Models of Computation

1: Basics, Languages

- Alphabet: a finite, non-empty set of symbols/letters.
- Words or strings over V: Finite sequences of the elements of an alphabet V.
- V^* : the **set of words** over V including the **empty word** (ϵ).
- $V^+ = V^* \setminus \{\varepsilon\}$: the **set of non-empty words** over V.

Example:
 Let V = {a, b}, then ab and baaabb are words over V.

• Let V be an alphabet and let u and v be words over V (i.e., $u,v \in V^*$). Then the word uv is the **concatenation** of u and v.

• Example:

Let $V = \{a, b\}$, u = ab and v = baabb words over V. Then uv = abbaabb.

Properties

- The concatenation is associative, but in general not commutative.
 - if $u, v \in V^*$, $u \neq v$, then uv differs from vu, unless V consists of only one letter (not commutative).
 - if $u, v, w \in V^*$, then u(vw) = (uv)w (associative).
- V^* is **closed** for the operation of concatenation (i.e. for any $u, v \in V^*$, $uv \in V^*$ holds).
- The concatenation is an operation with **identity element**, or **neutral element**, the neutral element is ε (i.e., for any $u \in V^*$, $u = u\varepsilon = \varepsilon u$).

- Let i be a non-negative integer and u be a word over V
 (u ∈ V*). The i-th power uⁱ of the word u is the
 concatenation of i instances of u.
- Convention: $u^0 = \varepsilon$.

• Example:

Let $V = \{a, b\}$ and u = abb be a word above V. Then $u^0 = \varepsilon$, $u^1 = abb$, $u^2 = abbabb$, $u^3 = abbabbabb$, ...

Let V be an alphabet and u be a word over V (u ∈ V*).
 The **length** of the word u, denoted by |u|, is the number of letters in u (i.e., considering u as a sequence of letter, the length of u is the length of the sequence).

- Remark:
 - $|\epsilon| = 0$.
 - If $u, v \in V^*$, then |uv| = |u| + |v|.
- Example: Let $V = \{a, b\}$ and let u = abb be a word over V. Then |u| = 3.

- Let u and v be words over V. The words u and v are **equal**, if as sequences of letters, they are equal element-by-element, i.e., |u|=|v| and for all $i=1,\ldots,|u|$, the i-th letter of v are equal.
- Let V be an alphabet and u and v be words over V. The word u is a **subword** (or **substring**) of v, if v = xuy, for some $x, y \in V^*$.
- A word u is a **proper subword** (or **proper substring**) of a word v if at least one of x or y is not empty, i.e. if $xy \neq \varepsilon$.
- If $x = \varepsilon$, then u is the **prefix** of v.
- If $y = \varepsilon$, then u is the **suffix** of v.

- Example:
 - Let $V = \{a, b\}$ and u = abb.
 - Subwords of *u*: ε, a, b, ab, bb, abb.
 - Proper subwords of *u*: ε, a, b, ab, bb.
 - Prefixes of u: ε, a, ab, abb.
 - Suffixes of *u*: *ε*, *b*, *bb*, *abb*.

- Let u be a word over the alphabet V. The **reverse** (or **mirror**) word u^{-1} of u is the word obtained, s.t. the letters of u are written in reverse order.
- Let $u = a_1 \dots a_n$, $a_i \in V$, $1 \le i \le n$. Then $u^{-1} = a_n \dots a_1$.
- $(u^{-1})^{-1} = u$.
- $(u^{-1})^i = (u^i)^{-1}$ also holds, where i = 1, 2, ...

• Example:

Let $V = \{a, b\}$ and u = abba and v = aabbbaThen $u^{-1} = abba$ (palindrome) and $v^{-1} = abbbaa$.

- Let V be an alphabet and L be an arbitrary subset of V^* . L is called a **language** over V.
- An **empty language** (a language that does not contain any words) is denoted by \varnothing .
- A language L over V is a finite language if it has a finite number of words. Otherwise, L
 is an infinite language.

Example:

```
Let V = \{a, b\} be an alphabet.

L_1 = \{a, b, \epsilon\}.

L_2 = \{a^i b^i \mid i \ge 0\}.

L_3 = \{u u^{-1} \mid u \in V^*\}.

L_4 = \{(a^n)^2 \mid n \ge 1\}.

L_5 = \{u \mid u \in \{a, b\}^+, N_a(u) = N_b(u)\}, where N_a(u) and N_b(u) denote the number of
```

occurrences of symbols a and b in u, respectively.

 L_1 is a finite language, the others are infinite.

- A generative grammar G is a 4-tuple (N, T, P, S), where
 - *N* and *T* are disjoint finite alphabets (i.e. $N \cap T = \emptyset$).
 - The elements of *N* are called **nonterminal** symbols.
 - The elements of T are called terminal symbols.
 - $S \in N$ is the **start symbol** (axiom).
 - P is a finite set of ordered (x, y) pairs, where $x, y \in (N \cup T)^*$ and x contains at least one non-terminal symbol.
 - The elements of P are called **rewriting rules** (**rules** for short) or **productions**. $x \rightarrow y$ can be used instead of (x, y), where $y \notin (N \cup T)$.

- Example:
 - $G_1 = (\{S, A, B\}, \{a, b, c\}, \{S \rightarrow c, S \rightarrow AB, A \rightarrow aA, B \rightarrow \varepsilon, abb \rightarrow aSb\}, S)$ is not a generative grammar.
 - $G_2 = (\{S, A, B, C\}, \{a, b, c\}, \{S \rightarrow a, S \rightarrow AB, A \rightarrow Ab, B \rightarrow \varepsilon, aCA \rightarrow aSc\}, S)$ is a generative grammar.

- Let G = (N, T, P, S) be a generative grammar and let $u, v \in (N \cup T)^*$. The word v can be **derived directly** or **in one step** from u in G, denoted as $u \Rightarrow_G v$, if $u = u_1 x u_2$ and $v = u_1 y u_2$, where $u_1, u_2 \in (N \cup T)^*$ and $x \rightarrow y \in P$.
- Let G = (N, T, P, S) be a generative grammar and $u, v \in (N \cup T)^*$. The word v can be **derived** from u in G, denoted as $u \Rightarrow^*_G v$,
 - if u = v, or
 - there exists a word $z \in (N \cup T)^*$, for which $u \Rightarrow^*_G z$ and $z \Rightarrow_G y$.
 - \Rightarrow * is the reflexive, transitive closure of \Rightarrow .
 - \Rightarrow is the transitive closure of \Rightarrow .

- Let G = (N, T, P, S) be a generative grammar and $u, v \in (N \cup T)^*$. The word v can be **derived in** k **steps** from u in $G, k \ge 1$, if there exists a sequence of words $u_1, \ldots, u_{k+1} \in (N \cup T)^*$, s.t. $u=u_1, v=u_{k+1}$, and $u_i \Rightarrow_G u_{i+1}, 1 \le i \le k$.
- A word v can be **derived** from a word u in G if either u = v, or there is a number $k \ge 1$, s.t. v can be derived from u in k steps.

- Let G = (N, T, P, S) be an arbitrary generative grammar. The **generated language** L(G) by the grammar G is: $L(G) = \{w \mid S \Rightarrow^*_G w, w \in T^*\}$
- This means that the L(G) consists of words that are in T^* and can be derived from S by grammar G.

• Example:

Let G = (N, T, P, S) be a generative grammar, where $N = \{S, A, B\}, T = \{a, b\}$ and $P = \{S \rightarrow aSb, S \rightarrow ab, S \rightarrow ba\}.$ Then $L(G) = \{a^nabb^n, a^nbab^n \mid n \ge 0\}.$

• Example:

Let G = (N, T, P, S) be a generative grammar, where $N = \{S, X, Y\}, T = \{a, b, c\}$ and $P = \{S \rightarrow abc, S \rightarrow aXbc, Xb \rightarrow bX, Xc \rightarrow Ybcc, bY \rightarrow Yb, aY \rightarrow aaX, aY \rightarrow aa\}.$ Then $L(G) = \{a^nb^nc^n \mid n \geq 1\}.$

- Each grammar generates a language, but the same language can be generated by several different grammars.
- Two grammars are equivalent if they generate the same language.
- Two languages are weakly equivalent, if they differ only in the empty word.

- Let G = (N, T, P, S) be a generative grammar. G is generative grammar is of i-type, i = 0, 1, 2, 3, if the rule set P satisfies the following:
 - i = 0: no restriction.
 - i = 1: All rules of P have the form $u_1Au_2 \rightarrow u_1vu_2$, where $u_1, u_2, v \in (N \cup T)^*$, $A \in N$, and $v \neq \varepsilon$, except for a rule $S \rightarrow \varepsilon$, when such a rule exists in P. If P contains the rule $S \rightarrow \varepsilon$, then S does not occur on the right side of any rule.
 - i = 2: All rules of P are of the form $A \rightarrow v$, where $A \in N$ and $v \in (N \cup T)^*$.
 - i = 3: All rules of P are of the form either $A \rightarrow uB$ or $A \rightarrow u$, where $A, B \in N$ and $u \in T^*$.

- A language L is of type i, where i = 0, 1, 2, 3, if it can be generated by a type i grammar.
- \mathcal{L}_i , i = 0, 1, 2, 3, denotes the class (family) of type i languages.

- Type 0 grammars are called phrase-structured grammars.
- Type 1 grammars are **context-sensitive** grammars, since some occurrence of the nonterminal A can only be substituted with the word v in the presence of contexts u_1 and u_2 .
- Type 2 grammars are context-free grammars, because the substitution of a nonterminal A with v is allowed in any context.
- Type 3 grammars are regular or finite state grammars.
- The classes of languages of type 0,1,2,3 are called recursively enumerable, context-sensitive, context-free, and regular, respectively.

Linguistic background "The cunning fox hastily ate the leaping frog."

- $S \rightarrow A + B$ (S: sentence, A: noun phrase, B: verb phrase)
- $A \rightarrow C + D + E$ (C : article, D: adjective, E : noun)
- $B \rightarrow G + B (G : adverb)$
- $B \rightarrow F + A (F : verb)$
- *C* → the
- $D \rightarrow \text{cunning}$
- $E \rightarrow fox$
- $G \rightarrow \text{hastily}$
- *F* → ate
- $D \rightarrow leaping$
- $E \rightarrow \text{frog}$

Linguistic background

- + (space) terminal symbol
- cunning ← → leaping , fox ← → frog (they are interchangeable, but the meanings are different)
- Sentence is syntactically correct
- It is not possible to describe the complete syntax of natural languages

- It is oblivious that $\mathcal{L}_3 \subseteq \mathcal{L}_2 \subseteq \mathcal{L}_0$ and $\mathcal{L}_1 \subseteq \mathcal{L}_0$.
- It can also be shown that (Chomsky's hierarchy) following hold:
 - $\mathcal{L}_3 \subset \mathcal{L}_2 \subset \mathcal{L}_1 \subset \mathcal{L}_0$.
- However, the inclusion relation between language class \mathcal{L}_2 and \mathcal{L}_1 is not is oblivious from the definition of the corresponding grammars.

- Let V be an alphabet and L_1 , L_2 be languages over V (that is, $L_1 \subseteq V^*$ and $L_2 \subseteq V^*$)
 - union: $L_1 \cup L_2 = \{u \mid u \in L_1 \text{ or } u \in L_2 \}.$
 - intersection: $L_1 \cap L_2 = \{u \mid u \in L_1 \text{ and } u \in L_2 \}.$
 - **difference**: $L_1 L_2 = \{u \mid u \in L_1 \text{ and } u \notin L_2 \}.$
- Example:

Let $V = \{a, b\}$ be an alphabet and $L_1 = \{a, b\}$ and $L_2 = \{\epsilon, a, bbb\}$ languages over V. Then

$$L_1 \cup L_2 = \{\varepsilon, a, b, bbb\}$$

 $L_1 \cap L_2 = \{a\}$
 $L_1 - L_2 = \{b\}$

- The **complement** of the language $L \subseteq V^*$ with respect to the alphabet V is the language $L = V^* L$.
- Example:

Let $V = \{a\}$ be an alphabet and let $L = \{a^{4n} \mid n \ge 0\}$. Then $L = V^* - \{a^{4n} \mid n \ge 0\}$.

• Let V be an alphabet and L_1 , L_2 be languages over V (i.e. $L_1 \subseteq V^*$ and $L_2 \subseteq V^*$). The **concatenation** of L_1 and L_2 is $L_1L_2 = \{u_1u_2 \mid u_1 \in L_1, u_2 \in L_2\}$.

• Remark:

The following equalities hold for every language *L*:

$$\varnothing L = L\varnothing = \varnothing$$
 and $\{\varepsilon\}L = L\{\varepsilon\} = L$.

- L^i denotes the **i-th iteration** of L (for the operation of concatenation), where $i \ge 1$. By convention, $L^0 = \{\epsilon\}$.
- The iterative closure (or Kleene closure) of a language L is: $L^* = \bigcup_{i \ge 0} L^i$.
- $L^+ = \bigcup_{i\geq 1} L^i$.

• Remark: Obviously, if $\varepsilon \in L$, then $L^+ = L^*$. Otherwise, $L^+ = L^* - \{\varepsilon\}$.

• Example (concatenation):

```
Let V = \{a, b\} and let L_1 = \{a, b\}, L_2 = \{\epsilon, a, bbb\}, L_3 = \{a^{4n}b^{4n} \mid n \ge 0\} and L_4 = \{a^{7n}b^{7n} \mid n \ge 0\}. Then
```

- $L_1L_2 = \{a, b, aa, ba, abbb, bbbb\},$
- $L_3L_4 = \{a^{4n}b^{4n}a^{7m}b^{7m} \mid n \ge 0, m \ge 0\}.$

• Let V be an alphabet and $L \subseteq V^*$. Then the language $L^{-1} = \{u^{-1} \mid u \in L\}$ is the **mirror** (or **reversal**) of L.

- Remarks:
 - $(L^{-1})^{-1} = L$,
 - $(L_1L_2 \ldots L_n)^{-1} = L_n^{-1} \ldots L_2^{-1}L_1^{-1},$
 - $(L^{i})^{-1} = (L^{-1})^{i}$, where $i \ge 0$, and
 - $(L^*)^{-1} = (L^{-1})^*$.

• Example (mirror, reversal): Let $V = \{a, b\}$ and $L = \{\epsilon, a, abb\}$ be a language over V. Then $L^{-1} = \{\epsilon, a, bba\}$.

- The **prefix of a language** $L \subseteq V^*$ is the language $L \subseteq V^*$ is the language.
- Remark: By definition, $L \subseteq \text{HEAD}(L)$ for any language $L \in V^*$.
- The **suffix of a language** $L \subseteq V^*$ is the language TAIL(L) = { $u \mid u \in V^*$, $vu \in L$ for some $v \in V^*$ }.

- Let V_1 and V_2 be two alphabets. The mapping $h: V_1^* \to V_2^*$ is called a **homomorphism** if the following conditions hold:
 - for every word $u \in V_1^*$ there is exactly one word $v \in V_2^*$ for which h(u) = v.
 - h(uv) = h(u)h(v), for all $u, v \in V_1^*$.

Remarks:

- It follows from the above conitions that $h(\varepsilon) = \varepsilon$. Namely, for all $u \in V_1^*$ holds $h(u) = h(\varepsilon u) = h(u\varepsilon)$.
- For all words u = a₁a₂...a_n, a_i ∈ V₁, 1 ≤ i ≤ n, it holds that h(u) = h(a₁)h(a₂)...h(a_n).
 I.e. that it is sufficient to define the mapping h on the elements of V₁ and it is automatically extended to V₁*.

- A homomorphism $h: V_1^* \to V_2^*$ is **\varepsilon-free** if for all $u \in V_1^+$, $h(u) \neq \varepsilon$.
- Let $h: V_1^* \to V_2^*$ be a homomorphism. The **h-homomorphic image** of a language $L \in V_1^*$ is the language $h(L) = \{w \in V_2^* \mid w = h(u), u \in L\}$
- Example (homomorphism): Let $V_1 = V_2 = \{a, b\}$ be two alphabets. Let $h : V_1^* \rightarrow V_2^*$ be a homomorphism, s.t. h(a) = bbb, h(b) = ab and $L = \{a, abba\}$. Then $h(L) = \{bbb, bbbababbbb\}$.

• A homomorphism h is called an **isomorphism** if following holds: for any $u, v \in V_1^*$, if h(u) = h(v), then u = v.

 Example (isomorphism – binary representation of decimal numbers):

$$V_1 = \{0, 1, 2, \dots, 9\}, V_2 = \{0, 1\},$$

 $h(0) = 0000, h(1) = 0001, \dots, h(9) = 1001$

Literature

- Handbook of Formal Languages, G. Rozenberg, A.
 Salomaa, (eds.), Springer–Verlag, Berlin–Heidelberg, 1997.
- Gy. E. Révész, Introduction to Formal Languages, Dover Publications, Inc., New York, 2012.
- G. Rozenberg, A. Salomaa, The mathematical theory of L systems, Vol. 90., Academic Press, 1980.
- J. Dassow, Gh. Paun. Regulated rewriting in formal language theory, Springer Publishing Company, Inc., 2012.