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Abstract. We introduce a learning architecture that can serve compression while
it also satisfies the constraints of factored reinforcement learning. Our novel
Cartesian factors enable one to decrease the number of variables being rele-
vant for the ongoing task, an exponential gain in the size of the state space. We
demonstrate the working, the limitations and the promises of the abstractions: we
develop a representation of space in allothetic coordinates from egocentric ob-
servations and argue that the lower dimensional allothetic representation can be
used for path planning. Our results on the learning of Cartesian factors indicate
that (a) shallow autoencoders perform well in our numerical example and (b) if
deeper networks are needed, e.g., for classification or regression, then sparsity
should also be enforced at (some of) the intermediate layers.

1 Introduction

An intriguing fact about intelligence is the following. Our scientific discoveries have a
history of about 15,000 years. The same holds for the technological developments and
this progress was made by billions of people. Still, this knowledge, or a large part of it,
can be passed to a child in 15 years. It looks that innovations and discoveries take long,
whereas explaining and proving them are much faster. One may consider the complexity
of optimization and problem solving. They may scale polynomially or exponentially
both from the point of view of solving them and verifying them (see, e.g., [4] and
the cited references). The polynomial type is called easy and the exponential type is
called hard. Out of the four options, the hard to solve and easy to verify — such as the
Traveling Salesman Problem — can be particularly useful for communicating agents.
The relevance of the other three classes is less. It thus seems that human knowledge
is concerned with hard to solve and easy to verify problems. After all, mathematical
theorems are hard to discover, but the proof is ‘linear’.

Consider sensory information. It brings about the possibility of information fusion
from different sensory modalities. For example, smell may be associated with tasty food
and then the smell can be used for searching for food. Thus, information fusion con-
cerns Cartesian factors (e.g., smell and taste) and spatio-temporal patterns (e.g., during
hunting the smell predicts the taste). Smell and taste have their respective sensors, un-
like many Cartesian factors. The creation (or the derivation) of such factors is of high
importance for lowering the number of relevant variables in problem solving.

The concept of numbers is such a Cartesian abstraction; it represents the quantity
and separates material properties. ‘2+2 = 4’, no matter if we are concerned with apples
or peaches. Cartesian abstractions enable concise formulations for similar tasks.
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We turn to the constraints of goal-oriented behavior. Factored reinforcement learn-
ing (FRL) is advantageous [15, 32], since without factored description, the state space
explodes. Factors of FRL are Cartesian ones [17, 3] and can be latent non-linear coordi-
nates. Such abstractions are considered hard, ‘although potentially pseudo-polynomial’
[7]. We postulate that communication favors such abstractions, provided that the fac-
tor, in a given task, enables the agent to neglect other components of the information
without high risks, e.g., by applying robust controllers [33, 36].

In our view, creative intelligence finds those factors that suit the essence of the
problem and diminish the combinatorial explosion for an approximate FRL framework.
In turn, the views that compression is related to intelligence, e.g., the proposal that
compression is one of the driving forces of science [28], the thought that compression
may lead to AGI1 together with the warning that intelligence is not simply compression
[8] may all gain support through the concept of Cartesian factors.

Contributions: we treat the Cartesian factor problem by means of deep networks. We
assume that we are given a factor and we find the complementing one without exploiting
temporal information. The paper is constructed as follows. In the next section, we shall
review similar efforts. Section 3 provides the details about the deep learning formalism
and the problem itself. Our results are presented in Sect. 4 and discussed in Sect. 5.
Conclusions are drawn in Sect. 6.

2 Related Works

Factor or component learning appears in a number of contexts, such as factor analysis
(FA), nonlinear matrix factorization (NMF), principal/independent component analysis
(PCA/ICA) (see, e.g., [16] and the references therein), sparse coding (SC), also in bi-
linear forms [34]. The literature is enormous and goes beyond the scope of this paper.
These methods have the following properties: (i) they assume the structure of the data
(NMF, ICA), (ii) they drop components of small variances (FA, PCA), and (iii) they are
essentially additive factor models. Generative models with specified joint probability
distributions also form a group of models [27]. By contrast, Cartesian factors are more
like modalities, can have a metric, and may be deterministic.

‘Place field’ cells observed in rat hippocampus [24], also known as the ‘cognitive
map’ [25], motivate our thinking, since place fields are independent from the egocentric
direction of the animal and thus, it could be a modality, but it is not sensed directly. The
explanation of the place field phenomenon – that gave rise to the Nobel Prize in 2014 –
motivates our demonstration. We mention two of the many models and refer the inter-
ested reader to the literature. One model starts from ICA on directed spatially local but
dispersed information, derives direction dependent place fields, develops an autoregres-
sive (AR) predictor from those and produces direction independent place fields from
measuring the innovation of the AR process [19]. However, this method does not work
for distant cues. The other model uses distant information and takes advantage of Slow
Feature Analysis (SFA), see [29] and the references therein. This method needs a rel-
atively large angle of view to derive the place fields. Both methods exploit temporal
information, a strong restriction for the general case.

1 http://prize.hutter1.net/
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Here, we assume that we have one Cartesian factor and we will develop a potentially
deep architecture that can robustly discover the complementing one.

3 Methods

3.1 Theoretical Background

Deep Autoencoders A Deep Autoencoder [12, 38] is the unsupervised version of a
modern Multilayer Perceptron (MLP). Consider a series of non-linear mappings (layers)
of the form:

H = fN

(
· · · f2

(
f1(XW1)W2

)
· · ·WN

)
, (1)

where X ∈ RI×J is the matrix of I inputs of size J , Wn ∈ RQn−1,Qn are param-
eters with Q0 = J , and fn are non-linear almost everywhere differentiable element-
wise functions (n = 1, . . . , N ; N ∈ N). Then H ∈ RI×Q is called the fea-
ture map (QN = Q). Typically, one takes two such mappings with reversed sizes
— an encoder and a decoder — and composes them. Thereupon one can define a
so-called reconstruction error between the encoder input X and the decoder output
X̂ ∈ RI×J (normally the `2 or Frobenius norm of the difference, i.e., 1

2‖X − X̂‖2F =
1
2

∑
i=1,...,I

∑
j=1,...,J (Xi,j − X̂i,j)

2) and try to find a local minima of it in terms of
parameters Wn after random initialization, by taking advantage of a step-size adaptive
mini-batch subgradient descent method [9, 39, 18]. The non-linearity can be chosen to
be the rectified linear function fn(x) = x · I(x > 0) for x ∈ R [22, 5] to avoid the
vanishing gradient problem [13, 14], where I designates the indicator function.

Spatial and Lifetime Sparsity Deep Autoencoders are often used as a pretraining
scheme [10] or as a part of supervised algorithms [26], but they lack the ability to learn
a meaningful or simple data representation without prior knowledge [30]. To obtain
such a description, one might add regularizers or constraints to the objective function
[11, 1], or employ a greedy procedure [37, 6]. It is well known that minimizing the sum
of `2 norms of parameters Wn can reduce model complexity by yielding a dense feature
map, and similarly, the `1 variant may result in a sparse version [35, 23]. An alternative
possibility is to introduce constraints in the non-linear function fn. For example, one
may utilize a k-sparse representation by keeping solely the top k activation values in
feature map H , and letting the rest of the components zero [20]. This case, when fea-
tures, i.e., the components of the representation, compete with each other is referred to
as spatial sparsity. Input indices of the representation may also go up against each other
and this case is called lifetime sparsity [21].

3.2 Problem Formulation

We assume that a latent random variable Z and an observed random variable Y are
continuous and together they fully explain away another observed binary random vari-
able X . The ranges of Z and Y are supposed to be grid discretized finite r- and one-
dimensional intervals, respectively, that fits FRL. We denote the resulting grid points
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by (z(m), y(l)) ∈ Rr × R; l = 0, . . . , L, m = 1, . . . , (M + 1)r, L,M, r ∈ N. The
indices m = 1, . . . , (M + 1)r are supposed to be scrambled throughout training (i.e.,
we assume no topology between z(m)). Then observation x(m,l) ∈ {0, 1}d is generated
by a highly non-linear function g : Rr × {1, . . . , L} → {0, 1}d from grid point z(m)

and grid interval [y(l−1), y(l)) as

x(m,l) = g(z(m), l) (2)

for m = 1, . . . , (M + 1)r; l = 1, . . . , L. For each fixed m, one is given masks Vi,· ∈
{0, 1}L;

∑L
l=1 Vi,l = v ∈ N indexing pairs of the form (l,x(m,l)), where i = 1, . . . , I

is a global index. Provided such a sample from Y and X , we aim to approximate the
discretized version of Z.

The variables may correspond to discretized latent points in space (Z); direction
intervals in an allothetic system, e.g., a compass with limited resolution (Y ); and ego-
centric views of distant cues within a viewing angle (X), see Fig. 1 for an illustration.

Fig. 1: Numerical experiment. (a): input is concatenated from sub-vectors, which be-
long to different allothetic directions. A given index corresponds to the same box, the
‘remote visible cue’, in all sub-vectors. The value of the a component of a sub-vector is
1 (0) if the box is visible (non-visible) in the corresponding direction. Three directions
are visible (green). Some boxes may be present in neighboring sub-vectors, since they
are large. (b)-(d): the ‘arena’ from above with the different boxes around it. Shaded
green areas in (b), (c), and (d), show the visible portions within the field of view at a
given position with a given head direction. Insets show the visual information for each
portion to be transformed to 1s and 0s in the respective components of the sub-vectors.
Components of out-of-view sub-vectors are set to zero.

We formulated the above problem as a multilayer feedforward lifetime sparse au-
toencoding [21] procedure with input matrix X ∈ {0, 1}I×J utilizing two novelties:
concatenated input vectors and a masked loss function are motivated by the input struc-
ture. In order to construct the inputs Xi,·; i = 1, . . . , I of size J = L · d, we coupled
each v-tuple of x(m,l) vectors for fixed m into a single block-vector using the Vi,· val-
ues as follows:

Xi,· =
[
Vi,1 · x(m,1), . . . ,Vi,l · x(m,l), . . . ,Vi,L · x(m,L)

]
. (3)



5

Then, we used the `2 reconstruction error as the loss, but on a restricted set of elements,
namely, on the v non-zero blocks for each input:

l(X, X̂,V ) : =
1

I

∑
i=1,...,I
j=1,...,J

Vi,b j−1
d +1c · (Xi,j − X̂i,j)

2 (4)

where X̂ denotes the output of the decoder network. Finally, a sparse non-linearity was
imposed on top of each encoder layer, which selected the k percent topmost activations
across one component. We applied both lifetime [21] and spatial sparsification [20].

We expected the output of the encoder H ∈ RI×Q to resemble z(m), i.e., not
depending on y(l) and discretizing the latent space Rr. The procedure is summarized in
Fig. 2.

Unordered points in latent space Rr

D
isc
re
tiz
ed
fa
ct
or
sp
ac
e
R

y0

yL

zm

yl−1

yl Mask Vi,· = 1
Map g(·, ·)

Mask Vi,· = 0

Mask Vi,· = 0

0

0

0

x(m,l+1)

x(m,l)

x(m,l−1)

0

0

0

x̂(m,l+1)

x̂(m,l)

x̂(m,l−1)

· · · · · ·

Encoder output
Hi,· ∈ RQ

Input
Xi,· ∈ RL·d

Decoder output
X̂i,· ∈ RL·dCartesian space Rr × R

sparse non-linearity

Fig. 2: General architecture. In the numerical experiments the notations correspond
to the following quantities: Z latent positions, Y discretized ‘compass’ values. Input
to the network: red: not visible, green: visible at neighboring viewing angle ranges.
Each viewing angle range provides inputs about all boxes. The full input equals to the
‘No. of boxes× No. of viewing angle ranges’. See text for details of the autoencoder.

We implemented our method in the Python library Theano [2] based upon the
SciPy2015 GitHub repository2. We used multilayer autoencoders with rectified linear
units, k = 1 spatial sparsity and p%-sparse lifetime sparsity. The decoder output layer
was linear. We trained parameters using full-batch Adam gradient descent [18] with
early stopping (maximum 10,000 epochs with 500 epochs patience).

3.3 Numerical Experiment

For our study, we generated a squared ‘arena’ surrounded by d = 150 boxes in Unity3

3D game engine (Fig. 1). The ‘arena’ had no obstacles. Boxes were placed pseudo-
randomly: they did not overlap. The ‘arena’ was discretized by an M ×M = 36× 36
grid. From each grid point and for every 20°, a 28° field of view was created (i.e.,

2 https://github.com/kastnerkyle/SciPy2015
3 https://unity3d.com



6

L = 360°
20° = 18, overlap: 4° between regions), and the visibility — a binary value (0

for occlusion or out of the angle of view) — for each box was recorded, according to
Eq. (2); we constructed a total of I = 37 · 37 · 18 = 24,642 binary (x(m,l)) vectors.

These vectors were processed further. Beyond the actual direction of the center of
the viewing angle, we introduced some degree of closeness about the input regarding the
direction, but not the position: we varied the viewing angle between 28° and 360°. For-
mally, for various experiments, we defined masks Vi,· summing to v = 1, 3, . . . , 17, 18,
for which we carried out the concatenation method from Eq. (3): for each visible 28°
sector, the corresponding x(m,l) vector; while for all non-visible sectors, an all-zero
vector were appended. This manipulation did not change the size of the database.

In some experiments we normalized the inputs to unit `2 norm for each d = 150
dimensional components, provided that at least one of the components differed from
zero. This is called normalized experiment. We used spatial sparsification with k =
1 and lifetime sparsification with p = 3.33% and p = 6.66%. In the error of the
autoencoder we considered two options: (a) error of the full output and (b) error only
on the visible components that belonged to the viewing angle as in Eq. (4). This latter
is called masked experiment. We used them in combination. We also tried 3 and 5 layer
autoencoders, with the middle layer representing the latent variables.

The size of the middle layer was always Q = 30. This means that spatial (i.e.,
latent component-wise) sparsity gave rise to 3.33% lifetime sparsity. On the other hand,
p = 3.33% lifetime sparsity was effectively larger than 3.33% since it was possible
that none of the latent unit was selected for a given input (and thus all of them were
set to zero), when backpropagation became ineffective. The same holds for p = 6.66%
lifetime sparsity, which, on the average, would give rise to 1, 2, 3, or more non-zero
latent units with average above 2. The sizes of the hidden layers were spaced linearly
between 2,700 and 30.

4 Results

The dependencies of the responses in the hidden representation vs. space and direction
are shown in Fig. 3 and Fig. 4. Linear responses of randomly selected latent units for
different algorithms are depicted in Fig. 3, illustrating the extent that the responses were
localized. Figure 4 shows the direction (in)dependence of the responses. For each input,
we chose the highest activity latent component and in each position we computed the
number of directions (out of the 18 possible) that a neuron was the winner in the dataset.
We computed these numbers for all units, selected the largest values at each position
and combined them in a single figure that we color coded (Fig. 4): Black color at one
position means that unit won in all angles at that position. Lighter colors mean less
winning directions.

One should ask (i) if the linear responses are local and activities far from the posi-
tion of the peak activity are close to zero; (ii) if the number of dead latent units is small,
(iii) if responses are direction independent, that is, if we could derive the discretization
of space in allothetic coordinates, the complementary component of the egocentric di-
rection. We found that spatial sparsity with the 3 layer network and the 5 layer network
with dense 2nd and 4th layers rendered the output of some or sometimes all hidden units
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Fig. 3: Linear responses of individual latent units selected randomly: we chose neuron
with index 2 from the latent layer. ICA: values may take positive and negative values.
Other experiments: all units are ReLUs, except the output, which is linear. Color coding
represents the sum of responses for all directions at a given point. SP1: spatial sparsity
with k = 1, LT3.3%: lifetime sparsity = 3.3%, Norm: for each 150 components, the
`2 norm of input is 1 if any of the components is non-zero, Mask: autoencoding error
concerns only the visible part of the scene, DL: dense layer. ‘Norm-LT3.3%-LT3.3%-
Mask’ means normed input, masked error, 5 layers: input layer, 3 layers with LT sparsity
equals 3.3%, output layer.

Table 1: Dead neuron count: number of non-responsive computational units.

Field of view [deg]

28 68 108 148 188 228 268 308 348 360

Norm-SP1-Mask 2 0 5 5 10 12 16 18 15 18
LT3.33% 0 0 0 0 0 2 2 6 8 9
Norm-LT3.33% 0 0 0 1 1 3 2 4 9 11
Norm-LT3.33%-Mask 0 0 0 0 0 0 1 2 7 11
Norm-LT6.66%-Mask 0 0 0 0 0 0 1 4 13 13
Norm-DL-LT3.33%-Mask 0 3 1 29 30 30 30 30 30 30
Norm-LT3.33%-LT3.33%-Mask 0 0 0 0 0 0 0 0 0 0

to zero (Table 1). On the othe hand, lifetime sparsity with the 5 layer network produced
excellent results. Lifetime sparsity p = 6.66% can still produce place fields. Note that
local responses appear without the mask, but only for very large viewing angles. For
the sake of completeness, we also provide the ICA responses in Fig. 3. We discuss the
relevance, the limitations and the promises of our results in the next section.



8

Fig. 4: Angle independence. Notations are the same as in Fig. 3. The highest activ-
ity (winning) unit was selected for each input at each position in each direction. We
counted the number of wins at each position for each unit and selected the largest num-
ber. Results are color coded. Black (18): there is a single winner for all angles at that
position. White (0): no response at that point from any neuron in any direction. Values
between 1 and 17: the darker the color the larger the direction independence for the best
winner at that position.

5 Discussion

Our goal was to find a discretization of hidden Cartesian factors (coordinates) provided
that we already have one. The coordinate that we know must have a metric by definition.
Such metric may show up in the temporal domain or, alternatively, it may manifest itself
implicitly, via discretized spatial information, such as neighboring viewing ranges in
our case. Temporal information has been exploited via hierarchical SFA (see, [29] and
the cited references). Their goal was to closely model the rat’s sensory system and found
that indeed, a large viewing angle of 320° gave rise to direction independent place fields.

Here, we could reach about 108°, or so, and according to our results, further im-
provements can be expected for deeper networks, provided that sparsity is kept at some
layers. Our algorithms can work if temporal information is not available. Deeper net-
works may be unavoidable, e.g., if the input structure we used can not be prewired and
should be learned. We highlight that (i) high quality reconstruction is corrupted with-
out the mask, but our method shows robustness for this case, too and (ii) if temporal
information is available then our results may be improved further.

Cartesian factors are needed for FRL. Consider, e.g., that place fields uncover neigh-
boring graph that can be used both for path planning. An integrated path planning and
control architecture on place fields has been put forth some years ago [31]. For path
planning, the exponent of the state space is lowered, being a critical issue for FRL.

Lifetime sparsity seems important in the development of the Cartesian factor, here,
for the place fields. However, real time operation requires spatial sparsity, or possibly
some thresholding, or even the linear mode, since responses are fairly local for the linear
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mode, e.g., p = 6.66% and for the 5 layer network. The linear mode or even some spa-
tial sparsification uncovers neighbor relations useful for path planning and may support
the development of metrics. In turn, two types of operations, namely, learning off-line
when lifetime sparsity can be enforced, and working real time with some thresholding
for learning neighboring relations seem favorable.

6 Conclusions

We have derived a complementary Cartesian component in discretized form to an ex-
isting one by means of deep learning. This novel type of compression supports factored
reinforcement learning. Our experimental studies point towards two phase – off-line
and a real-time – operation and also to the necessity of sparsification. The novel com-
pression method may have relevance for Big Data and may support the understanding
of intelligence, since compression is thought to be closely related to it.
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