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Topology Control

e Sparse topologies, low node degree
e Storage complexity, storage efficiency
e Short paths, low energy paths

e Energy: battery life time
health issues
(high frequency radiation)

e [owload

e Efficient distributed construction b
and maintenance
scalability destination
fault tolerance
self-reconstruction
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Unit Disk Graph

Let V be a set of n wireless nodes in a 2D Euclidean
plane

These nodes define a unit disk graph UDG(V)

|uv] is the Euclidean distance between nodes u
and v

There is an edge between nodes u and v iff |[uv]|
<=1
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Planar topologies

e Relative neighborhood graph RNG(V)
Erng = {(UV) 1V we V, uz w v, [|uw||=]|u,v]| es [v,w]|=]u,v][}
u
Gabriel graph GG(V)
Eee = {(u,Vv) : Vwe V, u#w=z v, wg D(u,v)},
where D(u,v) is the (interior of the) disk
with diameter uv

Delaunay triangulation Del(V)

Eoe = {(u,v) : weV, uzwz v, Vwe V, weD(u,v,w)},
where D(u,v,w) is the (interior of the) disk, which contains
u,v,w on the boundary

RNG(V) c GG(V) c Del(V) u < v

w
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Relative Neighborhood Graph

o E.={(uyVv):VweV, urwzyv, |uw||>]uV| és ||v,w||>]|uV|]} u

Locally computable
Connected

Contains the Euclidean
minimum spanning tree
[Toussaint 1980]

Spanning ratio can be as high as
Q(n) [Bose et al. 2006]

Power spanner ratio can be as
high as n-1 [Li et al. 2001]
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Spanning Ratio of the RNG

Bose et al. 2006
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Power Spanning ratio of the RNG

e At mostn-1

e Path between u and v in EMST(V) has at most n -1
edges and each edge has length at most |uv||

e EMST(V) c RNG(V) if UDG(V) is connected

Locally computable

Contains the RNG

Gabriel Graph
o E;={(uyv):VweV, uxrwzv, wezD(u,Vv)}, @
. u "4
-t
N

Spanning ratio is ®(n'?)
[Bose et al. 2006]

Power spanning ratio is 1
[Li et al. 2001]




Gabriel Graph - Power Spanning Ratio

e Power spanning ratio is always = 1;
Gabriel Graph is an 1-power
spanner

u

e Proof involves showing that no edge
can be added to the GG which
reduces the energy

e Degree may be Q(n)
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Delaunay Graph

o E, ., ={(uyv):IweV,uxw£v,vweV,weD(u,v,w)},
where D(u,v,w) is the (interior of the) disk,
which contains u,v,w on the boundary

RNG(V) c GG(V) c Del(V)

In the plane, each vertex has on
average six surrounding triangles.

In the plane, the Delaunay
triangulation maximizes the
minimum angle

among all triangulations.

Contains the edges of the convex hull
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Delaunay Graph

e The closest neighbor b to any point p
is on an edge bp in the Delaunay
triangulation

Spanner with spanning ratio

AT 9418

33
[Keil, Gutwin 1992]

Degree can be as high as Q(n)

Not computable locally
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Delaunay Triangulation — Dual Graph: Voronoi Diagram

The panar dual of the

Delaunay Trianulation DT(V)

of the set of points V is called
the Voronoi Diagram VD(V) of V

The Voronoi cell R(p) of a point peV

is the set of points in the plane

the distance of which to p is not greater
than to any other point of V

R(p)={xe R?: ||x,p|| <= [[x,all, g€ V}
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K-Localized Delaunay Graph LDel*

e A triangle uvw satisfies k-localized Delaunay property if

e the interior of the circumcircle D(u,v,w) does not contain any
node of V that is a k-neighbor of u, v, or w;

e and all edges of the triangle uvw have length <= lunit.
e Triangle uvw is called a k-localized Delaunay triangle

e The k-localized Delaunay graph over a node set V, denoted by
LDel%(V ), has exactly all Gabriel edges and the edges of all
k-localized Delaunay triangles
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K-Localized Delaunay Graph LDel*

e Theorem [Li et al. 2003]:
e | Delk(V) contains the edges of DT(V), 1 = k = n.
LDel%(V) is a spanner, 1 = k = /_? e
LDelk+(V ) € LDelv(V ), 1 = k // ! \\\\ \\

LDel*(V) may be non-planar. |"

/
/
/
/
{

o

LDel(V) is planar, for 2 = k = /<

LDel*(V) may be non-planar
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