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Topology Control
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● Sparse topologies, low node degree

● Storage complexity, storage efficiency

● Short paths, low energy paths

● Energy: battery life time
health issues 
(high frequency radiation) 

● Low load
 

● Efficient distributed construction 
and maintenance

scalability
fault tolerance
self-reconstruction 

Topology Control

source

destination
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Unit Disk Graph

● Let V be a set of n wireless nodes in a 2D Euclidean 
plane

● These nodes define a unit disk graph UDG(V)

● ∥uv∥ is the Euclidean distance between nodes u 
and v

● There is an edge between nodes u and v iff ∥uv∥ 
<= 1
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Planar topologies

● Relative neighborhood graph RNG(V)
ERNG = {(u,v) : 8 w2 V, u w v, ||u,w||¸||u,v|| és ||v,w||¸||u,v||}

● Gabriel graph GG(V)
EGG = {(u,v) : 8 w2 V, u w v, wD(u,v)},
where D(u,v) is the (interior of the) disk 
with diameter uv

● Delaunay triangulation Del(V)
EDel = {(u,v) : 9 w2V, u w v, 8 w’2 V, w’D(u,v,w)},
where D(u,v,w) is the (interior of the) disk, which contains  
u,v,w on the boundary

● RNG(V)  GG(V)  Del(V)
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Relative Neighborhood Graph

● ERNG = {(u,v) : 8 w2 V, u w v, ||u,w||¸||u,v|| és ||v,w||¸||u,v||} u v

● Locally computable

● Connected

● Contains the Euclidean 
minimum spanning tree 
[Toussaint 1980]

● Spanning ratio can be as high as 
(n) [Bose et al. 2006]

● Power spanner ratio can be as 
high as n-1 [Li et al. 2001]

Tamás Lukovszki6Network algorithms

Spanning Ratio of the RNG

Bose et al.  2006
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Power Spanning ratio of the RNG

● At most n – 1

● Path between u and v in EMST(V) has at most n – 1 
edges and each edge has length at most ∥uv∥

●  EMST(V) ⊂ RNG(V) if UDG(V) is connected
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Gabriel Graph

● EGG = {(u,v) : 8 w2 V, u w v, wD(u,v)},
u v

● Locally computable

● Contains the RNG

● Spanning ratio is (n1/2) 
[Bose et al. 2006]

● Power spanning ratio is 1
[Li et al. 2001]
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Gabriel Graph – Power Spanning Ratio

● Power spanning ratio is always = 1; 
Gabriel Graph is an 1-power 
spanner

● Proof involves showing that no edge 
can be added to the GG which 
reduces the energy

● Degree may be (n)

u v
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Delaunay Graph

● EDel = {(u,v) : 9 w2V, u w v, 8 w’2 V, w’D(u,v,w)},
where D(u,v,w) is the (interior of the) disk, 
which contains  u,v,w on the boundary

● RNG(V)  GG(V)  Del(V)

● In the plane, each vertex has on 
average six surrounding triangles. 

● In the plane, the Delaunay 
triangulation maximizes the 
minimum angle 
among all triangulations.

● Contains the edges of the convex hull
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Delaunay Graph

● The closest neighbor b to any point p 
is on an edge bp in the Delaunay 
triangulation 

● Spanner with spanning ratio

[Keil, Gutwin 1992]

● Degree can be as high as (n)

● Not computable locally

u v
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z
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Delaunay Triangulation – Dual Graph: Voronoi Diagram

● The panar dual of the 
Delaunay Trianulation DT(V)
of the set of points V is called 
the Voronoi Diagram VD(V) of V

● The Voronoi cell R(p) of a point p2V
is the set of points in the plane 
the distance of which to p is not greater 
than to any other point of V

R(p)={x2 R2 : ||x,p|| <= ||x,q||, q2 V} 
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K-Localized Delaunay Graph LDelk

● A triangle uvw satisfies k-localized Delaunay property if  

● the interior of the circumcircle D(u,v,w) does not contain any 
node of V that is a k-neighbor of u, v, or w;

● and all edges of the triangle uvw have length <= 1unit.

● Triangle uvw is called a k-localized Delaunay triangle

● The k-localized Delaunay graph over a node set V , denoted by 
LDelk(V ), has exactly all Gabriel edges and the edges of all 
k-localized Delaunay triangles
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K-Localized Delaunay Graph LDelk

● Theorem [Li et al. 2003]: 

● LDelk(V) contains the edges of DT(V), 1 ≤ k ≤ n. 

● LDelk(V) is a spanner, 1 ≤ k ≤ n.

● LDelk+1(V ) ⊆ LDelk(V ), 1 ≤ k < n.

● LDel1(V) may be non-planar.

● LDelk(V) is planar, for 2 ≤ k ≤ n. 

LDel1(V) may be non-planar
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