
Tamás Lukovszki1Models of Computation

Models of Computation

4: Regular expressions, finite automaton

Tamás Lukovszki2Models of Computation

Regular expressions

Applications
 search and replace dialogs of text editors
 search engines
 text processing utilities (e.g. sed and AWK)
 programming languages, lexical analysis
 genom analysis (genom as string)
 spam/malware filter
 …

Tamás Lukovszki3Models of Computation

Regular expressions

Let V and V’ = { , ·, +, * , (,)} be disjoint alphabets. A ε regular
expression over V is defined recursively as follows:

1. is a regular expression over ε V,

2. all a ∈ V are regular expressions over V,

3. If R is a regular expression over V, then R* is also a regular
expression over V,

4. If Q and R are regular expressions over V, then
(Q · R) and (Q + R) are also regular expressions over V.

* denotes the closure of iteration,
· the concatenation, and
+ union.

Tamás Lukovszki4Models of Computation

Regular expressions

Each regular expression represents a regular language, which is
defined as:

1. represents the language { }ε ε ,

2. Letter a (∈ V) represents the language {a},

3. if R is a regular expression over V, which represents the
language L, then R* represents L*,

4. if Q and R are regular expressions over V, that represent the
languages L and L’, then
(Q · R) represents the language LL’,
(Q + R) represents the language L U L’.

Tamás Lukovszki5Models of Computation

Regular expressions

Parentheses can be omitted when defining precedence on operations.
The the usual sequence is: *, ·, +. The following regular expressions
are equivalent:

 a* is the same as (a)* and represent the language {a}*.

 (a + b)* is the same as ((a) + (b))* and represents the
language {a, b}*.

 a* · b is the same as ((a)*) · (b) and represents the language {a}*b.

 b + ab* is the same as (b) + ((a) · (b)*) and represents the
language {b} {∪ a}{b}*.

 (a + b) · a* is the same as ((a) + (b)) · ((a)*) and represents the
language {a, b}{a}*.

Tamás Lukovszki6Models of Computation

Regular expressions

Let P, Q, an R be regular expressions. Then following hold:

 P + (Q + R) = (P + Q) + R

 P · (Q · R) = (P · Q) · R

 P + Q = Q + P

 P · (Q + R) = P · Q + P · R

 (P + Q) · R = P · R + Q · R

 P* = + ε P · P*

 · ε P = P · = ε P

 P* = (+ ε P)*

Tamás Lukovszki7Models of Computation

Regular expressions

Example:
The language represented the regular expressions

(a + b)a* and aa* + ba* is the same:
{ aan | n ∈ N} { ∪ ban | n ∈ N }.

The language represented by a + ba* is:
{ a, b, ba, ba2, ba3, . . .}.

Tamás Lukovszki8Models of Computation

Expressive power of regular expressions

Theorem:

1) Every regular expression represents a regular (3-
type) language.

2) For every regular (3-type) language, there is a
regular expression representing the language.

Proof:
1) follows from the fact that the class of regular
languages L3 is closed for the regular operations.

Tamás Lukovszki9Models of Computation

Expressive power of regular expressions

Proof:
For 2), we show that for every regular language L
generate by a grammar G = (N, T, P, S), a regular
expression can be constructed, that represents L.

 Let N = {A1, . . . , An}, n ≥ 1, S = A1.
– Each rule of G is of form Ai → aAj or Ai , → ε

where a ∈ T , 1 ≤ i, j ≤ n.
 We say that a non-terminal Am is affected by the

derivation
Ai * ⇒ uAj (u ∈ T*), if Am occurs in a intermediate
string between Ai and uAm in the derivation.

Tamás Lukovszki10Models of Computation

Expressive power of regular expressions

Proof (cont.):

 A derivation Ai * ⇒ uAj is called k-bounded
if 0 ≤ m ≤ k holds for all non-terminals Am occurring
in the derivation.

 Let Ek
i,j = {u ∈ T* | Ǝ Ai * ⇒ uAj k-bounded derivation}.

 We show by induction on k, that for language Ek
i,j,

there is a regular expression representing Ek
i,j, where

0 ≤ i,j,k ≤ n.

Tamás Lukovszki11Models of Computation

Expressive power of regular expressions

Proof (cont.):

 k=0 (induction start):
– For i ≠ j, E0

i,j is eighter empty, or it consists of
symbols of T (a ∈ E0

i,j if and only if Ai → aAj ∈ P.)
– For i = j, E0

i,j consists of and zero or more ε
elements of T, so E0

i,j can be represented by a
regular expression.

Tamás Lukovszki12Models of Computation

Expressive power of regular expressions

Proof (cont.):

 k-1 –>k (induction step):
– Assume that for fixed k, 0 < k ≤ n, Ek-1

i,j can be
represented by a regular expression.

– Then for all i, j, k it holds that
• Ek

i,j = Ek-1
i,j + Ek-1

i,k · (Ek-1
k,k)* · Ek-1

k,j.
– Therefore, Ek

i,j can also be represented by a regular
expression.

 Let Iε be the set of indices i for which Ai . → ε
– Then L(G) = Ui∈Iε En

1,i can be representd by a regular
expression. The claim of the theorem follows.

Tamás Lukovszki13Models of Computation

Finite Automata (FA)

● Identifying formal languages ​​is also possible
with recognition devices, i.e. by automata.

● An automaton can process and identify words.
● Grammars use a synthesizing approach, while

automata an analytic one.
● In response to a word, the automaton can

either accept or reject.

Tamás Lukovszki14Models of Computation

Finite Automata (FA)

 A finite automaton performs a sequence of steps in
discrete time intervals

 It starts in the initial state.

 The input word is located on the input tape and the
reading head is on the leftmost symbol of an input word.

 After reading a symbol, the automaton moves the
reading head to one position to the right, then the state
changes, regarding the state transition function.

 If the automaton has read the input, it stops (accepts or
rejects the input).

Tamás Lukovszki15Models of Computation

Finite Automata (FA)

 Example: automatic door control
State transition diagram:

State transition table:

Tamás Lukovszki16Models of Computation

Finite Automata (FA)

 Application examples:
– Automatic door control
– Coffee machine
– Pattern recognition
– Markov chains – pattern recognition
– Speech processing
– Optical character recognition
– Predictions of share prizes in the stock

exchange
– ...

Tamás Lukovszki17Models of Computation

Finite Automata (FA)

A finite automaton is a 5-tuple A = (Q, T, , qδ 0, F),
where

 Q is a finite, nonempty set of states,

 T is the finite alphabet of input symbols,

 δ : Q × T → Q is the state transition function

 q0 ∈ Q is the initial state or start state,

 F ⊆ Q is the set of acceptance states or end
states.

Tamás Lukovszki18Models of Computation

Finite Automata (FA)

Remark:

● The function δ can be extended to a function
δ̂ : Q × T* → Q as follows:

● δ̂(q,) = ε q,
● δ̂(q, xa) = δ(δ̂(q, x), a) for all x ∈ T* and a ∈

T.

Tamás Lukovszki19Models of Computation

Finite Automata (FA)

Example:
● Let A = (Q, T, , qδ 1, F) be a FA, where

Q = {q1, q2, q3}, T = {0, 1}, F = {q2}, and
δ(q1, 0) = q1, δ(q1, 1) = q2, δ(q2, 0) = q3, δ(q2, 1) = q2,
δ(q3, 0) = δ(q3, 1) = q2.

● The accepted language is L(A)={w | w conains at least one 1 and
the last 1 is not followed by an odd number of 0s}

State transition diagram: State transition table:

Tamás Lukovszki20Models of Computation

Finite Automata (FA)

Example:

● Let T = {a,b,c}.
Define a FA, which accepts the words of length of at most 5.

Solution:

● Formaly:
A=({q0, . . . , q6}, {a, b, c}, δ, q0 , {q0, . . . , q5}),
δ(qi, t) = qi+1, for i = 0, . . . , 5 , t {∈ a, b, c},
δ(q6, t) = q6, for t {∈ a, b, c}

● By state transition diagram:

By state transition table:

Tamás Lukovszki21Models of Computation

FA – accepted language

 The language accepted/recognized by the FA
A = (Q, T, , Qδ 0, F) is:
L(A) = {u ∈ T* | q0u * ⇒ p for some q0 ∈ Q0
and p ∈ F}

 For a deterministic FA A, there is one single start
state Q0={q0}. The language accepted by DFA A is:
L(A) = {u ∈ T* | q0u * ⇒ p for some p ∈ F}

Tamás Lukovszki22Models of Computation

Deterministic and non-deterministic
finite automata

 Deterministic finite automaton (DFA): Function δ is
single-valued, i.e. ∀ (q, a) ∈ Q × T there is exactly one
state s, s.t. δ(q, a) = s.

 Nondeterministic finite automaton (NFA): Function δ
is multi-valued, i.e. δ : Q × T 2→ Q.
Multiple initial states are allowed
(the set of initial states Q0 ⊆ Q).
It is allowed that δ(q, a) = for some ∅
(q,a), i.e. the machine gets stuck.
Null (or) move is allowed,ε
i.e. it can move forward without
reading symbols. NFA example

Tamás Lukovszki23Models of Computation

Deterministic and non-deterministic
finite automata

 New features of non-determinism
– Multiple paths are possible (multiple choises

at each step).
– -transition is a “free” move without reading ε

input.
– Accept input if some path leads to an

accepting state.

Tamás Lukovszki24Models of Computation

Deterministic and non-deterministic
finite automata

 Alternative notation:

 State transitions can also be given in the form
qa → p, where p ∈ δ(q, a).

 Let Mδ be set of rules of the state transition of an
NFA A = (Q, T, , Qδ 0, F).

 If Mδ contains exactly one rule qa → p for each pair
(q,a), then the FA is deterministic, oherwise non-
deterministic.

Tamás Lukovszki25Models of Computation

FA – reduction

 Let A = (Q, T, , Qδ 0, F) be a FA and u,v ∈ QT* words.
The FA A reduces the u in one step (directly) to v
(notation: u ⇒A v, or short: u ⇒ v), if there are
a rule qa → p ∈ Mδ (i.e. δ(q, a) = p) and
a word w ∈ T*, s.t. u = qaw and v = pw hold.

 The FA A = (Q, T, , Qδ 0, F) reduces u ∈ QT* to
v ∈ QT* (notation: u ⇒A* v, or short: u *⇒ v, if

– either u = v,
– or Ǝ a word z ∈ QT*, s.t. u * ⇒ z and z v.⇒

 Remark: * is the reflexive, transitive closure of .⇒ ⇒

Tamás Lukovszki26Models of Computation

FA – accepted language

 The language accepted/recognized by the FA
A = (Q, T, , Qδ 0, F) is:
L(A) = {u ∈ T* | q0u * ⇒ p for some q0 ∈ Q0
and p ∈ F}

 For a DFA A, there is one single start state
Q0={q0}. The language accepted by DFA A is:
L(A) = {u ∈ T* | q0u * ⇒ p for some p ∈ F}

Tamás Lukovszki27Models of Computation

Computing power of non-deterministic
FA

 Theorem: For all NFA A = (Q, T, , Qδ 0, F) a
DFA A’ = (Q’, T, ’, q’δ 0, F’) can be constructed, s.t.
L(A) = L(A’) holds.

 Idea: DFA keeps track of the subset of possible
states in NFA

 Remark: In worst case |Q’| = 2|Q|.

Tamás Lukovszki28Models of Computation

Computing power of non-deterministic
FA

Proof:

 Let Q’= 2Q be the set of all subsets of the set Q.
(the number of elements of Q’ is 2|Q|).

 Let ’δ : Q’ × T → Q’ be the function defined as:
δ’(q’, a) = Uq∈q’ δ(q, a).

 Let q’0 = Q0 and F’ = {q’ ∈ Q’ | q’ ∩ F ≠ }∅

 To prove L(A) ⊆ L(A’), we prove the Lemma 1:

Tamás Lukovszki29Models of Computation

Computing power of non-deterministic
FA

Lemma 1:

 For all p,q ∈ Q, q’ ∈ Q’ és u,v ∈ T*,
if qu *⇒ A pv and q ∈ q’,
then Ǝ p’ ∈ Q’, s.t.
q’u *⇒ A’ p’v and p ∈ p’.

Proof:

 Induction over the number of reduction steps n in
qu *⇒ A pv.

 For n=0: the claim holds trivially, p’=q’.

Tamás Lukovszki30Models of Computation

Computing power of non-deterministic
FA

Proof (Lemma 1, cont.):

 For n → n+1: Assume, the claim holds for all reductions of ≤ n
steps.

 Let qu *⇒ A pv be a reduction of n + 1 steps.
Then for some q1 ∈ Q and u1 ∈ T* holds that
qu ⇒A q1u1 *⇒ A pv.

 Therefore, Ǝ a ∈ T, s.t. u = au1 and q1 ∈ δ(q, a).

 Since δ(q, a) ⊆ ’δ (q’, a), for q ∈ q’,
q’1 can be choosen as q’1 = ’δ (q’, a).

 Consequently, q’u ⇒A’ q’1u1, where q1 ∈ q’1.

 By the induction assumption,
Ǝ p’ ∈ Q’, s.t. q’1u1 *⇒ A’ p’v and p ∈ p’, which proves the claim. ⃞

Tamás Lukovszki31Models of Computation

Computing power of non-deterministic
FA

Proof (Theorem, cont.):

 Let u ∈ L(A), i.e. q0u *⇒ A p, for some q0 ∈ Q0, p ∈ F.

 By Lemma 1, Ǝ p’, s.t. q’0u *⇒ A’ p’, where p ∈ p’.

 By definition of F’, p ∈ p’ and p ∈ F imply that
p’ ∈ F’, which proves L(A) ⊆ L(A’).

 For L(A’) ⊆ L(A) we prove Lemma 2.

Tamás Lukovszki32Models of Computation

Computing power of non-deterministic
FA

Lemma 2:

 For all p’, q’ ∈ Q’ , p ∈ Q and u, v ∈ T*,
– if q’u *⇒ A’ p’v and p ∈ p’,
– then Ǝ q ∈ Q, s.t. qu *⇒ A pv and q ∈ q’.

Proof:

 Induction over the number of steps n in the
reduction.

 For n = 0: The claim holds trivially.

Tamás Lukovszki33Models of Computation

Computing power of non-deterministic
FA

Proof (Lemma 2, cont.):

 For n → n+1: Assume, the claim holds for all reductions of ≤
n steps.

 Let q’u *⇒ A’ p’v be a reduction of n + 1 steps.
Then q’u *⇒ A’ p’1v1 ⇒A’ p’v, where v1 = av,
for some p’1 ∈ Q’ and a ∈ T.

 Then, p ∈ p’ = ’δ (p’1, a) = Up1 ∈ p’1 δ(p1, a).

 Consequently, Ǝ p1 ∈ p’1, s.t. p ∈ δ(p1, a).

 For this p1, it holds that p1v1 ⇒A pv.

 By the induction assumption, qu *⇒ A p1v1 , for some q ∈ q0,
which implies the claim. ⃞

Tamás Lukovszki34Models of Computation

Computing power of non-deterministic
FA

Proof (Theorem, cont.):

 Let q’0u *⇒ A’ p’ and p’ ∈ F .

 By the definition of F’, Ǝ p ∈ p’ , s.t. p ∈ F.

 Then, by Lemma 2, for some q0 ∈ q’0, holds that
q0u *⇒ A p.

 This proves the claim of the theorem. ⃞

Tamás Lukovszki35Models of Computation

NFA – DFA

Example:

 Let A = (Q,T, ,Qδ 0,F) be a NFA, where
Q = {q0, q1, q2}, T = {a, b}, Q0 = {q0}, F = {q2}.
δ is defined as:
δ(q0, a) = {q0, q1}, δ(q0, b) = {q1},
δ(q1, a) = , ∅ δ(q1, b) = {q2},
δ(q2, a) = {q0, q1, q2}, δ(q2, b) = {q1}.
Construct a DFA A’ quivalent with A.

Solution:

 DFA: A’ = (Q’,T, ’,q’δ 0,F’), where
Q’ = { ,{∅ q0},{q1},{q2},{q0, q1},{q0,q2},{q1,q2},{q0,q1,q2}},
q’0 = {q0},
F’ = {{q2},{q0,q2},{q1,q2},{q0,q1,q2}},
next slide

Tamás Lukovszki36Models of Computation

NFA – DFA

Example (cont.):

 δ:

 ’δ :

Tamás Lukovszki37Models of Computation

Corollaries

Corollary 1:

 The class of regular languages L3 is closed for the
complement operation.

Proof:

 Let L be a language, recognized by a FA
A = (Q,T, ,qδ 0,F)

 Then L = T* − L can be recognized by an FA
A = (Q,T, ,qδ 0,Q−F)

Tamás Lukovszki38Models of Computation

Corollaries

Corollary 2:

 The class of regular languages L3 is closed for the
intersection operation.

Proof:

 We know, that L3 is closed for the union operation.

 L1 ∩ L2 = L1 ∪ L2.

 By Corollary 1, the claim follows.

Tamás Lukovszki39Models of Computation

Corollaries

Corollary 3:

 It is decidable, whether two regular grammars generate the
same language

Proof:

 Let G1 and G2 be regular grammars, generating the languages L1
and L2, respectively

 The language L3 = (L1 ∩ L2) (∪ L1 ∩ L2) is also regular.

 Consequently, there exists a regular grammar G3, which
generates L3.

 However, L1 = L2 holds if and only if L3 = , which is decidable ∅
for all context-free grammars G3 (Thus, for all regular grammars).

Tamás Lukovszki40Models of Computation

FA – Myhill-Nerode Theorem

 Let L be a language over the alphabet T. The relation EL
induced by language L is a binary relation on T*, for which it
holds that

 ∀ u, v ∈ T*, uELv, if and only if ∄ w ∈ T*, s.t. exatly one of the
words uw and vw is an element of L (i.e. ∀ w ∈ T* : uw ∈ L if and
only if vw ∈ L).

 EL is an equivalence relation and it is right-invariant. (Right-
invariant: if uELv, then uwELvw holds for every word w ∈ T*.)

 The index of the EL is the number of its equivalence classes.

Theorem (Myhill-Nerode): L ⊆ T* can be recognized by a
deterministic FA if and only if EL has a finite index.

Tamás Lukovszki41Models of Computation

FA – Myhill-Nerode Theorem

Theorem (Myhill-Nerode): L ⊆ T* can be recognized
by a DFA if and only if EL has a finite index.

 This index is equal to the number of states in the
minimal DFA recognizing L.

Tamás Lukovszki42Models of Computation

DFA with minimum number of states

 The DFA A has a minimum number of states
(minimal DFA), if there is no DFA A’, which
recognizes the same language as A, but the
number of states of A’ is smaller than the number
of state of A.

Theorem: The minimal DFA accepting the regular
language L is unique, up to isomorphism.

Tamás Lukovszki43Models of Computation

DFA with minimum number of states

Theorem: The minimal DFA accepting the regular language L is unique,
up to isomorphism.

 Let A = (Q, T, , qδ 0, F) be a DFA. Define a relation R ⊆ Q x Q, s.t.
pRq if ∀ input word x ∈ T* it holds that
px *⇒ A r if and only if qx *⇒ A r’ for some r, r’ ∈ F states. (r = r’ is
possible).

 States p and q are distinguishable if
 Ǝ x ∈ T*, s.t. either px *⇒ A r, r ∈ F, or qx *⇒ A r’, r’ ∈ F ,

but both reductions are not possible.
Otherwise, p and q are indistinguishable.

 If p and q are indistinguishable, then δ(p, a) = s and δ(q, a) = t are
indistinguishable for any a ∈ T.

 If δ(p, a) = s and δ(q, a) = t are distinguishable for x ∈ T*,
then they are distinguishable also for ax.

Tamás Lukovszki44Models of Computation

DFA with minimum number of states

 Let A = (Q, T, , qδ 0, F) be a DFA. State q is reachable from the initial
state if there is a reduction q0x * ⇒ q, where x is some word over T.

 The DFA A = (Q, T, , qδ 0, F) is connected, if all its states are
reachable from the initial state.

 We define the set H of reachabele states as follows:
Let H0 = {q0}, Hi+1 = Hi {∪ r | δ(q, a) = r , q ∈ Hi , a ∈ T}, i = 1, 2,
Then Ǝ k ≥ 0 : Hk = Hl , for all l ≥ k. Let H = Hk.

 We define the DFA A’ = (Q’, T, ’, qδ 0, F’) with
Q’ = H, F’ = F ∩ H and ’δ : H × T → H s.t. ’δ (q, a) = δ(q, a),
if q ∈ H.

 It can be shown that A’ is connected and accepts the same language
as A. Furthermore, A’ is the largest connected subautomaton of
A.

Tamás Lukovszki45Models of Computation

DFA with minimum number of states

 In order to compute the minimal DFA,
– we determine whether the automaton is

connected or not.
• if it is not connected, then we make it

connected and consider the largest
connected subautomaton. In the
following, we assume, that it is
connected.

– then we partition (according to
distinguishability, states become divided
into equivalence classes

Tamás Lukovszki46Models of Computation

DFA with minimum number of states

 Step 1:
– Divide the set of states into two partitions: F and Q − F .

• The states in F can be distinguished from the states in Q −
F (by the empty word).

– Repeat splitting of the partitions (Step 2) into additional
partitions as long as the number of partitions remains the
same.

 Step 2:
– This is done as follows: Consider an arbitrary partition P of

states. Take an input symbol a and consider δ(p, a) for each
state p ∈ P.
If the obtained states belong to different partitions, then split P
into as many new partitions as arosing in this way.

– Perform this procedure for each input symbol and each partition,
until no new partition is created.

Tamás Lukovszki47Models of Computation

DFA with minimum number of states

 Step 3:
– Determine the DFA with the minimum number of states

components.
• For each partition Bi, consider a representative

state bi.
• Construct a DFA A’ = (Q’, T, ’, qδ 0, F’), where
• Q’ is set of representatives of the partitions,
• q’0 is the representative of the partition containing

q0,
• ’δ (bi, a) = bj, if Ǝ qi ∈ Bi and qj ∈ Bj, s.t.

δ(qi, a) = qj.
• F’ = {bf} is the representative of the partition that

contains the elements of F.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

