
Tamás Lukovszki1Models of Computation

Models of Computation

1: Basics, Languages

Tamás Lukovszki2Models of Computation

Basics, terminology

 Alphabet: a finite, non-empty set of symbols/letters.
 Words or strings over V: Finite sequences of the elements

of an alphabet V.
 V* : the set of words over V including the empty word (ε).
 V+ = V* \ {ε} : the set of non-empty words over V.

 Example:
Let V = {a, b}, then ab and baaabb are words over V.

Tamás Lukovszki3Models of Computation

Basics, terminology

 Let V be an alphabet and let u and v be words over V
(i.e., u,v ∈ V*). Then the word uv is the concatenation
of u and v.

 Example:
Let V = {a, b}, u = ab and v = baabb words over V.
Then uv = abbaabb.

Tamás Lukovszki4Models of Computation

Basics, terminology

Properties
● The concatenation is associative, but in general not

commutative.
● if u, v ∈ V*, u≠v, then uv differs from vu, unless V consists

of only one letter (not commutative).
● if u, v , w ∈ V*, then u(vw) = (uv)w (associative).

● V* is closed for the operation of concatenation
(i.e. for any u, v ∈ V*, uv ∈ V* holds).

● The concatenation is an operation with identity element, or
neutral element, the neutral element is ε
(i.e., for any u ∈ V*, u = uε = εu).

Tamás Lukovszki5Models of Computation

Basics, terminology

 Let i be a non-negative integer and u be a word over V
(u ∈ V*). The i-th power ui of the word u is the
concatenation of i instances of u.

 Convention: u0 = ε.

 Example:
Let V = {a, b} and u = abb be a word above V.
Then u0 = ε, u1 = abb, u2 = abbabb, u3 = abbabbabb, ...

Tamás Lukovszki6Models of Computation

Basics, terminology

● Let V be an alphabet and u be a word over V (u ∈ V*).
The length of the word u, denoted by |u|, is the number of letters
in u (i.e., considering u as a sequence of letter,
the length of u is the length of the sequence).

● Remark:

● |ε| = 0.
● If u, v ∈ V*, then |uv| = |u| + |v|.

● Example:
Let V = {a, b} and let u = abb be a word over V. Then |u| = 3.

Tamás Lukovszki7Models of Computation

Basics, terminology

 Let u and v be words over V. The words u and v are equal, if
as sequences of letters, they are equal element-by-element,
i.e., |u|=|v| and for all i = 1,…,|u|, the i-th letter of u and the i-th
letter of v are equal.

 Let V be an alphabet and u and v be words over V.
The word u is a subword (or substring) of v,
if v = xuy, for some x, y ∈ V*.

 A word u is a proper subword (or proper substring) of a
word v if at least one of x or y is not empty, i.e. if xy ≠ ε.

 If x = ε, then u is the prefix of v.
 If y = ε, then u is the suffix of v.

Tamás Lukovszki8Models of Computation

Basics, terminology

● Example:
Let V = {a, b} and u = abb.
● Subwords of u: ε, a, b, ab, bb, abb.
● Proper subwords of u: ε, a, b, ab, bb.
● Prefixes of u: ε, a, ab, abb.
● Suffixes of u: ε, b, bb, abb.

Tamás Lukovszki9Models of Computation

Basics, terminology

 Let u be a word over the alphabet V. The reverse (or mirror)
word u-1 of u is the word obtained, s.t. the letters of u are written
in reverse order.

 Let u = a1 . . . an , ai ∈ V , 1 ≤ i ≤ n. Then u−1 = an . . . a1.
 (u−1)−1 = u.
 (u−1)i = (ui)−1 also holds, where i = 1, 2, …

 Example:
Let V = {a, b} and u = abba and v = aabbba
Then u−1 = abba (palindrome) and v−1 = abbbaa.

Tamás Lukovszki10Models of Computation

Basics, terminology

 Let V be an alphabet and L be an arbitrary subset of V*. L is called a language over V.
 An empty language (a language that does not contain any words) is denoted by .∅
 A language L over V is a finite language if it has a finite number of words. Otherwise, L

is an infinite language.

 Example:
Let V = {a, b} be an alphabet.

L1 = {a, b, ε}.
L2 = {aibi | i ≥ 0}.
L3 = {uu−1 | u ∈ V*}.
L4 = {(an)2 | n ≥ 1}.
L5 = {u | u {∈ a, b}+ , Na(u) = Nb(u)}, where Na(u) and Nb(u) denote the number of

occurrences of symbols a and b in u, respectively.

L1 is a finite language, the others are infinite.

Tamás Lukovszki11Models of Computation

Basics, terminology

● A generative grammar G is a 4-tuple (N, T, P, S), where
● N and T are disjoint finite alphabets (i.e. N ∩ T =). ∅
● The elements of N are called nonterminal symbols.
● The elements of T are called terminal symbols.
● S ∈ N is the start symbol (axiom).
● P is a finite set of ordered (x, y) pairs, where x, y (∈ N ∪

T)* and x contains at least one non-terminal symbol.
● The elements of P are called rewriting rules (rules for

short) or productions. x → y can be used instead of (x, y),
where → ∉ (N ∪ T) .

Tamás Lukovszki12Models of Computation

Basics, terminology

● Example:
● G1 = ({S, A, B}, {a, b, c}, {S→c, S→AB, A→aA, B→ε,

abb→aSb}, S) is not a generative grammar.

● G2 = ({S, A, B, C}, {a, b, c}, {S→a, S→AB, A→Ab, B→ε,
aCA→aSc}, S) is a generative grammar.

Tamás Lukovszki13Models of Computation

Basics, terminology

● Let G = (N, T , P, S) be a generative grammar and let u, v (∈ N ∪ T)*.
The word v can be derived directly or in one step from u in G,
denoted as u ⇒G v,
if u = u1xu2 and v = u1yu2 , where u1, u2 (∈ N ∪ T)* and x → y ∈ P.

● Let G = (N, T , P, S) be a generative grammar and u, v (∈ N ∪ T)*.
The word v can be derived from u in G , denoted as u *⇒ G v,
● if u = v, or
● there exists a word z (∈ N ∪ T)*, for which u *⇒ G z and z ⇒G y.
● ⇒* is the reflexive, transitive closure of .⇒
● ⇒+ is the transitive closure of .⇒

Tamás Lukovszki14Models of Computation

Basics, terminology

 Let G = (N, T , P, S) be a generative grammar and
u, v (∈ N ∪ T)*.
The word v can be derived in k steps from u in G, k ≥ 1, if
there exists a sequence of words u1 , . . . , uk+1 (∈ N ∪ T)*,
s.t. u=u1, v=uk+1, and ui ⇒G ui+1, 1 ≤ i ≤ k.

 A word v can be derived from a word u in G if either u = v,
or there is a number k ≥ 1, s.t. v can be derived from u in k
steps.

Tamás Lukovszki15Models of Computation

Basics, terminology

 Let G = (N, T , P, S) be an arbitrary generative grammar.
The generated language L(G) by the grammar G is:
L(G) = {w | S *⇒ G w , w ∈ T*}

 This means that the L(G) consists of words that are in T*
and can be derived from S by grammar G.

Tamás Lukovszki16Models of Computation

Basics, terminology

 Example:
Let G = (N, T, P, S) be a generative grammar, where
N = {S, A, B}, T = {a, b} and
P = {S → aSb, S → ab, S → ba}.
Then L(G) = {anabbn , anbabn | n ≥ 0}.

 Example:
Let G = (N, T , P, S) be a generative grammar, where
N = {S, X , Y}, T = {a, b, c} and
P = {S → abc, S → aXbc, Xb → bX , Xc → Ybcc, bY → Yb,
aY → aaX , aY → aa}.
Then L(G) = {anbncn | n ≥ 1}.

Tamás Lukovszki17Models of Computation

Basics, terminology

 Each grammar generates a language, but the same
language can be generated by several different grammars.

 Two grammars are equivalent if they generate the same
language.

 Two languages ​​are weakly equivalent, if they differ only in
the empty word.

Tamás Lukovszki18Models of Computation

Chomsky hierarchy

● Let G = (N, T , P, S) be a generative grammar. G is generative grammar
is of i-type, i = 0, 1, 2, 3, if the rule set P satisfies the following:
● i = 0: no restriction.
● i = 1: All rules of P have the form u1Au2 → u1vu2, where

u1, u2, v (∈ N ∪ T)*, A ∈ N, and v ≠ ε, except for a rule S → ε, when
such a rule exists in P.
If P contains the rule S → ε, then S does not occur on the right side of
any rule.

● i = 2: All rules of P are of the form A → v, where
A ∈ N and v (∈ N ∪ T)* .

● i = 3: All rules of P are of the form either A → uB or A → u, where A, B
 ∈ N and u ∈ T*.

Tamás Lukovszki19Models of Computation

Chomsky hierarchy

 A language L is of type i, where i = 0, 1, 2, 3, if it can be
generated by a type i grammar.

 Li, i = 0, 1, 2, 3, denotes the class (family) of type i
languages.

Tamás Lukovszki20Models of Computation

Chomsky hierarchy

 Type 0 grammars are called phrase-structured grammars.
 Type 1 grammars are context-sensitive grammars, since

some occurrence of the nonterminal A can only be substituted
with the word v in the presence of contexts u1 and u2.

 Type 2 grammars are context-free grammars, because the
substitution of a nonterminal A with v is allowed in any context.

 Type 3 grammars are regular or finite state grammars.

 The classes of languages ​​of type 0,1,2,3 are called recursively
enumerable, context-sensitive, context-free, and regular,
respectively.

Tamás Lukovszki21Models of Computation

Chomsky hierarchy

Linguistic background
”The cunning fox hastily ate the leaping frog.”

 S → A + B (S: sentence, A: noun phrase, B: verb phrase)
 A → C + D + E (C : article, D: adjective, E : noun)
 B → G + B (G : adverb)
 B → F + A (F : verb)
 C → the
 D → cunning
 E → fox
 G → hastily
 F → ate
 D → leaping
 E → frog

Tamás Lukovszki22Models of Computation

Chomsky hierarchy

Linguistic background

 + (space) – terminal symbol
 cunning ←→ leaping , fox ←→ frog (they are

interchangeable, but the meanings are different)
 Sentence is syntactically correct

 It is not possible to describe the complete syntax of natural
languages

Tamás Lukovszki23Models of Computation

Chomsky hierarchy

 It is oblivious that L3 ⊆ L2 ⊆ L0 and L1 ⊆ L0 .
 It can also be shown that (Chomsky's hierarchy) following

hold:
L3 ⊂ L2 ⊂ L1 ⊂ L0 .

 However, the inclusion relation between language class L2
and L1 is not is oblivious from the definition of the
corresponding grammars.

Tamás Lukovszki24Models of Computation

Operations on Languages

● Let V be an alphabet and L1, L2 be languages over V (that is, L1 ⊆ V*
and L2 ⊆ V*)
● union: L1 ∪ L2 = {u | u ∈ L1 or u ∈ L2 }.
● intersection: L1 ∩ L2 = {u | u ∈ L1 and u ∈ L2 }.
● difference: L1 - L2 = {u | u ∈ L1 and u ∉ L2 }.

● Example:
Let V = {a, b} be an alphabet and L1 = {a, b} and L2 = {ε, a, bbb}
languages ​​over V. Then

L1 ∪ L2 = {ε, a, b, bbb}
L1 ∩ L2 = {a}
L1 − L2 = {b}

Tamás Lukovszki25Models of Computation

Operations on Languages

 The complement of the language L ⊆ V* with respect to
the alphabet V is the language L = V* − L.

 Example:
Let V = {a} be an alphabet and let L = {a4n | n ≥ 0}. Then
L= V* − {a4n | n ≥ 0}.

Tamás Lukovszki26Models of Computation

Operations on Languages

 Let V be an alphabet and L1, L2 be languages over V
(i.e. L1 ⊆ V* and L2 ⊆ V*). The concatenation of L1 and L2
is L1L2 = {u1u2 | u1 ∈ L1 , u2 ∈ L2 }.

 Remark:
The following equalities hold for every language L:
∅L = L = and∅ ∅
{ε}L = L{ε} = L.

Tamás Lukovszki27Models of Computation

Operations on Languages

 Li denotes the i-th iteration of L (for the operation of
concatenation), where i ≥ 1. By convention, L0 = {ε}.

 The iterative closure (or Kleene closure) of a language L
is: L* = Ui≥0 Li.

 L+ = Ui≥1 Li.

 Remark:
Obviously, if ε ∈ L, then L+ = L*. Otherwise, L+ = L* − {ε}.

Tamás Lukovszki28Models of Computation

Operations on Languages

 Example (concatenation):
Let V = {a, b} and let L1 = {a, b}, L2 = {ε, a, bbb},
L3 = {a4nb4n | n ≥ 0} and L4 = {a7nb7n | n ≥ 0}. Then
● L1L2 = {a, b, aa, ba, abbb, bbbb},
● L3L4= {a4nb4na7mb7m | n ≥ 0, m ≥ 0}.

Tamás Lukovszki29Models of Computation

Operations on Languages

 Let V be an alphabet and L ⊆ V*. Then the language
L−1 = {u−1 | u ∈ L} is the mirror (or reversal) of L.

 Remarks:
● (L−1)−1 = L,
● (L1L2 . . . Ln)−1 = Ln

−1. . . L2
-1L1

-1,
● (Li)−1 = (L−1)i , where i ≥ 0, and
● (L*)−1 = (L−1)*.

Tamás Lukovszki30Models of Computation

Operations on Languages

 Example (mirror, reversal):
Let V = {a, b} and L = {ε, a, abb} be a language over V. Then
L−1 = {ε, a, bba}.

Tamás Lukovszki31Models of Computation

Operations on Languages

 The prefix of a language L ⊆ V* is the language
HEAD(L) = { u | u ∈ V* , uv ∈ L for some v ∈ V* }.

 Remark:
By definition, L HEAD(⊆ L) for any language L ∈ V*.

 The suffix of a language L ⊆ V* is the language
TAIL(L) = { u | u ∈ V* , vu ∈ L for some v ∈ V* }.

Tamás Lukovszki32Models of Computation

Operations on Languages

● Let V1 and V2 be two alphabets. The mapping h : V1* → V2*
is called a homomorphism if the following conditions hold:
● for every word u ∈ V1* there is exactly one word

v ∈ V2* for which h(u) = v.
● h(uv) = h(u)h(v), for all u, v ∈ V1*.

● Remarks:
● It follows from the above conitions that h(ε) = ε.

Namely, for all u ∈ V1* holds h(u) = h(εu) = h(uε).
● For all words u = a1a2 . . . an, ai ∈ V1 , 1 ≤ i ≤ n, it holds that

h(u) = h(a1)h(a2) . . . h(an).
I.e. that it is sufficient to define the mapping h on the elements of V1 and
it is automatically extended to V1*.

Tamás Lukovszki33Models of Computation

Operations on Languages

 A homomorphism h : V1* → V2* is ε-free if
for all u ∈ V1

+, h(u) ≠ ε.

 Let h : V1* → V2* be a homomorphism.
The h-homomorphic image of a language L ∈ V1* is
the language h(L) = {w ∈ V2* | w = h(u), u ∈ L}

 Example (homomorphism):
Let V1 = V2 = {a, b} be two alphabets. Let h : V1* → V2* be a
homomorphism, s.t. h(a) = bbb, h(b) = ab and L = {a, abba}.
Then h(L) = {bbb, bbbababbbb}.

Tamás Lukovszki34Models of Computation

Operations on Languages

 A homomorphism h is called an isomorphism
if following holds:
for any u, v ∈ V1*, if h(u) = h(v), then u = v.

 Example (isomorphism – binary representation of decimal
numbers):
V1 = {0, 1, 2, . . . , 9}, V2 = {0, 1},
h(0) = 0000, h(1) = 0001, . . . , h(9) = 1001

Tamás Lukovszki60Models of Computation

Literature

 Handbook of Formal Languages, G. Rozenberg, A.
Salomaa, (eds.), Springer–Verlag, Berlin–Heidelberg, 1997.

 Gy. E. Révész, Introduction to Formal Languages, Dover
Publications, Inc., New York, 2012.

 G. Rozenberg, A. Salomaa, The mathematical theory of L
systems, Vol. 90., Academic Press, 1980.

 J. Dassow, Gh. Paun. Regulated rewriting in formal
language theory, Springer Publishing Company, Inc., 2012.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 60

