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Models of Computation

4: Regular expressions, finite automaton
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Regular expressions

Applications
 search and replace dialogs of text editors
 search engines
 text processing utilities (e.g. sed and AWK)
 programming languages, lexical analysis
 genom analysis (genom as string)
 spam/malware filter
 …
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Regular expressions

Let V and V’ = {ε, ·, +, * , (, )} be disjoint alphabets. A regular 
expression over V is defined recursively as follows:

1. ε is a regular expression over V,

2. all a ∈ V are regular expressions  over V,

3. If R is a regular expression over V, then R* is also a regular 
expression over V,

4. If Q and R are regular expressions over V, then 
(Q · R) and (Q + R) are also regular expressions over V.

* denotes the closure of iteration,
· the concatenation, and
+ union.
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Regular expressions

Each regular expression represents a regular language, which is 
defined as:

 

1. ε represents the language {ε},

2. Letter a ( ∈ V ) represents the language {a},

3. if R is a regular expression over V, which represents the 
language L, then R* represents L*,

4. if Q and R are regular expressions over V, that represent the 
languages L and L’, then 
(Q · R) represents the language LL’, 
(Q + R) represents the language L U L’.



Tamás Lukovszki5Models of Computation

Regular expressions

Parentheses can be omitted when defining precedence on operations. 
The the usual sequence is: *, ·, +. The following regular expressions 
are equivalent:

 a* is the same as (a)* and represent the language {a}*.

 (a + b)* is the same as ((a) + (b))* and represents the 
language {a, b}*.

 a* · b is the same as ((a)*) · (b) and represents the language {a}*b.

 b + ab* is the same as (b) + ((a) · (b)*) and represents the 
language {b} ∪ {a}{b}*.

 (a + b) · a* is the same as ((a) + (b)) · ((a)* ) and represents the 
language {a, b}{a}*.
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Regular expressions

Let P, Q, an R be regular expressions. Then following hold:

 P + ( Q + R ) = ( P + Q ) + R
 P · ( Q · R ) = ( P · Q ) · R
 P + Q = Q + P
 P · ( Q + R ) = P · Q + P · R
 (P + Q ) · R = P · R + Q · R
 P* = ε + P · P*

 ε · P = P · ε = P
 P* = (ε + P )*
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Regular expressions

Example:
The language represented the regular expressions

(a + b)a* and aa* + ba* is the same:
{ aan | n ∈ N} ∪ { ban | n ∈ N }.

The language represented by a + ba* is:
{ a, b, ba, ba2, ba3, . . .}.
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Expressive power of regular expressions

Theorem: 

1) Every regular expression represents a regular (3-
type) language.

2) For every regular (3-type) language, there is a 
regular expression representing the language.

Proof: 
1) follows from the fact that the class of regular 
languages L3 is closed for the regular operations.
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Expressive power of regular expressions

Proof: 
For 2), we show that for every regular language L 
generate by a grammar G = (N, T, P, S), a regular 
expression can be constructed, that represents L.

 Let N = {A1, . . . , An}, n ≥ 1, S = A1. 
– Each rule of G is of form Ai → aAj or Ai → ε, 

where a ∈ T , 1 ≤ i, j ≤ n.
 We say that a non-terminal Am is affected by the 

derivation
Ai ⇒* uAj (u ∈ T* ), if Am occurs in a intermediate 
string between Ai and uAm in the derivation.
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Expressive power of regular expressions

Proof (cont.): 

 A derivation Ai ⇒* uAj is called k-bounded 
if 0 ≤ m ≤ k holds for all non-terminals Am occurring 
in the derivation.

 Let Eki,j = {u ∈ T* | Ǝ Ai ⇒* uAj k-bounded derivation}.
 We show by induction on k, that for language Eki,j, 

there is a regular expression representing Eki,j, where 
0 ≤ i,j,k ≤ n.
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Expressive power of regular expressions

Proof (cont.): 

 k=0 (induction start):
– For i ≠ j, E0i,j is eighter empty, or it consists of 

symbols of T (a ∈ E0i,j if and only if Ai → aAj ∈ P.)
– For i = j, E0i,j consists of ε and zero or more 

elements of T, so E0i,j can be represented by a 
regular expression.
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Expressive power of regular expressions

Proof (cont.): 

 k-1 –>k (induction step):
– Assume that for fixed k, 0 < k ≤ n, Ek-1i,j  can be 

represented by a regular expression. 
– Then for all i, j, k it holds that

• Eki,j = Ek-1i,j + Ek-1i,k · (Ek-1k,k)* · Ek-1k,j.
– Therefore, Eki,j can also be represented by a regular 

expression.
 Let Iε be the set of indices i for which Ai → ε. 

– Then L(G) = Ui∈Iε En1,i can be representd by a regular 
expression. The claim of the theorem follows.
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Finite Automata (FA)

● Identifying formal languages ​​is also possible 
with recognition devices, i.e. by automata.

● An automaton can process and identify words.
● Grammars use a synthesizing approach, while 

automata an analytic one.
● In response to a word, the automaton can 

either accept or reject.
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Finite Automata (FA)

 A finite automaton performs a sequence of steps in 
discrete time intervals

 It  starts in the initial state.

 The input word is located on the input tape and the 
reading head is on the leftmost symbol of an input word.

 After reading a symbol, the automaton moves the 
reading head to one position to the right, then the state 
changes, regarding the state transition function.

 If the automaton has read the input, it stops (accepts or 
rejects the input).
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Finite Automata (FA)

 Example: automatic door control
State transition diagram:

State transition table:
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Finite Automata (FA)

 Application examples:
– Automatic door control
– Coffee machine
– Pattern recognition
– Markov chains – pattern recognition
– Speech processing
– Optical character recognition
– Predictions of share prizes in the stock 

exchange
– ...
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Finite Automata (FA)

A finite automaton is a 5-tuple A = (Q, T, δ, q0, F ), 
where

 Q is a finite, nonempty set of states,

 T is the finite alphabet of input symbols,

 δ : Q × T → Q is the state transition function 

 q0 ∈ Q is the initial state or start state,

 F ⊆ Q is the set of acceptance states or end 
states.
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Finite Automata (FA)

Remark:

● The function δ can be extended to a function  
δ̂ : Q × T* → Q as follows:

● δ̂(q, ε) = q,
● δ̂(q, xa) = δ( δ̂(q, x), a) for all x ∈ T* and a ∈ 

T.
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Finite Automata (FA)

Example:
● Let A = (Q, T, δ, q1, F) be a FA, where 

Q = {q1, q2, q3}, T = {0, 1}, F = {q2}, and
δ(q1, 0) = q1,  δ(q1, 1) = q2, δ(q2, 0) = q3, δ(q2, 1) = q2, 
δ(q3, 0) = δ(q3, 1) = q2.

● The accepted language is L(A)={w | w conains at least one 1 and 
the last 1 is not followed by an odd number of 0s}

State transition diagram: State transition table:



Tamás Lukovszki20Models of Computation

Deterministic and non-deterministic 
finite automata

 Deterministic finite automaton (DFA): Function δ is 
single-valued, i.e. ∀ (q, a) ∈ Q × T there is exactly one 
state s, s.t. δ(q, a) = s.

 Nondeterministic finite automaton (NFA): Function δ 
is multi-valued, i.e. δ : Q × T → 2Q. 
Multiple initial states are allowed 
(the set of initial states Q0 ⊆ Q). 
It is allowed that δ(q, a) = ∅ for some 
(q,a), i.e. the machine gets stuck. 
Null (or ε) move is allowed,
i.e. it can move forward without 
reading symbols. NFA example
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Deterministic and non-deterministic 
finite automata

 New features of non-determinism
– Multiple paths are possible (multiple choises 

at each step).
– ε-transition is a “free” move without reading 

input.
– Accept input if some path leads to an 

accepting state.
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Deterministic and non-deterministic 
finite automata

 Alternative notation: 

 State transitions can also be given in the form 
qa → p, where p ∈ δ(q, a).

 Let Mδ be set of rules of the state transition of an 
NFA A = (Q, T, δ, Q0, F).

 If Mδ contains exactly one rule qa → p for each pair 
(q,a), then the FA is deterministic, oherwise non-
deterministic.
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FA – reduction

 Let A = (Q, T, δ, Q0, F) be a FA and u,v ∈ QT* words. 
The FA A reduces the u in one step (directly) to 
v (notation: u ⇒A v, or short: u ⇒ v), if there are
a rule qa → p ∈ Mδ (i.e. δ(q, a) = p) and 
a word w ∈ T*, s.t. u = qaw and v = pw hold.

 The FA A =  (Q, T, δ, Q0, F) reduces u ∈ QT* to
v ∈ QT* (notation: u ⇒A* v, or short: u ⇒* v, if
– either u = v,
– or Ǝ a word z ∈ QT*, s.t. u ⇒* z and z ⇒ v.

 Remark: ⇒* is the reflexive, transitive closure of ⇒.
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FA – accepted language

 The language accepted/recognized by the FA  
A = (Q, T, δ, Q0, F) is:
L(A) = {u ∈ T* | q0u ⇒* p for some q0 ∈ Q0 
and p ∈ F}

 For a deterministic FA A, there is one single start 
state Q0={q0}. The language accepted by DFA A is:
L(A) = {u ∈ T* | q0u ⇒* p for some p ∈ F}



Tamás Lukovszki25Models of Computation

Computing power of non-deterministic 
FA

 Theorem: For all non-deterministic FA A = (Q, T, δ, 
Q0, F) a deterministic FA A’ = (Q’, T, δ’, q’0, F’) can 
be constructed, s.t. L(A) = L(A’) holds.

 Idea: DFA keeps track of the subset of possible 
states in NFA

 Remark: In worst case |Q’| = 2|Q|.
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