Models of Computation

4: Regular expressions, finite automaton

Applications

- search and replace dialogs of text editors
- search engines
- text processing utilities (e.g. sed and AWK)
- programming languages, lexical analysis
- genom analysis (genom as string)
- spam/malware filter
- •

Let V and $V' = \{\varepsilon, \cdot, +, *, (,)\}$ be disjoint alphabets. A **regular expression** over V is defined recursively as follows:

- 1. ϵ is a regular expression over V,
- 2. all $a \in V$ are regular expressions over V,
- 3. If R is a regular expression over V, then R^* is also a regular expression over V,
- 4. If Q and R are regular expressions over V, then $(Q \cdot R)$ and (Q + R) are also regular expressions over V.
 - * denotes the closure of iteration,
 - · the concatenation, and
 - + union.

Each regular expression **represents a regular language**, which is defined as:

- 1. ϵ represents the language $\{\epsilon\}$,
- 2. Letter $a \in V$ represents the language $\{a\}$,
- 3. if R is a regular expression over V, which represents the language L, then R^* represents L^* ,
- 4. if Q and R are regular expressions over V, that represent the languages L and L', then
 (Q · R) represents the language LL',
 (Q + R) represents the language L U L'.

Parentheses can be omitted when defining precedence on operations. The the usual sequence is: *, ·, +. The following regular expressions are equivalent:

- a* is the same as (a)* and represent the language {a}*.
- $(a + b)^*$ is the same as $((a) + (b))^*$ and represents the language $\{a, b\}^*$.
- a^* · b is the same as $((a)^*)$ · (b) and represents the language $\{a\}^*b$.
- $b + ab^*$ is the same as $(b) + ((a) \cdot (b)^*)$ and represents the language $\{b\} \cup \{a\}\{b\}^*$.
- $(a + b) \cdot a^*$ is the same as $((a) + (b)) \cdot ((a)^*)$ and represents the language $\{a, b\}\{a\}^*$.

Let *P*, *Q*, an *R* be regular expressions. Then following hold:

•
$$P + (Q + R) = (P + Q) + R$$

•
$$P \cdot (Q \cdot R) = (P \cdot Q) \cdot R$$

•
$$P + Q = Q + P$$

•
$$P \cdot (Q + R) = P \cdot Q + P \cdot R$$

•
$$(P+Q)\cdot R = P\cdot R + Q\cdot R$$

•
$$P^* = \varepsilon + P \cdot P^*$$

•
$$\varepsilon \cdot P = P \cdot \varepsilon = P$$

•
$$P^* = (\varepsilon + P)^*$$

Example:

```
The language represented the regular expressions (a + b)a^* and aa^* + ba^* is the same: \{aa^n \mid n \in \mathbb{N}\} \cup \{ba^n \mid n \in \mathbb{N}\}.
```

```
The language represented by a + ba^* is: { a, b, ba, ba^2, ba^3, . . . }.
```

Theorem:

- 1) Every regular expression represents a regular (3-type) language.
- 2) For every regular (3-type) language, there is a regular expression representing the language.

Proof:

1) follows from the fact that the class of regular languages \mathcal{L}_3 is closed for the regular operations.

Proof:

For 2), we show that for every regular language L generate by a grammar G = (N, T, P, S), a regular expression can be constructed, that represents L.

- Let $N = \{A_1, \ldots, A_n\}, n \ge 1, S = A_1$.
 - Each rule of *G* is of form $A_i \rightarrow aA_j$ or $A_i \rightarrow \epsilon$, where $a \in T$, 1 ≤ i, j ≤ n.
- We say that a non-terminal A_m is **affected** by the derivation
 - $A_i \Rightarrow^* uA_j$ ($u \in T^*$), if A_m occurs in a intermediate string between A_i and uA_m in the derivation.

Proof (cont.):

- A derivation $A_i \Rightarrow^* uA_j$ is called **k-bounded** if $0 \le m \le k$ holds for all non-terminals A_m occurring in the derivation.
- Let $E^{k_{i,j}} = \{ u \in T^* \mid \exists A_i \Rightarrow^* uA_j k \text{-bounded derivation} \}$.
- We show by induction on k, that for language $E^{k_{i,j}}$, there is a regular expression representing $E^{k_{i,j}}$, where $0 \le i,j,k \le n$.

Proof (cont.):

- k=0 (induction start):
 - For $i \neq j$, $E^{0}_{i,j}$ is eighter empty, or it consists of symbols of T ($a \in E^{0}_{i,j}$ if and only if $A_i \rightarrow aA_j \in P$.)
 - For i = j, $E^{o}_{i,j}$ consists of ε and zero or more elements of T, so $E^{o}_{i,j}$ can be represented by a regular expression.

Proof (cont.):

- *k*-1 *->k* (induction step):
 - Assume that for fixed k, $0 < k \le n$, $E^{k-1}_{i,j}$ can be represented by a regular expression.
 - Then for all i, j, k it holds that
 - $E^{k_{i,j}} = E^{k-1_{i,j}} + E^{k-1_{i,k}} \cdot (E^{k-1_{k,k}})^* \cdot E^{k-1_{k,j}}$
 - Therefore, $E^{k_{i,j}}$ can also be represented by a regular expression.
- Let I_{ϵ} be the set of indices *i* for which $A_i \rightarrow \epsilon$.
 - Then $L(G) = \bigcup_{i \in I_E} E^{n_{1,i}}$ can be represented by a regular expression. The claim of the theorem follows.

- Identifying formal languages is also possible with recognition devices, i.e. by automata.
- An automaton can process and identify words.
- Grammars use a synthesizing approach, while automata an analytic one.
- In response to a word, the automaton can either accept or reject.

- A finite automaton performs a sequence of steps in discrete time intervals
- It starts in the initial state.
- The input word is located on the input tape and the reading head is on the leftmost symbol of an input word.
- After reading a symbol, the automaton moves the reading head to one position to the right, then the state changes, regarding the state transition function.
- If the automaton has read the input, it stops (accepts or rejects the input).

Example: automatic door control

State transition diagram:

State transition table:

input signal

		NEITHER	FRONT	REAR	BOTH
state	CLOSED	CLOSED	OPEN	CLOSED	CLOSED
	OPEN	CLOSED	OPEN	OPEN	OPEN

- Application examples:
 - Automatic door control
 - Coffee machine
 - Pattern recognition
 - Markov chains pattern recognition
 - Speech processing
 - Optical character recognition
 - Predictions of share prizes in the stock exchange
 - _____

A finite automaton is a 5-tuple $A = (Q, T, \delta, q_0, F)$, where

- Q is a finite, nonempty set of states,
- T is the finite alphabet of input symbols,
- $\delta: Q \times T \rightarrow Q$ is the **state transition function**
- $q_0 \in Q$ is the **initial state** or **start state**,
- F ⊆ Q is the set of acceptance states or end states.

Remark:

- The function δ can be extended to a function $\hat{\delta}: Q \times T^* \to Q$ as follows:
 - $\hat{\delta}(q, \varepsilon) = q$
 - $\hat{\delta}(q, xa) = \delta(\hat{\delta}(q, x), a)$ for all $x \in T^*$ and $a \in T$.

Example:

• Let $A = (Q, T, \delta, q_1, F)$ be a FA, where $Q = \{q_1, q_2, q_3\}, T = \{0, 1\}, F = \{q_2\}, \text{ and } \delta(q_1, 0) = q_1, \ \delta(q_1, 1) = q_2, \ \delta(q_2, 0) = q_3, \ \delta(q_2, 1) = q_2, \ \delta(q_3, 0) = \delta(q_3, 1) = q_2.$

State transition diagram:

State transition table:

δ	0	1	
q_1	q_1	q 2	
q_2	q 3	q 2	
<i>q</i> ₃	q 2	q_2	

 The accepted language is L(A)={ w | w conains at least one 1 and the last 1 is not followed by an odd number of 0s}

Deterministic and non-deterministic finite automata

- **Deterministic finite automaton (DFA)**: Function δ is single-valued, i.e. \forall $(q, a) \in Q \times T$ there is exactly one state s, s.t. $\delta(q, a) = s$.
- **Nondeterministic finite automaton (NFA)**: Function δ is multi-valued, i.e. $\delta: Q \times T \rightarrow 2^{Q}$. Multiple initial states are allowed (the set of initial states $Q_0 \subseteq Q$). It is allowed that $\delta(q, a) = \emptyset$ for some (q,a), i.e. the machine gets stuck. Null (or ε) move is allowed, i.e. it can move forward without reading symbols.

NFA example

Deterministic and non-deterministic finite automata

- New features of non-determinism
 - Multiple paths are possible (multiple choises at each step).
 - ε-transition is a "free" move without reading input.
 - Accept input if <u>some</u> path leads to an accepting state.

Deterministic and non-deterministic finite automata

- Alternative notation:
- State transitions can also be given in the form $qa \rightarrow p$, where $p \in \delta(q, a)$.
- Let M_{δ} be set of rules of the state transition of an NFA $A = (Q, T, \delta, Q_0, F)$.
- If M_δ contains exactly one rule qa → p for each pair (q,a), then the FA is deterministic, oherwise nondeterministic.

FA - reduction

- Let $A = (Q, T, \delta, Q_0, F)$ be a FA and $u, v \in QT^*$ words. The FA A **reduces** the u **in one step** (**directly**) to v (notation: $u \Rightarrow_A v$, or short: $u \Rightarrow v$), if there are a rule $qa \rightarrow p \in M_\delta$ (i.e. $\delta(q, a) = p$) and a word $w \in T^*$, s.t. u = qaw and v = pw hold.
- The FA $A = (Q, T, \delta, Q_0, F)$ reduces $u \in QT^*$ to $v \in QT^*$ (notation: $u \Rightarrow_A v$, or short: $u \Rightarrow^* v$, if
 - either u = v,
 - or \exists a word $z \in QT^*$, s.t. $u \Rightarrow^* z$ and $z \Rightarrow v$.
- Remark: \Rightarrow * is the reflexive, transitive closure of \Rightarrow .

FA - accepted language

- The language accepted/recognized by the FA A = (Q, T, δ, Q₀, F) is:
 L(A) = {u ∈ T* | q₀u ⇒* p for some q₀ ∈ Q₀ and p ∈ F}
- For a deterministic FA A, there is one single start state $Q_0 = \{q_0\}$. The language accepted by DFA A is: $L(A) = \{u \in T^* \mid q_0u \Rightarrow^* p \text{ for some } p \in F\}$

Computing power of non-deterministic FA

Theorem: For all non-deterministic FA $A = (Q, T, \delta, Q_0, F)$ a deterministic FA $A' = (Q', T, \delta', q'_0, F')$ can be constructed, s.t. L(A) = L(A') holds.

- Idea: DFA keeps track of the subset of possible states in NFA
- Remark: In worst case |Q'| = 2|Q|.