Models of Computation

6: Probabilistic automata, Pushdown automata, Contextfree languages

Let s_1, \ldots, s_n be the states of the **probabilistic automaton** PA. Reading an input symbol x in state s the automaton PA goes to state s_i with probability $p_i(s,x)$, where for every s and for x:

$$\sum_{i=1}^{n} p_i(s, x) = 1, \quad \text{and} \quad p_i(s, x) \ge 0, i = 1, ..., n.$$

- Instead of the initial state, there is a distribution of initial states, i.e. every state is an initial state with a fixed probability.
- The accepted language $L(PA, S_1, \eta)$ depends on the **final states** S_1 and the so-called **cutting point** η , $0 \le \eta < 1$.
- The **accepted language** $L(PA, S_1, \eta)$ is the set of words, for which PA reaches a state in S_1 with a probability greater than η .

• An *n*-dimensional stochastic matrix $(p_{ij})_{1 \le i,j \le n}$ is a square matrix, for which

1.)
$$p_{ij} \ge 0 \quad (1 \le i, j \le n),$$

2.)
$$\sum_{j=1}^{n} p_{ij} = 1 \quad (1 \le i \le n).$$

- An *n*-dimensional stochastic row vector (column vector) an *n*-dimensional row vector (column vector) whose components are are non-negative and the sum of the components is 1.
- If only one component of the stochastic row vector is 1, then it is called a coordinate vector.
- The *n*-dimensional unit matrix E_n is a stochastic matrix.

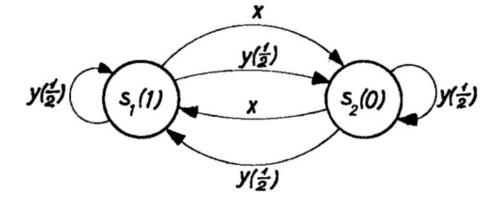
- A finite probabilistic automaton over an alphabet V is a triple $PA = (S, s_0, M)$, where
 - $S = \{s_1, \ldots, s_n\}$ is a finite, nonempty set of states,
 - s₀ is a n-dimensional stochastic row vector, the distribution of the initial states
 - M is a mapping that maps V to the set of ndimensional stochastic matrices.
- For $x \in V$, the (i,j)-th element of the matrix M(x) is $p_j(s_i,x)$, it is the probability that reading x in state s_i , PA goes to state state s_i .

• Example: Consider the following probabilistic automaton: $PA = (\{s_1, s_2\}, (1,0), M)$ over the alphabet $\{x,y\}$, where

$$M(x) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, M(y) = \begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix}$$

• The initial distribution shows that the initial state is s_1 .

The state transition digram:



- Let PA = (S, s₀, M) be a finite probabilistic automaton over alphabet V. The function M on V can be extended to V* as follows:
- $\hat{M}(\varepsilon) := E_n$
- $\hat{M}(x_1 ... x_n) := M(x_1)M(x_2)...M(x_n)$, where $k \ge 2$, $x_i \in V$.
- Instead of \hat{M} , we write M hereafter.
- For some word $w \in V^*$, the (i,j)-th element of M(w) is $p_j(s_i, w)$, which is the probability that processing w in state s_i the automaton goes to state s_j .

- Let $PA = (S, s_0, M)$ be a finite probabilistic automaton over alphabet V, and $w \in V^*$. The stochastic row vector $s_0M(w)$, denoted by PA(w), is the **state distribution resulting from w**.
- Note: $PA(\varepsilon) = s_0$.

- Let $PA = (S, s_0, M)$ be a finite probabilistic automaton over alphabet V, $0 \le \eta < 1$, and \bar{s}_1 is an n-dimensional column vector, all elements of which are either 0 or 1. \bar{s}_1 can be understood as a **membership function**.
- The language $L(PA, \bar{s}_1, \eta)$ accepted with \bar{s}_1 with cut point η is: $L(PA, \bar{s}_1, \eta) = \{ w \in V^* \mid s_0 M(w) \bar{s}_1 > \eta \}$.
- A language L is called η -stochastic if \exists probabilistic finite automaton $PA = (S, s_0, M)$ and column vector \bar{s}_1 , s.t. $L = L(PA, \bar{s}_1, \eta)$ holds.
- A language L is called stochastic if it is η -stochastic for a $0 \le \eta < 1$.

- Example: Consider the automaton in the previous example. It holds that
 - $PA(x^n) = (1, 0)M(x^n) = (1, 0)$ if n is even,
 - $PA(x^n) = (0, 1)$, if *n* is odd, and
 - PA(w) = (1/2, 1/2) if w contains at least one y.
- Thus, for $s_1=\left(\begin{array}{c}0\\1\end{array}\right)$

$$L(PA, s_1, \eta) = \begin{cases} V^* - (xx)^* & \text{if } 0 \le \eta < 1/2, \\ x(xx)^* & \text{if } 1/2 \le \eta < 1. \end{cases}$$

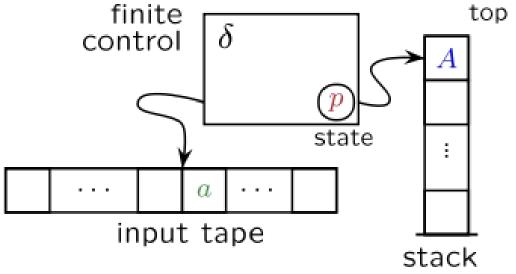
• Thus, $V^* - (xx)^*$ is, e.g., a 1/3-stochastic language, while $x(xx)^*$ is, e.g., a 2/3-stochastic language. Therfore, both are stochastic languages.

Regular and $(\eta$ -)stochastic languages

- Theorem [Rabin 1963]: All regular languages are stochastic, but not all stochastic language is regular.
- Theorem [Rabin 1963]: All 0-stochastic languages are regular.

Pushdown automaton (PDA)

- A pushdown automaton (PDA) is a generalization of a finite automaton with (potentially) infinite stack and finite control.
- The new data is added to the top of the stack, and removed in reverse order.
- The stack is a last in, first out (LIFO) data structure.



Pushdown automata

- A pushdown automaton (PDA) is a 7-tuple
 - $A = (Z, Q, T, \delta, z_0, q_0, F)$, where
 - Z is a finite set of stack symbols (stack alphabet),
 - Q is a finite set of states,
 - T is the finite set of input symbols (input alphabet),
 - $\delta: Z \times Q \times (T \cup \{\epsilon\}) \rightarrow P(Z^* \times Q)$ is the transition function,
 - where P(X) is set of finite subsets of X, (example: $\delta(z,q,a) = \{(z',q'), (z'',q'')\}$, note: non-deterministic by default).
 - $z_0 \in Z$ is the initial stack symbol,
 - $q_0 \in Q$ is the initial state,
 - $F \subseteq Q$ is the set of accepting states or final states.

PDA

- The symbol at the top of the stack, the current state, and the input symbol together determine the transition.
- At each step, the automaton takes one element from the top of the stack (pop) and writes several instead (0, 1, 2, . . . symbols) (push).
- If $\delta(z, q, \varepsilon)$ is not empty, then so-called ε -transition (ε -step, ε -movement) can be performed, which allows to change the state and modify the top of the stack without reading a symbol from the input tape.
- ε-transition is possible even before reading the first input symbol or even after reading the last input symbol.

PDA

- The configuration of the PDA is a word of a form of zqw, where
 - $z \in Z^*$ is the current content of the stack,
 - $q \in Q$ is the current state, and
 - $w \in T^*$ is the unprocessed part of the input.
- z has its first letter at the bottom of the stack, and its last letter at the top of the stack.
- The reading head of the input is on the first letter w.
- The symbol on the left of q is the symbol on the top of the stack and the symbol on the right of q is the next letter of the input to be processed.
- The initial configuration of the PDA $A=(Z,Q,T,\delta,z_0,q_0,F)$ for input $w\in T^*$ is z_0q_0w .

PDA – operations

- Let $t \in T \cup \{\epsilon\}$, $q,r \in Q$ and $z \in Z$
 - $(\varepsilon, r) \in \delta(z, q, t)$: element z can be removed from the stack (**POP** operation)
 - $(z, r) \in \delta(z, q, t)$: the contents of the stack may remain unchanged
 - $(z', r) \in \delta(z, q, t)$: z can be replaced with z' at the top of the stack
 - $(zz', r) \in \delta(z, q, t)$: we can put z' on top of the stack (**PUSH** operation)
 - Other possibilities, for example $(zz'z'', r) \in \delta(z, q, t)$: we can put z'z'' on top of the stack, z'' will be on top $(z'', z' \in Z)$.
 - In general $(w, r) \in \delta(z, q, t)$, where $w \in Z^*$. The symbol z is replaced by the word w. The last letter of w is on the top of the stack.

PDA - reduction

- The PDA A **reduces** the configuration $\alpha \in Z^*QT^*$ to a configuration $\beta \in Z^*QT^*$ **in one step**, denoted by $\alpha \Rightarrow_A \beta$, if $\exists z \in Z$, $q,p \in Q$, $a \in T \cup \{\epsilon\}$, $x,y \in Z^*$, and $w \in T^*$, s.t. $(y,p) \in \delta(z,q,a)$ and $\alpha = xzqaw$ and $\beta = xypw$.
- Examples:
 - if $\delta(c,q_1,a) = \{(dd, q_2), (\epsilon, q_4)\}$ and z_0cddcq_1 is a configuration, then
 - $z_0 cdd cq_1 ababba \Rightarrow_A z_0 cdd ddq_2 babba$ and
 - $z_0cddcq_1ababba \Rightarrow_A z_0cddq_4babba$ also holds.
 - if $\delta(c, q_3, \varepsilon) = \{(dd, q_2)\}$ and $z_0cddcq_3ababba$ is a configuration, then
 - $z_0 c d d c q_3 a b a b b a \Rightarrow_A z_0 c d d d d q_2 a b a b b a$
 - if $\delta(c, q_5, \varepsilon) = \emptyset$ and $\delta(c, q_5, a) = \emptyset$, then \exists configuration C s.t. $z_0ccq_5aab \Rightarrow_A C$.

PDA - reduction

- The PDA A **reduces** the configuration $\alpha \in Z^*QT^*$ to a configuration $\beta \in Z^*QT^*$, denoted by $\alpha \Rightarrow^*_A \beta$, if
 - either $\alpha = \beta$,
 - or $\exists \alpha_1, \ldots, \alpha_n$ a finite sequence of words, s.t. $\alpha = \alpha_1$, $\beta = \alpha_n$ and $\alpha_i \Rightarrow_A \alpha_{i+1}$, $1 \le i \le n-1$.
- The relation $\Rightarrow^*_A \subseteq Z^*QT^* \times Z^*QT^*$ is the reflexive and transitive closure of relation \Rightarrow_A .
- Example:
 - If $\delta(d, q_6, b) = \{(\epsilon, q_5)\}$ and $\delta(d, q_5, \epsilon) = \{(dd, q_2), (\epsilon, q_4)\}$ then
 - $\#cddq_6bab \Rightarrow_A \#cdq_5ab \Rightarrow_A \#cddq_2ab$ and
 - $\#cddq_6bab \Rightarrow_A \#cdq_5ab \Rightarrow_A \#cq_4ab$.
 - So, $\#cddq_6bab \Rightarrow^*_A \#cddq_2ab$ and $\#cddq_6bab \Rightarrow^*_A \#cq_4ab$.

PDA - reduction

 The accepted language with accepting status (end status) by a PDA A is:

 $L(A) = \{ w \in T^* \mid z_0 q_0 w \Rightarrow^*_A x p, \text{ where } x \in Z^*, p \in F \}.$

Deterministic PDA

- The PDA $A = (Z, Q, T, \delta, z_0, q_0, F)$ is **deterministic** if for all $(z, q, a) \in Z \times Q \times T$ it holds that $|\delta(z, q, a)| + |\delta(z, q, \epsilon)| = 1$.
- So, for all $q \in Q$ and $z \in Z$
 - either $\delta(z, q, a)$ contains exactly one element for each input symbol $a \in T$ and $\delta(z, q, \epsilon) = \emptyset$,
 - or $\delta(z, q, \varepsilon)$ contains exactly one element and $\delta(z, q, a) = \emptyset$ for all input symbols $a \in T$.
- Remark: If for all $(z, q, a) \in Z \times Q \times T$ it holds that $|\delta(z, q, a)| + |\delta(z, q, \epsilon)| \le 1$ then the PDA can be easily extended to a deterministic one accepting the same language. Thus, PDAs fulfilling this condition can be considered as deterministic in a broader sense.

Deterministic PDA

- The acceptance (recognition) power of deterministic PDAs is less than of non-deterministic PDAs.
- Example: Let
 - $L_1 = \{wcw^{-1} \mid w \in \{a, b\}^*\},$
 - $L_2 = \{ww^{-1} \mid w \in \{a, b\}^*\}.$
 - L₁ can be accepted by a deterministic PDA, but
 L₂ not.
 - Both L_1 and L_2 can be accepted by a nondeterministic PDA.

Deterministic PDA

- Example: Accepting $L_2 = \{ww^{-1} \mid w \in \{a, b\}^*\}$ nondeterministically.
 - Idea:
 - 1. read and push input symbols non-deterministically either repeat 1. or go to 2.
 - 2. read input symbols and pop stack sympols, compare if not equal reject.
 - 3. enter accept state if stack is empty.
 - Non-deterministic PDA:

$$A = (\{q_0, q_1, q_2\}, \{a, b\}, \{\#, a, b\}, \delta, q_0, \#, \{q_2\}), \text{ where:}$$

- $(zt, q_0) \in \delta(z, q_0, t), \forall t \in \{a, b\}, z \in \{\#, a, b\}$
- $(z, q_1) \in \delta(z, q_0, \varepsilon), \forall z \in \{\#, a, b\}$
- $(\varepsilon, q_1) \in \delta(t, q_1, t), \forall t \in \{a, b\}$
- $(\#, q_2) \in \delta(\#, q_1, \varepsilon)$

PDA

- The language accepted by the PDA A with an empty stack is
 - $N(A) = \{ w \in T^* \mid z_0 q_0 w \Rightarrow^*_A p, \text{ where } p \in Q \}$.
- Example: Let $A = (\{\$, a\}\{q_0, q_1\}, \{a, b\}, \delta, \$, q_0, \{\}),$ where δ is:
 - $$q_0a \rightarrow aq_0
 - aq₀a → aaq₀
 - $aq_0b \rightarrow q_1$
 - $aq_1b \rightarrow q_1$
 - $q_1 \to q_1$. Then $N(A) = \{a^n b^n \mid n \ge 1\}$.

Computing power of PDAs

- **Theorem**: For every PDA A, a PDA A' can be constructed, s.t. N(A') = L(A) is fulfilled.
- **Theorem**: For every context-free grammar G, a PDA A can be constructed, s.t. L(A) = L(G).
- **Theorem**: For every PDA A, a context-free grammar G can be given, s.t. L(G)=N(A)
- Therefore, the computing power of PDAs (either we consider acceptance with accepting end state or acceptance with an empty stack) equal to the computing power of context-free (type 2) grammars.

Converting CFGs to PDAs

- **Theorem**: For every context-free grammar (CFG) G, a PDA A can be constructed, s.t. L(A) = L(G).
- Proof construction: Convert the CFG G to the following PDA.
 - Push the start symbol on the stack.
 - If the top of stack is
 - Non-terminal: replace with right hand side of rule (nondeterministic choice).
 - Terminal: pop it and match with next input symbol.
 - If the stack is empty, accept.
- Example: Let G=(N,T,P,S) be the CFG with $T=\{a,+,\times,(,)\}$, $N=\{S,M,F\}$, and $P=\{S\to S+M\mid M,M\to M\times F\mid F,F\to(S)\mid a\}$. Input: $a+a\times a$.

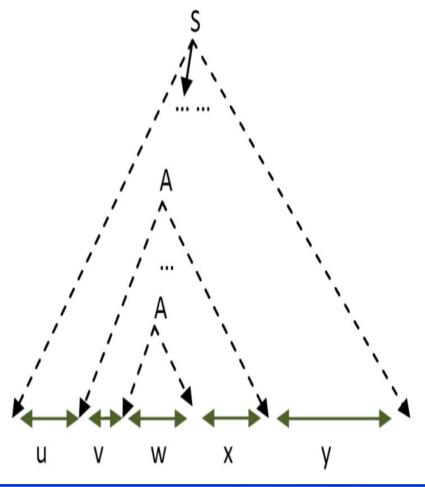
S	S	M	F	a	+	Μ	M	F	a	X	F	а	
	+	+	+	+	M		×	\times	×	F			
	Μ	M	M	M	П		F	F	F				

Bar-Hillel Lemma

- A necessary condition that a language is contextfree (thus, it can be recognized by a PDA).
- **Theorem** (Bar-Hillel lemma, or pumping lemma for context-free languages): For all context-free languages L, there exists a natural number n, s.t. that for every word $z \in L$ with |z| > n holds that z can be written as z = uvwxy $(u,v,w,x,y \in T^*)$, where $|vwx| \le n$, $vx \ne \varepsilon$, and $uv^iwx^iy \in L$, for all $i \ge 0$.

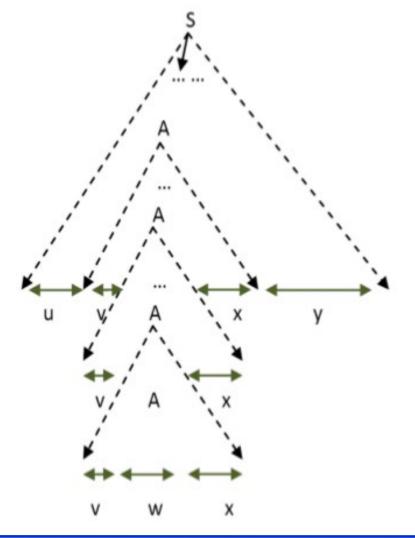
Bar-Hillel Lemma

Proof: Assume, that the grammar is ε free an it is given in Chomsky normal form (i.e. all production rules are of the form: $A \rightarrow BC$, or $A \rightarrow a$, or $S \rightarrow \varepsilon$). The derivation of a word $z \in L(G)$ can be represented by a tree T_s . If the depth of T_s (lengt of the longest path from S to a leaf) is k, then $|z| \le 2^k$, due to the Chomsky normal form. Let N be the set of non-terminals in G and j=|N|. Let $n=2^{j+1}$. If $z \in L$ and |z| > n, then the longest path in the derivation tree of $S \Rightarrow^* z$ must be longer than j. Consider the last section of this path of length j+1. There must be a non-terminal $A \in N$ that occurs at least twice in this section.



Bar-Hillel Lemma

Proof (cont.): Consider two such occurrences of A on this path. Let r be the word corresponding to the subtree of the first one (closer to S), and let w be the word corresponding to the other one. Then, $A \Rightarrow r$ and $A \Rightarrow w$, and w is a subword of r, so r=vwx for some v,x $\in T^*$. Furthermore, z=ury, for some u,y $\in T^*$. Due to the choice of the occurrences of A, $|r| \leq 2^{j+1}$. On the other hand, $S \Rightarrow * uAy$ and $A \Rightarrow * vAx$. Therefore, $S \Rightarrow^* uv^i wx^i y$, for any $i \ge 0$. Here, $A \Rightarrow^* vAx$ contains at least one step, and the first step must be the application of a rule of the form $A \rightarrow BC$. Therefore $|vx| \ge 1$, since G is ε -free.



Application of the Bar-Hillel Lemma

- **Claim**: The language $L = \{a^j b^j c^j : j \ge 1\}$ is not context-free.
- **Proof**: Assume for contradiction, that *G* is a context-free grammar generating *L*. Then, by the lemma, $\exists n \geq 0$ that for \forall word $z \in L$, |z| > n can be written in the form z = uvwxy, s.t. $|vwx| \leq n$, $vx \neq \varepsilon$, and for all $i \geq 0$, $uv^iwx^iy \in L$. Consider a word $a^mb^mc^m$ with m > n. Since $|vwx| \leq n$, vwx can not contain all three symbols of a,b,c. Assume, w.l.o.g., it contains at least one a and does not contain any c. Then by pumping, for $i \geq 2$, uv^iwx^iy contains more a's than c's. Consequently, $uv^iwx^iy \notin L$. ■

References

- Michael O. Rabin: Probabilistic Automata.
 Information and Control. 6 (3): 230–245, 1963.
 doi:10.1016/s0019-9958(63)90290-0
- Michael Sipser: Introduction to the Theory of Computation. 3rd edition, 2012.