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4: Regular expressions, finite automaton
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Regular expressions

Applications
 search and replace dialogs of text editors
 search engines
 text processing utilities (e.g. sed and AWK)
 programming languages, lexical analysis
 genom analysis (genom as string)
 spam/malware filter
 …
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Regular expressions

Let V and V’ = { , ·, +, * , (, )} be disjoint alphabets. A ε regular 
expression over V is defined recursively as follows:

1.  is a regular expression over ε V,

2. all a  ∈ V are regular expressions  over V,

3. If R is a regular expression over V, then R* is also a regular 
expression over V,

4. If Q and R are regular expressions over V, then 
(Q · R) and (Q + R) are also regular expressions over V.

* denotes the closure of iteration,
· the concatenation, and
+ union.
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Regular expressions

Each regular expression represents a regular language, which is 
defined as:

 

1.  represents the language { }ε ε ,

2. Letter a (  ∈ V ) represents the language {a},

3. if R is a regular expression over V, which represents the 
language L, then R* represents L*,

4. if Q and R are regular expressions over V, that represent the 
languages L and L’, then 
(Q · R) represents the language LL’, 
(Q + R) represents the language L U L’.
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Regular expressions

Parentheses can be omitted when defining precedence on operations. 
The the usual sequence is: *, ·, +. The following regular expressions 
are equivalent:

 a* is the same as (a)* and represent the language {a}*.

 (a + b)* is the same as ((a) + (b))* and represents the 
language {a, b}*.

 a* · b is the same as ((a)*) · (b) and represents the language {a}*b.

 b + ab* is the same as (b) + ((a) · (b)*) and represents the 
language {b}  {∪ a}{b}*.

 (a + b) · a* is the same as ((a) + (b)) · ((a)* ) and represents the 
language {a, b}{a}*.
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Regular expressions

Let P, Q, an R be regular expressions. Then following hold:

 P + ( Q + R ) = ( P + Q ) + R

 P · ( Q · R ) = ( P · Q ) · R

 P + Q = Q + P

 P · ( Q + R ) = P · Q + P · R

 (P + Q ) · R = P · R + Q · R

 P* =  + ε P · P*

  · ε P = P ·  = ε P

 P* = (  + ε P )*
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Regular expressions

Example:
The language represented the regular expressions

(a + b)a* and aa* + ba* is the same:
{ aan | n  ∈ N}  { ∪ ban | n  ∈ N }.

The language represented by a + ba* is:
{ a, b, ba, ba2, ba3, . . .}.



Tamás Lukovszki8Models of Computation

Expressive power of regular expressions

Theorem: 

1) Every regular expression represents a regular (3-
type) language.

2) For every regular (3-type) language, there is a 
regular expression representing the language.

Proof: 
1) follows from the fact that the class of regular 
languages L3 is closed for the regular operations.
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Expressive power of regular expressions

Proof: 
For 2), we show that for every regular language L 
generate by a grammar G = (N, T, P, S), a regular 
expression can be constructed, that represents L.

 Let N = {A1, . . . , An}, n ≥ 1, S = A1. 
– Each rule of G is of form Ai  → aAj or Ai  , → ε

where a  ∈ T , 1 ≤ i, j ≤ n.
 We say that a non-terminal Am is affected by the 

derivation
Ai * ⇒ uAj (u  ∈ T* ), if Am occurs in a intermediate 
string between Ai and uAm in the derivation.
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Expressive power of regular expressions

Proof (cont.): 

 A derivation Ai * ⇒ uAj is called k-bounded 
if 0 ≤ m ≤ k holds for all non-terminals Am occurring 
in the derivation.

 Let Ek
i,j = {u  ∈ T* | Ǝ Ai * ⇒ uAj k-bounded derivation}.

 We show by induction on k, that for language Ek
i,j, 

there is a regular expression representing Ek
i,j, where 

0 ≤ i,j,k ≤ n.
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Expressive power of regular expressions

Proof (cont.): 

 k=0 (induction start):
– For i ≠ j, E0

i,j is eighter empty, or it consists of 
symbols of T (a  ∈ E0

i,j if and only if Ai  → aAj  ∈ P.)
– For i = j, E0

i,j consists of  and zero or more ε
elements of T, so E0

i,j can be represented by a 
regular expression.
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Expressive power of regular expressions

Proof (cont.): 

 k-1 –>k (induction step):
– Assume that for fixed k, 0 < k ≤ n, Ek-1

i,j  can be 
represented by a regular expression. 

– Then for all i, j, k it holds that
• Ek

i,j = Ek-1
i,j + Ek-1

i,k · (Ek-1
k,k)* · Ek-1

k,j.
– Therefore, Ek

i,j can also be represented by a regular 
expression.

 Let Iε be the set of indices i for which Ai  . → ε
– Then L(G) = Ui∈Iε En

1,i can be representd by a regular 
expression. The claim of the theorem follows.
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Finite Automata (FA)

● Identifying formal languages ​​is also possible 
with recognition devices, i.e. by automata.

● An automaton can process and identify words.
● Grammars use a synthesizing approach, while 

automata an analytic one.
● In response to a word, the automaton can 

either accept or reject.
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Finite Automata (FA)

 A finite automaton performs a sequence of steps in 
discrete time intervals

 It  starts in the initial state.

 The input word is located on the input tape and the 
reading head is on the leftmost symbol of an input word.

 After reading a symbol, the automaton moves the 
reading head to one position to the right, then the state 
changes, regarding the state transition function.

 If the automaton has read the input, it stops (accepts or 
rejects the input).
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Finite Automata (FA)

 Example: automatic door control
State transition diagram:

State transition table:
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Finite Automata (FA)

 Application examples:
– Automatic door control
– Coffee machine
– Pattern recognition
– Markov chains – pattern recognition
– Speech processing
– Optical character recognition
– Predictions of share prizes in the stock 

exchange
– ...
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Finite Automata (FA)

A finite automaton is a 5-tuple A = (Q, T, , qδ 0, F ), 
where

 Q is a finite, nonempty set of states,

 T is the finite alphabet of input symbols,

 δ : Q × T  → Q is the state transition function 

 q0  ∈ Q is the initial state or start state,

 F  ⊆ Q is the set of acceptance states or end 
states.
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Finite Automata (FA)

Remark:

● The function δ can be extended to a function  
δ̂ : Q × T*  → Q as follows:

● δ̂(q, ) = ε q,
● δ̂(q, xa) = δ( δ̂(q, x), a) for all x  ∈ T* and a  ∈

T.
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Finite Automata (FA)

Example:
● Let A = (Q, T, , qδ 1, F) be a FA, where 

Q = {q1, q2, q3}, T = {0, 1}, F = {q2}, and
δ(q1, 0) = q1,  δ(q1, 1) = q2, δ(q2, 0) = q3, δ(q2, 1) = q2, 
δ(q3, 0) = δ(q3, 1) = q2.

● The accepted language is L(A)={w | w conains at least one 1 and 
the last 1 is not followed by an odd number of 0s}

State transition diagram: State transition table:
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Finite Automata (FA)

Example:

● Let T = {a,b,c}.
Define a FA, which accepts the words of length of at most 5.

Solution:

● Formaly: 
A=({q0, . . . , q6}, {a, b, c}, δ, q0 , {q0, . . . , q5}),
δ(qi, t) = qi+1, for i = 0, . . . , 5 , t  {∈ a, b, c},
δ(q6, t) = q6, for t  {∈ a, b, c}

● By state transition diagram:

By state transition table:
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FA – accepted language

 The language accepted/recognized by the FA  
A = (Q, T, , Qδ 0, F) is:
L(A) = {u  ∈ T* | q0u * ⇒ p for some q0  ∈ Q0 
and p  ∈ F}

 For a deterministic FA A, there is one single start 
state Q0={q0}. The language accepted by DFA A is:
L(A) = {u  ∈ T* | q0u * ⇒ p for some p  ∈ F}
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Deterministic and non-deterministic 
finite automata

 Deterministic finite automaton (DFA): Function δ is 
single-valued, i.e. ∀ (q, a)  ∈ Q × T there is exactly one 
state s, s.t. δ(q, a) = s.

 Nondeterministic finite automaton (NFA): Function δ 
is multi-valued, i.e. δ : Q × T  2→ Q. 
Multiple initial states are allowed 
(the set of initial states Q0  ⊆ Q). 
It is allowed that δ(q, a) =  for some ∅
(q,a), i.e. the machine gets stuck. 
Null (or ) move is allowed,ε
i.e. it can move forward without 
reading symbols. NFA example
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Deterministic and non-deterministic 
finite automata

 New features of non-determinism
– Multiple paths are possible (multiple choises 

at each step).
– -transition is a “free” move without reading ε

input.
– Accept input if some path leads to an 

accepting state.
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Deterministic and non-deterministic 
finite automata

 Alternative notation: 

 State transitions can also be given in the form 
qa  → p, where p  ∈ δ(q, a).

 Let Mδ be set of rules of the state transition of an 
NFA A = (Q, T, , Qδ 0, F).

 If Mδ contains exactly one rule qa  → p for each pair 
(q,a), then the FA is deterministic, oherwise non-
deterministic.
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FA – reduction

 Let A = (Q, T, , Qδ 0, F) be a FA and u,v  ∈ QT* words. 
The FA A reduces the u in one step (directly) to v 
(notation: u ⇒A v, or short: u ⇒ v), if there are
a rule qa  → p  ∈ Mδ (i.e. δ(q, a) = p) and 
a word w  ∈ T*, s.t. u = qaw and v = pw hold.

 The FA A =  (Q, T, , Qδ 0, F) reduces u  ∈ QT* to
v  ∈ QT* (notation: u ⇒A* v, or short: u *⇒  v, if

– either u = v,
– or  Ǝ a word z  ∈ QT*, s.t. u * ⇒ z and z  v.⇒

 Remark: * is the reflexive, transitive closure of .⇒ ⇒
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FA – accepted language

 The language accepted/recognized by the FA  
A = (Q, T, , Qδ 0, F) is:
L(A) = {u  ∈ T* | q0u * ⇒ p for some q0  ∈ Q0 
and p  ∈ F}

 For a DFA A, there is one single start state 
Q0={q0}. The language accepted by DFA A is:
L(A) = {u  ∈ T* | q0u * ⇒ p for some p  ∈ F}
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Computing power of non-deterministic 
FA

 Theorem: For all NFA A = (Q, T, , Qδ 0, F) a 
DFA A’ = (Q’, T, ’, q’δ 0, F’) can be constructed, s.t. 
L(A) = L(A’) holds.

 Idea: DFA keeps track of the subset of possible 
states in NFA

 Remark: In worst case |Q’| = 2|Q|.
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Computing power of non-deterministic 
FA

Proof: 

 Let Q’= 2Q be the set of all subsets of the set Q. 
(the number of elements of Q’ is 2|Q|). 

 Let ’δ  : Q’ × T  → Q’ be the function defined as:
δ’(q’, a) = Uq∈q’ δ(q, a).

 Let q’0 = Q0 and F’ = {q’  ∈ Q’ | q’  ∩ F ≠ }∅

 To prove L(A)  ⊆ L(A’), we prove the Lemma 1:
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Computing power of non-deterministic 
FA

Lemma 1: 

 For all p,q  ∈ Q, q’  ∈ Q’ és u,v  ∈ T*, 
if qu *⇒ A pv and q  ∈ q’, 
then  Ǝ p’  ∈ Q’, s.t.
q’u *⇒ A’ p’v and p  ∈ p’.

Proof:

 Induction over the number of reduction steps n in 
qu *⇒ A pv.

 For n=0: the claim holds trivially, p’=q’.
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Computing power of non-deterministic 
FA

Proof (Lemma 1, cont.): 

 For n → n+1: Assume, the claim holds for all reductions of ≤ n 
steps.

 Let qu *⇒ A pv be a reduction of n + 1 steps. 
Then for some q1  ∈ Q and u1  ∈ T* holds that 
qu ⇒A q1u1 *⇒ A pv.

 Therefore, Ǝ a  ∈ T, s.t. u = au1 and q1  ∈ δ(q, a).

 Since δ(q, a)  ⊆ ’δ (q’, a), for q  ∈ q’,
q’1 can be choosen as q’1 = ’δ (q’, a).

 Consequently, q’u ⇒A’ q’1u1, where q1  ∈ q’1.

 By the induction assumption, 
Ǝ p’  ∈ Q’, s.t. q’1u1 *⇒ A’ p’v and p  ∈ p’, which proves the claim. ⃞
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Computing power of non-deterministic 
FA

Proof (Theorem, cont.): 

 Let u  ∈ L(A), i.e. q0u *⇒ A p, for some q0  ∈ Q0, p  ∈ F.

 By Lemma 1, Ǝ p’, s.t. q’0u *⇒ A’ p’, where p  ∈ p’.

 By definition of F’,  p  ∈ p’ and p  ∈ F imply that 
p’  ∈ F’, which proves L(A)  ⊆ L(A’).

 For L(A’)  ⊆ L(A) we prove Lemma 2.
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Computing power of non-deterministic 
FA

Lemma 2: 

 For all p’, q’  ∈ Q’ , p  ∈ Q and u, v  ∈ T*,
– if q’u *⇒ A’ p’v and p  ∈ p’,
– then Ǝ q  ∈ Q, s.t. qu *⇒ A pv and q  ∈ q’.

Proof: 

 Induction over the number of steps n in the 
reduction.

 For n = 0: The claim holds trivially.
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Computing power of non-deterministic 
FA

Proof (Lemma 2, cont.): 

 For n → n+1: Assume, the claim holds for all reductions of ≤ 
n steps.

 Let q’u *⇒ A’ p’v be a reduction of n + 1 steps. 
Then q’u *⇒ A’ p’1v1 ⇒A’ p’v, where v1 = av,
for some p’1  ∈ Q’ and a  ∈ T. 

 Then,  p  ∈ p’ = ’δ (p’1, a) = Up1  ∈ p’1 δ(p1, a).

 Consequently, Ǝ p1  ∈ p’1, s.t. p  ∈ δ(p1, a).

 For this p1, it holds that p1v1 ⇒A pv.

 By the induction assumption, qu *⇒ A p1v1 , for some q  ∈ q0, 
which implies the claim. ⃞
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Computing power of non-deterministic 
FA

Proof (Theorem, cont.): 

 Let q’0u *⇒ A’ p’ and p’  ∈ F .

 By the definition of F’,  Ǝ p  ∈ p’ , s.t. p  ∈ F.

 Then, by Lemma 2, for some q0  ∈ q’0, holds that 
q0u *⇒ A p.

 This proves the claim of the theorem. ⃞
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NFA – DFA

Example: 

 Let A = (Q,T, ,Qδ 0,F) be a NFA, where
Q = {q0, q1, q2}, T = {a, b}, Q0 = {q0}, F = {q2}. 
δ is defined as:
δ(q0, a) = {q0, q1}, δ(q0, b) = {q1},
δ(q1, a) = , ∅ δ(q1, b) = {q2},
δ(q2, a) = {q0, q1, q2}, δ(q2, b) = {q1}.
Construct a DFA A’ quivalent with A.

Solution:

 DFA: A’ = (Q’,T, ’,q’δ 0,F’), where
Q’ = { ,{∅ q0},{q1},{q2},{q0, q1},{q0,q2},{q1,q2},{q0,q1,q2}},
q’0 = {q0},
F’ = {{q2},{q0,q2},{q1,q2},{q0,q1,q2}},
next slide
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NFA – DFA

Example (cont.): 

 δ:

 ’δ :
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Corollaries

Corollary 1: 

 The class of regular languages L3 is closed for the 
complement operation.

Proof:

 Let L be a language, recognized by a FA 
A = (Q,T, ,qδ 0,F)

 Then L = T* − L can be recognized by an FA 
A = (Q,T, ,qδ 0,Q−F) 
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Corollaries

Corollary 2: 

 The class of regular languages L3 is closed for the 
intersection operation.

Proof:

 We know, that L3 is closed for the union operation.

 L1  ∩ L2 = L1  ∪ L2.

 By Corollary 1, the claim follows.
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Corollaries

Corollary 3: 

 It is decidable, whether two regular grammars generate the 
same language

Proof:

 Let G1 and G2 be regular grammars, generating the languages L1 
and L2, respectively

 The language L3 = (L1  ∩ L2)  (∪ L1  ∩ L2) is also regular.

 Consequently, there exists a regular grammar G3, which 
generates L3.

 However, L1 = L2 holds if and only if L3 = , which is decidable ∅
for all context-free grammars G3 (Thus, for all regular grammars).
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FA – Myhill-Nerode Theorem

 Let L be a language over the alphabet T. The relation EL 
induced by language L is a binary relation on T*, for which it 
holds that

 ∀ u, v  ∈ T*, uELv, if and only if  ∄ w  ∈ T*, s.t. exatly one of the 
words uw and vw is an element of L (i.e.  ∀ w  ∈ T* : uw  ∈ L if and 
only if vw  ∈ L).

 EL is an equivalence relation and it is right-invariant. (Right-
invariant: if uELv, then uwELvw holds for every word w  ∈ T*.)

 The index of the EL is the number of its equivalence classes.

Theorem (Myhill-Nerode): L  ⊆ T* can be recognized by a 
deterministic FA if and only if EL has a finite index.
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FA – Myhill-Nerode Theorem

Theorem (Myhill-Nerode): L  ⊆ T* can be recognized 
by a DFA if and only if EL has a finite index.

 This index is equal to the number of states in the 
minimal DFA recognizing L. 
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DFA with minimum number of states

 The DFA A has a minimum number of states 
(minimal DFA), if there is no DFA A’, which 
recognizes the same language as A, but the 
number of states of A’ is smaller than the number 
of state of A. 

Theorem: The minimal DFA accepting the regular 
language L is unique, up to isomorphism.
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DFA with minimum number of states

Theorem: The minimal DFA accepting the regular language L is unique, 
up to isomorphism.

 Let A = (Q, T, , qδ 0, F ) be a DFA. Define a relation R  ⊆ Q x Q, s.t. 
pRq if ∀ input word x  ∈ T* it holds that 
px *⇒ A r if and only if qx *⇒ A r’ for some r, r’   ∈ F states. (r = r’ is 
possible).

 States p and q are distinguishable if 
 Ǝ x  ∈ T*, s.t. either px *⇒ A r, r  ∈ F, or qx *⇒ A r’, r’  ∈ F , 

but both reductions are not possible. 
Otherwise, p and q are indistinguishable.

 If p and q are indistinguishable, then δ(p, a) = s and δ(q, a) = t are  
indistinguishable for any a  ∈ T. 

 If δ(p, a) = s and δ(q, a) = t are distinguishable for x  ∈ T*, 
then they are distinguishable also for ax.
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DFA with minimum number of states

 Let A = (Q, T, , qδ 0, F) be a DFA. State q is reachable from the initial 
state if there is a reduction q0x * ⇒ q, where x is some word over T.

 The DFA A = (Q, T, , qδ 0, F) is connected, if all its states are 
reachable from the initial state.

 We define the set H of reachabele states as follows: 
Let H0 = {q0}, Hi+1 = Hi  {∪ r | δ(q, a) = r , q  ∈ Hi , a  ∈ T}, i = 1, 2, .... 
Then Ǝ k ≥ 0 : Hk = Hl , for all l ≥ k. Let H = Hk.

 We define the DFA A’ = (Q’, T, ’, qδ 0, F’) with 
Q’ = H, F’ = F  ∩ H and ’δ  : H × T  → H s.t. ’δ (q, a) = δ(q, a),
if q  ∈ H.

 It can be shown that A’ is connected and accepts the same language 
as A. Furthermore, A’ is the largest connected subautomaton of 
A.
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DFA with minimum number of states

 In order to compute the minimal DFA,
– we determine whether the automaton is 

connected or not. 
• if it is not connected, then we make it 

connected and consider the largest 
connected subautomaton. In the 
following, we assume, that it is 
connected.

– then we partition (according to 
distinguishability, states become divided 
into equivalence classes
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DFA with minimum number of states

 Step 1:  
– Divide the set of states into two partitions: F and Q − F .

• The states in F can be distinguished from the states in Q − 
F (by the empty word).

– Repeat splitting of the partitions (Step 2) into additional 
partitions as long as the number of partitions remains the 
same.

 Step 2: 
– This is done as follows: Consider an arbitrary partition P of 

states. Take an input symbol a and consider δ(p, a) for each 
state p ∈ P. 
If the obtained states belong to different partitions, then split P 
into as many new partitions as arosing in this way.

– Perform this procedure for each input symbol and each partition, 
until no new partition is created.
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DFA with minimum number of states

 Step 3:  
– Determine the DFA with the minimum number of states 

components. 
• For each partition Bi, consider a representative 

state bi. 
• Construct a DFA A’ = (Q’, T, ’, qδ 0, F’), where 
• Q’ is set of representatives of the partitions,
• q’0 is the representative of the partition containing 

q0, 
• ’δ (bi, a) = bj, if Ǝ qi  ∈ Bi and qj  ∈ Bj, s.t. 

δ(qi, a) = qj.
• F’ = {bf} is the representative of the partition that 

contains the elements of F.
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