A. Ulyanov, and P. Argos, SRS: information
retrieval system for molecular biology data banks.
Methods Enzymol, 1996. 266: p. 114-28.

7. Miled, Z.B., et al. SIBIOS: A System for the Integration of
Bioinformatics Services. in Second International
Workshop on Challenges of Large Applications in
Distributed Environments. 2004.

8. Stevens, R., et al., TAMBIS: transparent access to
multiple bioinformatics information sources.
Bioinformatics, 2000. 16(2): p. 184-5.

9. Schena, M., et al., Quantitative monitoring of gene
expression patterns with a complementary DNA
microarray. Science, 1995. 270(5235): p. 467-70.

10. Chen, J.Y. and J.V. Carlis. Managing Bioinformatics
Challenges in Expression Microarray Sequence Selection
Projects. in Proceedings of the Second Chinese
Conference on Bioinformatics. 2002. Beijing, China.

11. Chen, J.Y. and J.V. Carlis, Genomic Data Modeling.
Information Systems, 2003. 28(4): p. 287-310.

12. Carlis, J.V. and S. Krieger, Mastering Database Analysis.
2004, (to be published): Addison-Wesley.

13. Chen, J.Y., PhD Thesis: A Bioinformatics Discovery-
oriented Framework. 2001, University of Minnesota:
Minneapolis.

114

