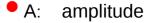
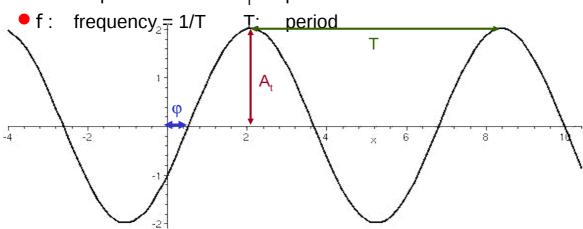
Physical Backgrounds

Network algorithms 1 Tamás Lukovszki

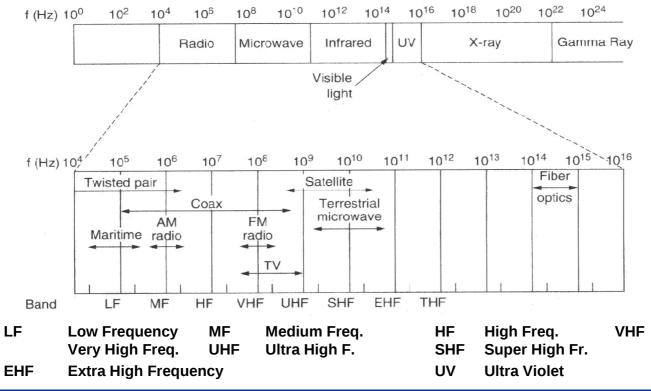

Physics of Electro-magnetic Waves

- Frequency f : number of oscilations per second
 - unit of measurement : Hertz
 - lacktriangle wave length λ : distance (in meters) between wave maxima
 - The propagation speed of waves in vacuum is constant: speed of light c \approx 3 \cdot 10⁸ m/s
- Note that:

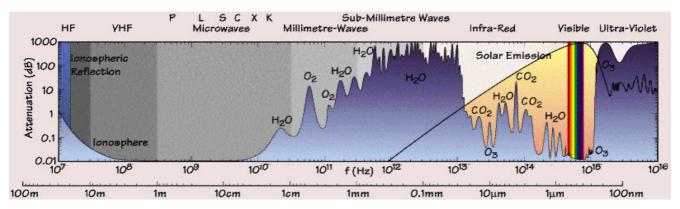

$$\lambda \cdot f = c$$

Amplitude Representation

- Amplitude representation of a sinus curve
 - $s(t) = A \sin(2\pi f t + \phi)$



φ: phase shift


Network algorithms 3 Tamás Lukovszki

Frequency Bands

Different Frequencies – Attenuation

- Attenuation depends on the used frequency
- Can result in a frequency-selective channel
 - if bandwidth spans frequency ranges with different attenuation properties

http://www.geographie.uni-muenchen.de/iggf/Multimedia/Klimatologie/physik_arbeit.htm

Network algorithms 5 Tamás Lukovszki

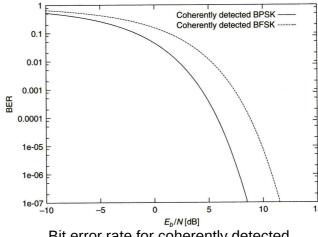
Noise and Interference

- If we assume just one transmission:
 - The only disturbing effect is the self-interference: the signal arrives in multiple paths (multi-path fading)
- More disturbing effects in practice:
 - Noise due to effects in receiver electronics, depends on temperature
 - Typical model: an additive Gaussian variable, mean 0, no correlation in time
 - Interference from third parties
 - Co-channel interference: another sender uses the same spectrum
 - Adjacent-channel interference: another sender uses some other part of the radio spectrum, but receiver filters are not good enough to fully suppress it
- Received signal is distorted by channel, corrupted by noise and interference

Signal to Interference and Noise Ratio (SINR)

- Receiving-power = Transmission-power · path-loss
 - path loss ~ 1/r^β
 - β ∈ [2,5]
- Signal to Interference + Noise Ratio = SINR
 - S = receiving power from desired sender
 - I = receiving power from interfering senders
 - N = other interfering signals (e.g. noise)
- Necessary for recognizing the signal:

$$SINR = "\frac{S}{I+N}" \ge "Threshold$$


Network algorithms 7 Tamás Lukovszki

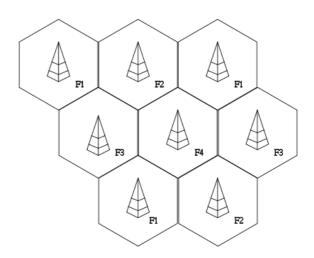
Symbols and Bit Errors

- Extracting symbols out of a distorted/corrupted waves can cause errors
 - Depends essentially on strength of the received signal compared to the corruption
 - Captured by signal to noise and interference ratio (SINR) given in decibel:

$$SINR = "10 \log_{10} \left(\frac{P_{recv}}{N_0 + \sum_{i=1}^k I_i} \right) \stackrel{\text{fig.}}{=}$$

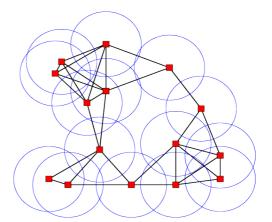
- SINR allows to compute bit error rate (BER) for a given modulation
 - Also depends on data rate (# bits/symbol) of modulation

Bit error rate for coherently detected binary PSK and FSK


Sharing the Medium

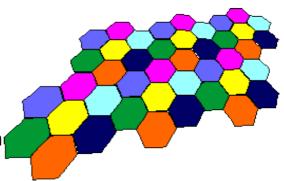
- Space-Multiplexing
 - Spatial distance
 - Directed antennae
- Frequency-Multiplexing
 - Assign different frequencies to the senders
- Time-Multiplexing
 - Use time slots for each sender
- Spread-spectrum communication
 - Direct Sequence Spread Spectrum (DSSS)
 - Frequency Hopping Spread Spectrum (FHSS)
- Code Division Multiplex

Network algorithms a Tamás Lukovszki

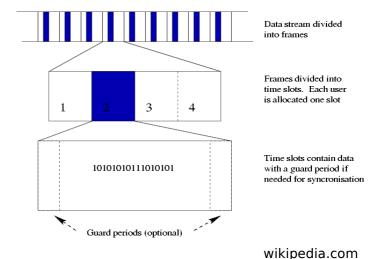

Space Division Multiple Access in Cellular Networks

- Mobiles use closest base station
 - In an ideal situation it leads to a Voronoi diagram
- Directional antennae
 - Divide the area of each base station in smaller subsets
- Power Control
 - E.g. UMTS networks "breathe",
 - i.e. base stations with large number of participants reduce the sending power
 - So, neighbored base stations can take over some of the mobile nodes of the overcrowded base station

Space Division Multiple Access in MANET


- Power Control of the sender
 - Possible use of multiple sending power
 - decreases the chance of interferences
 - Increases the maximum throughput for ad-hoc-networks
 - decreases the energy consumption
 - Possible to temporarily switching off
 - decreases energy consumption
- Directional Antenna
 - Increase the maximum throughput
 - Decrease energy consumption
 - Problematic for Medium Access

Network algorithms 11 Tamás Lukovszki


Frequency Division Multiple Access (FDMA)

- Neighbored links or cells are using different frequencies
 - with sufficient distance
- Used in cellular networks like
 - GSM, UMTS
- Allocation
 - is a combinatorically hard problem (coloring problem - NP-hard)
 - static allocation for cellular networks
 - dynamic allocation necessary for mobile ad-hoc networks

Time Division Multiple Access (TDMA)

- Time slots are assigned to the participants
- Static or flexible assignment
- Features:
 - Single frequency can be shared with multiple users
 - Slots can be assigned on demand
- Used in
 - GSM, GPRS, UMTS,...

Network algorithms 12 Tamás Lukovszki

Spread-Spectrum Communication: DSSS

- Direct Sequence Spread Spectrum (DSSS)
 - Transmitted signal takes up more bandwidth (frequencies)
 - It "spreads" over the full "spectrum" of frequencies
- Originally intended for military use to "jam" all frequencies
- Phase Modulation with a pseudo-random code symbols
 - Collection of symbols, called chip, encode a bit

Direct Sequence Spread Spectrum

- A Chip is a sequence of bits (given by {-1, +1}) encoding a smaller set of symbols
 - E.g. Transform signal: 0 = (+1,+1,-1), 1=(-1,-1,+1)

- Decoding (Despreading):
 - Compute inner product for bits c_i of the received signals s_i and the chips $c_0 = -c_1$:

$$\sum_{i=1}^m c_{0,i} s_i \qquad \qquad \sum_{i=1}^m c_{1,i} s_i$$

- When an overlay of the same, yet shifted, signals is received then the signal can be deconstructed by applying dedicated filters
- DSSS is used by GPS, WLAN, UMTS, ZigBee, Wireless USB based on an
 - Barker Code (11Bit): +1 +1 +1 -1 -1 -1 +1 -1 -1 +1 -1
 - For all v<m

$$\left| \sum_{i=1}^{m} a_j a_{j+v} \right| \le 1$$

Network algorithms 15 Tamás Lukovszki

Code Division Multiple Access (CDMA)

• Use chip sequence such that each sender i has a different chip C_i with

$$C_i \in \{-1, +1\}^m$$

$$-C_i = (-C_{i,1}, -C_{i,2}, \dots, -C_{i,m})$$

For all i≠j the normalized scalar product is 0:

$$C_i \cdot C_j = \frac{1}{m} C_i (C_j)^T = \frac{1}{m} \sum_{k=1}^m C_{i,k} C_{j,k} = 0.$$

- Sender i encodes bit 1 as C_i and bit 0 as -C_i.
- Assuming synchronized transmission, the receiver hears a linear combination of the senders transmissions.
- By multiplying with proper chip it can decode the message.

CDMA (example)

- Example:
 - chip $C_x = (+1,+1,+1,+1)$
 - chip $C_Y = (+1,+1,-1,-1)$
 - chip $C_z = (+1,-1,+1,-1)$
- X sends 1, Y sends 0, Z sends nothing:
 - \bullet V = C_X + (-C_Y) = (0,0,2,2)
- Decoding with the chip of X: $V \cdot C_X = (0,0,2,2) \cdot (+1,+1,+1,+1) = 4/4 = 1$
 - Result: bit 1
- Decoding with the chip of Y: V $C_Y = (0,0,2,2) (+1,+1,-1,-1) = -4/4 = -1$
 - Result: bit 0
- Decoding with the chip of Z: $V \cdot C_z = (0,0,2,2) \cdot (+1,-1,+1,-1) = 0$
 - Result: no signal.

Network algorithms 1,7 Tamás Lukovszki

References

- Jie Wu (ed.) Handbook on Theoretical and Algorithmic Aspects of Sensor, Ad Hoc Networks and Peer-to-Per Networks. *Auerbach*, 2005.
- Andrew S. Tanenbaum: Computer Networks. 4th edition, Prentice Hall, 2003.
- http://www.antd.nist.gov/wahn home.shtml

18