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Models of Computation

1: Basics, Languages
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Basics, terminology

 Alphabet: a finite, non-empty set of symbols/letters.
 Words or strings over V: Finite sequences of the elements 

of an alphabet V.
 V* : the set of words over V including the empty word (ε).
 V+ = V* \ {ε} : the set of non-empty words over V.

 Example:
Let V = {a, b}, then ab and baaabb are words over V.
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Basics, terminology

 Let V be an alphabet and let u and v be words over V 
(i.e., u,v  ∈ V*). Then the word uv is the concatenation 
of u and v.

 Example:
Let V = {a, b}, u = ab and v = baabb words over V. 
Then uv = abbaabb.
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Basics, terminology

Properties 
● The concatenation is associative, but in general not 

commutative.
● if u, v  ∈ V*, u≠v, then uv differs from vu, unless V consists 

of only one letter (not commutative).
● if u, v , w  ∈ V*, then u(vw) = (uv)w (associative).

● V* is closed for the operation of concatenation 
(i.e. for any u, v  ∈ V*, uv  ∈ V* holds).

● The concatenation is an operation with identity element, or 
neutral element, the neutral element is ε 
(i.e., for any u  ∈ V*, u = uε = εu).
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Basics, terminology

 Let i be a non-negative integer and u be a word over V 
(u  ∈ V*). The i-th power ui of the word u is the 
concatenation of i instances of u.

 Convention: u0 = ε.

 Example:
Let V = {a, b} and u = abb be a word above V.
Then u0 = ε, u1 = abb, u2 = abbabb, u3 = abbabbabb, ...
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Basics, terminology

● Let V be an alphabet and u be a word over V (u  ∈ V*). 
The length of the word u, denoted by |u|, is the number of letters 
in u (i.e., considering u as a sequence of letter, 
the length of u is the length of the sequence).

 
● Remark:

● |ε| = 0.
● If u, v  ∈ V*, then |uv| = |u| + |v|.

● Example:
Let V = {a, b} and let u = abb be a word over V. Then |u| = 3.
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Basics, terminology

 Let u and v be words over V. The words u and v are equal, if 
as sequences of letters, they are equal element-by-element, 
i.e., |u|=|v| and for all i =  1,…,|u|, the i-th letter of u and the i-th 
letter of v are equal.

 Let V be an alphabet and u and v be words over V. 
The word u is a subword (or substring) of v, 
if v = xuy, for some x, y  ∈ V*. 

 A word u is a proper subword (or proper substring) of a 
word v if at least one of x or y is not empty, i.e. if xy ≠ ε.

 If x = ε, then u is the prefix of v. 
 If y = ε, then u is the suffix of v.
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Basics, terminology

● Example:
Let V = {a, b} and u = abb.
● Subwords of u: ε, a, b, ab, bb, abb.
● Proper subwords of u: ε, a, b, ab, bb.
● Prefixes of u: ε, a, ab, abb.
● Suffixes of u: ε, b, bb, abb.
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Basics, terminology

 Let u be a word over the alphabet V. The reverse (or mirror) 
word u-1 of u is the word obtained, s.t. the letters of u are written 
in reverse order.

 Let u = a1 . . . an , ai  ∈ V , 1 ≤ i ≤ n. Then u−1 = an . . . a1.
 (u−1)−1 = u.
 (u−1)i = (ui)−1 also holds, where i = 1, 2, …

 Example:
Let V = {a, b} and u = abba and v = aabbba
Then u−1 = abba (palindrome) and v−1 = abbbaa.
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Basics, terminology

 Let V be an alphabet and L be an arbitrary subset of V*. L is called a language over V.
 An empty language (a language that does not contain any words) is denoted by .∅
 A language L over V is a finite language if it has a finite number of words. Otherwise, L 

is an infinite language.

 Example:
Let V = {a, b} be an alphabet.

L1 = {a, b, ε}.
L2 = {aibi | i ≥ 0}.
L3 = {uu−1 | u  ∈ V*}.
L4 = {(an)2 | n ≥ 1}.
L5 = {u | u  {∈ a, b}+ , Na(u) = Nb(u)}, where Na(u) and Nb(u) denote the number of 

occurrences of symbols a and b in u, respectively.

L1 is a finite language, the others are infinite.
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Basics, terminology

● A generative grammar G is a 4-tuple (N, T, P, S), where
● N and T are disjoint finite alphabets (i.e. N ∩ T = ). ∅
● The elements of N are called nonterminal symbols.
● The elements of T are called terminal symbols.
● S  ∈ N is the start symbol (axiom).
● P is a finite set of ordered (x, y) pairs, where x, y  (∈ N  ∪

T )* and x contains at least one non-terminal symbol.
● The elements of P are called rewriting rules (rules for 

short) or productions. x → y can be used instead of (x, y), 
where → ∉ (N  ∪ T) .
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Basics, terminology

● Example:
● G1 = ({S, A, B}, {a, b, c}, {S→c, S→AB, A→aA, B→ε, 

abb→aSb}, S) is not a generative grammar.

● G2 = ({S, A, B, C}, {a, b, c}, {S→a, S→AB, A→Ab, B→ε, 
aCA→aSc}, S) is a generative grammar.
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Basics, terminology

● Let G = (N, T , P, S) be a generative grammar and let u, v  (∈ N  ∪ T)*. 
The word v can be derived directly or in one step from u in G, 
denoted as u ⇒G v, 
if u = u1xu2 and v = u1yu2 , where u1, u2  (∈ N  ∪ T )* and x → y  ∈ P.

● Let G = (N, T , P, S) be a generative grammar and u, v  (∈ N  ∪ T )*. 
The word v can be derived from u in G , denoted as u *⇒ G v,
● if u = v, or
● there exists a word z  (∈ N  ∪ T )*, for which u *⇒ G z and z ⇒G y.
● ⇒* is the reflexive, transitive closure of .⇒
● ⇒+ is the transitive closure of .⇒
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Basics, terminology

 Let G = (N, T , P, S) be a generative grammar and 
u, v  (∈ N  ∪ T)*.
The word v can be derived in k steps from u in G, k ≥ 1, if 
there exists a sequence of words u1 , . . . , uk+1  (∈ N  ∪ T)*, 
s.t.  u=u1, v=uk+1, and ui ⇒G ui+1, 1 ≤ i ≤ k.

 A word v can be derived from a word u in G if either u = v, 
or there is a number k ≥ 1, s.t. v can be derived from u in k 
steps.
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Basics, terminology

 Let G = (N, T , P, S) be an arbitrary generative grammar. 
The generated language L(G) by the grammar G is:
L(G ) = {w | S *⇒ G w , w  ∈ T*}

 This means that the L(G) consists of words that are in T* 
and can be derived from S by grammar G.
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Basics, terminology

 Example:
Let G = (N, T, P, S) be a generative grammar, where
N = {S, A, B}, T = {a, b} and 
P = {S → aSb, S → ab, S → ba}.
Then L(G) = {anabbn , anbabn | n ≥ 0}.

 Example:
Let G = (N, T , P, S) be a generative grammar, where 
N = {S, X , Y}, T = {a, b, c} and 
P = {S → abc, S → aXbc, Xb → bX , Xc → Ybcc, bY → Yb, 
aY → aaX , aY → aa}.
Then L(G) = {anbncn | n ≥ 1}.
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Basics, terminology

 Each grammar generates a language, but the same 
language can be generated by several different grammars.

 Two grammars are equivalent if they generate the same 
language.

 Two languages ​​are weakly equivalent, if they differ only in 
the empty word.
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Chomsky hierarchy

● Let G = (N, T , P, S) be a generative grammar. G is generative grammar 
is of i-type, i = 0, 1, 2, 3, if the rule set P satisfies the following:
● i = 0: no restriction.
● i = 1: All rules of P have the form u1Au2 → u1vu2, where

u1, u2, v  (∈ N  ∪ T )*, A  ∈ N, and v ≠ ε, except for a rule S → ε, when 
such a rule exists in P. 
If P contains the rule S → ε, then S does not occur on the right side of 
any rule.

● i = 2: All rules of P are of the form A → v, where 
A  ∈ N and v  (∈ N  ∪ T )* .

● i = 3: All rules of P are of the form either A → uB or A → u, where A, B 
 ∈ N and u  ∈ T*.
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Chomsky hierarchy

 A language L is of type i, where i = 0, 1, 2, 3, if it can be 
generated by a type i grammar.

 Li, i = 0, 1, 2, 3, denotes the class (family) of type i 
languages.
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Chomsky hierarchy

 Type 0 grammars are called phrase-structured grammars.
 Type 1 grammars are context-sensitive grammars, since 

some occurrence of the nonterminal A can only be substituted 
with the word v in the presence of contexts u1 and u2.

 Type 2 grammars are context-free grammars, because the 
substitution of a nonterminal A with v is allowed in any context.

 Type 3 grammars are regular or finite state grammars.

 The classes of languages ​​of type 0,1,2,3 are called recursively 
enumerable, context-sensitive, context-free, and regular, 
respectively.
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Chomsky hierarchy

Linguistic background
”The cunning fox hastily ate the leaping frog.”

 S → A + B (S: sentence, A: noun phrase, B: verb phrase)
 A → C + D + E (C : article, D: adjective, E : noun)
 B → G + B (G : adverb)
 B → F + A (F : verb)
 C → the
 D → cunning
 E → fox
 G → hastily
 F → ate
 D → leaping
 E → frog
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Chomsky hierarchy

Linguistic background

 + (space) – terminal symbol
 cunning ←→ leaping , fox ←→ frog (they are 

interchangeable, but the meanings are different)
 Sentence is syntactically correct

 It is not possible to describe the complete syntax of natural 
languages
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Chomsky hierarchy

 It is oblivious that L3  ⊆ L2  ⊆ L0 and L1  ⊆ L0 .
 It can also be shown that (Chomsky's hierarchy) following 

hold:
L3  ⊂ L2  ⊂ L1  ⊂ L0 .

 However, the inclusion relation between language class L2 
and L1 is not is oblivious from the definition of the 
corresponding grammars.



Tamás Lukovszki24Models of Computation

Operations on Languages

● Let V be an alphabet and L1, L2 be languages over V (that is, L1  ⊆ V* 
and L2  ⊆ V*)
● union: L1  ∪ L2 = {u | u  ∈ L1 or u  ∈ L2 }.
● intersection: L1 ∩ L2 = {u | u  ∈ L1 and u  ∈ L2 }.
● difference: L1 - L2 = {u | u  ∈ L1 and u ∉ L2 }.

● Example:
Let V = {a, b} be an alphabet and L1 = {a, b} and L2 = {ε, a, bbb} 
languages ​​over V. Then

L1  ∪ L2 = {ε, a, b, bbb}
L1 ∩ L2 = {a}
L1 − L2 = {b}
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Operations on Languages

 The complement of the language L  ⊆ V* with respect to 
the alphabet V is the language L = V* − L.

 Example:
Let V = {a} be an alphabet and let L = {a4n | n ≥ 0}. Then
L= V* − {a4n | n ≥ 0}.
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Operations on Languages

 Let V be an alphabet and L1, L2 be languages over V 
(i.e. L1  ⊆ V* and L2  ⊆ V*). The concatenation of L1 and L2 
is L1L2 = {u1u2 | u1  ∈ L1 , u2  ∈ L2 }.

 Remark:
The following equalities hold for every language L:
∅L = L  =  and∅ ∅
{ε}L = L{ε} = L.
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Operations on Languages

 Li denotes the i-th iteration of L (for the operation of 
concatenation), where i ≥ 1. By convention, L0 = {ε}.

 The iterative closure (or Kleene closure) of a language L 
is: L* = Ui≥0 Li.

 L+ = Ui≥1 Li.

 Remark:
Obviously, if ε  ∈ L, then L+ = L*. Otherwise, L+ = L* − {ε}.
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Operations on Languages

 Example (concatenation):
Let V = {a, b} and let L1 = {a, b}, L2 = {ε, a, bbb},  
L3 = {a4nb4n | n ≥ 0} and L4 = {a7nb7n | n ≥ 0}. Then
● L1L2 = {a, b, aa, ba, abbb, bbbb},
● L3L4= {a4nb4na7mb7m | n ≥ 0, m ≥ 0}.
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Operations on Languages

 Let V be an alphabet and L  ⊆ V*. Then the language
L−1 = {u−1 | u  ∈ L} is the mirror (or reversal) of L.

 Remarks:
● (L−1)−1 = L,
● (L1L2 . . . Ln)−1 = Ln

−1. . . L2
-1L1

-1,
● (Li)−1 = (L−1 )i , where i ≥ 0, and
● (L*)−1 = (L−1)*.
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Operations on Languages

 Example (mirror, reversal):
Let V = {a, b} and L = {ε, a, abb} be a language over V. Then 
L−1 = {ε, a, bba}.
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Operations on Languages

 The prefix of a language L  ⊆ V* is the language 
HEAD(L) = { u | u  ∈ V* , uv  ∈ L for some v  ∈ V* }.

 Remark:
By definition, L  HEAD(⊆ L) for any language L  ∈ V*.

 The suffix of a language L  ⊆ V* is the language 
TAIL(L) = { u | u  ∈ V* , vu  ∈ L for some v  ∈ V* }.
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Operations on Languages

● Let V1 and V2 be two alphabets. The mapping h : V1* → V2*
is called a homomorphism if the following conditions hold:
● for every word u  ∈ V1* there is exactly one word 

v  ∈ V2* for which h(u) = v.
● h(uv) = h(u)h(v), for all u, v  ∈ V1*.

● Remarks:
● It follows from the above conitions that h(ε) = ε.

Namely, for all u  ∈ V1* holds h(u) = h(εu) = h(uε).
● For all words u = a1a2 . . . an, ai  ∈ V1 , 1 ≤ i ≤ n, it holds that

h(u) = h(a1)h(a2) . . . h(an). 
I.e. that it is sufficient to define the mapping h on the elements of V1 and 
it is automatically extended to V1*.
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Operations on Languages

 A homomorphism h : V1* → V2* is ε-free if
for all u  ∈ V1

+, h(u) ≠ ε.

 Let h : V1* → V2* be a homomorphism.
The h-homomorphic image of a language L  ∈ V1* is
the language h(L) = {w  ∈ V2* | w = h(u), u  ∈ L}

 Example (homomorphism):
Let V1 = V2 = {a, b} be two alphabets. Let h : V1* → V2* be a 
homomorphism, s.t. h(a) = bbb, h(b) = ab and L = {a, abba}. 
Then h(L) = {bbb, bbbababbbb}.
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Operations on Languages

 A homomorphism h is called an isomorphism 
if following holds:
for any u, v  ∈ V1*, if h(u) = h(v), then u = v.

 Example (isomorphism – binary representation of decimal 
numbers):
V1 = {0, 1, 2, . . . , 9}, V2 = {0, 1},
h(0) = 0000, h(1) = 0001, . . . , h(9) = 1001
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