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ABSTRACT 
Many biological information systems rely on relational database 
management systems (RDBMS) to manage high-throughput 
biological data. While keeping these data well archived, 
organized, and integrated in a common repository is still a 
challenging task, performing complex queries, i.e., explorative 
and abstract ad hoc user questions in biology, is an even 
formidable task often substituted by writing complicated software 
programs. In this work, we propose a “complex query modeling” 
method to address the challenge of complex querying in 
biological domains. Query modeling consists of four distinct but 
interdependent phases of activities: representation of high-level 
problems, transformation of problems into connected query 
interfaces, designing database query structures, and translating 
query plans into high-performing SQL statements. At each stage, 
we use different notations and query modeling practices. Using 
gene indexing project as a case study, we show that query 
modeling enables prototypical development of high-quality SQL 
solutions to an inherently abstract and vague user query question, 
which requires GeneChip designers to sift through millions of 
database records, process data in dozens of steps, and make 
myriads of intermediate decisions. We believe our “complex 
query modeling” method is applicable to other bioinformatics 
domains with needs for complex database queries. 

Keywords 
Database Management System (DBMS), Complex Queries, Query 
Modeling  

1. INTRODUCTION 
1.1 Background 
Biological data analysis tasks have become increasingly complex. 
An accelerated number of completed genome sequences (more 
than 1,000 as reported by NCBI in August 2004) and hundreds of 
gigabytes of microarray experimental data sets, for example, have 
created an information overload for biologists [1]. On one hand, 
there is a great need for new biological information systems to 
support data management and data mining efforts in these large 
data sets. On the other hand, there is an even greater need for 

these systems to support ad hoc scientific data explorations and 
hypothesis-driven biological discovery research. It remains a 
grand challenge for large biological information systems to 
support the above combined goals of biological data miners and 
data explorers, due to the inherently different nature of two types 
of activities—one emphasizing automated reasoning and the other 
emphasizing manual explorations. 
A practical scenario of such a grand challenge for existing 
biological information systems can be described as follows. A 
user, a computer scientist or a biologists or a research team, 
usually does not know in advance the detailed cost of an open-
ended complex biological question. Examples of such questions 
are “can we define the role of protein X in Wnt signaling 
pathways from existing pathway data?” and “find all the gene 
expression regulation models of gene family Y from publicly 
available microarray experiments”. If a biological information 
system attempts to make its own assumptions and present its 
automated solutions to the end user, the results will be seldom 
significant—since the structure of novel scientific questions 
always requires guidance of the innovative minds of domain users 
(biologists). In contrast, if the system let the domain user take 
complete control and follow the conventional software 
development route of solving these questions, it will be too time-
consuming and programming-intensive to accomplish. By the 
time a software program solution is fully developed, the initial 
question from the user may have evolved into a related one that 
requires a different software solution. Therefore, existing 
biological information systems, in essence, discourage discovery-
minded users from asking data-intensive complex biological 
questions.   

1.2 Concepts 
In this research, we present a method called complex query 
modeling to address the challenge of conquering complex 
biological questions in the database context. By complex query 
modeling, we refer to the collaborative database query design 
process among a team of domain users and database developers to 
answer open-ended, explorative, and abstract questions in a 
relational database management system (RDBMS). Complex 
query modeling consists of four distinct but interdependent phases 
of query design activities, which include:  

1) Representation of high-level problems, using the task-
action analysis model (Section III-c); 

2) Transformation of problems into connected query 
interfaces, using the query interface model (Section III-d); 

3) Designing database query structures, using the query 
structure model (Section III-e); 
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4) Translating query plans into high-performing SQL 
statements (Section III-f). 

Note that we choose to address complex querying problems in the 
RDBMS due to two observations in biology. First, most existing 
biological information systems are built on RDBMS. Second, 
even for specific biological tasks such as BLAST, which has to be 
performed outside of the RDBMS, many well-implemented 
biological information systems keeps the input/output data of 
BLAST in database tables. In either observation, we can make an 
abstraction of the user-to-system query environment as database 
operators or “virtual database operators” (such as BLAST) 
manipulating on data stored in regular or temporary relational 
tables. 
Representing the structures of complex user questions as different 
types of query models graphically characterizes the main 
advantage of complex query modeling over other related 
approaches, including extended SQL scripting, custom software 
development, and workflow management systems [2].  Extended 
SQL scripting refers to the use of extended SQL operators and 
extended SQL syntax in a specialized RDBMS to write expressive 
SQL statements that would otherwise be difficult to write. 
Although this querying approach is popular in data integration, 
temporal databases, and spatial database applications [3-5], it 
cannot help biology users to decompose initially highly abstract 
scientific questions in general. Custom software development 
supports the documentation of user requirements based on 
software engineering principles. However, the development cost 
and performance cost (round-trip movement of large amounts of 
data from the RDBMS to the software system) are prohibitively 
more expensive than developing and running queries in an 
RDBMS. Some biological information systems incorporate 
workflow management system concepts into their components, 
for example, SRS[6], SIBIOS[7], and TAMBIS [8]. These 
systems alleviate user custom software development by providing 
user customized control flow and data flow design/mapping 
support, which is particularly useful in addressing challenges for 
information integration from disparate data sources and software 
tools. However, none of the workflow-based systems were 
developed with solving complex database queries as a specific 
goal. We summarize the differences between complex query 
modeling and workflow-based system as the following: 

1) Complex query modeling provides a formal framework to 
analyze, decompose, and translate high-level abstract 
biological questions into computationally efficient 
database queries, whereas a workflow-based system is a 
software platform that uses control flow or data flow 
models to enable pipelined execution of complex tasks as 
“computational subtasks”. 

2) Complex query modeling supports a hierarchical set of 
query models at different abstraction levels, while 
workflow-based models are represented in just one level. 

3) In complex query modeling, query designers ultimately 
think of all data sets as “relational tables” in a RDBMS; 
they also think of query design as structuring database 
operators to work on these “relational tables”. In workflow 
modeling, application developers determine a common 
data format (e.g., flat file or XML), and use/write software 
programs to process these data outside the RDBMS. 

For the rest of the paper, we present the complex query modeling 
method using the following structure. First, we will present a 
practical biological complex query, “how to index all human 
genes from public cDNA databases to design microarrays?” 
Second, we show a data model design used to support finding 
solutions to this complex query. Third, we present four distinct 
stages of complex query modeling, each using a different set of 
notations to show solutions at different abstraction levels to the 
above complex querying problem. Lastly, we discuss the future 
development of a database query modeling tool, based on our 
prototypical experimentation, to facilitate the adoption of 
complex query modeling method in practice. 

2. A COMPLEX QUERY EXAMPLE 
“How to index all the genes in a target genome from publicly 
available DNA/mRNA sequence databases?” is a complex 
biological query, which the designers of spotted cDNA 
microarrays [9] or high-density microarrays (also called 
“GeneChips”) must answer.  

The goal of this complex query is to perform gene indexing, or 
sequence selections, i.e., to derive a complete set of high-quality, 
non-redundant representative sequences to put (called “tile”) on 
microarrays by sifting through millions of mRNA, genes, and 
expressed sequence tags (ESTs).  
To GeneChip designers at Affymetrix, this querying task consists 
of these complex steps. [10] First, GeneChip designers collect 
gene “superclusters” to be downloaded from public databases. 
Then, they “clean out” poor-quality sequences and split initial 
superclusters into refined clusters called “subclusters”—each 
corresponding approximately to a gene transcript. Next, they 
perform a multiple sequence alignment for all sequences within 
each subcluster to generate an “assembly”. Then, they determine 
a “consensus” (virtual sequence) or an “exemplar” (real 
representative sequence) for each subcluster assembly. Lastly, 
they keep most representative design sequences (consensi or 
exemplars) as the final “design sequences”. 
This querying task is challenging, because GeneChip designers 
(primary users) must deal with unknown genome biology issues 
and large-scale computing issues altogether. On the biology side, 
users need to address discovery surprises that arise daily. For 
example, UniGene database was found to have inherited many 
poor sequence quality problems from GenBank and dbEST 
databases, contrary to what UniGene database providers had 
claimed. Therefore, gene indexing cannot proceed unless 
GeneChip designers developed additional sequence cleaning 
procedures such as ribosomal RNAs filtering and low-complexity 
region masking. Sometimes, these added quality-guarding data 
processing procedures, e.g., subclustering and consensus sequence 
determination, introduce additional concerns such as the 
introduction of ambiguity nucleotides into designed consensi or 
the assembly of wrong sequences into “chimeric consensi”. 
Therefore, manual user examination of intermediate query results 
and trial-and-error type of experimentation are necessary. On the 
computing side, sequence selection involves managing millions of 
sequences and moving them through intricate data processing 
steps. The starting and ending data sets must be managed by a 
RDBMS, which also provides intermediate data tracking 
capabilities during the complex querying process. There are 
significant challenges for maneuvering large data sets effectively, 
because the entire querying process will likely run for days on 
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high-end computer hardware even after the software program are 
optimized.  
In the next section, we show that complex query modeling makes 
it possible to conquer complex biological database queries. 

3. COMPLEX QUERY MODELING 
3.1 Preparation: Data Model Design 

Consensus Sequence
ConsensusID

Supercluster ID (FK)
Subcluster ID (FK)
IdentifiedConsensusID (FK)
Description
Seq String
Region Start
Region End
Direction Flag
Creation Date
Quality_score_5
Quality_score_3

Cluster Method
Method Code

Creation Date
Subcluster Method Flag
Description

Sequence
Sequence ID

Project Code
Reference Seq Flag
Description
Gene Flag
Parent Seq ID (FK)

Supercluster
Supercluster ID

SuperMethod Code (FK)
Creation Date
Description
Discard Flag
Withdrawn Flag
Type
Sequence Count

Cluster Sequence Member
Supercluster ID (FK)
Sequence ID (FK)

Examplar Flag
Discard Flag
Withdrawn Flag
source ID
accession ID
derivation ID
Direction Flag
Duplication Flag
Sequence Type
Description
CAT Description
Trim Flag
Filter Flag
GB Accession ID
Trim Start
Trim Stop
Recluster Flag

Subcluster
Subcluster ID
Supercluster ID (FK)

SubMethod Code (FK)
Creation Date
Description
Withdrawn Flag
Discard Flag
Sequence Cnt
subcluster Type
Redo Flag
Tilling Flag
Tilling Description

 
Figure 1. A relational data model (schema fragment) to 
support the complex querying of GeneChip sequence 
selections. 
In Figure 1, we show a data model for the GeneChip sequence 
selection system, using a relational data modeling notation 
described in [11]. A description of how to develop the data model 
for the GeneChip sequence selection complex query is beyond the 
scope of this paper. Note, though, that a well-developed data 
model preludes complex query model development. These 
relational entities are used directly in the construction of query 
interface model (as “virtual schema entities”) and query structure 
model (as “relations”), which we will describe later.  

3.2 Overview: Complex Query Modeling 
We can divide complex query modeling into four distinct but 
interdependent phases of design activities (Table 1). At each 
phase, team members with different roles participate in the 
modeling process using specific notation and addressing specific 
concerns. For example, in the second phase, the architect and the 
query designer develop “query interface models” together; they 
must transform a maze of tasks and actions (detailed/structured 
sub-tasks) produced from the first phase into connected database 
query interfaces, and map data sources to “virtual schema 
entities” (explained later) derived from entities in the data model. 
As complex query modeling progresses from the first phase to the 
fourth phase, uncertainty becomes gradually exposed and 
addressed in increasing levels of details. At the last phase, query 
models are replaced by high-quality SQL scripts that are 
optimized for execution in tested RDBMS environments.  
Compared to traditional ad hoc database query design process 
using precedence chart [12], complex query modeling can be 

characterized as the following. First, complex query modeling is 
too complicated to be completed in a few hours or even a few 
days, and requires successful collaborations among a whole 
database query development team. Second, the scale of complex 
tasks involved in the complex query modeling design requires 
writing database queries measured by dozens of pages of SQL 
scripts, which could equate to hundreds of thousands of lines of 
traditional C/Java codes. Third, complex query modeling requires 
problem-solving skills at different abstraction levels, from high-
level task decomposition to database query optimizations. Fourth, 
complex query modeling also supports query design outside of the 
RDBMS environment, as long as the input/output data are tracked 
in relational tables and the external program can be regarded as a 
“virtual database operator”.  

Table 1. An overview of query modeling 

Query Modeling Details  

Notation Concerns Roles 
Involved 

1. Represent 
High-Level 
Problem 
Solutions 

Task-Action 
Analysis 
Model 

Tasks, 
actions, and 
available 
data stores 

Manager, 
Biologist, 
Architect 

2. Transform 
Solutions Into 
Connected DB 
Query Interfaces 

Query 
Interface 
Model 

Query 
interfaces 
and virtual 
schema 
entities 

Architect, 
Query 
designer 

3. Design 
Complex 
Database Query 
Structures 

Query 
Structure 
Model 

Relational 
operators 
and relations

Query 
designer, 
SQL 
programmer Q

ue
ry

 M
od

el
in

g 
Ph

as
es

 

4. Improve SQL 
Query 
Implementation 

SQL blocks 
and stored 
procedures 

Database 
objects and 
SQL query 
scripts 

SQL 
programmer, 
DBA 

3.3 Query Modeling: Phase One 
At the first phase of complex query modeling, the goal of a query 
design team is to engage domain users (biologists) in finding the 
detailed structures of high-level “tasks” (phrases shown in Fig. 1).  
Complex query modeling at this phase is not much different from 
designing control flow and data flow models during software 
development requirement analysis phases. These “tasks” become 
detailed structured subtasks which we call “actions”, connecting 
to one another within control flow blocks, and taking available 
data sources as either the input or the output. The “task-action 
analysis model” notation and model design concepts are not 
unique to complex query modeling. For a detailed description of 
complex query modeling in this level, refer to [13].  

3.4 Query Modeling: Phase Two 
At the second phase of complex query modeling, the goal of a 
query designer is to develop “query interface models” with the 
data architect, who can map the workflow-based “task-action 
analysis models” onto a design that establishes the connection 
between user questions and database query vocabularies, i.e., as 
“database query interfaces” and “virtual schema entities”. For 
“database query interface”, we refer to the specification of a 

112



database query using unambiguous English terms. For “virtual 
schema entity”, we refer to an entity that is represented in the data 
model either directly or indirectly (by joining database relations 
found in the data model). 
In Figure 2, we show a query interface model that addresses the 
“backward compatibility check” action found in the last task (”to 
design/pick sequences”) of a GeneChip sequence selection 
complex query design. We use oval or circular boxes as a notation 
for query interfaces, whose titles are always underlined. We use 
rectangular boxes as a notation for virtual schema entities, whose 
names appear in the top row with a dark background and whose 
primary keys appear in the top rows of the same box with a light 
background. We also use thick horizontal lines to represent filters 
with filtering conditions specified in brackets nearby. The four 
“query interfaces” in the model has been transformed from 
“actions” in the “task-action analysis model”, and will be 
translated into SQL queries in subsequent query modeling phases. 
The “virtual schema entities”—Design Sequence, Old Design 
Sequence, Design Subcluster, and Subcluster Match Decision 
Matrix—are derived from corresponding entities in the data 
model (in Fig. 2), which include “Cluster Sequence Member”, 
“Sequence”, “Subcluster”, and “Cluster Method”. This query 
interface model provides query designers with an unambiguous 
plan how to classify subclusters into several different types (using 
the shown “subcluster Maptype”), which suggest the lineage 
between new and old GeneChip designs. 

Figure 2. A query interface model to perform “backward 
compatibility check”. 
We believe that the query interface model notation can encourage 
query designers to find complex query solutions using relational 
database constructs. Compared with the “task-action analysis 
model”, query interface model can provide users with notational 

hints that data should be processed one data set at a time instead 
of one data item at a time—by using a “filtering line” with 
guarding filtering conditions instead of using a “branching point” 
with branching conditions. Furthermore, it liberates the 
predominant use of looping constructs on data items because of 
the implied set-oriented processing mechanism. 

3.5 Query Modeling: Phase Three 
At the third phase of complex query modeling, the goal of a query 
design team is to further define structures of complex queries 
from previous query interface models. Each query structure model 
unravels a query statement by exposing how interleaving 
relational operators manipulate on relations. Figure 3 shows an 
example of the query structure model, which shows how to 
unravel the following query specifications seen in a query 
structure model:  
“Update the consensus sequence type to ‘low’, if any of the three 
conditions apply: the sequence contains more than 20% 
ambiguous bases; the sequence contains less than 3% ambiguous 
bases, but derives from a subcluster entirely consisting of ‘ESTs’; 
the sequence contains between 3% and 20% ambiguous bases, but 
derives from a subcluster not entirely consisting of ‘mRNA’ or 
‘CDS’ sequences”. 
In this model, we use ovals to represent relational database 
operators, including “Filter”, “Union”, “Join”, and “Update” (not 
a “true” one). We use rectangles to represent database relations as 
we did for “virtual schema entities”. Note that there is a slight 
distinction among temporary relations (relations labeled as 
“temp”), intermediate relations (temporary relations with name 
labels other than “temp”), and permanent relations (relations with 
relational table names in a dark background). We use directed 
solid lines pointing towards or away from a database operator to 
distinguish the query operation’s input or output relations. 

Figure 3. A query structure model to identify low quality 
consensus sequences. 

3.6 Query Modeling: Phase Four 
At the fourth and last phase of complex query modeling, the goal 
of a query design team is to turn fully-developed query structure 

Update_Design_Subcluster_Map Type
Using the Decision Matrix, determine subcluster Maptype

based on old Seq Match Bit 1, 2, and 3.

Design Sequence

Sequence_ID
GB Number
Direction Flag
Duplication Flag
Subcluster Type
Supercluster ID
Subcluster ID

Old Design Sequence

GB Number
Direction Flag
Duplication Flag
Chip Name

{FILTER: A: [Old Design Sequence].[GB Number] = [Design Sequence].[GB Number] and
[Old Design Sequence].[Direction Flag] = [Design Sequence].[Direction Flag];
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A.[Consensus Seq ID] =
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B
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models into high-performance SQL scripts. Along with the 
database administrator (DBA), SQL programmers need to 
consider how to take advantage of a specific RDBMS indexing 
and/or SQL query features in order to write efficient SQL 
statements. The query design team also need to consider adding 
database transaction control blocks into the SQL scripts to ensure 
smooth execution of queries that can be restarted in case of 
hardware failures. For example, the following final SQL scripts 
are a sample translation of the query structure model (in Fig. 4):  
        /* LOW QUALITY CONSENSUS SEQ SELECTION*/ 

UPDATE 
/*+ PARALLEL (CONSENSUS_SEQUENCE, 6) */ 
CONSENSUS_SEQUENCE A 
SET  A.Quality_Label = ‘Low’ 
WHERE A.Consensus_Seq_ID =  
(SELECT B.Consensus_Seq_ID 
 FROM CONSEQ_AMBPERC_AND_COMPTYPE B 
 WHERE B.t > 0.2  
   UNION 
 SELECT B.Consensus_Seq_ID 
 FROM CONSEQ_AMBPERC_AND_COMPTYPE B 
 WHERE B.t > 0.03 AND B.t <= 0.2 AND B.c 
NOT IN (‘misc mRNA’, ‘misc CDS’) 
   UNION 
 SELECT B.Consensus_Seq_ID 
 FROM CONSEQ_AMBPERC_AND_COMPTYPE B 
 WHERE B.t < 0.03 AND B.c = ‘dEST’ 
); 

Note that in the comment line of the above SQL script, the 
content between /*+ and */ is a Oracle 9i RDBMS hint to the SQL 
query engine, indicating that this query should be performed on 
the Consensus_Sequence table using 6 threads. 

4. RESULTS 
Complex query modeling has been successfully applied to the 
gene indexing complex querying process at Affymetrix during the 
GeneChip design of the rat, human, and mouse genome 
microarrays [10]. We take the design of the human genome 
microarray for example. The query design team, which included 
one of us authors, began the complex querying with more than 1.3 
million UniGene sequences from 88,703 superclusters. Using 
Microsoft Visio as the complex query modeling tool, the team 
developed a complete task/action analysis model, a complete 
query interface model, and a set of query structure models for 
query specifications that are challenging to translate into SQL 
directly. The SQL scripts, which the team developed over the 
course of approximately 6 months, were several thousand lines 
long and took a Sun E10000 machine (with 11 CPUs and 16GB of 
memory) more than 10 CPU hours over a period of 2 weeks to 
complete its execution. The end result of this complex querying is 
a collection of 84,395 consensus sequences (each likely 
corresponding to a transcript variant form of human mRNA) from 
139,250 intermediate subclusters. During the six months of 
complex querying, our team developed increasingly detailed 
query models with hundreds of decomposed query specifications.  

5. DISCUSSION 
Complex query modeling is a novel method that we developed to 
support complex database querying. Through a biological 
querying example, we have found that evolving querying solution 
over time while engaging the entire query design team at different 
phases of the query development stage to be critical to our 
success. Complex query modeling method enables the user and 

the query design team to spend time together on communicating 
scientific discovery needs or results, instead of on software 
implementation details. The final SQL scripts, although long and 
complicated, becomes easily maintainable, since these scripts 
have been developed using modular approaches—each module 
corresponding to the decomposed query specification from the 
query interface model as query structures captured in the query 
structure model. Note that even though we use biological complex 
queries in this work, the significance of our method may not be 
limited to the biology domain only; in fact, our method may be 
applicable to any knowledge application domains with similar 
high-level open-ended explorative querying needs.  
Future work in complex query modeling will be both exciting and 
challenging. Major research issues such as “Are there common 
patterns in query models, which may help beginning query 
designers acquire query modeling skills quickly?” and “What are 
the query modeling principles?” still remain open. To expand the 
impact of complex query modeling in practice, researchers need 
to consider developing practical complex query modeling design 
tools as the next step.  
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