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Models of Computation

6: Probabilistic automata, Pushdown automata, Context-
free languages
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Probabilistic automaton

 Let s1, . . . ,sn be the states of the probabilistic automaton PA. 
Reading an input symbol x in state s the automaton PA goes to 
state si with probability pi(s,x), where for every s and for x:

 Instead of the initial state, there is a distribution of initial 
states, i.e. every state is an initial state with a fixed probability.

 The accepted language L(PA, S1, η) depends on the final states 
S1 and the so-called cutting point η, 0 ≤ η < 1.

 The accepted language L(PA, S1, η) is the set of words, for 
which PA reaches a state in S1 with a probability greater than η.
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Probabilistic automaton

 An n-dimensional stochastic matrix ( pij )1≤i,j≤n 
is a square matrix, for which 

 An n-dimensional stochastic row vector (column 
vector) an n-dimensional row vector (column vector) 
whose components are are non-negative and the sum of 
the components is 1.

 If only one component of the stochastic row vector is 1, 
then it is called a coordinate vector.

 The n-dimensional unit matrix En is a stochastic matrix.
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Probabilistic automaton

● A finite probabilistic automaton over an alphabet V 
is a triple PA = (S ,s0, M), where

● S = {s1 , . . . , sn} is a finite, nonempty set of 
states,

● s0 is a n-dimensional stochastic row vector, the 
distribution of the initial states

● M is a mapping that maps V to the set of n-
dimensional stochastic matrices.

● For x  ∈ V, the (i,j)-th element of the matrix M(x) is 
pj(si,x), it is the probability that reading x in state si, PA 
goes to state state sj.
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Probabilistic automaton

● Example: Consider the following probabilistic automaton: 
PA = ({s1, s2}, (1,0), M) over the alphabet {x,y}, where

● The initial distribution shows that the initial state is s1.

● The state transition digram:
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Probabilistic automaton

● Let PA = (S, s0, M) be a finite probabilistic automaton 
over alphabet V. The function M on V can be 
extended to V* as follows:

● M̂( ) := ε En

● M̂(x1 ... xn) := M(x1)M(x2)...M(xn) , where k≥2 , xi∈V.
● Instead of M̂, we write M hereafter.
● For some word w  ∈ V*, the (i,j)-th element of  M(w) is 

pj(si, w), which is the probability that processing w in 
state si the automaton goes to state sj.
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Probabilistic automaton

● Let PA = (S, s0, M) be a finite probabilistic automaton 
over alphabet V, and w  ∈ V*. The stochastic row 
vector s0M(w), denoted by PA(w), is the state 
distribution resulting from w.

● Note: PA( ) = ε s0.
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Probabilistic automaton

● Let PA = (S, s0, M) be a finite probabilistic automaton over 
alphabet V, 0 ≤ η < 1, and s̄1 is an n-dimensional column 
vector, all elements of which are either 0 or 1. s̄1 can be 
understood as a membership function.

● The language L(PA, s̄1, η) accepted with s̄1 with cut 
point η is: L(PA, s̄1, η) = { w  ∈ V* |  s0M(w)s̄1 > η}.

● A language L is called η-stochastic if Ǝ probabilistic finite 
automaton PA = (S, s0, M) and column vector s̄1, s.t.
L = L(PA, s̄1, η) holds.

● A language L is called stochastic if it is η-stochastic for a 
0 ≤ η < 1.
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Probabilistic automaton

● Example: Consider the automaton in the previous example. It holds that
● PA(xn) = (1, 0)M(xn) = (1, 0) if n is even,
● PA(xn) = (0, 1), if n is odd, and
● PA(w) = (1/2, 1/2) if w contains at least one y.

● Thus, for

● Thus, V* − (xx)* is, e.g., a 1/3-stochastic language, 
while x(xx)* is, e.g, a 2/3-stochastic language. 
Therfore, both are stochastic languages.
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Regular and (η-)stochastic languages

● Theorem [Rabin 1963]: All regular languages ​​are 
stochastic, but not all stochastic language is regular.

● Theorem [Rabin 1963]: All 0-stochastic languages 
are regular.
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Pushdown automaton (PDA)

● A pushdown automaton (PDA) is a generalization of a 
finite automaton with (potentially) infinite stack and 
finite control.

● The new data is 
added to the top 
of the stack, 
and removed 
in reverse order.

● The stack is a 
last in, first out 
(LIFO) data structure.
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Pushdown automata

● A pushdown automaton (PDA) is a 7-tuple 
A = (Z, Q, T, δ, z0, q0, F), where
● Z is a finite set of stack symbols (stack alphabet),
● Q is a finite set of states,
● T is the finite set of input symbols (input alphabet),
● δ : Z × Q × (T  { }) ∪ ε → P(Z* × Q) is the transition 

function,
● where P(X) is set of finite subsets of X,

(example: δ(z,q,a) = {(z’,q’), (z’’,q’’)},
note: non-deterministic by default).

● z0  ∈ Z is the initial stack symbol,
● q0  ∈ Q is the initial state,
● F  ⊆ Q is the set of accepting states or final states.
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PDA

● The symbol at the top of the stack, the current state, and 
the input symbol together determine the transition.

● At each step, the automaton takes one element from the 
top of the stack (pop) and writes several instead (0, 1, 2, 
. . . symbols) (push).

● If δ(z, q, ) is not empty, then so-called ε -transitionε  ( -ε
step, -movement) can be performed, which allows to ε
change the state and modify the top of the stack without 
reading a symbol from the input tape.

● -transition is possible ε even before reading the first input 
symbol or even after reading the last input symbol.
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PDA

● The configuration of the PDA is a word of a form of zqw, where 
● z  ∈ Z* is the current content of the stack,
● q  ∈ Q is the current state, and 
● w  ∈ T* is the unprocessed part of the input.

● z has its first letter at the bottom of the stack, and its last letter at the 
top of the stack. 

● The reading head of the input is on the first letter w.
● The symbol on the left of q is the symbol on the top of the stack and 

the symbol on the right of q is the next letter of the input to be 
processed.

● The initial configuration of the PDA A=(Z,Q,T, ,zδ 0,q0,F) for input w  ∈ T* 
is z0q0w.
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PDA – operations

● Let t  ∈ T  { }, ∪ ε q,r  ∈ Q and z  ∈ Z
● ( , ε r)  ∈ δ(z, q, t): element z can be removed from the stack 

(POP operation)
● (z, r)  ∈ δ(z, q, t): the contents of the stack may remain 

unchanged
● (z’, r)  ∈ δ(z, q, t): z can be replaced with z’ at the top of the 

stack
● (zz’, r)  ∈ δ(z, q, t): we can put z’ on top of the stack (PUSH 

operation)
● Other possibilities, for example (zz’z’’, r)  ∈ δ(z, q, t): we can 

put z’z’’ on top of the stack, z’’ will be on top (z’’, z’  ∈ Z) .
● In general (w, r)  ∈ δ(z, q, t), where w  ∈ Z*. The symbol z is 

replaced by the word w.The last letter of w is on the top of 
the stack. 
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PDA – reduction

● The PDA A reduces the configuration α  ∈ Z*QT* to a configuration 
β  ∈ Z*QT* in one step, denoted by α ⇒A β, if 
Ǝ z  ∈ Z, q,p  ∈ Q, a  ∈ T  { }, ∪ ε x,y  ∈ Z*, and w  ∈ T*, s.t. 
(y,p)  ∈ δ(z,q,a) and  = xα zqaw and  = xβ ypw.

● Examples:
● if δ(c,q1,a) = {(dd, q2), ( , ε q4)} and z0cddcq1 is a configuration, 

then
● z0cddcq1ababba ⇒A z0cddddq2babba and
● z0cddcq1ababba ⇒A z0cddq4babba also holds.

● if δ(c, q3, ) = {(ε dd, q2)} and z0cddcq3ababba is a configuration, 
then 

● z0cddcq3ababba ⇒A z0cddddq2ababba
● if δ(c, q5, ) =  and ε ∅ δ(c, q5, a) =  , then ∅ ∄ configuration C s.t.

z0ccq5aab ⇒A C. 
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PDA – reduction

● The PDA A reduces the configuration α  ∈ Z*QT* to a 
configuration β  ∈ Z*QT*, denoted by α *⇒ A β, if
● either  = α β, 
● or Ǝ α1, . . . , αn a finite sequence of words, s.t.

 = α α1 ,  = β αn and αi ⇒A αi + 1, 1 ≤ i ≤ n − 1.

● The relation *⇒ A  ⊆ Z*QT* × Z*QT* is the reflexive and transitive 
closure of relation ⇒A.

● Example:
● If δ(d, q6, b) = {( , ε q5)} and δ(d, q5, ) = {(ε dd, q2), ( , ε q4)} then

● #cddq6bab ⇒A #cdq5ab ⇒A #cddq2ab and
● #cddq6bab ⇒A #cdq5ab ⇒A #cq4ab.
● So, #cddq6bab *⇒ A #cddq2ab and #cddq6bab *⇒ A #cq4ab.
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PDA – reduction

● The accepted language with accepting status 
(end status) by a PDA A is:

L(A) = {w  ∈ T* | z0q0w *⇒ A xp, where x  ∈ Z*, p  ∈ F}.
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Deterministic PDA

● The PDA A = (Z, Q, T, δ, z0, q0, F) is deterministic if for 
all (z, q, a)  ∈ Z × Q × T it holds that
|δ(z, q, a)| + | (δ z, q, )| = 1.ε

● So, for all q  ∈ Q and z  ∈ Z
● either δ(z, q, a) contains exactly one element for each 

input symbol a  ∈ T and δ(z, q, ) =  ,ε ∅
● or δ(z, q, ) contains exactly one element and ε
δ(z, q, a) =  for all input symbols ∅ a  ∈ T.

● Remark: If for all (z, q, a) ∈ Z × Q × T it holds that |δ(z, q, a)| + |δ(z, 
q, )| ≤ 1 then the PDA can be easily extended to a deterministic ε
one accepting the same language. Thus, PDAs fulfilling this 
condition can be considered as deterministic in a broader sense.
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Deterministic PDA

● The acceptance (recognition) power of 
deterministic PDAs is less than of 
non-deterministic PDAs.

● Example: Let
● L1 = {wcw−1 | w  {∈ a, b}*},
● L2 = {ww−1 | w  {∈ a, b}*}.
● L1 can be accepted by a deterministic PDA, but 

L2 not.
● Both L1 and L2 can be accepted by a non-

deterministic PDA.
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Deterministic PDA

● Example: Accepting L2 = {ww−1 | w  {∈ a, b}*} non-
deterministically. 
● Idea: 

● 1. read and push input symbols
non-deterministically either repeat 1. or go to 2.

● 2. read input symbols and pop stack sympols, compare
if not equal reject.

● 3. enter accept state if stack is empty.
● Non-deterministic PDA:

A = ({q0, q1, q2}, {a, b}, {#,a, b}, δ, q0, #, {q2}), where:
● (zt, q0)  ∈ δ(z, q0, t),  ∀ t  {∈ a, b}, z  {#, ∈ a, b}
● (z, q1)  ∈ δ(z, q0, ),  ε ∀ z  {#, ∈ a, b}
● ( , ε q1)  ∈ δ(t, q1, t),  ∀ t  {∈ a, b}
● (#, q2)  ∈ δ(#, q1, )ε
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PDA

● The language accepted by the PDA A with an empty 
stack is
● N(A) = {w  ∈ T* | z0q0w *⇒ A p, where p  ∈ Q} .

● Example: Let A = ({$, a}{q0, q1}, {a, b}, δ, $, q0, { }), 
where  δ is:
● $q0a  $→ aq0

● aq0a  → aaq0

● aq0b  → q1

● aq1b  → q1

● $q1  → q1 .
Then N(A) = {anbn | n ≥ 1 } .



Tamás Lukovszki23Models of Computation

Computing power of PDAs

● Theorem: For every PDA A, a PDA A’ can be constructed, 
s.t. N(A’) = L(A) is fulfilled.

● Theorem: For every context-free grammar G, a PDA A 
can be constructed, s.t. L(A) = L(G).

● Theorem: For every PDA A, a context-free grammar G 
can be given, s.t. L(G)=N(A)

● Therefore, the computing power of PDAs (either we 
consider acceptance with accepting end state or 
acceptance with an empty stack) equal to the computing 
power of context-free (type 2) grammars.
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Converting CFGs to PDAs

● Theorem: For every context-free grammar (CFG) G, a PDA A can be 
constructed, s.t. L(A) = L(G).

● Proof construction:  Convert the CFG G to the following PDA. 
● Push the start symbol on the stack.
● If the top of stack is

● Non-terminal: replace with right hand side of rule (non-
deterministic choice).

● Terminal: pop it and match with next input symbol.
● If the stack is empty, accept.

● Example: Let G=(N,T,P,S) be the CFG with T = {a,+,×,(,)}, 
N = {S,M,F}, and P={S → S+M | M, M → M×F | F, F → (S) | a}.
Input: a+a×a.

 
S S

+
M

M
+
M

F
+
M

a
+
M

+
M

M M
×
F

F
×
F

×
F

F aa
×
F
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Bar-Hillel Lemma

● A necessary condition that a language is context-
free (thus, it can be recognized by a PDA).

● Theorem (Bar-Hillel lemma, or pumping lemma 
for context-free languages): 
For all context-free languages L, there exists a 
natural number n, s.t. that for every word z  ∈ L 
with |z|>n holds that z can be written as z=uvwxy 
(u,v,w,x,y  T*∈ ), where |vwx| ≤ n, vx ≠ , and ε
uviwxiy  ∈ L, for all i ≥ 0.
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Bar-Hillel Lemma

● Proof: Assume, that the grammar is -ε
free an it is given in Chomsky normal 
form (i.e. all  production rules are of the 
form: A  → BC, or A  → a, or S  ). → ε
The derivation of a word z  ∈ L(G) can be 
represented by a tree TS. 
If the depth of TS (lengt of the longest 
path from S to a leaf) is k, then |z|≤ 2k, 
due to the Chomsky normal form. 
Let N be the set of non-terminals in G 
and j=|N|. Let n=2j+1. 
If z  ∈ L and |z| > n, then the longest 
path in the derivation tree of S * ⇒ z 
must be longer than j. Consider the last 
section of this path of length j+1. There 
must be a non-terminal A  ∈ N that 
occurs at least twice in this section.
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Bar-Hillel Lemma

● Proof (cont.): Consider two such 
occurrences of A on this path. Let r be 
the word corresponding to the subtree 
of the first one (closer to S), and let w 
be the word corresponding to the other 
one. Then, A * ⇒ r and A * ⇒ w, and w is 
a subword of r, so r=vwx for some v,x 

 ∈ T*. Furthermore, z=ury, for some u,y 
 ∈ T*. Due to the choice of the 

occurrences of A, |r| ≤ 2j+1. On the other 
hand, S * ⇒ uAy and A * ⇒ vAx. 
Therefore, S * ⇒ uviwxiy, for any i ≥ 0. 
Here,  A * ⇒ vAx contains at least one 
step, and the first step must be the 
application of a rule of the form A  → BC. 
Therefore |vx| ≥ 1, since G is -free. ε ∎
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Application of the Bar-Hillel Lemma

● Claim: The language L={ajbjcj : j ≥ 1} is not context-
free.

● Proof: Assume for contradiction, that G is a context-
free grammar generating L. 
Then, by the lemma, Ǝ n≥0 that for  word ∀ z  ∈ L, 
|z|>n can be written in the form z=uvwxy, s.t. 
|vwx| ≤ n, vx≠ , and for all ε i ≥ 0, uviwxiy  ∈ L. 
Consider a word ambmcm with m>n. Since |vwx| ≤ n, 
vwx can not contain all three symbols of a,b,c. 
Assume, w.l.o.g., it contains at least one a and does not 
contain any c. Then by pumping, for i ≥ 2, uviwxiy  
contains more a’s than c’s. Consequently, uviwxiy ∉ L. ∎
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