
Tamás Lukovszki1Models of Computation

Models of Computation

4: Regular expressions, finite automaton

Tamás Lukovszki2Models of Computation

Regular expressions

Applications
 search and replace dialogs of text editors
 search engines
 text processing utilities (e.g. sed and AWK)
 programming languages, lexical analysis
 genom analysis (genom as string)
 spam/malware filter
 …

Tamás Lukovszki3Models of Computation

Regular expressions

Let V and V’ = {ε, ·, +, * , (,)} be disjoint alphabets. A regular
expression over V is defined recursively as follows:

1. ε is a regular expression over V,

2. all a ∈ V are regular expressions over V,

3. If R is a regular expression over V, then R* is also a regular
expression over V,

4. If Q and R are regular expressions over V, then
(Q · R) and (Q + R) are also regular expressions over V.

* denotes the closure of iteration,
· the concatenation, and
+ union.

Tamás Lukovszki4Models of Computation

Regular expressions

Each regular expression represents a regular language, which is
defined as:

1. ε represents the language {ε},

2. Letter a (∈ V) represents the language {a},

3. if R is a regular expression over V, which represents the
language L, then R* represents L*,

4. if Q and R are regular expressions over V, that represent the
languages L and L’, then
(Q · R) represents the language LL’,
(Q + R) represents the language L U L’.

Tamás Lukovszki5Models of Computation

Regular expressions

Parentheses can be omitted when defining precedence on operations.
The the usual sequence is: *, ·, +. The following regular expressions
are equivalent:

 a* is the same as (a)* and represent the language {a}*.

 (a + b)* is the same as ((a) + (b))* and represents the
language {a, b}*.

 a* · b is the same as ((a)*) · (b) and represents the language {a}*b.

 b + ab* is the same as (b) + ((a) · (b)*) and represents the
language {b} ∪ {a}{b}*.

 (a + b) · a* is the same as ((a) + (b)) · ((a)*) and represents the
language {a, b}{a}*.

Tamás Lukovszki6Models of Computation

Regular expressions

Let P, Q, an R be regular expressions. Then following hold:

 P + (Q + R) = (P + Q) + R
 P · (Q · R) = (P · Q) · R
 P + Q = Q + P
 P · (Q + R) = P · Q + P · R
 (P + Q) · R = P · R + Q · R
 P* = ε + P · P*

 ε · P = P · ε = P
 P* = (ε + P)*

Tamás Lukovszki7Models of Computation

Regular expressions

Example:
The language represented the regular expressions

(a + b)a* and aa* + ba* is the same:
{ aan | n ∈ N} ∪ { ban | n ∈ N }.

The language represented by a + ba* is:
{ a, b, ba, ba2, ba3, . . .}.

Tamás Lukovszki8Models of Computation

Expressive power of regular expressions

Theorem:

1) Every regular expression represents a regular (3-
type) language.

2) For every regular (3-type) language, there is a
regular expression representing the language.

Proof:
1) follows from the fact that the class of regular
languages L3 is closed for the regular operations.

Tamás Lukovszki9Models of Computation

Expressive power of regular expressions

Proof:
For 2), we show that for every regular language L
generate by a grammar G = (N, T, P, S), a regular
expression can be constructed, that represents L.

 Let N = {A1, . . . , An}, n ≥ 1, S = A1.
– Each rule of G is of form Ai → aAj or Ai → ε,

where a ∈ T , 1 ≤ i, j ≤ n.
 We say that a non-terminal Am is affected by the

derivation
Ai ⇒* uAj (u ∈ T*), if Am occurs in a intermediate
string between Ai and uAm in the derivation.

Tamás Lukovszki10Models of Computation

Expressive power of regular expressions

Proof (cont.):

 A derivation Ai ⇒* uAj is called k-bounded
if 0 ≤ m ≤ k holds for all non-terminals Am occurring
in the derivation.

 Let Eki,j = {u ∈ T* | Ǝ Ai ⇒* uAj k-bounded derivation}.
 We show by induction on k, that for language Eki,j,

there is a regular expression representing Eki,j, where
0 ≤ i,j,k ≤ n.

Tamás Lukovszki11Models of Computation

Expressive power of regular expressions

Proof (cont.):

 k=0 (induction start):
– For i ≠ j, E0i,j is eighter empty, or it consists of

symbols of T (a ∈ E0i,j if and only if Ai → aAj ∈ P.)
– For i = j, E0i,j consists of ε and zero or more

elements of T, so E0i,j can be represented by a
regular expression.

Tamás Lukovszki12Models of Computation

Expressive power of regular expressions

Proof (cont.):

 k-1 –>k (induction step):
– Assume that for fixed k, 0 < k ≤ n, Ek-1i,j can be

represented by a regular expression.
– Then for all i, j, k it holds that

• Eki,j = Ek-1i,j + Ek-1i,k · (Ek-1k,k)* · Ek-1k,j.
– Therefore, Eki,j can also be represented by a regular

expression.
 Let Iε be the set of indices i for which Ai → ε.

– Then L(G) = Ui∈Iε En1,i can be representd by a regular
expression. The claim of the theorem follows.

Tamás Lukovszki13Models of Computation

Finite Automata (FA)

● Identifying formal languages ​​is also possible
with recognition devices, i.e. by automata.

● An automaton can process and identify words.
● Grammars use a synthesizing approach, while

automata an analytic one.
● In response to a word, the automaton can

either accept or reject.

Tamás Lukovszki14Models of Computation

Finite Automata (FA)

 A finite automaton performs a sequence of steps in
discrete time intervals

 It starts in the initial state.

 The input word is located on the input tape and the
reading head is on the leftmost symbol of an input word.

 After reading a symbol, the automaton moves the
reading head to one position to the right, then the state
changes, regarding the state transition function.

 If the automaton has read the input, it stops (accepts or
rejects the input).

Tamás Lukovszki15Models of Computation

Finite Automata (FA)

 Example: automatic door control
State transition diagram:

State transition table:

Tamás Lukovszki16Models of Computation

Finite Automata (FA)

 Application examples:
– Automatic door control
– Coffee machine
– Pattern recognition
– Markov chains – pattern recognition
– Speech processing
– Optical character recognition
– Predictions of share prizes in the stock

exchange
– ...

Tamás Lukovszki17Models of Computation

Finite Automata (FA)

A finite automaton is a 5-tuple A = (Q, T, δ, q0, F),
where

 Q is a finite, nonempty set of states,

 T is the finite alphabet of input symbols,

 δ : Q × T → Q is the state transition function

 q0 ∈ Q is the initial state or start state,

 F ⊆ Q is the set of acceptance states or end
states.

Tamás Lukovszki18Models of Computation

Finite Automata (FA)

Remark:

● The function δ can be extended to a function
δ̂ : Q × T* → Q as follows:

● δ̂(q, ε) = q,
● δ̂(q, xa) = δ(δ̂(q, x), a) for all x ∈ T* and a ∈

T.

Tamás Lukovszki19Models of Computation

Finite Automata (FA)

Example:
● Let A = (Q, T, δ, q1, F) be a FA, where

Q = {q1, q2, q3}, T = {0, 1}, F = {q2}, and
δ(q1, 0) = q1, δ(q1, 1) = q2, δ(q2, 0) = q3, δ(q2, 1) = q2,
δ(q3, 0) = δ(q3, 1) = q2.

● The accepted language is L(A)={w | w conains at least one 1 and
the last 1 is not followed by an odd number of 0s}

State transition diagram: State transition table:

Tamás Lukovszki20Models of Computation

Deterministic and non-deterministic
finite automata

 Deterministic finite automaton (DFA): Function δ is
single-valued, i.e. ∀ (q, a) ∈ Q × T there is exactly one
state s, s.t. δ(q, a) = s.

 Nondeterministic finite automaton (NFA): Function δ
is multi-valued, i.e. δ : Q × T → 2Q.
Multiple initial states are allowed
(the set of initial states Q0 ⊆ Q).
It is allowed that δ(q, a) = ∅ for some
(q,a), i.e. the machine gets stuck.
Null (or ε) move is allowed,
i.e. it can move forward without
reading symbols. NFA example

Tamás Lukovszki21Models of Computation

Deterministic and non-deterministic
finite automata

 New features of non-determinism
– Multiple paths are possible (multiple choises

at each step).
– ε-transition is a “free” move without reading

input.
– Accept input if some path leads to an

accepting state.

Tamás Lukovszki22Models of Computation

Deterministic and non-deterministic
finite automata

 Alternative notation:

 State transitions can also be given in the form
qa → p, where p ∈ δ(q, a).

 Let Mδ be set of rules of the state transition of an
NFA A = (Q, T, δ, Q0, F).

 If Mδ contains exactly one rule qa → p for each pair
(q,a), then the FA is deterministic, oherwise non-
deterministic.

Tamás Lukovszki23Models of Computation

FA – reduction

 Let A = (Q, T, δ, Q0, F) be a FA and u,v ∈ QT* words.
The FA A reduces the u in one step (directly) to
v (notation: u ⇒A v, or short: u ⇒ v), if there are
a rule qa → p ∈ Mδ (i.e. δ(q, a) = p) and
a word w ∈ T*, s.t. u = qaw and v = pw hold.

 The FA A = (Q, T, δ, Q0, F) reduces u ∈ QT* to
v ∈ QT* (notation: u ⇒A* v, or short: u ⇒* v, if
– either u = v,
– or Ǝ a word z ∈ QT*, s.t. u ⇒* z and z ⇒ v.

 Remark: ⇒* is the reflexive, transitive closure of ⇒.

Tamás Lukovszki24Models of Computation

FA – accepted language

 The language accepted/recognized by the FA
A = (Q, T, δ, Q0, F) is:
L(A) = {u ∈ T* | q0u ⇒* p for some q0 ∈ Q0
and p ∈ F}

 For a deterministic FA A, there is one single start
state Q0={q0}. The language accepted by DFA A is:
L(A) = {u ∈ T* | q0u ⇒* p for some p ∈ F}

Tamás Lukovszki25Models of Computation

Computing power of non-deterministic
FA

 Theorem: For all non-deterministic FA A = (Q, T, δ,
Q0, F) a deterministic FA A’ = (Q’, T, δ’, q’0, F’) can
be constructed, s.t. L(A) = L(A’) holds.

 Idea: DFA keeps track of the subset of possible
states in NFA

 Remark: In worst case |Q’| = 2|Q|.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

